

1 **Infrastructure sufficiency in meeting water demand under**
2 **climate-induced socio-hydrological transition in the**
3 **urbanizing Capibaribe River Basin - Brazil**

5 **A. Ribeiro Neto¹, C.A. Scott², E.A. Lima³, S.M.G.L. Montenegro¹ and J.A. Cirilo⁴**

6 ¹Department of Civil Engineering, Federal University of Pernambuco, Recife, Brazil

7 ²School of Geography & Development, and Udall Center for Studies in Public Policy,
8 University of Arizona, USA

9 ³Campus Professora Cinobelina Elvas, Federal University of Piauí, Bom Jesus, Brazil

10 ⁴Academic Center of Agreste, Federal University of Pernambuco, Caruaru, Brazil;

11 Correspondence to: A. Ribeiro Neto (alfredoribeiro@ufpe.br)

12

13 **Abstract**

14 Water availability for a range of human uses will increasingly be affected by climate change,
15 especially in the arid and semiarid tropics. The main objective of this study is to evaluate the
16 infrastructure sufficiency in meeting water demand under climate-induced socio-hydrological
17 transition in the Capibaribe River Basin (CRB). The basin has experienced spatial and
18 sectoral (agriculture-to-urban) reconfiguration of water demands. Human settlements that
19 were once dispersed, relying on intermittent sources of surface water, are now larger and
20 more spatially concentrated, which increases water-scarcity effects. Based on the application
21 of linked hydrologic and water-resources models using precipitation and temperature
22 projections of the IPCC SRES A1B scenario, a reduction in rainfall of 26.0% translated to
23 streamflow reduction of 60.0%. We used simulations from four members of the HadCM3
24 Perturbed Physics Ensemble, in which a single model structure is used and perturbations are
25 introduced to the physical parameterization schemes in the model (Chou et al., 2012). We
26 considered that the change of the water availability in the basin in the future scenarios must
27 drive the water management and the development of adaptation strategies that will manage
28 the water demand. Several adaptive responses are considered including water-loss reductions,

1 wastewater collection and reuse, and rainwater collection cisterns, which together reduce
2 future water demand by 23.0%. This study demonstrates the vulnerabilities of the
3 infrastructure system during socio-hydrological transition in response to hydroclimatic and
4 demand variabilities in the CRB and also indicates the differential spatial impacts and
5 vulnerability of multiple uses of water to changes over time. The simulations showed that the
6 measures proposed and the water from interbasin transfer project of the São Francisco River
7 had a positive impact over the water supply in the basin, mainly for human use. Industry and
8 irrigation will suffer impact unless other measures are implemented for demand control.

9 **1 Introduction: socio-hydrological transition**

10 One of the most important impacts of climate change occurs in water resources availability
11 (Milly et al., 2008). Surface water and groundwater recharge may be directly affected by
12 changes in rainfall and increases in air temperature that causes higher evapotranspiration
13 rates. A direct consequence of changes in streamflow regimes is the impact on water supplies.
14 This is expected to lead to decreased water quantity available for different uses, especially to
15 guarantee food supplies in the arid and semiarid tropics (Bates et al., 2008). Climate change
16 may also affect the function and operation of existing water infrastructure as well as water
17 management practices (Kundzewicz et al., 2007). Conversely, adaptive water management
18 through forward-looking planning and operation of infrastructure coupled with flexible
19 demand management represents an important strategy to face climate change and variability
20 (Short et al., 2012).

21 Infrastructure is planned, designed, and built considering future conditions of supply, demand,
22 and variability. Supply under water-scarce conditions is determined by hydroclimatic and
23 basin processes, especially surface and groundwater flows, as well as water quality. It is
24 increasingly recognized that forecasting future demand is strongly influenced not just by
25 demographic trends but also by water allocation among different uses (e.g., cities, agriculture,
26 and ecosystems), management practices (e.g., water use efficiency), pricing and
27 supply/rationing regimes, and end-user awareness. In this paper, we address the concept of
28 infrastructure sufficiency as the ability of water supply systems to reliably meet future
29 demands given the uncertainty inherent in future supply and demand conditions. It is essential
30 to assess supply-demand imbalances, particularly if they are projected to get progressively
31 worse or if supply targets are not met for prolonged periods of time, causing economic, social,
32 and environmental damage. The most appropriate method to estimate impacts is the use of

1 scenarios run through Global Circulation Models (GCMs). The GCM outputs are used as
2 inputs to hydrological models, which calculate the streamflow in the basin. The combined use
3 of mathematical models makes possible the estimate of the possible impact of streamflow
4 reduction in water allocation, as can be seen in Condappa et al. (2009) and Vaze et al. (2011).
5 Integration of the GCM/hydrological models has been accomplished using different types of
6 models such as VIC (Variable Infiltration Capacity) (Liu et al., 2010), Large Basin
7 Hydrological Model (MGB-IPH) (Nóbrega et al., 2011) and DiCaSM (Montenegro and
8 Ragab, 2012), among others. A similar strategy involves the use of Regional Climate Models
9 (RCM) nested within GCMs to improve the spatial resolution and to permit hydrological
10 simulation in smaller basins (Akhtar et al., 2009; Driessen et al., 2010). The vulnerability of
11 infrastructure systems – understood here as the inverse of sufficiency, i.e., the inability to
12 meet demand targets – can also be evaluated using coupled or sequentially run models, e.g.,
13 GCM, rainfall-runoff model, and simulation model (Cha et al., 2012; Matonse et al., 2013;
14 Hall and Murphy, 2010), and using different indexes (resilience, reliability, vulnerability) for
15 estimating the robustness of the systems (Matonse et al., 2013); water use to resource ratio
16 (Hall and Murphy, 2010), and percentage of the demand not met.

17 While infrastructure function is determined by supply and demand conditions, over the
18 medium and longer terms, the presence of reliable infrastructure itself can increase demand.
19 Thus, the understanding of socio-hydrology that we advance in this paper is a sequential and
20 co-evolutionary process of: a) human demand for water exceeding natural supply, b)
21 development of local-scale, low-cost infrastructure to enhance and stabilize supply, c) demand
22 growth based on supply enhancement, d) recurring water scarcity and/or short-term supply
23 insufficiency, and e) infrastructure to capture extra-local sources of supply. Step (e) is often
24 followed by (c) and (d), with further supply enhancement limited by local or non-local
25 sources of supply. At this stage, adaptive management of demand, capture of losses, and
26 reuse, among other strategies become increasingly important for infrastructure sufficiency.

27 The bidirectional influences between supply (infrastructure) and demand (allocation, use) are
28 in continual transition. A transition is a structural change in the way a societal system operates
29 over the longer term (25-50 years) resulting from a co-evolution of cultural, institutional,
30 economical, ecological and technological processes (Brugge et al., 2005). Managing the
31 transition can also entail the use of scenarios to deal with uncertainties, generating and
32 sustaining societal pressure in political and market terms in order to safeguard the long-term

1 orientation and goals of the transition process (Loorbach and Rotmans, 2010). To pursue this
2 conceptual approach, a central question we intend to answer in this paper is “Can models and
3 scenarios aid in evaluating infrastructure and its sufficiency, augmented by alternative
4 strategies to manage socio-hydrological transition in a semiarid basin?”

5 This paper considers semiarid Northeast Brazil, which is experiencing a reduction of water
6 availability due to changes in the climate (Kundzewicz et al., 2007) as well as increases in
7 human water demand for urban supply, irrigation, and other purposes. As such, this region is
8 broadly representative of water-scarce regions globally that are facing increasing threats to
9 water security (Scott et al., 2013). The Capibaribe River Basin (CRB) has characteristics
10 typical of Brazil’s semiarid Northeast and it has experienced spatial and sectoral (agriculture-
11 to-urban) reconfiguration of water demands. The economic growth in the interior of the basin
12 combined with urbanization has stressed water security in terms of availability and quality.
13 The release of domestic and industrial wastewater in the river plus land-use changes affect the
14 water cycle in the basin, as evidence of growing human influence on water availability
15 (Thompson et al., 2013; Savenije, 2014). This is the “forward” impacts of society on
16 hydrology. On the other hand (hydrology impacts on society), dispersed human settlements
17 in the CRB must be taken into account. Small communities are increasingly concentrating
18 around infrastructural water supplies (groundwater, where available, but increasingly tanker-
19 truck supplies during drier months and over extended drought periods). Together these
20 constitute a socio-hydrological transition process that results from a) hydroclimatic
21 variability, b) investment and assistance programs that may enhance but can also supplant
22 local adaptive capacity, and c) demographic trends that are already pronounced in Brazil.

23 Support programs are crucial to prevent rural populations from migrating to cities. Such
24 programs include crop insurance (*Garantia Safra*), income transfer (*Bolsa Família*) and credit
25 schemes (*PRONAF*) at the federal level and *Chapeu de Palha* and *PRORURAL* run by the
26 Pernambuco state government. During the recent drought between 2011 and 2013,
27 Pernambuco supported farmers and ranchers with subsidized inputs.

28 The strengthening of the water infrastructure in Northeast Brazil, including Pernambuco
29 State, in the last decades has increased the resilience of the water supply systems to face
30 drought events and reduce the vulnerability to climate variability. The infrastructure projects
31 involve construction of reservoirs, pipelines and canals. Such solutions have been

1 implemented in the Capibaribe River Basin and Recife, the capital of Pernambuco State.
2 Other projects are also planned to support water supply systems in Pernambuco.

3 The interbasin transfer project of the São Francisco River is the largest water infrastructure
4 project in Brazil. Two canals will transport an average of $63.2 \text{ m}^3/\text{s}$ ($127.0 \text{ m}^3/\text{s}$ at maximum)
5 from the river to four states of Northeast Brazil. The average withdrawal is small when
6 compared with water availability in the source basin (3.4%). The project will take water to
7 twelve million people, including regions that today are supplied by CRB. The main objective
8 of the project is to augment water supply in a manner that enhances local infrastructure. The
9 Northeast has a number of reservoirs for water supply where the loss by evaporation is very
10 high resulting from the necessity of maximizing storage at high water levels. The water from
11 the São Francisco River project may safeguard these supplies, i.e., the reservoirs may operate
12 at lower levels with lower evaporation losses. The implications of the developments described
13 in the last two paragraphs must be assessed in tandem with climate-change impacts.

14 The current analysis has been accomplished using three types of models: 1) climate model
15 outputs of rainfall and air temperature for the IPCC emissions scenarios; 2) a hydrological
16 model to estimate the discharge in the river; and 3) a network flow model for simulating the
17 balance between water supply and water demand. The main objective of this study is to
18 evaluate the infrastructure sufficiency in meeting water demand under climate-induced socio-
19 hydrological transition in the Capibaribe River Basin (CRB). The evaluation may be useful
20 for planning and developing actions aiming to diminish the impact on the population and
21 economic activities in the basin. At the same time, analyzing the flexibility of the water
22 resources system for different parts of the basin may support the Secretaria de Recursos
23 Hídricos e Energéticos (SRHE), the principal state agency responsible for planning and
24 management of water and energy infrastructure. Two of the authors have served in
25 operational capacity with SRHE. In particular, the assessment presented here supports the
26 Hydro-Environmental Master Plan of Capibaribe River – further details are provided below.

27 **2 Methods**

28 **2.1 Study area**

29 The Capibaribe River Basin (CRB) ($7,454 \text{ km}^2$) located in state of Pernambuco in the
30 Northeast Brazil has a west-east direction with its headwaters in a semiarid region and its
31 outlet section on the Atlantic Ocean coast (Fig. 1). For this reason, there are different types of

1 soil, vegetation cover, climate and relief along its extension. The uplands are characterized by
2 shallow soils, Caatinga vegetation (thornscrub, cactus, and bunch grasses), and a semiarid
3 climate with 550 mm.year⁻¹ of rainfall and mean air temperatures between 20-22°C. The
4 lowlands are characterized by deeper soils, Atlantic Forest vegetation and humid/sub-humid
5 climate, with 2,400 mm.year⁻¹ of rainfall and mean air temperature between 25-26 °C. The
6 altitude in the basin varies from 0 m at the outlet section to 1,199 m in the uplands. The main
7 course of the Capibaribe River is 280 km long.

8 There are 42 municipalities completely or partially inside the basin and 26 urban or town
9 centers of municipalities in the interior of the basin, including Recife, the capital of
10 Pernambuco. The total population in the basin is 1.71 million, of which 0.76 million reside in
11 Recife. The main water uses are human, industrial and irrigation totalling 9.41 m³/s of
12 demand. The spatial distribution of the demand is influenced by the water availability, i.e., the
13 greatest volumes withdrawn from the basin correspond to places closest to the lower
14 Capibaribe River. There are two points in the basin with infrastructure for water transfer. In
15 the central portion of the basin, there is a pipeline that transfers water to cities of the Ipojuca
16 River basin (0.683 m³/s). In the lower part, the water supply system of the Recife
17 Metropolitan Region receives water from a reservoir outside of the CRB (0.455 m³/s).

18 The CRB has eight reservoirs with storage capacities greater than 10 million cubic meters
19 (MCM) each. The total capacity of the reservoirs is about 800 MCM. All the reservoirs are
20 used for water supply and four of them are also used for flood control (Jucazinho, Carpina,
21 Tapacurá and Goitá). Table 1 shows the characteristics of each reservoir.

22 The Hydro-Environmental Master Plan of Capibaribe River (Pernambuco, 2010) encompasses
23 a diagnosis with hydrological, environmental and social-economic studies. Two scenarios
24 have been analyzed: “Business as Usual” and “Sustainable”. The results aided the set up of
25 investment plans to the basin. The basin has been divided into four regions (Analysis Units -
26 AU) according to their climatological, hydrological and social-economic characteristics. Fig.
27 2 shows the boundaries of each AU and the reservoirs indicated in Table 1.

28 The temporal variation of water demand is influenced by the growth of the population and the
29 economy in the municipalities of the basin. During the 2000s the average annual water
30 demand growth rate (4.34%) followed social and economic factors such as the annual growth
31 rate of the Gross Domestic Product (12.36%), annual population growth (1.38%), agriculture
32 area growth (6.58%), human development index improvement (1.00%), and increased

1 pollutant load released in the river (5.47%) (Pernambuco, 2010). These factors are strongly
2 influenced by the development of textile, sugar and ethanol industries. The main irrigated
3 crops are sugarcane, in the analysis unit AU4, and vegetables in the analysis unit AU3.

4 During this period the increase in water availability resulting from improvement of the water
5 infrastructure was lower than demand growth. At the same time, groundwater availability is
6 significant only in AU4. The basin overlies crystalline-rock aquifers over virtually its entire
7 area; only AU4 presents a sedimentary aquifer. The groundwater availability in AU1, AU2
8 and AU3 corresponds to 3.73% of the groundwater availability in the AU4 ($1.257 \text{ m}^3/\text{s}$).

9 In Northeast Brazil, many families live in the interior without access to water for drinking,
10 cooking and hygiene. These families live far from the systems of water supply. According to
11 Pernambuco (2010), there are 111,796 people in such conditions in the CRB (6.55% of the
12 total population). During periods of severe droughts, as the Northeast has faced in 2011-2013,
13 this population is supplied with water by tanker trucks and, in some cases, collecting water
14 daily from springs and small reservoirs, generally made by women and children, often over
15 long distances. In addition to this, wells and cisterns are the more common water collection
16 and storage systems in the region. Non-governmental organizations supported by the federal
17 government have installed about 500,000 cisterns in Northeast Brazil since 2003. The cisterns
18 in the Northeast have storage capacities varying between 7 and 16 m^3 , representing an
19 availability of 50 liters per day during 140-300 days, if they are considered full of water at the
20 end of the rainy season.

21 Precipitation in the AUs reduces from east to west, and the potential evapotranspiration
22 increases in the same direction (Table 2). These characteristics contribute to the low runoff in
23 the AU1, AU2 and AU3 and high runoff in the AU4. The soil type and geology in the basin
24 also contribute to the spatial variability of runoff. The basin is predominantly over the
25 crystalline basement (shallow soil and rock near the surface). The exception is the presence of
26 sedimentary areas in the AU4. The low storage capacity of the soil hinders the stabilization of
27 the flow, resulting in intermittent rivers in the uplands of the basin.

28 **2.2 Data**

29 The mean rainfall in the basin has been calculated using data from 85 rain gauges of the
30 hydrometeorological network of the National Water Agency (ANA) and Institute of
31 Technology of Pernambuco (ITEP). The rainfall measured was used to assess the rainfall of

1 the climate model as well as used in the calibration of the parameters of the hydrological
2 model.

3 Scenarios under climate change are derived from Chou et al. (2012), who used the output data
4 of the GCM HadCM3 (UK Met Office Hadley Centre) as the boundary condition in
5 simulations of the Regional Climate Model ETA-CPTEC. Using ETA-CPTEC/HadCM3
6 models, Chou et al. (2012) simulated rainfall, air temperature, relative humidity and other
7 climatological variables for 1960-1990, 2010-2040, 2040-2070 and 2070-2100. The CO₂
8 concentration in the base condition (1960-1990) is 330 ppm, whereas the future projections
9 use the IPCC SRES A1B scenario. Chou et al. (2012) assert that there are two ways of
10 estimating uncertainties in model simulation. One way is through the multi-model ensemble
11 method. An advantage of this method is that a wide variety of model designs and
12 configurations form the ensemble. The other method follows the perturbed physics ensemble
13 (PPE) approach which is designed to quantify the modeling uncertainty in the simulation or
14 projections of climate that depends on the way processes are represented in the model, i.e. in
15 their physics parameters. Chou et al. (2012) used four members of the HadCM3 Perturbed
16 Physics Ensemble, in which a single model structure is used and perturbations are introduced
17 to the physical parameterization schemes in the model. The first member is the standard
18 model structure (CTRL-control) and the other ones are perturbations of the physical
19 parameterization schemes used to produce variants of the same model (LOW, MIDI and
20 HIGH). In our study, the analysis used the four members.

21 The ETA-CPTEC/HadCM3 runs presented bias for rainfall and air temperature. Both
22 variables are generally underestimated when compared with the observed values. It is usually
23 necessary to correct these data before using them in a study. The bias correction was made
24 using cumulative distribution functions (CDF) according to Bárdossy and Pegram (2011). We
25 chose the simplest form of bias correction for air temperature. The mean bias is added to the
26 model data after calculating the bias for each month of the climatological year (Berg et al.,
27 2012).

28 The calibration of our hydrological model takes into account the stream gauge discharges.
29 The ANA hydrometeorological network has three streamgauges in the main stem of the
30 Capibaribe River and two in tributaries (shown in Fig. 1). The air temperature for calculation
31 of potential evapotranspiration (PET) is measured in the climatological station at Surubim
32 (also shown in Fig. 1). The PET has been estimated using the Thornthwaite method. This

1 method uses only air temperature in its formulation, besides a factor that varies according to
2 month and local latitude.

3 The Hydro-Environmental Master Plan of Capibaribe River (Pernambuco, 2010) exhibits the
4 water uses, the volumes withdrawn from the reservoirs and the characteristics of the
5 reservoirs. This information is used in the network flow model.

6 **2.3 Modeling Infrastructure Vulnerability**

7 **2.3.1 Hydrological model**

8 Rainfall and air temperature may be used to estimate the discharge in the Capibaribe River in
9 the future using a hydrological model. MODHAC (the Portuguese acronym for “Self
10 Calibrated Hydrological Model”) is a rainfall-runoff lumped model, whose input variables are
11 mean rainfall and potential evapotranspiration (Lanna, 1997). MODHAC is similar to other
12 models widely used for synthetic runoff generation such as Soil Moisture Accounting (SMA)
13 present in the HEC-HMS model (HEC-HMS, 2000), SMAP present in the MIKE 11 model
14 (MIKE 11, 2007) and Tank model (Sugawara, 2012). All these models, including MODHAC,
15 use reservoirs which represent the main processes responsible for rainfall–runoff
16 transformation: interception, evapotranspiration and runoff generation, i.e., determination of
17 the volume of water that will either be infiltrated into the soil or flow on the surface. The
18 results of MODHAC in Brazilian semiarid watersheds encourage its use in similar regions
19 like CRB. The model has 14 parameters that can be calibrated automatically using four
20 options of objective functions. In addition, MODHAC can run monthly time step simulations
21 (suitable for this study) and it needs few input data (rainfall and PET).

22 **2.3.2 Network flow model**

23 A network flow model may be used for optimal basin-wide water allocation. This ensures that
24 water is allocated according to physical, hydrological, demands and institutional aspects of
25 river basin management. Network flow models represent the water resources system using
26 nodes and links. The nodes represent point elements such as reservoirs, demands, inter-basin
27 exchange and confluences, whereas links between two nodes represent river branch, pipelines,
28 canals and other similar elements. Each node has a cost per flow unit that influences the
29 volume of water that will pass through it. The model algorithm seeks to minimize the total
30 cost of the network using optimization techniques such as linear programming.

1 One of the most widely used network flow models is MODSIM (Labadie, 1995) developed at
2 Colorado State University. MODSIM has been applied to a number of complex river basin
3 systems such as the Sirvan basin in Iran (Shourian et al., 2008). The water allocation in the
4 present study was done using the Acquanet model (Porto et al., 2003). This model was
5 essentially constructed based on the structure of MODSIM. Acquanet has an interface of
6 communication with the user and a database to store the information of the network flow.

7 The network model needs information of volume of water demand, operation rules and
8 priority of demand. This information was obtained from the Hydro-Environmental Master
9 Plan of the Capibaribe River Basin (Pernambuco, 2010). The order of priorities of demands is
10 human, industry and irrigation. In addition, the input discharge entering in each reservoir is
11 calculated with MODHAC and the evaporation in the reservoirs is calculated using air
12 temperature estimated by ETA-CPTEC/HadCM3.

13 The evolution of the water demand took into account different factors: population growth for
14 human use, Gross Domestic Product (GDP) for industry demand, and growth of irrigated area
15 for irrigation demand. The Brazilian Institute of Geography and Statistics (IBGE) projects
16 that Brazilian population will achieve the maximum in 2042 (228.4 million) and in 2060 will
17 be 218.2 million inhabitants. In 2100, according to Department of Economic and Social
18 Affairs (United Nations), the Brazilian population will be 194.5 million inhabitants. The
19 population growth was the constraint to avoid the increasing of industry and irrigation water
20 demand by the end of the century. Both increase by 2040 and remain constant until 2100
21 considering that the population will not grow after 2040.

22 The change of the water availability in the basin in the future scenarios must drive the water
23 management and the development of adaptation strategies that will manage the water demand.
24 Three hypothesis have been considered:

- 25 • Reduction of water loss in the supply system. Today the loss is 55%. This value may
26 reduce to 25% with programs of improvement of the water supply network;
- 27 • Increasing of the return of water from domestic use. Today the value is 20% due to the
28 limited wastewater collect system. The Pernambuco state government plans to improve
29 the system and it may mean an increasing of the return of water to 80%;
- 30 • Implementation of cisterns for rainwater collection to supply water for sparse population.

31 These measures may reduce about 23.0% the volume of water demand.

1 The environmental flow exhibited in the Hydro-Environmental Master Plan of Capibaribe
2 River was used in the network flow simulation. This discharge is considered only in UA4
3 because it is the perennial reach of the river. The reservoirs, demands, channels and water
4 facilities are represented in the Acquanet using links and nodes as can be seen in Fig. 3. The
5 discharge ($4 \text{ m}^3/\text{s}$) from the São Francisco River project is linked to human demands in the
6 analysis units 1, 2 and 3 (Pernambuco, 2010).

7 **3 Results**

8 **3.1 Hydrological simulation**

9 MODHAC has been calibrated by using monthly time step in the four stream gauges from
10 different parts of the basin according to the climatological characteristics: one in the upper
11 basin, one in the middle basin and two in the lower region (Fig. 1). It was used two periods of
12 time, one for calibration and one for validation. The evaluation of the model calibration
13 considers Nash-Sutcliff coefficient (NS) and volume error ($\Delta V = (\sum Q_{\text{cal}} - \sum Q_{\text{obs}}) / \sum Q_{\text{obs}}$). The
14 Table 3 exhibits the periods used in the calibration and validation, the drainage area and
15 values of the criteria (Nash-Sutcliff and volume). The different periods of time are owing to
16 the construction of reservoirs along the CRB at different times from the mid-1980s onwards.
17 All the streamgauges had a good performance considering the Nash-Sutcliff coefficient. Two
18 sites exhibited high values for volume error in the validation (Toritama and Vitória).

19 The input streamflow in each reservoir is calculated using the set of parameters from the
20 closest streamgauge according to Table 1. We consider that the drainage area of the reservoir
21 is hydrologically similar to the drainage area of the streamgauge. To evaluate this hypothesis,
22 the model has been applied in a drainage area of a streamgauge (Salgadinho-4,923.0 km^2)
23 nested in the Limoeiro streamgauge. The set of parameters was the same calibrated at
24 Limoeiro and the period is from 1984 to 1992. The value of NS was 0.7540 and the volume
25 error 1.1%. The result of the calibration/validation and the simulation at Salgadinho
26 encourages the use of the model to estimate the input streamflow in the reservoirs of the CRB.

27 Applying the set of MODHAC parameters using the rainfall and air temperature for the
28 different time-slices, it is possible to observe the impact on the streamflow at the outlet
29 section of Capibaribe River. The scenarios (corresponding to the four members) exhibited
30 mean annual streamflow of $22.61 \text{ m}^3/\text{s}$ (1960-1990), $19.44 \text{ m}^3/\text{s}$ (2010-2040), $14.67 \text{ m}^3/\text{s}$
31 ($2040-2070$) and $9.09 \text{ m}^3/\text{s}$ ($2070-2100$). The concept of elasticity is a good way of evaluating

1 the sensitivity of long-term streamflow to changes in long-term rainfall. According to Chiew
2 (2006), the rainfall elasticity of streamflow is defined as the proportional change in mean
3 annual streamflow divided by the proportional change in mean annual rainfall. Considering
4 1960-1990 as the reference baseline, the elasticity of Capibaribe river can be estimated for the
5 time-slices (average of four members): 3.69 (2010-2040), 2.35 (2040-2070) and 2.39 (2070-
6 2100).

7 **3.2 Network flow simulation**

8 There were sixteen simulations using Acquanet. The present period (1960-1990) simulation
9 corresponds to a volume of water supply equal to 7.59 m³/s (average of four members). This
10 period did not have water from São Francisco project because the construction finishes in
11 2015. The volume of water supply had little variation in the following periods to 6.63 m³/s
12 (2010-2040), 7.67 m³/s (2040-2070) and 6.99 m³/s (2070-2100). The seventeen demands were
13 assessed calculating the percentage of time corresponding to the demand not met by the water
14 from reservoirs (Fig. 4). The code of each demand may be used to identify its location in the
15 Fig. 3.

16 **4 Discussion**

17 The IPCC SRES scenario has been used to evaluate the impact of climate change on the water
18 supply in the CRB. The results indicate that the mean streamflow of the Capibaribe River
19 decreases significantly in the time slices 2040-2070 and 2070-2100. The reduction of rainfall
20 and mean streamflow has also been verified in other basins of Northeast Brazil located in
21 semiarid regions, using the same IPCC SRES scenarios. Milly et al. (2005), for example,
22 found a reduction of -20% in runoff for the Northeast Brazil, using an ensemble of 12 climate
23 models. Montenegro and Ragab (2012) have simulated the Tapacurá river basin, a tributary of
24 Capibaribe River, using the low emission (B1) scenario and found a reduction of -20% in
25 surface flow for the time span 2070-2100. Marengo et al. (2009) also identified a reduction of
26 rainfall in the Northeast Brazil using three RCM nested within the HadAM3P global model.
27 Fung et al. (2011) verified the change in runoff in a world 2°C and 4°C warmer. Ensembles of
28 GCMs runs for SRES A1B scenario from 1930 to 2079 were used. According to Fung et al.
29 (2011), the ensemble-average changes in mean annual runoff in the Northeast Brazil will
30 reach -40% (+2°C) and -80% (+4°C). The air temperature change estimated in CRB is +3°C
31 with a corresponding runoff reduction of -60% (average of four members).

1 The results indicate high reduction of rainfall and, hence, reduction in mean streamflow, and
2 in the volume of water supplied for industry and irrigation in the CRB. Two factors can
3 explain the sensitivity of CRB to IPCC scenarios. First, part of CRB is located in a semiarid
4 area, which is expected to suffer more severe impact than other regions. On the other hand,
5 the high population density and the water demand have as a consequence higher pressure on
6 the water availability.

7 The elasticity of the CRB exhibited values that indicate high sensitivity to changes in the
8 rainfall: 3.69 (2010-2040), 2.35 (2040-2070) and 2.39 (2070-2100). In other words, small
9 changes in rainfall may mean a high reduction in streamflow. The elasticity found by Chiew
10 (2006) in catchments of Australia is about 2.0-3.5 (observed in about 70% of the 219
11 catchments analyzed). These values are similar to the elasticity presented by the CRB in the
12 time-slices of climatic scenarios. Chiew (2006) observed that streamflow is more sensitive to
13 rainfall in drier catchments, which partially is in accordance with CRB. Scenarios of either
14 reduction of rainfall or even change in the time distribution of rainfall can make an impact on
15 the water supply in the CRB.

16 The simulation of water allocation in the network flow model for the baseline period shows
17 stress in the supply mainly in the analysis units AU1 and AU2 including human use. The
18 adaptation strategies for demand management tested in the network flow model showed that
19 the stress continues in the period 2010-2040 due to the population growth. After that, the
20 human demand decreases and there is a better balance between availability and demand. The
21 problem stays for industry and irrigation because there was no control of these demands. The
22 simulations showed that the measures proposed and the water from São Francisco Project had
23 a positive impact over the water supply in the basin, mainly for human use. Industry and
24 irrigation will suffer impact unless other measures are implemented for demand control.

25 It was verified that the range of values among the members of the climate model is greater for
26 the streamflow than for water allocation. In the period 2070-2100, for example, the MIDI
27 member streamflow is 156% greater than the HIGH member streamflow. For the same period
28 and members, the variation is 15% in the water supply. The water from São Francisco project
29 is the responsible by the reduction of the impact over the allocation among members. These
30 results show that the objective of the São Francisco project, to augment water supply in a
31 manner that enhances local infrastructure, is reached in the CRB. That is the kind of positive
32 impact expected by analysts that assessed the project (Pena de Andrade et al., 2011).

1 The reduction of water supply in the climate scenario has also been verified by Vaze et al.
2 (2011) in Australia using 15 IPCC AR4 GCMs. Two hydrological models and a river system
3 model were used to estimate water availability for historical (1895-2006) and future (2030)
4 rainfall. The change of the diversion for irrigation varies between -27% and +21% depending
5 on the GCM and hydrological model (the median value is about -6%). By the end of the
6 twenty-first century and considering the tendency for 2030, the change estimated by Vaze et
7 al. (2011) could meet the values obtained in CRB.

8 **5 Conclusions**

9 The integration of three models made it possible to evaluate the impact of streamflow
10 reduction in the Capibaribe River Basin water supply due to possible climate change
11 scenarios and evaluate the impact of measures aiming to manage the water demand and the
12 rational water use in the basin. The ETA-CPTEC/HadCM3 coupled climate models were used
13 to estimate rainfall and air temperature in the CRB. Rainfall and air temperature exhibited
14 values underestimated when compared to the observed data. The methods used for bias
15 correction presented results appropriate for hydrological simulation. The MODHAC
16 hydrological model accurately represented the streamflow in the CRB, which has been used to
17 represent the inflow discharge in each reservoir that comprises the water supply system in the
18 basin. The use of a RCM instead of a GCM is more appropriate to represent the rainfall-
19 runoff transformation in a basin with the dimensions of the CRB.

20 Hydroclimatic impacts on water resource systems' ability to meet multiple demands is of
21 growing concern globally with climate change and variability coupled with fluctuating
22 demands. Adaptation measures to ensure water supply in a world under change require
23 demand-side as well as supply-side strategies (Bates et al., 2008). Supply-side strategies
24 involve increases in storage capacity, abstraction from water courses and water transfers. The
25 investment in water facilities, for example, is one of the strategies adopted by China to
26 develop effective adaptation to climate change, natural disasters and food security (Li, 2012).
27 Demand management improves water-use efficiency, water rights, effective regulation
28 enforcement, and pollution control (Cheng and Hu, 2012). Until the 1990's, the Northeast
29 Brazil had a history of inappropriate policies based on the construction of small reservoirs and
30 drilling wells in the crystalline rock. Additionally, there was a lack of effective water
31 management policies. In the late 1990's, a new philosophy has been implemented by
32 Brazilian states with support of Federal Government and the law 9433/1997 that establishes

1 the National Water Resources Policy. The States were able to develop actions for water use
2 control (permits and water abstraction charges), water resources master plan for the basins
3 and States, creation of an institutional framework for water management and programs for
4 water facilities construction.

5 The combination of infrastructure development and improvement of water management
6 policies that anticipate hydroclimatic impacts, such as those modeled in this paper, may result
7 in effective climate-change adaptation measures. Similar processes have been described for
8 Australia by Short et al. (2012) and for developing countries by Mujumdar (2013).
9 Hydrological and water resources models are tools able to simulate both the effectiveness of
10 infrastructures and the adoption of water management policies in a basin impacted by the
11 climate change.

12 On the other hand, the socio-hydrological transition underway shifts water demand in ways
13 that can be considered another driving force in the process of increasing the water deficit. At
14 the same time, sustainable economic growth in the basin will demand an increasing volume of
15 water. Thus, both climate change and water demand may lead to a water stress condition in
16 CRB. In a scenario with lower water availability, actions to overcome deficits into the water
17 balance will be necessary. The adaptation for this condition requires a combination of diverse
18 solutions in an integrated manner: construction and use of cisterns for human supply in
19 dispersed population and desalination of water drawn from wells; family agriculture with
20 short harvesting cycle, to take advantage of the water of surface reservoirs before losses by
21 evaporation; construction and use of reservoirs with lower water surface; and even
22 underground dams; integration of large water sources using large main water systems to
23 supply the cities and for development of irrigated agriculture; use of water saving
24 technologies in agriculture, industry and domestic use; and reuse of wastewater.

25 The simulation may be useful for transition management in basins under strong water stress
26 like CRB. The measures and strategies could be tested using regional climate model,
27 hydrological model and allocation model. The next master plans in Capibaribe River basin
28 may consider the use of modelling to assess climate change scenarios with the objective of
29 evaluating strategies for mid- and long-term management. The results of the simulations
30 showed that industry and irrigation are under risk by the end of the 21st century even with the
31 use of water from the São Francisco project.

1 Uncertainties are inherent in analyses involving impact of climate change. Despite the use of
2 the perturbed physics ensemble in the simulations, it is important to use other models with
3 performances as good as HadCM3 for the simulation of base conditions in order to diminish
4 the uncertainties related to the GCM output. The reliability of the results may be related to the
5 number of GCMs used in the analysis and it is also possible to associate a confidence interval
6 to the rainfall change. This must be done in the next steps of the research. Despite the
7 necessity of improving the reliability of the results, we can conclude that the combined use of
8 mathematical models is able to indicate the effectiveness of measures for socio-hydrological
9 transition management. Modeling also shows the vulnerabilities of the system, such as the
10 elasticity of the Capibaribe River, as well as indicating which parts of the basin are more
11 vulnerable to changes.

12 **Acknowledgements**

13 The authors acknowledge the Brazilian Research Network on Global Climate Change (Rede
14 CLIMA), the Brazilian National Council for Scientific and Technological Development
15 (CNPq), and the Inter-American Institute for Global Change Research (IAI, project CRN3056
16 which is supported by the US National Science Foundation grant GEO-1128040).

17

1 **References**

2 Akhtar, M., Ahmad, N. and Booij, M.J.: Use of regional climate model simulations as input
3 for hydrological models for the Hindu Kush-Karakorum-Himalaya region, *Hydrol. Earth Syst.*
4 *Sci.*, 13, 1075-1089, 2009.

5 Bárdossy, A. and Pegram, G. Downscaling precipitation using regional climate models and
6 circulation patterns toward hydrology. *Water Resources Research*, 47, 1-18, 2011.

7 Bates, B.C., Kundzewicz, Z.W., Wu, S. and Palutikof, J.: Climate change and water,
8 Technical Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat,
9 Geneva, 2008.

10 Berg, P., Feldmann, H., Panitz, H.J., 2012. Bias correction of high resolution regional climate
11 model data. *Journal of Hydrology*, 448-449, 80-92.

12 Van der Brugge, R., Rotmans, J. and Loorbach, D. The transition in Dutch water
13 management. *Reg Environ Change*, 5, 164-176, 2005.

14 Cha, D., Lee, S. and Park, H.: Investigating the vulnerability of dry-season water supplies to
15 climate change: a case study of the Gwangdong reservoir drought management system,
16 Korea, *Water Resour Manag*, 26, 4183-4201, 2012.

17 Cheng, H. and Hu, Y.: Improving China's water resources management for better adaptation
18 to climate change, *Climatic Change*, 112, 253-282, 2012.

19 Chiew, F.H.S.: Estimation of rainfall elasticity of streamflow in Australia, *Hydrolog Sci J*, 51,
20 613-625, 2006.

21 Chou, S.C., Marengo, J.A., Lyra, A.A., Sueiro, G., Pesquero, J.F., Alves, L.M., Kay, G.,
22 Betts, R., Chagas, D.J., Gomes, J.L., Bustamante, J.F. and Tavares, P.: Downscaling of South
23 America present climate driven by 4-member HadCM3 runs, *Clim Dynam*, 38, 635-653,
24 2012.

25 Condappa, D., Chaponnière, A. and Lemoalle, J. : A decision-support tool for water allocation
26 in the Volta Basin, *Water Int*, 34, 71-87, 2009.

27 Driessen, T.L.A., Hurkmans, R.T.W.L., Terink, W., Hazenberg, P., Torfs, P.J.J.F. and
28 Uijlenhoet, R.: The hydrological response of the Ourthe catchment to climate change as
29 modelled by the HBV model, *Hydrol. Earth Syst. Sci.*, 14, 651-665, 2010.

1 Fung, F., Lopez, A. and New, M.: Water availability in +2°C and +4°C worlds, Phil. Trans. R.
2 Soc. A, 369, 99-116, 2011.

3 HEC-HMS - Hydrologic Modeling System. Technical Reference Manual. Davis, USA: US
4 Army Corps of Engineers, 2000.

5 Kundzewicz, Z.W., Mata, L.J., Arnell, N.W., Döll, P., Kabat, P., Jiménez, B., Miller, K.A.,
6 Oki, T., Sen, Z. and Shiklomanov, I.A.: Fresh water resources and their management. In:
7 Parry ML et al. (eds) Climate Change 2007: impacts, adaptation and vulnerability,
8 Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental
9 Panel on Climate Change, Cambridge University Press, Cambridge, UK, pp 173-210, 2007.

10 Labadie, J.: MODSIM: River Basin Network Flow Model for conjunctive stream-aquifer
11 management, Program User Manual and Documentation, Colorado State University, 1995.

12 Lanna, A.E.: MODHAC – Self Calibrated Hydrological Model, User's manual. Hydraulics
13 Research Institute - Federal University of Rio Grande do Sul, Porto Alegre, 1997.

14 Li, S.: China's huge investment on water facilities: an effective adaptation to climate change,
15 natural disasters and food security, Nat Hazards, 61, 1473-1475, 2012.

16 Liu, Z., Xu, Z., Huang, J., Charles, S.P. and Fu, G.B.: Impacts of climate change on
17 hydrological processes in the headwater catchment of the Tarim River basin, China, Hydrol
18 Process, 24, 196-208, 2010.

19 Loorbach, D. and Rotmans, J. The practice of transition management: Examples and lessons
20 from four distinct cases. Futures, 42, 237-246, 2010.

21 Marengo, J.A., Jones, R., Alves, L.M. and Valverde, M.C.: Future change of climate in South
22 America in the late twenty-first century: intercomparison of scenarios from three regional
23 climate models, Clim Dynam, 35, 1073-1097, 2009.

24 Matonse, A.H., Pierson, D.C., Frei, A., Zion, M.S., Anandhi, A., Schneiderman, E. and
25 Wright, B.: Investigating the impact of climate change on New York City's primary water
26 supply, Climatic Change, 116, 437-456, 2013.

27 MIKE 11: A Modelling System for Rivers and Channels: Reference Manual. Denmark: DHI
28 Water & Environment, 2007.

29 Milly, P.C.D., Dunne, K.A. and Vecchia, A.V.: Global pattern of trends in streamflow and
30 water availability in a changing climate, Nature, 438, 347-350, 2005.

1 Milly, P.C.D., Betancourt, J., Falkenmark M, Hirsch, R.M., Kundzewicz, Z.W., Lettenmaier,
2 D.P. and Stouffer, R.J.: Stationarity is dead: whither water management? *Science* 319: 573-
3 574, 2008. doi 10.1126/science.1151915.

4 Montenegro, S.M.G.L. and Ragab, R.: Impact of possible climate and land use changes in the
5 semiarid regions: a case study from North Eastern Brazil, *J Hydrol*, 434, 55-68, 2012.

6 Mujumdar, P.P.: Climate change: a growing challenge for water management in developing
7 countries. *Water Resour Manag*, 27, 953–954, 2013. doi:10.1007/s11269-012-0223-x.

8 Nóbrega, M.T., Collischonn, W., Tucci, C.E.M. and Paz, A.R.: Uncertainty in climate change
9 impacts on water resources in the Rio Grande Basin, Brazil, *Hydrol. Earth Syst. Sci.* 15, 585–
10 595, 2011.

11 Pena de Andrade, J.G., Barbosa, P.S.F., Souza, L.C.A. and Makino, D.L. *Interbasin Water
Transfers: The Brazilian Experience and International Case Comparisons*. *Water Resour
Manage*, 25, 1915–1934, 2011. Doi: 10.1007/s11269-011-9781-6.

14 Pernambuco (2010): *Plano Hidroambiental da Bacia Hidrográfica do Rio Capibaribe. Tomo
II – Cenários Tendenciais e Sustentáveis*. SRHE, Recife.

16 Porto, R.L.L. et al.: Sistema de suporte a decisão para análise de sistemas de recursos
17 hídricos. In: Silva, R.C.V. *Métodos numéricos em recursos hídricos*. ABRH, Porto Alegre, pp
18 93-240, 2003.

19 Savenije, H.H.G., Hoekstra, A.Y. and van der Zaag, P.: Evolving water science in the
20 Anthropocene, *Hydrol. Earth Syst. Sci.*, 18, 319–332, 2014.

21 Scott, C.A., Meza, F.J., Varady, R.G., Tiessen, H., McEvoy, J., Garfin, G.M., Wilder, M.,
22 Farfán, L.M., Pineda Pablos, N., Montaña, N.: Water security and adaptive management in
23 the arid Americas. *Ann Assoc Am Geogr*, 103, 280-289, 2013. doi:
24 10.1080/00045608.2013.754660.

25 Short, M.D., Peirson, W.L., Peters, G.M. and Cox, R.J.: Managing adaptation of urban water
26 systems in a changing climate, *Water Resources Management* 26 (7): 1953-1981, 2012.

27 Shourian, M., Mousavi, S.J., Tahershamsi, A.: Basin-wide water resources planning by
28 integrating PSO algorithm and MODSIM, *Water Resour Manag*, 22, 1347-1366, 2008.

29 Sugawara, M. *Tank Model*. In: Singh, V.P. *Computer Models of Watershed Hydrology*.
30 Chapter 6. Water Resources Pubns. 2012.

1 Thompson, S.E., Sivapalan, M., Harman, C.J., Srinivasan, V., Hipsey, M.R., Reed, P.,
2 Montanari, A., and Blöschl, G.: Developing predictive insight into changing water systems:
3 use-inspired hydrologic science for the Anthropocene, *Hydrol. Earth Syst. Sci.*, 17, 5013–
4 5039, 2013.

5 Vaze, J., Davidson, A., Teng, J., Podger, G.: Impact of climate change on water availability in
6 the Macquarie-Castlereagh River Basin in Australia. *Hydrol Process*, 25, 2597–2612, 2011.

7

1 Table 1. Characteristics of the reservoirs.

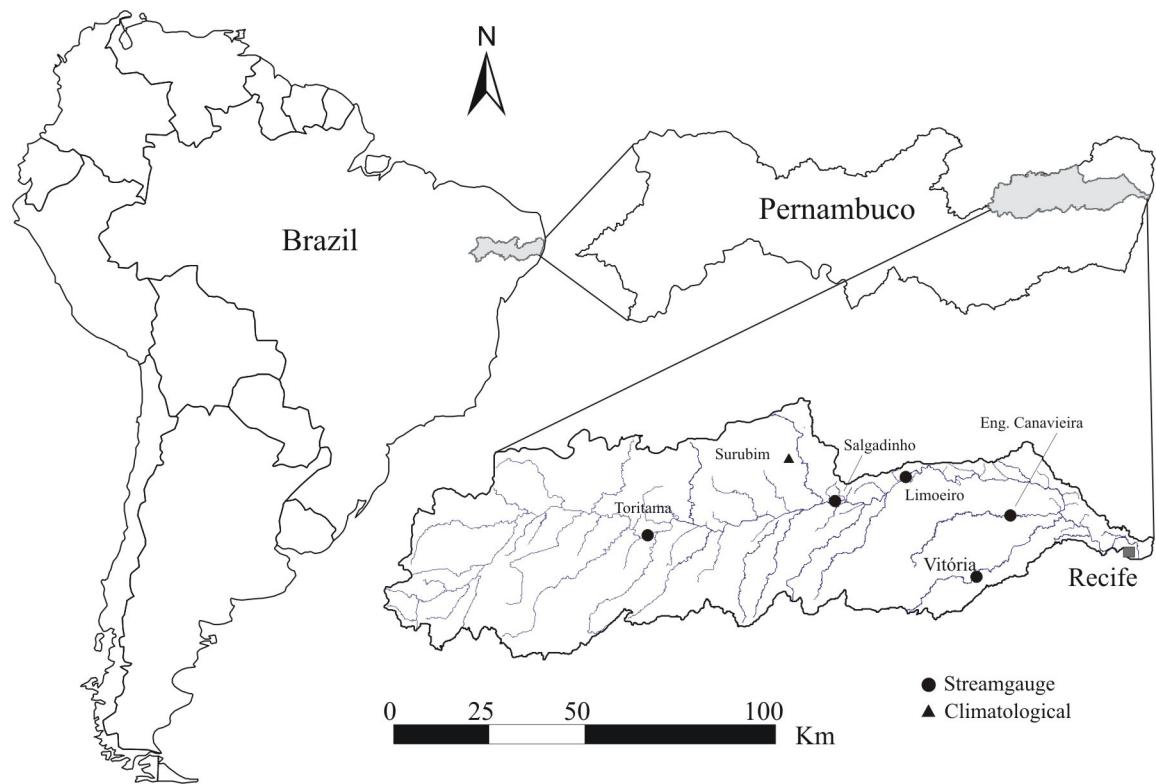
Name	Capacity (10^6 m 3)	Drainage area (km 2)	Closest streamgauge
Poço Fundo	27.75	926.00	Toritama
Eng. Gercino Pontes	13.60	384.00	Toritama
Jucazinho	327.04	4,772.00	Limoeiro
Carpina	270.00	6,000.00	Limoeiro
Cursaí	13.00	57.00	Eng. Canavieira
Goitá	52.00	450.00	Eng. Canavieira
Tapacurá	94.20	360.00	Vitória
Várzea do Una	11.57	38.00	Vitória

2

3

1 Table 2. Climatological characteristics of the Analysis Units (AU).

Unit	Precipitation (mm.year ⁻¹)	Potential Evapotranspiration (mm.year ⁻¹)
AU1	579.1	1,700 to 1,850
AU2	621.5	1,650 to 1,900
AU3	842.2	1,550 to 1,800
AU4	1,228.1	1,500 to 1,700

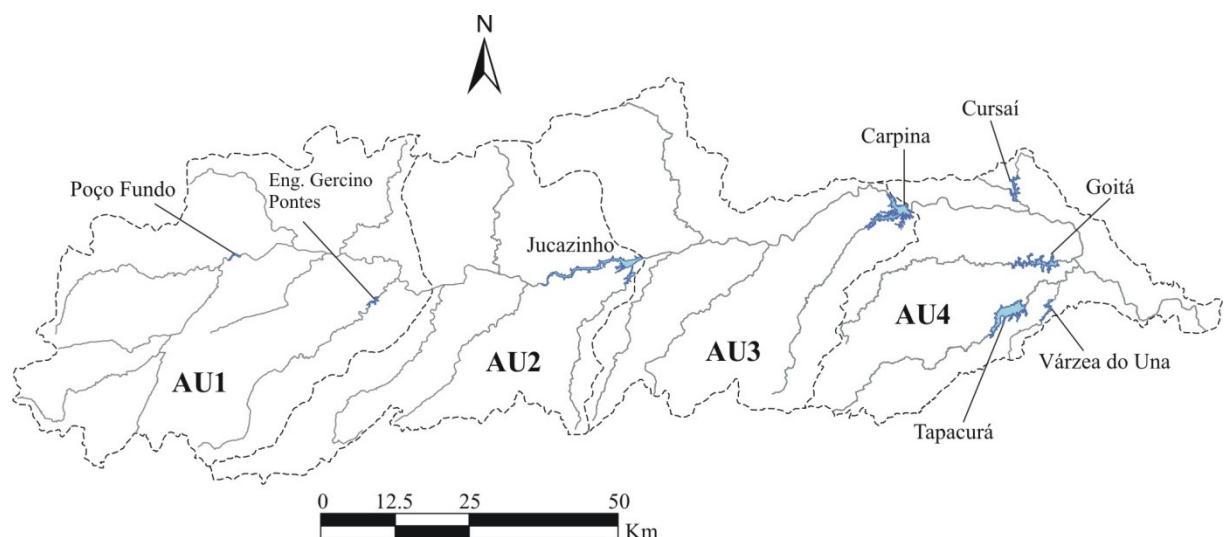

2

3

1 Table 3. Model calibration at the stream gauges.

Name	Drainage area (km ²)	Calibration			Validation		
		Period	NS	ΔV (%)	Period	NS	ΔV (%)
Toritama	2,459.0	1973-1982	0.8348	2.6	1983-1990	0.7669	-31.1
Limoeiro	5,596.0	1973-1982	0.7241	-2.0	1983-1990	0.6723	-11.72
Eng. Canavieira	312.0	2000-2009	0.7677	7.3	2010-2013	0.6497	6.4
Vitória	263.0	1985-1999	0.8153	-12.0	2000-2009	0.5892	45.4

2

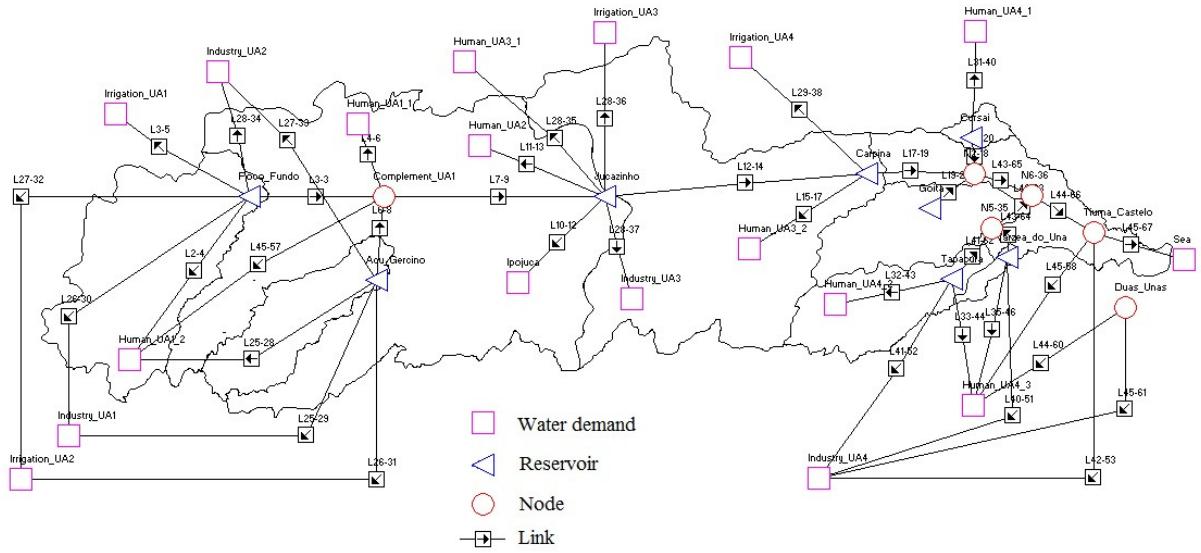


1

2

3 Figure 1. Capibaribe River Basin.

4

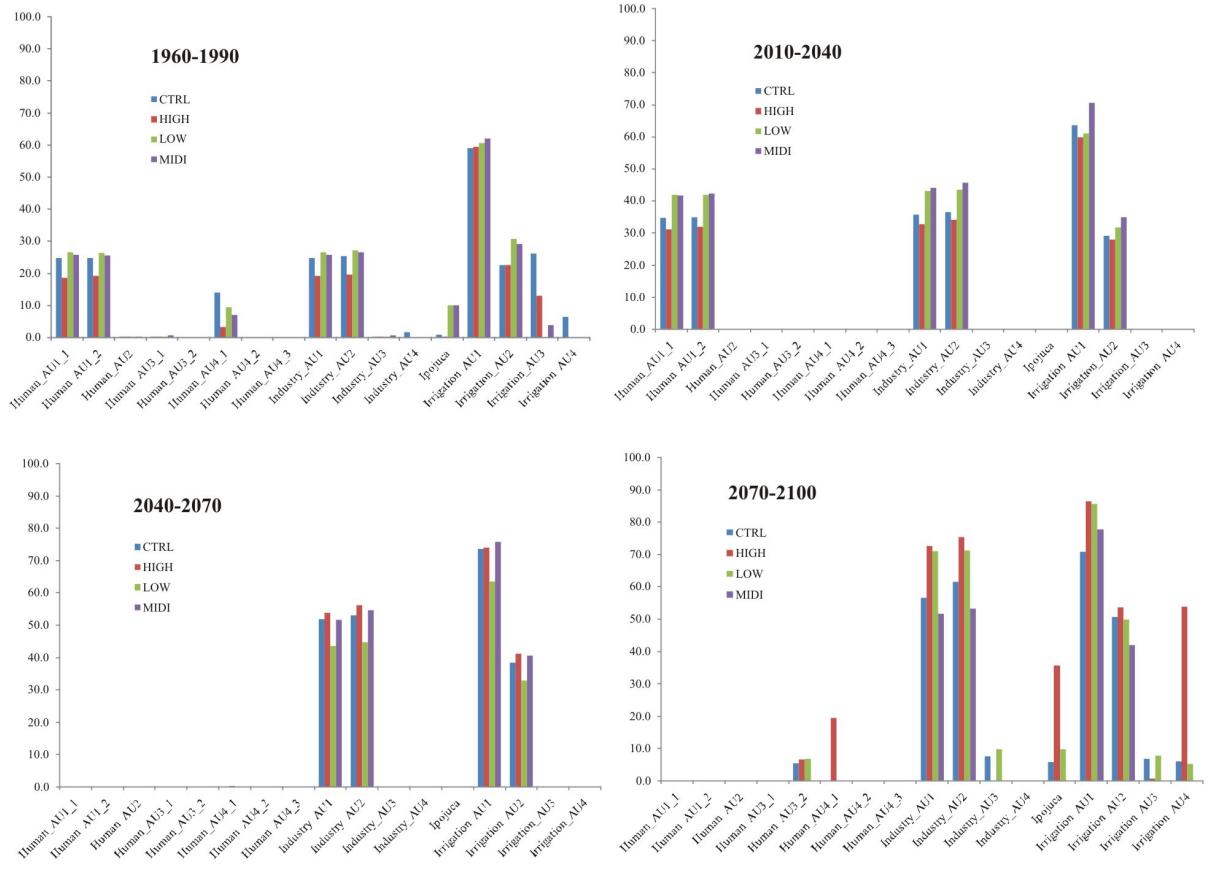


1

2

3 Figure 2. Reservoir locations and Analysis Units.

4



1

2

3 Figure 3. System representation in Acquanet.

4

1

2 Figure 4. Percentage of time with demand not met for different time-slices and PPE runs.

3