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Abstract.

Assessment of landslide triggering rainfall thresholds is useful for early warning in prone areas.

In this paper, it is shown how rainfall stochastic models and hydrological and slope stability

physically-based models can be advantageously combined in a Monte Carlo simulation framework5

to generate virtually unlimited-length synthetic rainfall and related slope-stability factor of safety

data, exploiting the information contained in observed rainfall records and field-measurements of

soil hydraulic and geotechnical parameters. The synthetic dataset, dichotomized in triggering and

non-triggering rainfall events, is analysed by Receiver Operating Characteristics analysis to derive

stochastic-input physically-based thresholds that optimize the trade-off between correct and wrong10

predictions. Moreover, the specific modeling framework implemented in this work, based on hourly

analysis, enables to analyse the uncertainty related to variability of rainfall intensity within events

and to past rainfall (antecedent rainfall). A specific focus is dedicated to the widely-used power-law

rainfall Intensity-Duration (ID) thresholds.

Results indicate that variability of intensity during rainfall events influences significantly rain-15

fall Intensity and Duration associated to landslide triggering. Remarkably, when a time-variable

rainfall-rate event is considered, the simulated triggering points may be separated with a very good

approximation from the non-triggering ones by a power-law ID equation, while a representation of

rainfall as constant-intensity hyetographs globally leads to non-conservative results. This indicates

that the ID power-law equation is adequate to represent the triggering part due to transient infiltra-20

tion produced by rainfall events of variable intensity and thus gives a physically-based justification

for this widely-used threshold form, which results valid when landslide occurrence is mostly due to

that part. These conditions are more likely to occur in hillslopes of low specific upslope contributing

area, relatively high hydraulic conductivity and high critical wetness ratio. Otherwise, rainfall time-

1



history occurring before single rainfall events influences landslide triggering, determining whether a25

threshold based on rainfall Intensity and Duration only may be sufficient or it needs to be improved

by the introduction of antecedent rainfall variables. Further analyses show that predictability of

landslides decreases with soil depth, critical wetness ratio and the increase of vertical basal drainage

(leakage) that occurs in the presence of a fractured bedrock.

1 Introduction30

Rainfall thresholds indicating landslide triggering are useful for the development of early warning

systems in prone areas (cf., e.g., Keefer et al., 1987; Fathani et al., 2009; Takara and Apip Bagiawan,

2009; Baum and Godt, 2010; Capparelli and Versace, 2011). Commonly, such thresholds are derived

by the analysis of historical rainfall and landslide data, and identified by drawing a lower-bound

envelope curve of the triggering event characteristics (e.g. Campbell, 1975; Caine, 1980; Cancelli35

and Nova, 1985; Cannon and Ellen, 1985; Aleotti, 2004; Wieczorek et al., 2000; Guzzetti et al.,

2007) or by enhanced methods which consider curves associated with a given frequency of non-

exceedance by triggering events (cf. Brunetti et al., 2010; Peruccacci et al., 2012). A review by

Guzzetti et al. (2007) indicated the prevailing use in literature of so-called power-law ID thresholds,

which are of the form I = a1D
a2 , where D is rain duration to triggering and I is rain intensity40

I =W/D, W being rainfall accumulated over duration D. The a1 and a2 parameters have been

derived by different researchers, for specific sites, regions or the whole globe.

Many factors of uncertainty affect the reliability of empirical thresholds, such as rainfall temporal

and spatial variability, uncertain knowledge of the triggering instants, simplicity of threshold equa-

tion that does not include all control variables and statistical issues as well (Peruccacci et al., 2012).45

Nonetheless, it can be argued that most of the uncertainty stems from the availability and quality of

the data used to derive the thresholds (Glade et al., 2000; Berti et al., 2012).

In fact, adequate historical data on landslides and simultaneous rainfall are in most cases avail-

able for a relatively short period, which may not be sufficiently significant from a statistical point of

view. Moreover, the identification of the triggering instant is in many cases significantly uncertain50

and landslide archives are seldom complete (i.e. all landslide events occurred in the historical pe-

riod are not known). This has a direct consequence on threshold derivation, because critical (where

”critical” here means ”corresponding to landslide triggering”) duration D, assumed as the time in-

terval from rainfall event start and the triggering instant, cannot be computed accurately. Another

key factor is the criterion used for rainfall identification, and in particular how the beginning of55

a rainfall event is identified. Many authors either do not specify the criteria used for rainfall identifi-

cation or apply qualitative criterion, and indeed only few works in literature (Aleotti, 2004; Brunetti

et al., 2010; Tiranti and Rabuffetti, 2010; Berti et al., 2012) explicitly addressed this problem. This

makes thresholds subjective and impairs comparisons of results obtained by different researchers,
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as in analysing the data the criterion may have been modified from one rainfall event to another.60

Another point is that in many countries automatic rain gauge networks have been installed only

quite recently, and one has to rely on analysis based on rainfall records at the daily aggregation time

scale (cf. Guzzetti et al., 2007, and references therein). Since many landslides, especially the most

devastating shallow rapidly-moving ones, may be triggered by rainfall events of few hours (cf., e.g.,

Highland and Bobrowsky, 2008), use of daily rainfall for threshold derivation in these cases is quite65

questionable.

Apart from data quality issues, it can be pointed out that use of characteristic variables for the

representation of rainfall events, and in particular of their intensity and duration, introduces an in-

trinsic uncertainty factor, because these variables may not be adequate to represent all the rainfall

characteristics that affect landslide triggering. In fact, rainfall events represented by the same pair70

(D,I) may correspond to totally different event time-histories (hyetographs) that thus may or may

not result in triggering. Sirangelo and Versace (1996) proposed an empirical method based on the

use of convolution between rainfall time series and a filter function, which attempts to overcome this

uncertainty. Also, use of the Duration–Intensity pair (D,I) in threshold formulation implies that

the effect of initial wetness on triggering rainfall is neglected. Regarding this issue, several authors75

have added toD and I antecedent rainfall as a control parameter, though the empirical analyses have

not yet provided unequivocal indications on the role of antecedent rainfall and different researchers

used diverse temporal horizons for the computation of antecedent cumulative rainfall (Guzzetti et al.,

2007).

Another important point is that many thresholds have been derived by analysing triggering events80

only, thus neglecting the non-triggering ones. This may lead to an underestimation of the trigger-

ing conditions, i.e. to thresholds that implemented in a early warning system tend to produce an

unacceptable degree of false alarms, causing populations to no longer rely on early warnings (so

called cry-wolf effect (cf., e.g., Barnes et al., 2007)). In fact, thresholds always should be provided

with a measure of their reliability. To this end, Berti et al. (2012) proposed Bayesian probabilistic85

analysis to evaluate landslide triggering thresholds in the presence of uncertainty. ROC-analysis (cf.,

e.g., Wilks, 2011), based on the analysis of correct and wrong predictions may be advantageously

applied as well (cf., e.g., Staley et al., 2013).

Alternatively to empirical models, physically-based models that couple hydrological and slope

stability analysis (Montgomery and Dietrich, 1994; Wu and Sidle, 1995; Iverson, 2000; Baum et al.,90

2002; D’Odorico et al., 2005; Rosso et al., 2006; Baum et al., 2008) have been proposed to assess

landslide triggering by rainfall, with the advantage that they take explicitly into account the mete-

orological, hydrological and geo-mechanical processes and variables that determine landslide trig-

gering. From such models physically-based thresholds may be derived (cf., e.g., Rosso et al., 2006;

Salciarini et al., 2008). Such thresholds generally deviate from a straight line in the log(D)− log(I)95

plane, thus casting some doubts on the use of the power-law as a proper functional form for deriving
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rainfall thresholds. In other words, because such thresholds were derived from a physically-based

model, this may be interpreted as an evidence that the use of the power-law form is not supported by

a physically-based standpoint. Nevertheless, in such studies the meteorological aspects were anal-

ysed in a simplistic way, because the thresholds do not consider variability of rainfall intensity during100

events and the initial conditions are not computed as a function of rainfall time-history preceding the

current event.

In spite of the limitations that we have put into evidence above, ID rainfall thresholds are widely

applied for landslide early warning systems. Perhaps their success is due to the fact that simple

forms of the threshold are more easily understood by stakeholders and decision makers than the105

more complex, albeit more accurate, physically-based models.

In this paper a Monte-Carlo-based methodology to derive and evaluate rainfall landslide-triggering

thresholds is proposed, which makes use of an existing body of stochastic and physically-based

models. The approach combines research findings in the fields of rainfall and landslide hydrological

modeling to provide an output that is easily implementable in a early warning system, i.e. a land-110

slide triggering threshold, based on rainfall monitoring, of the same type that is commonly derived

by direct empirical analysis of observed rainfall and landslide data. In particular, from the Monte

Carlo simulations synthetic rainfall series are generated by a stochastic model and corresponding

triggering/non-triggering conditions are identified by an hydrological and slope stability model. The

generated dataset is then analysed to derive and evaluate ID thresholds that take into account the115

variability of both rainfall intensity within events and initial conditions determined by past rainfall,

as well as triggering/non-triggering events to measure uncertainty by Receiver Operating Charac-

teristics (ROC) analysis. Furthermore, the derived stochastic-input physically-based thresholds are

compared with the constant intensity physically-based thresholds, which result from the simplistic

assumption mentioned above (uniform hyetographs and prefixed initial conditions) in order to as-120

sess the effect on landslide triggering of rain intensity variability during events and variable initial

conditions, computed as dependent by past rainfall time-history. This analysis is related to the one

by D’Odorico et al. (2005), in which the effect of rain intensity variability within events is stud-

ied by considering beta-shaped hyetographs inputs to the model of Iverson (2000) for derivation

of hillslope response. Nevertheless, in their work, the variability of initial conditions as dependent125

from antecedent rainfall has not been considered because the steady-state asymptotic solution of

Montgomery and Dietrich (1994) is utilized for computation of initial conditions. From their study

they conclude that beta-shaped non-uniform hyetographs have a stronger destabilizing effect than

uniform hyetographs of the same volume, since associated return period of FS ≤ 1 resulted higher

in this last case. In this study we instead use hyetographs generated by a Neyman–Scott Rectan-130

gular Pulses (NSRP) stochastic model (Neyman and Scott, 1958; Kavvas and Delleur, 1975; Cox

and Isham, 1980; Rodriguez-Iturbe et al., 1987a) and account for variability of initial conditions

using a water table recession model to derive the initial water table height from the response to
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rainfall events preceding the current one, based on a linear reservoir mass-conservation equation

with similar assumptions adopted by Rosso et al. (2006). The transient response to rainfall events135

is computed by a model based on the TRIGRS program (Baum et al., 2008). An application of the

proposed methodology is carried out to the highly landslide-prone area of the Peloritani Mountains,

North-eastern Sicily, Italy. A sensitivity analysis on some of the most important control variables is

carried out to analyse their effect on landslide triggering thresholds and the associated uncertainty.

2 Monte Carlo synthetic data generation140

The Monte Carlo simulation procedure for synthetic rainfall-landslide data generation consists of

the following steps:

1. A stochastic rainfall model, calibrated on observations at a selected site, is used to generate

a 1000-years long (hourly) rainfall time series. In particular we use a Neyman-Scott Rectan-

gular Pulses model (see Appendix A)145

2. The synthetic rainfall time series is pre-processed in order to identify rainfall events and their

inter-arrival durations. In particular, when two wet spells are separated by a dry time interval

less than ∆tmin, these are considered to belong to the same rainfall event; otherwise two

separate rainfall events are considered. Details on the choice of this simulation parameter are

given at the end of this section150

3. Some of the generated rainfall events are removed from the analysis because, according to the

hydrological model they will produce no significant variation of pressure head distribution,

being their instantaneous (hourly) intensity too low. In particular the events having maximum

intensity less than imin are removed from the analysis. We assume imin equal to the leakage

flux limit, given by cdKS(1− cos2 δ), cd being the vertical leakage ratio, KS the saturated155

hydraulic conductivity and δ the slope of the hillslope (see Appendix B)

4. Application of previous steps leads to the generation of NRE individual rainfall events

5. An initial value of the water table height is fixed to start simulations of the hydrological re-

sponse for the whole rainfall time series. For the analysed case-study area and many similar

cases, it may be assumed that at the beginning of each hydrological year the water table is at160

the basal boundary, because an almost totally-dry season comes before (this may be a slightly

conservative assumption, since pressure head at the soil-bedrock interface may assume nega-

tive values after a long dry season). As this is valid also for the first year, simulation for first

event is conducted considering the water table at the soil-bedrock interface

6. The response to the generated rainfall events is simulated by the models described in Appendix165

B and the following procedure to be applied for i= 1,2, ...,NRE:

5



(a) Response in terms of pressure head ψ within rainfall events is computed using the TRI-

GRS model (Baum et al., 2008, 2010) (see Sect. B2). As pressure head rise may continue

after the end of rainfall, the TRIGRS transient-response simulation-interval is prolonged

∆ta =∆tmin − 1 h after the ending-time tend,i of rainfall events170

(b) The instant tf,i =max(tend,i, tmax,i) is searched, tmax being the time instant at which

maximum transient pressure head occurs. It follows that the final response to rainfall

event i, in terms of water table height, is ψ(dLZ, tf,i)/β, where β = cos2 δ (slope parallel

flow is assumed), and dLZ is the soil depth. Moreover, the time interval ∆ti+1 = t
(in)
i+1 −

tf,i is computed, with t(in)i+1 the instant at which rainfall event i+1 begins175

(c) The water table height at the beginning of rainfall event i+1 is computed by a sub-

horizontal drainage model (see Sect. B1) which uses ψ(dLZ, tf,i)/β and ∆ti+1

7. The result is a series of maximum pressure head, or minimum factor of safety FS responses

(computed by infinite-slope stability analysis, see sect. B3), corresponding to the NRE rainfall

events. The rainfall and the FS series are together analysed to derive and evaluate landslide180

triggering thresholds via a ROC-based approach (see Sect. 3).

Regarding the choice of the inter-event time ∆tmin – an issue that is the focus of some works in

literature (e.g. Restrepo-Posada and Eagleson, 1982; Bonta and Rao, 1988) – we have followed an

approach analogous to that used by Balistrocchi et al. (2009) and Balistrocchi and Bacchi (2011),

for which the inter-event time may be assumed as the minimum time needed to avoid overlapping185

of the response produced by two subsequent rainfall events. To this end we considered that the

temporal peak of pressure head due to an individual rainfall event may be reached, as mentioned

above, at an instant significantly after rainfall ceases. Hence a criterion for selecting the inter-event

time has been that of choosing a value that approximates the dry time interval that contains the

peak pressure head response relatively to all the NRE simulated rainfall-events. In our case, from190

preliminary simulations a ∆tmin = 24h appeared suitable for the hydraulic and geotechnical soil

properties which are considered in this work (see Sect. 3).

Figure 1 summarizes the main steps of the described Monte Carlo methodology.

3 Threshold derivation and evaluation

3.1 Triggering and non-triggering rainfall identification195

For a hillslope of given properties, Monte Carlo simulations lead to a series of time instants at which

the factor of safety drops below the value of 1 (a FS =1 down-crossing).

A triggering rainfall may be associated to each down-crossing, though it is noteworthy to point out

that some uncertainty is present in the link between the actual failure of the slope and its theoretical

instability. Nevertheless, following several works in literature (e.g., Iverson, 2000; Rosso et al.,200
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2006; Baum et al., 2010) this uncertainty has been not taken into account here, though it may affect

at a certain degree the way that rainfall events are classified as triggering and non-triggering and the

subsequent ROC-based analysis (Sect. 3.2).

We investigate thresholds that are based on rainfall intensity I and duration D. Various proce-

dures have been used to identify and compute I and D, as discussed in the introduction-section of205

this paper and by Berti et al. (2012). From a general standpoint, this procedure may be discon-

nected from the way event separation has been performed to compute the triggering instants with

the methods described in Sect. 2. Nevertheless, for consistency with the event separation criterion

that is considered in the Monte Carlo simulation methodology, it is preferable that the procedure for

identification of triggering and non-triggering events is based on the same inter-event time ∆tmin210

used in Monte Carlo simulations. Hence we adopt the following procedure. First, rainfall events

are separated when their dry inter-arrival is longer than ∆tmin. Rainfall events then have a total

duration Dtot and mean intensity Itot =Wtot/Dtot, where Wtot is the total event cumulative rainfall.

For a triggering event, triggering may occur before or after the end of the rainfall event. In the first

case, the critical duration DCR is the time interval that starts at the beginning of the rainfall event215

and finishes at the triggering instant, and critical intensity is given by ICR =WCR/DCR, where WCR

is rainfall accumulated over duration DCR. In the second case it is instead characterized with Dtot

and Itot. Moreover, the P0 events that have at their beginning a water table height hi ≥ dLZζCR, ζCR

being the critical wetness ratio (corresponding to FS ≤ 1, see Eq. B6), are removed from the anal-

ysis, as the triggering is due to the preceding events, which have been already included in the set of220

triggering points. Non-triggering events are represented by Dtot and Itot.

In our case (see Sect. 2) ∆tmin = 24h. It is worthwhile to write that hence the procedure of

triggering rainfall identification happens to be equal to the one that applied by Brunetti et al. (2010)

in analysing empirical data (observed landslides instead of simulated).

3.2 Uncertainty and ROC-based evaluation and optimization of thresholds225

The analysis of the Monte Carlo simulations produces two sets: the set of positives P , i.e. of

triggering events , and the set of Negatives N , i.e. of non-triggering events. These sets may be

represented as scatter plots in a double-logarithmic (D,I) plot, and in general there is a region

where both sets are present – lets say, an intersection region P ∩N . In our framework this is due to

two separate factors:230

– to a given (D,I) pair may correspond diverse variable NSRP-simulated hyetographs, because

I is the mean intensity I =W/D (rain-intensity variability within events)

– To a given (D,I) pair may correspond diverse initial conditions (variability of initial condi-

tions, due to variability of rainfall before the current event).
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The first uncertainty factor is analyzed by letting the initial water table height hi = 0 for i=235

1, ..NRE in performing the Monte Carlo experiments (indicated in the ensuing text asψ0 = 0 case, see

also Appendix B). To investigate the second uncertainty factor, those experiments are compared with

the complete ones, where the effect of initial conditions depending on past rainfall time history is

taken into account by Eq. B2, and considering different levels of memory, by varying the parameters

that appear in the water table recession constant τM (again see Eq. B2).240

Moreover, we compare the results with thresholds derived from the model by assuming uniform

hyetographs as input and a prefixed initial condition (constant-intensity physically-based thresh-

olds) (cf., e.g. Rosso et al., 2006; Salciarini et al., 2008; Tarolli et al., 2011). In this case a univocal

triggering threshold exists I = f(D), for given hillslope properties, and the two factors of uncer-

tainty illustrated above, are not taken into account. Due to the complexity of the TRIGRS (see Sect.245

B2) unsaturated model it is possible to determine these thresholds only numerically (not in closed-

form). Hence we have derived these thresholds by simulation of infiltration and slope stability using

constant-intensity hyetographs in the (D,I) domain discretized at a sufficient level, and searching

the triggering curve by interpolation of the results. In doing this we have assumed an initial water

table height of zero, hin = 0 to properly compare results with the stochastic-input physically-based250

thresholds of the ψ0 = 0 case.

As a consequence of the presence of the region P∩N , when a triggering rainfall threshold is fixed,

say a power-law one I = a1D
a2 , the four cases of True Positives, True Negatives (correct predic-

tions), False Positives and False Negatives (wrong predictions) can occur, as illustrated in Table 1.

In general, to each pair of parameters a1 and a2 corresponds a prediction performance that may be255

measured by indices based on the number of occurrences in the four cases, denoted respectively

as TP, FN, TN, FP (or ROC-based indices). In order to derive optimal thresholds one may maxi-

mize an objective function based on these quantities. Several indexes do exist and their advantages

and drawbacks have been discussed by different researchers (cf. Murphy, 1996; Stephenson, 2000;

Frattini et al., 2010).260

Among the various possibilities, we consider for threshold evaluation the use of True Skill

Statistic TSS (also known as Hanssen-Kuipers Discriminant, (Hanssen and Kuipers, 1965)), which

was introduced by Peirce (1884), and is given by the difference between the True Positive Rate

TPR = TP
P = TP

TP+FN (also kwown as sensitivity or hit rate or recall or probability of detection) and

the False Positive Rate FPR = FP
N = FP

TN+FP (also known as probability of false detection or 1 - speci-265

ficity):

TSS = TPR - FPR (1)

It is TSS = 0 for TPR = FPR (random guess) and TSS = 1 for a perfect prediction (TPR = 1 and

FPR = 0). In fact this index TSS is bounded in the interval [−1,1], but negative values are fictitious

as an inversion of the triggering threshold use brings TSS to its absolute value, that is always in the270

interval [0,1] (i.e. saying that values below the threshold trigger landslides and vice-versa values
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above the threshold do not trigger). Different weights may be given to the TP, TN, FP and FN, as

pointed out by Peirce (1884) itself, in order to account for the fact that a FN is more harmful than a

FP (see also Peres and Cancelliere, 2012, 2013). Since data on the possible weights to assume are

usually scarce, here we prefer to proceed in a more simple and standard manner, where this different275

weighting is not considered.

We estimate the best performing power-law threshold I = a1D
a2 as the one that gives the maxi-

mum value of TSS = TSS(a1,a2).

At the same time the simulation-optimization methodology enables to evaluate the use of power-

law ID thresholds, as the value of the objective function is a measure of the maximum performances280

that can be expected from the adopted functional form for the threshold, and thus a measure of its

validity.

It is noteworthy to highlight that the real uncertainty associated with this threshold generally yields

different – likely worse – performances of that assessed here, since uncertainty factors are more than

the ones related to the stochastic nature of rainfall listed at the beginning of this section.285

4 Investigated area and data

4.1 Geological setting and soil properties

An application of the described methodology is carried out to the Peloritani Mountains Ionian coastal

area, in North-eastern Sicily, Italy (Figure 2). The mountain ridge extends longitudinally for about

50 km, with a SW-NE orientation, resulting in peaks higher than 1200 m. This area can be subdi-290

vided into seven basins: #1 Minor basins between Alcantara and Agrò (70.0 km2), #2 Agrò basin

(81.8 km2), #3 Savoca basin (44.2 km2), #4 Pagliara basin (27.1 km2), #5 Minor basins between

Pagliara and Fiumedinisi (27.1 km2), #6 Fiumedinisi basin (49 km2) and #7 Minor basins between

Fiumedinisi and Cape Peloro (172.9 km2).

The study area belongs geologically to the Calabrian arc and represents the inner chain of the295

Apennin-Maghrebian mountain belt, and since the middle Pleistocene, the entire Calabrian arc has

undergone strong tectonic uplift. Present-day activity is testified by the strong historical seismicity

(De Guidi and Scudero, 2013, and references therein). In the area outcropping lithologies consist

of (Lentini et al., 2000): (1) phyllites of the Mandanici Units; (2) paragneiss and micaschists of

the Mela Units; and (3) gneiss and paragneiss metamorphic rocks (Aspromonte Units). Further300

information on the geological setting, is given in Lentini et al. (2000); Goswami et al. (2011) and

De Guidi and Scudero (2013).

In the last decade, this area has been hit by highly-damaging diffused shallow landslides. Pre-

cisely, widespread landslide events occurred in this area on: (I) 15 September 2006 (areas #4, #5,

#6 and #7), (II) 25 October 2007 (area #7), (III) 24 September 2009 (areas #1, #2, #3, #4, #5)305

and (IV) 1 October 2009 (area #7). The areas indicated into brackets have been derived from news-
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papers archives (cf. e.g. http://gazzettadelsud.virtualnewspaper.it/gdsstorico/), which also present

further information on the events. Among these events, the one occurred on 1 October 2009 was the

most severe. On that date, landslides were triggered by a rainfall event of more that 220 mm in less

than 7 hours, causing 37 deaths and innumerable injured people, most of them in the municipality310

of Giampilieri (Ardizzone et al., 2012).

A map of the landslides occurred on 1 October 2009, derived from occurred interpretation

of orthophotos is available from website http://www.regione.sicilia.it/presidenza/protezionecivile/

documenti/rischi/r idrogeologico/documenti/20091001 CartaDissesti.jpg. This map presents in red

the slide/erosion areas and in orange the propagation/deposition areas. Figure 3 shows the slides315

derived from ”red areas” of that map. From the analysis of slopes δ and within the slide areas, based

on a pre-event DTM at a 5 m resolution, it results that the most populated class of specific upslope

contributing area A/B (ratio between the upslope draining area A and the contour length B, see

Appendix B) is centered on the value of 10 m, while the mean slope within the range of theoret-

ical potentially unstable slopes 29◦ ≤ δ ≤ 47◦ results slightly lower than 40◦. Also, the values of320

A/B = 10 m and δ = 40◦ correspond to a portion of the Peloritani Mountains for which it starts to

be worthed to issue landslide early warnings. Hence these values may be adopted for the successive

derivation of a threshold for the area (see Sect. 5).

Core samples collected in the area indicate the presence of a surficial debris material dLZ = 2m

deep covering a fractured bedrock strata. The debris cover consists of a sandy loam with a significant325

proportion of gravel (up to 50 %) which corresponds to a gravelly sandy loam according to USDA

soil classification. The assumption of a leaking basal boundary, characterized by a given cd ratio

(see Sect. B2) is realistic, given the fractured bedrock strata. We assume that the hydraulic and

geotechnical properties of Tab. 3 may represent the natural heterogeneity within the study area.

Spatial variability of each of the soil properties could be included in our model simulations.330

Nonetheless, detailed information on how the properties are distributed spatially is unavailable.

Hence we preferred to carry out a sensitivity analysis, by varying the hydraulic conductivity KS ,

the leakage ratio cd and the soil depth dLZ according to Tab. 4, and the critical wetness ratio in

the range 0< ζCR < 1. This way to proceed enables to better analyse the way model results are

influenced by these variables rather than assuming that they are distributed spatially with interpo-335

lating laws of difficult validation. Since slope mainly affects slope stability (Eq. B5) rather than

the infiltration process, variation of slope is indirectly taken into account by variation of ζCR. It is

noteworthy to write that an alternative approach may be of considering model parameters generated

according to a probability distribution, as proposed by the TRIGRS-P modification of the TRIGRS

code, developed by Raia et al. (2014).340
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4.2 Rainfall data and NSRP model calibration

Climate in the Peloritani area is Mediterranean with with hot and dry summers, and precipitation –

mainly convective – falling mostly in the period from October to January.

For calibration of the NSRP model the rainfall series measured at the Fiumedinisi rain gauge

from 21 February 2002 to 9 February 2011 (almost 9 years) has been used (see Fig. 2). Based on345

a preliminary analysis of monthly statistics, six homogeneous rainfall seasons have been identified:

(i) September and October, (ii) November, (iii) December, (iv) January–March, (v) April and (vi)

May–August (see Fig. 4 and text in its caption). Separate sets of parameters of the NSRP model have

been determined for each one of the four rainy seasons (in total 5 · 4 = 20 parameter values), while

the last two seasons have been considered to have negligible rainfall. The Weibull shape parameter b350

has been fixed to 0.6 for all seasons, based on different trials. Parameters obtained from calibration

are shown in Table 2.

From the assumed inter-event time ∆tmin = 24h and soil properties of Tab. 3 the number of

rainfall events results NRE = 19826 (in average 19.83 events per year). This number results from

the initial 28 751 events then reduced after cutting the events with hourly intensities always below355

imin = cdKs(1−cos2 δ) = 2.975mm/h. These values are statistically comparable to the ones on the

observed series (19.18 events/year from 28.91 events/year before the cut of under-leakage events).

5 Results and discussion

5.1 Derivation and evaluation of rainfall thresholds

In Fig. 5 the scatter plots of triggering and non-triggering events in the log(D)−log(I) plane, derived360

from analysis of Monte Carlo simulations, are shown for the ψ0 = 0 case and for specific upslope

contributing areasA/B = 10, 20m (τM = 2.75,5.49 days). Related results are also shown in Tab. 5.

In the figure, red points represent triggering rainfall events, or the set of Positives P , while green

points represent the non-triggering ones, or the set of Negatives N .

Optimal thresholds have been derived by maximization of the TSS index (see Eq. 1), preliminarily365

by considering both the power-law coefficient a1 and exponent a2 as variable parameters. Inspection

of the results revealed minimal changes of the exponent a2 with changing ratioA/B, and so a second

optimization has been carried out only with reference to the a1 parameter, fixing the exponent a2

to its mean value of a2 =−0.8. Fixing the exponents forces the different thresholds corresponding

to different A/B ratios to be parallel and therefore to not intersect each other, this somehow is370

consistent with the fact that as the A/B increases, landslides are generally more likely to occur for

less severe rainfall events because of increased past-rainfall memory.

From the case of ψ0 = 0, i.e. of an initial water table at the soil-bedrock interface for all events

(Fig. 5a), where simulated uncertainty of triggering is due only to the variation of rain intensity
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within events, it is seen that in this case the region in which triggering and non-triggering events co-375

exist is quite narrow; moreover, a power-law relation between I and D dichotomizes well between

triggering and non-triggering conditions. In fact, the optimal power-law threshold in this case has

a reliability of TSS = 0.991, practically equal to the ideal value of 1. Additional insights on the

effect of variability of rainfall intensity within events may be derived comparing the scatter plots for

this ψ0 = 0 case with the constant-intensity physically-based threshold (also determined considering380

ψ0 = 0) represented in the plots of Fig. 5 as a dashed black line. Fig. 5a reveals that the deterministic

threshold approximates the lower envelope curve of critical events (red dots) for short durations, say

D ≤Ds, that in this case corresponds to about 12 h. For higher durations, this is no longer true and

variable-intensity hyetographs start to have a higher destabilizing effect than the constant-intensity

ones of same rainfall volume. The variability of rainfall intensity within events leads to a deviation385

from the deterministic line of the triggering NSRP rainfall event points, making the scatter of trig-

gering points more similar to a straight line rather than to the curved deterministic threshold. This

behavior is essentially due to the presence of the leakage term ql =min{cdKs(1−cos2 δ), q(du, t)},

whose effect is stronger for uniform hyetographs than for variable ones, since in the former case

there are no peaks of intensity. In particular, a uniform hyetograph produces no water table rise if390

intensity is below a rate slightly greater than cdKs(1− cos2 δ), because all infiltrating water, after

percolating through the unsaturated-zone, goes to basal loss. The same does not generally occur for

a variable intensity hyetograph of same volume, because instantaneous intensity may be significantly

higher than the event mean intensity Wtot/Dtot, and consequently a water table rise is produced. The

opposite behavior for short durations is due to the fact that in this case variable hyetographs may395

have peaks of intensity higher than infiltration capacity, and thus not all rainfall infiltrates in the soil.

Due to these reasons, the model deterministic threshold results poor performing (TSS = 0.642).

The above results lead to conclude that it is important to account for variability of intensity during

events and that landslide occurrence related to the transient part of the response to rainfall events can

be represented with good approximation by a ID power-law equation. This provides a physically-400

based justification for such a widely-used threshold form, which results valid when landslide occur-

rence is mostly due to the transient part of the hillslope response to rainfall.

For the A/B = 10m case (Fig. 5b), which may represent prevalent conditions for the Peloritani

Mountains area (see Sect. 4.1), scattering of the red dots increases due to the introduced variability of

initial conditions. Consequently, performances of predictions based only on intensity and duration of405

rainfall events become worse. Simulations for larger values of specific catchment area (e.g. A/B =

20m, Fig. 5c) confirm this conclusion.

Based on these results, it may be stated that, for a given climatic input, performances of thresholds

which do not account for past rainfall time history (antecedent rainfall) are expected to decrease as

the water table recession time constant τM increases. Rainfall time history occurring before single410

rainfall events generally influences landslide triggering, determining whether a threshold based on
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rainfall Intensity and Duration only may be sufficient or the ID threshold needs to be improved by

the introduction of antecedent rainfall variables.

Finally, the threshold:

I = 71.52D−0.8 (2)415

may be a reasonable choice for the Peloritani Mountains area since performances are still high and

of TSS = 0.862.

5.2 Validation of the threshold using observed data and comparison with other thresholds

Monte Carlo simulation provides a framework that is useful for exploiting the information contained

in the observed rainfall series and the physics of the modeled phenomena. Nonetheless, it remains420

important to validate the results against observed data, to check if the models are capable of repro-

ducing characteristics of interest which are not directly taken into account in model calibration and

development.

Here we perform a global validation by comparing the derived threshold (Eq. 2) with the trigger-

ing and non-triggering observed rainfall events.425

In particular we have derived from the series the rainfall events with the same criterion adopted in

Monte Carlo simulations. Yet the events in the months neglected there (April-August) and the events

with intensities below the leakage flow cdKS(1− cos2(δ)) were not removed here in the observed

record, for the test to be unbiased to this preprocessing of data. This resulted into 190 events,

whose temporal evolution of accumulated intensities I(D) =W (D)/D has been compared with the430

derived threshold, as shown in Figure 6. The figure indicates positive validation of the methodology,

as the events in the I–D plane that exceed the threshold are all and only the four events that have

triggered landslides in the considered period (red-line time histories). This is the best result one can

obtain from this test, but it is perhaps noteworthy to clarify that it is expected that in the long period

the same test will not perform without errors, consistently with the Monte Carlo simulations and the435

way that the threshold was derived.

Comparison with other thresholds may also help in understanding how reliable the performed

analysis is. Gariano et al. (2013) proposed for Sicily the thresholdE = 10.4D0.22, whereE = I×D
is cumulative event rainfall, and hence threshold is equivalent to I = 10.4D−0.78. This threshold has

been derived considering only observed triggering events and it is corresponding to an exceedance440

frequency of 1%. It is firstly interesting to notice that the exponent is practically equal to the one that

results from our analyses (a2 =−0.8). Furthermore, as can be seen from Figure 5b this threshold

exceeds one triggering event of the MC simulated data, which equals the 1% of the triggering-rainfall

dataset (see Table 5: 0.01× (TP+FN) = 0.01× (104+11) = 1.15). This result is a further support

to the validity of the performed Monte Carlo analysis and highlights the importance to take into445

account non-triggering rainfall in assessing threshold performance.
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5.3 Sensitivity analysis

A sensitivity analysis has been conducted with respect to the following variables (Sect. 4 and Tab.

4): the hydraulic conductivity KS , the leakage ratio cd, the soil depth dLZ and the critical wetness

ratio ζCR. For each set of fixed values of these variables plots similar to those of Fig. 5 can be450

derived. For brevity those plots are not shown here and the analysis is performed considering the

plots of the optimal threshold coefficient a1 (again the exponent has been fixed to a2 =−0.80) and

the maximum value of the objective function TSS as functions of ζCR.

The results of this analysis are shown in Figs. 7–8, which can be commented as follows:

– Analysis of sensitivity to hydraulic conductivity: In the ψ0 = 0 case the variation of KS in-455

duces relevant changes neither in the threshold nor in the performance TSS. It can however be

hypothesized that considering more low values of KS , infiltrating rates more strongly depend

on how rainfall is distributed within the event and thus uncertainty increases. Conversely, to

an higherKS variation neither of the threshold nor of the performance may be observed, since

infiltration capacity will always be higher than rainfall intensity, which then infiltrates totally.460

In the A
B = 10m case the variations of a1 and TSS are relevant and due to increased memory

with decreasingKS ; the threshold decreases withKS and the associated uncertainty increases

(lower TSS)

– Analysis of sensitivity to leakage ratio: Both in the ψ0 = 0 and the A
B = 10 m cases the vari-

ation of the cd ratio induces an increase of the threshold and in the relative uncertainty. The465

variation is of comparable magnitude in the two cases. This happens because the variation of

cd affects only pressure head response during rainfall events, but does not affect significantly

memory due to antecedent rainfall. Sensitivity to cd increases with soil depth, because the in-

creased water absorption in the unsaturated strata and the consequent increased damping and

smoothing effect induces an increase of the portion of infiltrating water that goes to leakage.470

Indeed this affects more the threshold (a1) than the relative performance (TSS)

– Variation of ζCR and of soil depth dLZ: with increasing ζCR the threshold increases, while

the associated uncertainty decreases. The threshold and relative performances decrease with

soil depth. This indicated that landslides become less predictable as soil depth dLZ and ζCR

diminish.475

Generally antecedent rainfall has to be taken into account to improve performance of landslide

triggering thresholds based on rainfall. Nonetheless, the use of I and D variables only may still lead

to good performing thresholds when memory is relatively low, soil thickness is not too shallow and

hillslope is naturally not close to instability (ζCR is relatively high). In fact I-D power-law thresholds

resulted of good performance (TSS>0.8) when τM ≤ 3 days, ζCR > 0.5 and dLZ ≥ 1.5 m.480

The constant rainfall physically-based thresholds perform always poorly. This confirms that vari-
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ability of intensity during rainfall events influences significantly rainfall Intensity and Duration as-

sociated to landslide triggering.

6 Conclusions

In this work it has been shown how rainfall stochastic models and hydrological and slope stability485

physically-based models can be advantageously combined in a Monte Carlo simulation framework

to derive and evaluate landslide triggering thresholds. The approach synthesizes research findings in

the fields of rainfall and landslide hydrological modeling to provide an output that is easily imple-

mentable in a early warning system, i.e. a landslide triggering threshold, based on rainfall monitor-

ing, of the same type that is commonly derived by direct empirical analysis of observed rainfall and490

landslide data. The advantages of the approach consist in a better exploitation of the information

contained in observed rainfall series and measurements of hydraulic, geotechnical soil properties

and geomorphological analysis. Because both triggering and non-triggering rainfall events are taken

into account, the approach enables a more correct derivation and evaluation of thresholds, for which

well-known prediction-skill Receiver-Operating-Characteristic analysis may be advantageously used495

to reduce subjectivity in the identification of thresholds and to estimate the convenience of the use

of the threshold within a landslide early warning system.

Furthermore, the specific modeling framework implemented in this work enabled to analyse some

general issues on landslide triggering phenomena regarding its controlling factors and uncertainty

related to variability of rainfall intensity within events and past rainfall (antecedent rainfall), with500

a particular focus on the widely-used power-law rainfall Intensity-Duration threshold form. In par-

ticular, from the application to the Peloritani Mountains area in North-eastern Siciliy (Italy) and the

conducted sensitivity analysis on various controlling parameters, the following conclusions can be

drawn: (1) Variability of intensity during rainfall events influences significantly rainfall Intensity

and Duration associated to landslide triggering. In particular constant-intensity input thresholds per-505

form conservatively only for low rainfall durations, while the opposite occurs for events of longer

duration. On the other hand, when a time variable rainfall-rate event is considered, the simulated

triggering points may be separated with a very good approximation (True Skill Statistic results close

to 1) from the non-triggering ones by a power-law ID equation. This indicates that this widely-used

model is adequate to represent the triggering part due to transient infiltration produced by rainfall510

events. Thus this gives a physically-based justification for such a widely-used threshold form, which

results valid when landslide occurrence is mostly due to that part. This depends, for a given rainfall

climate, mostly on the timing of recession of the saturated zone occurring during dry inter-event

intervals (in our model represented by the constant τM ), but also on the other soil hydraulic and

geotechnical parameters, and in particular on soil depth dLZ , which must not be too shallow, and515

critical wetness ratio ζCR, that must be not too low. For instance, for the case study area, the I-
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D power-law threshold performs with a TSS> 0.80 when it is τM ≤ 3 days and dLZ ≥ 1.5m and

ζCR > 0.50 (2) In general, rainfall time history occurring before single rainfall events influences

landslide triggering, determining whether a threshold based on rainfall Intensity and Duration only

may be sufficient or the ID threshold needs to be improved by the introduction of antecedent rain-520

fall variables (3) Sensitivity analysis indicated that in general threshold performance is affected by

the depth of the basal boundary and the critical wetness ratio that represents the natural degree of

stability of the hillslope. In particular, uncertainty of landslide triggering prediction increases as the

soil depth or the critical wetness decrease. Hence it is more difficult to predict landslides the more

an hillslope is shallow and the more is naturally close to instability. A decrease of performance re-525

sults as basal drainage (leakage) increases as well. Hence the I-D power-law may not be performing

adequately in the case that the bedrock is significantly fractured and the soil cover is very shallow.

Results also indicate that hydraulic conductivity mainly influences memory of past rainfall and only

slightly affects the uncertainty related to variability of rainfall intensity within events.

Further ongoing research is oriented to introduce additional information in the derivation of the530

thresholds, such as antecedent precipitation as well as indexes representative of the shape of the

hyetograph.

Appendix A

535

Rainfall stochastic model

Point rainfall stochastic models are aimed at the generation realistic synthetic time series of (virtu-

ally) unlimited length, by calibration based on a observed rainfall series. The uninitiated reader is in-

vited to read Neyman and Scott (1958); Kavvas and Delleur (1975); Waymire and Gupta (1981a,b,c);

Rodriguez-Iturbe et al. (1987a,b); Salas (1993); Cowpertwait et al. (1996). Here we give some spe-540

cific details on the Neyman-Scott Rectangural Pulses (NSRP) model, for it being the one used in this

work to model rainfall at a site.

NSRP process belongs to the so-called class of cluster models (cf., e.g., Salas, 1993). The NSRP

cluster model consists in a two-level mechanism process. This process is related to a conceptual-

ization of meteorological processes that originate rainfall events (Foufoula-Georgiou and Guttorp,545

1989), and it is obtained by the following steps (see Fig. A.1):

– First, clusters – also known as storm-generating systems, or simply storms – arrive governed

by a Poisson process of parameter λt (this is the first-level mechanism)

– For each cluster origin, rectangular pulses (rain cells) are generated (this is the second-level

mechanism). The number of pulses C associated to each storm is extracted from another550
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separate Poisson distribution. In order to have realizations ofC not less than one, it is assumed

that C ′ = C− 1, with c′ = 0,1,2, ... (which implies c= 1,2,3, ...), is Poisson distributed with

mean ν− 1

– Each cell has origin at time τi,j with j = 1,2, ..., ci measured from ti, according to an expo-

nential random variable of parameter β555

– A rectangular pulse of duration di,j and intensity xi,j is associated to each rain cell. Pulses

have duration exponentially distributed with parameter η while intensities X are extracted

from a Weibull distribution (cf. Cowpertwait et al., 1996), which has cumulative distribution

function F (x;ξ,b) = 1− exp(−ξxb)

– Finally, the total intensity at any point in time is given by the sum of the intensities of all active560

cells at that point.

We calibrate the NSRP model by the method of moments, i.e. using the properties of the aggre-

gated NSRP process Y (τ) at different time scales of aggregation τ (cf., e.g., Rodriguez-Iturbe et al.,

1987a,b; Cowpertwait et al., 1996; Calenda and Napolitano, 1999). According to this method, model

parameters, i.e., λ, ν, β, η and ξ (b is typically fixed, in the range 0.6≤ b≤ 0.9, see Cowpertwait565

et al., 1996) are estimated using at least as many moments as the parameters of the model, consid-

ering different statistics (moments) at various time aggregations, and solving the related equation

system, where the theoretical expressions, containing the parameters, are equated to the sample mo-

ments. Theoretical moments of Y (τ), such as the mean µ(τ), variance γ(τ) and autocorrelation at

lag k, ρ(τ,k), are given by formulas derived by Rodriguez-Iturbe et al. (1987a). Transition probabil-570

ities were derived as well, by Cowpertwait (1991), and have been included in the calibration process.

We have solved the non linear equation system by numerical minimization of an objective function

S(λ,ν,β,η,ξ), that measures the global relative error between theoretical and sample moments (cf.

Cowpertwait et al., 1996).

Though calibration is conducted taking into account seasonality, by calibrating the model sepa-575

rately for the various homogeneous season within the year (section 4.2), it is noteworthy to point out

that the generated series is globally stationary, and consequently eventual annual non-stationarity

due to climate change, is not taken into account. In other words, the generated series represents

possible realizations of the rainfall events under current climate conditions, the final aim being of

deriving thresholds suitable under the present climate and not to assess how climate change may580

affect them.

17



Appendix B

Hillslope hydrological and stability model585

The total pressure head response ψ of an hillslope soil to a rainfall event is given by the sum of

a transient part ψ1 and an initial part ψ0 (cf. Iverson, 2000; D’Odorico et al., 2005). The transient

part is due to infiltration of event rainfall, while the initial part depends on rainfall time history before

the current rainfall event. As pointed out by Iverson (2000), for soils that are relatively shallow, i.e.

when the ratio between soil depth and the square-root of the upslope contributing area is small,590

ε= dLZ/
√
A≪ 1, the prevailing process that determines ψ1 is 1-D vertical infiltration, while in the

dry periods in between events, the prevailing process is sub-horizontal drainage.

Based on these considerations, we use a vertical infiltration model for computing ψ1, the TRIGRS

unsaturated model (Baum et al., 2008, 2010), and a linear reservoir sub-horizontal drainage model

to compute the initial conditions from the water table height at the end of the rainfall event preceding595

the current one (which in turn depends on past rainfall time history). This latter model is derived

from a mass conservation equation of soil water coupled with the Darcy’s law used to describe

seepage flow, where for simplicity the soil volumetric strain is neglected (the variation of porosity

with pressure head is assumed null). A similar conceptualization is the basis of the model proposed

by Rosso et al. (2006).600

In order to understand the controlling factors of landslide triggering, it is useful to separate the

analysis of the response to rainfall in terms of the transient part only. This may be done by perform-

ing the simulations assuming ψ0 = 0 at the beginning of events.

From pressure head response, the factor of safety FS for slope stability is computed, using a infi-

nite slope model.605

The description of these model components follows.

B1 Initial conditions model

The initial condition to rainfall event i is computed from the response at the end of rainfall event

i− 1, using a water table height h recession model between storms based on the following mass-

conservation equation (Rosso et al., 2006):610

BhKs sinδ =−A (θs − θr)
dh

dt
, (B1)

where A is the contributing area draining across the contour length B of the lower boundary of

the hillslope, δ is the inclination of the hillslope, Ks is the saturated hydraulic conductivity, and

θs − θr is soil porosity, θs and θr being the saturated and residual soil water contents respectively.

The ratio A/B, which can be computed based on a Digital Terrain Model (DTM), is the well-615
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known specific upslope contributing area, an important variable on which the topographic control

on shallow landslide triggering depends (Montgomery and Dietrich, 1994). For instance, it isA/B =

BNd, where Nd is the number of cells draining into the local one, if one determines flow paths via

the non-dispersive single direction (D8) method (O’Callaghan and Mark, 1984). Other methods

consider multiple flow directions (cf. Holmgren, 1994).620

The solution to Eq. (B1) is used to compute the water table height at the beginning of rainfall

event i:

hi =
ψ(dLZ, tf,i−1)

cos2 δ
exp

(
− Ks sinδ

A
B (θs − θr)

∆ti

)
=
ψ(dLZ, tf,i−1)

cos2 δ
exp

(
−∆ti
τM

)
. (B2)

where interarrival time ∆ti is defined in Sect. 2. The time constant τM regulates the pressure head

memory from one event to another.625

The initial pressure head distribution above the water table is computed accordingly with assump-

tions of the transient vertical infiltration model (see next section B2), letting the steady (initial)

surface flux IZLT = 0, which yields the following equation (see Baum et al., 2010; Baum and Godt,

2013):

ψ(Z,t= 0) =−(du −Z)cosδ− 1

α
(B3)630

for depths Z ≤ du, du being the depth to the top of the capillary fringe and α the parameter of

Gardner’s (1958) exponential soil-water characteristic curve (cf. Fig. B.1).

B2 Transient infiltration model

Reference scheme for a simulated hillslope is shown in Fig. B.1. Infiltration in the unsaturated zone

is modeled through Richards’ (1931) vertical-infiltration equation for a sloping surface particularized635

for the Gardner’s (1958) exponential soil-water characteristic curve K(ψ) =Ks exp{α(ψ−ψcf )}:

α1(θs − θr)

KS

∂K

∂t
=
∂2K

∂Z2
−α1

∂K

∂Z
(B4)

where Ks is the saturated hydraulic conductivity, α is the SWCC parameter, ψcf =−1/α is the

pressure head at the top of the capillary fringe, θr is the residual water content, θs is the water

content at saturation and α1 = αcos2 δ.640

A closed-form solution to this equation for δ = 0 has been provided by Srivastava and Yeh (1991)

and extended to a sloping surface by Savage et al. (2004), and used in the TRIGRS unsaturated

model (Baum et al., 2008, 2010).

The solution to Richards’ equation provides the pore pressure profile in the unsaturated zone, and

a flux to the saturated zone q(du, t). Because of the partial absorption of water within the unsaturated645

zone, this flux results damped and smoothed respect to the infiltrating flux at the ground surface (cf.

Figure 8 of Baum et al., 2008). The TRIGRS model then computes water table rise using q(du, t)

and subtracting from it a leakage flow rate given by ql =min{cdKs(1− cos2 δ), q(du, t)} (vertical
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drainage at the basal boundary, which is not assumed perfectly impervious), where cd represents

the ratio between saturated hydraulic conductivities of the basal boundary layer and of the regolith650

surficial layer. In the case that no specific information on cd ratio is available, a reasonable value

may be cd = 0.1 (cf. Baum et al., 2010), which means that hydraulic conductivity of the layer below

depth Z = dLZ is of one order of magnitude less than the regolith surficial layer.

The resulting water table rise is computed by comparing this excess flux accumulating at the top

of the capillary fringe to the available pore space directly above it.655

Pressure head rise is assumed transient in the saturated zone as well, and computed by formulas

adapted from analogous heat-flow problems (see Baum et al., 2008).

B3 Slope stability model

For analysis of hillslope stability we assume an infinite slope scheme, and compute minimum factor

of safety FS with the following formula (Taylor, 1948):660

FS(dLZ, t) =
tanϕ′

tanδ
+
c′ −ψ(dLZ, t)γw tanϕ′

γsdLZ sinδ cosδ
, (B5)

where c′ is soil cohesion for effective stress, ϕ′ is the soil friction angle for effective stress, γw is the

unit weight of groundwater, γs is the soil unit weight and δ is the slope angle. In this scheme the

failure occurs at the basal boundary Z = dLZ, because pressure head results maximum at that depth.

It is useful to consider the critical wetness ratio, derived from Eq. (B5) letting FS = 1, which665

is a parameter that for a given hillslope (given slope δ and soil depth dLZ), depends only on the

geotechnical characteristics of the soil:

ζCR =
γs
γw

[(
c′

γsdLZ sinδ cosδ
− 1

)
tanδ

tanϕ′
+1

]
. (B6)

The ζCR varies from 0 to 1, respectively for an unconditionally unstable and a unconditionally sta-

ble hillslope (Montgomery and Dietrich, 1994), and hence it indicates the natural degree of stability670

of the hillslope.
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Table 1. Confusion matrix for the possible success and failure cases of a warning process based on a landslide

triggering threshold I = f(D).

Actual

Landslide (P) No landslide (N)

Predicted
Landslide: I ≥ f(D) True Positive, TP False positive, FP

No Landslide: I < f(D) False Negative, FN True Negative, TN

Table 2. Parameters of the NSRP rainfall model resulting from calibration on Fiumedinisi rainfall data, for the

four homogeneous rainy seasons (the Weibull shape-parameter has been fixed to b= 0.6).

Parameter Jan, Feb, Mar Sep, Oct Nov Dec

λ [h−1] 0.002295 0.021195 0.001485 0.003185

ν 44.28 1.57 42.41 42.61

β [h−1] 0.010161 2.1179 0.0059551 0.0098760

η [h−1] 0.72113 0.83999 0.94053 0.67735

ξ [hb mm−b] 1.13441 0.46260 0.69261 1.03521

Table 3. Soil properties considered for application of the model to the Peloritani Mountains case study-area.

ϕ′ c′ γs θs θr Ks D0 α dLZ δ ζCR cd

[◦] [kPa] [Nm−3] [–] [–] [ms−1] [m2 s−1] [m−1] [m] [◦] [–] [–]

37 5.7 19 000 0.35 0.045 2× 10−5 5× 10−5 3.5 2 40 0.4645 0.1

Table 4. Varied soil properties considered for sensitivity analysis.

KS D0 cd dLZ τM (A/B = 10m)

[m/s] [m2s−1] [-] [m] [days]

1 ×10−5 (36 mm/h) 2.5×10−5 0.1 1, 1.5, 2 5.5

2 ×10−5 (72 mm/h) 5×10−5 0.05, 0.1, 0.2 1, 1.5, 2 2.7

3 ×10−5 (108 mm/h) 7.5×10−5 0.1 1, 1.5, 2 1.8
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Table 5. ROC-based indices for the derived best power-law stochastic-input physically-based thresholds (S)

and comparison with constant-intensity input physically based ones (C).

A
B

[m] a1 [mmh−1] TP TN FN FP P0 TPR FPR TSS

0 (ψ0 = 0)
S 101.49 81 19 558 0 187 0 1.000 0.009 0.991

C – 52 19 744 29 1 0 0.642 0.000 0.642

10
S 71.52 104 19 037 11 672 2 0.904 0.034 0.870

C – 52 19 708 63 1 2 0.452 0.000 0.452

20
S 42.95 164 17 131 26 2488 17 0.863 0.127 0.736

C – 52 19 618 138 1 17 0.274 0.000 0.274

Fig. 1. Scheme of the Monte Carlo methodology for derivation of landslide triggering thresholds. Text in red

indicates briefly the input required, while text in black indicates models or modeling phases.
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Fig. 2. Map showing the location of landslide-prone study area of Peloritani Mountains, Italy. The area may

be subdivided into seven catchments as highlighted in the map. Relief is shown by a 5×5m resolution Digital

Terrain Model based on LIDAR measurements in the year 2007. Location of Fiumedinisi raingauge is shown

as well. The inner box contains the area surrounding the Giampilieri municipality, where a widespread rapidly-

moving landslide event killed 37 people on 1 October 2009.
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Fig. 3. (a) Enlargement of inner box of the map of Fig. 2 showing slides occurred on 1 October 2009. Poly-

gons were derived from slide (red) areas reported in map of Civil Protection Department of the Sicilian Region

(source: http://www.regione.sicilia.it/presidenza/protezionecivile/documenti/rischi/r idrogeologico/documenti/

20091001 CartaDissesti.jpg). 643 slides, occupying a total area of 2.30 km2, are present in the map (b) Statis-

tical distribution, within the slide areas, of slope δ and of upslope specific contributing area A/B.
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Fig. 4. Moments for each month for Fiumedinisi SIAS hourly rainfall data. In particular µ denotes the mean,

γ the variance, ρ(1,1) the linear autocorrelation coefficient at lag = 1, ϕ the probability of a dry interval, ϕDD

the probability that a given interval is dry after another dry one, ϕWW the probability that a given interval is

wet after another wet one. These moments have been used in calibration of the NSRP model via the method of

moments. It can be seen that there are low differences of most of the moments within the following groups of

months: Sept-Oct, Nov, Dec, Jan-March, April, May-August. A separate set of NSRP model parameters was

calibrated for each of the first four of these seasons, while the period April-August has been neglected from the

successive analyses because precipitation rates are so low that it is very unlikely that a triggering event occurs

in such period.
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Fig. 5. Derivation of thresholds from ROC optimization of Monte Carlo simulations. Red points represent

triggering simulated rainfall, while green ones represent the non-triggering. Best power-law stochastic-input

physically-based thresholds (S) are derived by maximization of the TSS ROC-based index. The constant-

intensity input physically based threshold (C) is determined considering the response to uniform hyetographs

and water table initially at the basal boundary. (a) zero memory case ψ0 = 0, (b) A/B = 10m (Threshold

derived by Gariano et al. (2013) for Sicily is shown as well (thin dotted line)) for comparison with the one

derived), and (c) A/B = 20m.
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intensity I(D) =W (D)/D time histories that exceed the derived threshold. Green lines represent observed
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occurred in the Peloritani area: (I) 15 September 2006, (II) 25 October 2007, (III) 24 September 2009 and (IV)

1 October 2009.
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Fig. 7. Sensitivity of triggering thresholds and of the relative performances to hydraulic conductivity KS

(cf. Tab. 4). Plots show, for the two cases of zero memory (ψ0 = 0) and A/B = 10m, how the a1 power-

law coefficient of optimized stochastic-input physically-based thresholds and relative TSS performance index

vary with the critical wetness ratio ζCR. Performances of the constant-intensity physically-based thresholds

are shown as well (in green). Different soil depths are considered: (a) dLZ = 1m, (b) dLZ = 1.5m, and (c)

dLZ = 2m. 33
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Fig. 8. Sensitivity of triggering thresholds and of the relative performances to the leakage ratio cd (fractured

bedrock) (cf. Tab. 4). Plots show, for the two cases of zero memory (ψ0 = 0) and A/B = 10m, how the a1

power-law coefficient of optimized stochastic-input physically-based thresholds and relative TSS performance

index vary with the critical wetness ratio ζCR . Performances of the constant-intensity physically-based thresh-

olds are shown as well (in green). Different soil depths are considered: (a) dLZ = 1m, (b) dLZ = 1.5m, and

(c) dLZ = 2m.
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Fig. A.1. Representation of the Neyman–Scott Rectangular Pulses stochastic process for at-site rainfall model-

ing (adapted from Cowpertwait et al. (1996)).

Fig. B.1. Soil 1-D vertical scheme used to model infiltration and slope stability based on the TRIGRS unsatu-

rated model (adapted from Baum et al., 2008).
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