

1 **A review of droughts in the African continent: a geospatial
2 and long-term perspective**

3

4 **I. Masih¹, S. Maskey¹, F.E.F. Mussá^{1,2} and P. Trambauer¹**

5 [1] UNESCO-IHE, Institute for Water Education, P.O. Box 3015, 2601 DA Delft, The
6 Netherlands

7 [2] Eduardo Mondlane University, Faculty of Engineering, Av. de Moçambique km 1.5, C.
8 Postal 257, Maputo, Mozambique

9 Correspondence to: I. Masih (i.masih@unesco-ihe.org)

10

11 **Abstract**

12 This paper presents a comprehensive review and analysis of the available literature and
13 information on droughts to build a continental, regional and country level perspective on
14 geospatial and temporal variation of droughts in Africa. The study is based on the review and
15 analysis of droughts occurred during 1900-2013 as well as evidence available from past
16 centuries based on studies on the lake sediment analysis, tree-ring chronologies and written
17 and oral histories and future predictions from the global climate change models. Most of the
18 studies based on instrumental records indicate that droughts have become more frequent,
19 intense and widespread during the last 50 years. The extreme droughts of 1972-73, 1983-84
20 and 1991-92 were continental in nature and stand unique in the available records.
21 Additionally, many severe and prolonged droughts were recorded in the recent past such as
22 the 1999-2002 drought in Northwest Africa, 1970s and 1980s droughts in West Africa
23 (Sahel), 2010-11 drought in East Africa (Horn of Africa) and 2001-03 drought in Southern
24 and Southeast Africa, to name a few. The available (though limited) evidence before the 20th
25 century confirms the occurrence of several extreme and multi-year droughts during each
26 century, with the most prolonged and intense droughts that occurred in Sahel and Equatorial
27 East Africa regions. Complex and highly variant nature of many physical mechanisms such as
28 El Niño-Southern Oscillation (ENSO), Sea Surface Temperature (SST) and land-atmosphere
29 feedback adds to the daunting challenge of drought monitoring and forecasting. The future

1 predictions of droughts based on global climate models indicate increased droughts and
2 aridity at the continental scale but large differences exist due to model limitations and
3 complexity of the processes especially for Sahel and North Africa regions.

4 However, the available evidence from the past clearly shows that the African continent is
5 likely to face extreme and widespread droughts in future. This evident challenge is likely to
6 aggravate due to slow progress in drought risk management, increased population and
7 demand for water and degradation of land and environment. Thus, there is a clear need for
8 increased and integrated efforts in drought mitigation to reduce the negative impacts of
9 droughts anticipated in future.

10 **Key words:** Drought, Africa, geospatial coverage, temporal variability, causes of drought,
11 drought mitigation

12

13 1 Introduction

14 Drought is a recurrent climatic phenomenon across the world. It affects human being in a
15 number of ways such as causing loss of life, crop failures, food shortages which may lead to
16 famine in many regions, malnutrition, health issues and mass migration. It also causes huge
17 damage to the environment and is regarded as a major cause of land degradation, aridity and
18 desertification. The impacts of droughts are witnessed at a range of geographical scales. For
19 instance, individual families or communities may lose their livelihoods and source of water,
20 subject to acute food shortages and health issues and the country's economy may be severely
21 impacted. The available estimates on drought impacts suggest that, during the period 1900-
22 2013, there were 642 drought events reported across the world resulting in huge toll to
23 humanity killing about 12 million people and affecting over 2 billion (EM-DAT, 2014). The
24 total economic damages are estimated at 135 billion US\$ (Table 1).

25 Drought remains a major disaster causing huge damages to people, environment and
26 economy, despite making considerable progress on monitoring, forecasting and mitigation of
27 droughts across the world. The lack of desired level of success could be attributed to many
28 reasons. Drought is a complex phenomenon, which varies every time in terms of its onset,
29 intensity, duration and geographical coverage. The capacity of people facing this hazard may
30 be limited to avoid adverse impacts compounded by shortcomings in government capacity
31 (e.g. financial, institutional and political) to provide short-term relieve and install long-term

1 drought mitigation measures. There is an urgent and dire need to progress on various fronts of
2 drought mitigation such as early warning and forecasting, building resilience of the societies,
3 short-term relief efforts, long term planning and capacity building (e.g. Calow et al., 2010;
4 Clarke et al., 2012; Dondero, 1985; Falkenmark and Rockström, 2008; GFDRR, 2011; IFAD,
5 2010; 2011a and 2011b; Logar et al., 2013; Mishra and Singh, 2010; Msangi, 2004; Sehmi
6 and Kundzewicz, 1997; Tadesse et al., 2008; Tøttrup et al., 2012; UNISDR, 2004 and 2010;
7 Vicente-Serrano et al., 2012; Vogel et al., 2010; World Bank and GFDRR, 2010).

8 Understanding gained from detailed analysis of historic drought events offers enormous
9 possibilities to carry out better drought management planning and to mitigate impacts of
10 droughts (Vicente-Serrano et al., 2012). A sound science based geospatial analysis of the past
11 drought events and their causes can facilitate the improvement of drought mitigation and
12 preparedness plans. This can also guide in determining the spatial and temporal variability of
13 drought hazard and the vulnerability of water resources, vegetation systems and society to
14 drought. The analysis of historical droughts can provide information on deficits in water
15 demand and likely impacts on water resources and environment, which is essential for
16 drought risk reduction, planning new projects and reviewing the existing ones. Such studies
17 can also provide necessary information on periodic nature of droughts and their relationship
18 with increasing water demand or climate change (Mishra and Singh, 2010). Moreover, the
19 outlook of the current and future drought events in the historic context could facilitate in
20 applying low-risk and long-term plans to use, conserve and sustain water and other natural
21 resources (Touchan et al., 2008). The current efforts by scientific community in this direction
22 are very limited and require further attention (Mishra and Singh, 2010; Touchan et al., 2008;
23 Vicente-Serrano et al., 2012; Vogel et al., 2010). The available scientific studies do not
24 provide enough geospatial and long-term temporal coverage of the past drought events at
25 global and continental levels. However, the increasing number of available studies offers
26 great opportunity to conduct such an analysis. The major focus of this paper is to review the
27 available literature in the context of Africa where impacts of droughts are more severe occur
28 most frequently and cause result in significant loss of life, negative effects on people and
29 damages to the economy and environment. Most countries in Africa also lack necessary
30 capacity and resources to make required progress to address this catastrophic hazard (e.g.
31 GFDRR, 2011; Tadesse et al., 2008; Vogel et al., 2010).

1 A recent global review on droughts and aridity by Dai (2011) indicated that large scale
2 droughts have frequently occurred during the past 1000 years across the globe. This review
3 briefly reported few of these severe and multi-year mega-droughts in North America, China
4 and Africa, but does not provide the detailed review of the historic droughts across the world.
5 For Africa, the focus was on the severe, widespread and prolonged droughts occurred during
6 1970s and 1980s in West Africa (Sahel region). The study mainly focused on aridity changes
7 from 1950 to 2008 and provided foresight for the 21st century. One of the important
8 conclusions of this paper is that the global aridity and drought areas have increased
9 substantially during the 20th century and attributed to widespread drying since 1970s over
10 Africa, southern Europe, East and South Asia, eastern Australia and many parts of the
11 northern mid-high latitudes. The aridity trends are projected to continuously increase in the
12 21st century. However, study of Sheffield et al. (2012) shows that drought patterns are
13 increasing over last 60 years, though not as alarming as usually projected. Mishra and Singh
14 (2010) conducted a comprehensive review on drought concepts and a critical evaluation of the
15 most widely used indicators for drought assessment. But the review remains limited in terms
16 of description of the historic droughts and only briefly mentions few of them with their main
17 impacts. For Africa, the study only enlisted the severe droughts in Sahel occurred during
18 1910s, 1940s, 1960s, 1970s and 1980s. These droughts caused huge socio-economic and
19 environmental impacts in this semi-arid region resulting in massive scale migration, famine
20 and environmental degradation (desertification), especially during the last two drought
21 episodes. The study noted that growing demand for water, limited sources of water and
22 changes in spatio-temporal patterns of climate are aggravating the drought impacts in the
23 world.

24 There are a growing number of studies addressing various drought related issues for Africa.
25 Most of these studies focused on a specific region i.e., Southern Africa (e.g. Clarke et al.,
26 2012; Cornforth, 2013, Dube et al., 2000, 2002 and 2003; Green, 1993; Jager et al., 1998;
27 Manatsa et al., 2008; O'Meagher et al., 1998; Richard et al., 2001; Unganai et al., 1998; Vogel
28 et al., 2010), Sahel (West Africa) (e.g. Giannini et al., 2008; Govaerts et al., 2008; Kasei et
29 al., 2010; Lebel et al., 2009; Lodoun et al., 2013; Traore et al., 2007; Zeng, 2003), East Africa
30 (Horn of Africa) (e.g. Anderson et al., 2012; Dutra et al., 2013; Syroka and Nucifora, 2010)
31 and Northwest Africa (e.g. Touchan et al., 2008 and 2010). There are few studies which
32 attempt to cover more than one region (e.g. Calow et al., 2010; Herweijer and Seager, 2008;
33 Rojas et al., 2011; Naumann et al., 2012; Tadesse et al., 2008; Verschuren, 2004). These and

1 many other studies are comprehensively reviewed and discussed in the following sections.
2 Most of them investigate one or more drought related subjects i.e., the study of a specific
3 drought event or historic droughts in a country or regional perspective, methodological
4 developments on drought indicators, causes of droughts, forecasting and early warning
5 systems, impact analysis and drought risk reduction, drought planning and management and
6 capacity building. None of them provide a long-term analysis of droughts considering past,
7 present and future perspective at the continental scale.

8 ~~There is growing number of global data sets which can facilitate continental scale analysis,~~
9 ~~along with growing number of literature. The few examples of these sources are EM-DAT~~
10 ~~data base (<http://www.emdat.be/database>), global scale estimation of various drought related~~
11 ~~indicators (e.g. Standardized Precipitation and Evaporation Index, SPEI) (Vicente-Serrano et~~
12 ~~al., 2010) and remote sensing data and products (e.g. Rojas et al., 2011).~~

13 There are a growing number of continental and global data sets on drought. For instance,
14 there are specific continental drought monitoring and forecasting systems that deal with
15 specific drought related information in real time as well as historical data. The examples are
16 the African drought monitor: <http://hydrology.princeton.edu/adm> (Sheffield et al., 2013) and
17 the DEWFORA African drought observatory: <http://edo.jrc.ec.europa.eu/dewfora/> (Barbosa et
18 al., 2013). Moreover, the EM-DAT data base (<http://www.emdat.be/database>) provides
19 information on historic droughts recorded across the world along with their impacts.
20 Significant advances have been made on the global scale estimation of various drought related
21 indicators (e.g. Standardized Precipitation and Evaporation Index, SPEI) (Vicente-Serrano et
22 al., 2010). Several remote sensing based data and products have been developed over time
23 (e.g. Rojas et al., 2011; Sheffield et al., 2013). These efforts have resulted in significant
24 increase in the scientific literature and data bases, which can facilitate continental scale
25 analysis of droughts in terms of severity, spatial and temporal coverage.

26 The main objective of this study is to review available information and literature and conduct
27 a detailed geospatial and long-term analysis of droughts across the African continent. We
28 examine the major causes of droughts reported in the literature and present findings and
29 important discourses on drought trends (including frequency, intensity and geospatial
30 coverage), temporal variability, desiccation (aridity) and causes of drought.

1 **2 Materials and Methods**

2 **2.1 Study Area**

3 This study focuses on the whole African continent. However, analysis and discussion is also
4 presented in the regional and country perspectives. It is important to note the differences in
5 grouping various countries in different regions. For instance, EM-DAT groups African
6 countries into North, Middle, South, East and West Africa). On the other hand, many regional
7 studies are focused on Sahel (includes countries in West Africa between Sahara desert and
8 Guinea coast rainforest, about 18°N to 15°N), Horn of Africa (Ethiopia, Somalia, Kenya),
9 Equatorial East Africa, Southern Africa. The special reference to countries in a given region is
10 made wherever deemed necessary. In this study, the continent is grouped into North, West
11 (Sahel), East, Middle and Southern Africa regions (Table 2).

12 The rainfall depicts very high spatial and temporal variability across the African continent
13 (Figure 1). North Africa region receives very low rainfall and have a desert climate. The
14 highest rainfall occurs in Middle African countries and some countries along with west coast
15 of West Africa. These countries have (sub)-humid climatic characteristics. The highest spatial
16 and temporal variability of rainfall is found across the countries grouped under West, East and
17 Southern Africa, but mostly have semi-arid climate. Variations within a country are also
18 important to note, for instance, the eastern part of Ethiopia receives much less rainfall (semi-
19 arid) compared to the Ethiopian Highlands (sub-humid) in the western part. There are distinct
20 differences in intra-annual variability across the regions. Southern Africa receives most of the
21 rainfall during October-March, whereas Sahel rainfall is concentrated during July-August
22 summer monsoon period. Most countries in the Horn of Africa and Equatorial East Africa
23 regions receive rainfall in two seasons: October-December (short rainfall season) and March-
24 May (long rainfall season). The Northwest Africa receives most of the rainfall during
25 October-April.

26 ~~The earlier studies indicate that the semi arid and sub humid regions of Africa are the most~~
27 ~~drought prone regions (e.g. World Bank and GFDRR, 2010). These countries are highly~~
28 ~~vulnerable to drought owing to high climatic variability and also due to other reasons such as~~
29 ~~poverty, high dependency on rainfed agriculture and weak infrastructure to manage resources~~
30 ~~and recover from disasters. Moreover, vulnerability to drought varies per country. For~~
31 ~~instance the economic impact of the 1991 92 drought was much higher on the GDP of~~

1 ~~Malawi and Zimbabwe compared to South Africa and Botswana (Benson et al., 1998). The~~
2 ~~lowest negative impacts in Botswana on people livelihoods and food security during drought~~
3 ~~periods of 1982-87 and 1992 were mainly attributed to a small and largely accessible national~~
4 ~~population, availability of domestic and international resources, existence of rural~~
5 ~~infrastructure, government commitment, district level capacity and a timely and fairly~~
6 ~~comprehensive food security and nutrition monitoring system (Belbase and Morgan, 1994).~~

7

8 **2.2 Data and Methods**

9 The main data and information sources for this study are collected from the literature (e.g.
10 published, peer and non-peer reviewed, unpublished sources). More than 100 literature
11 sources were studied in detail, after initial skimming of over 500 articles searched from
12 relevant international journals (individual journals and search engines), African Journals,
13 donor reports and other sources. The list of reviewed material is not exhaustive, though an
14 effort has been made to conduct a compressive coverage.

15 The global data set on droughts from EM-DAT website (<http://www.emdat.be/database>) were
16 accumulated for the available period 1900-2013. This data set provides
17 country/regional/continental level estimates on drought events, people killed and affected and
18 economic damage. Additionally, a global database on SPEI was used to analyse droughts
19 with the aim to substantiate the findings of this reviewfurther analyse some of the selected
20 droughts (<http://sac.csic.es/spei/home.html>). It is acknowledged that a number of drought
21 indicators are available, each with own strengths and weaknesses (e.g. Mishra and Singh,
22 2010; Dai, 2011; Zargar et al., 2013). For example, the Decile Index (Gibbs and Maher, 1967)
23 is easy to compute, however it requires a long time series of data to have accurate results.
24 With the Palmer Drought Severity Index (Palmer, 1968), abnormality of agricultural droughts
25 can be identified and it also shows historical aspects of current conditions. The disadvantage
26 of this method is that as it depends on soil moisture data and its properties which are often
27 very difficult to assess, especially at a larger spatial scale and in spatially distributed manner.
28 The widely used Standardized Precipitation Index (McKee et al., 1993; Zargar et al., 2011)
29 seems to have advantages because it is a simple method that requires few data (only
30 precipitation) for its computation. The SPEI, an extension to SPI, is a widely used drought
31 indicator, which uses estimated based on precipitation and potential evapotranspiration

1 | data for its computation. It has the ability to monitor onset, intensity and duration of drought.
2 | The indicator is very suitable to study geospatial and temporal variation of drought including
3 | the impact of global warming. This indicator is primarily related to meteorological drought
4 | and do not offer as such estimates on agricultural, hydrological and socio-economic aspects of
5 | droughts, though it could be seen as a proxy to these droughts as eventually they are caused
6 | by the deficit in precipitation. The detail discussion on various drought indicators and their
7 | comparison ~~of various commonly used drought indicators~~, basic concepts and various
8 | perceptions on drought can be found in the literature (e.g., Dai, 2011; Mishra and Sing, 2010;
9 | Ntale and Gan, 2003; Smakhtin and Schipper, 2008; UNISDR, 2004; Zargar et al., 2011).

10 | ~~In this study drought is considered as a temporary, recurrent climatic event that is originally~~
11 | ~~caused by lack of rainfall (Smakhtin and Schipper, 2008). This point of view is in general~~
12 | ~~agreement with the understanding of drought by EM-DAT and most of the material used in~~
13 | ~~this paper. For instance, the EM-DAT glossary considers drought as a long lasting event;~~
14 | ~~triggered by lack of precipitation. Here a drought is stated as an extended period of time~~
15 | ~~characterised by a deficiency in a region's water supply that is the result of constantly below~~
16 | ~~average precipitation.~~

19 | **3 Results and Discussion**

20 | **3.1 Geospatial and Temporal Pattern of Droughts during 1900-2013**

21 | The summary of the selected literature reviewed is presented in Table 2, indicating drought
22 | years, geographical location and key relevant findings. . While preparing this Table, an effort
23 | was made to avoid duplication of similar studies and yet provide geospatial and temporal
24 | coverage. Another important consideration was to examine important discourses most
25 | relevant to the topic of this paper. There are a rapidly growing number of studies on various
26 | drought related issues, especially during the last decade. The available studies cover most
27 | parts of Africa, though coverage is low for middle Africa which is understandable as in this
28 | region climate is humid and droughts are not as catastrophic as in the other regions..
29 | Meteorological drought remains the main subject of most studies followed by agricultural
30 | drought. Studies examining hydrological droughts and the impacts of human uses of water on
31 | the assessment and intensification of these droughts are limited.

1 Table 3 provides a summary of the drought events recorded in the EM-DAT data base along
2 with the number of people killed and affected and estimated economic damage. This widely
3 used data base provides very useful information for this study. However, caution is required
4 while using it for a specific purpose due to several reasons. First, the available information
5 underestimates the total number of drought events per country and consequent impacts.
6 Generally much lower number of droughts is recorded for many countries (e.g. Morocco,
7 Tunisia, Algeria, Sudan, Zimbabwe and South Africa) for the period 1900-2013, which
8 prohibits formulating century scale picture of drought patterns for these countries. The
9 information before 1960s is not available for most of the countries. Similarly, no information
10 is available for many recorded drought events on number of people killed and affected and
11 economic damage. Thus, aggregated values of these indicators, which are often used, give
12 much lower estimates of drought affects. Second, in the aggregation of the number of events,
13 the method used by EM-DAT and many users takes a country level perspective. In this way, a
14 drought event occurred during one year in many countries in a region is counted more than
15 once. This should be properly examined, especially when studying the region with similar
16 climatic regimes. In the scientific literature, regional and multi-year droughts are often
17 referred as one drought event (Table 2). This difference limits a straightforward comparison
18 of the droughts given in Table 2 and 3.

19 A number of inferences are drawn from the analysis of the available data and scientific
20 evidence reviewed in this paper (Table 2 and Table 3). The frequency, intensity and
21 geospatial coverage of droughts have significantly increased across the whole African
22 continent during the second half of the 1900-2013 period. This inference is supported by
23 studies conducted at continental scale (e.g. Dai 2011 and 2013) as well as by most of the
24 regional and country level studies (e.g. Quassou et al., 2007, Touchan et al., 2008 and 2011,
25 Elagib and Elhang, 2008; Kasei et al., 2010; Manatsa et al., 2008; Richard et al., 2001). The
26 available data (though limited in temporal coverage) from EM-DAT also supports this
27 observation (Table 2). ~~This point is further substantiated by Figures 2 and 3. Figure 2 shows~~
28 ~~the geospatial coverage of the three most extreme droughts occurred during past 50 years~~
29 ~~(1972-73, 1983-84 and 1991-92 droughts). These droughts could be regarded continental in~~
30 ~~nature as they spanned over many sub regions and covered wide areas of the African~~
31 ~~continent. None of the previous droughts during 20th century were as wide spread and intense~~
32 ~~compared to them (Figure 3).~~

This point is further substantiated by Figures 2, 3 and 4. The drought shown in Figure 2 and 3 were reported by most of the reviewed literature and thus were chosen for the illustration. Figure 2 shows the geospatial coverage of the four most extreme droughts occurred during past 50 years. Three out of these four droughts (1972-73, 1983-84 and 1991-92) were most severe and could be regarded continental in nature as they spanned over many sub-regions and covered wide areas of the African continent. None of the previous droughts during 20th century were as wide spread and intense compared to them (Figure 3). Figure 4 show the area of the African continent under different drought categories based on SPEI data analysis conducted in this study. On this data, the widely used non-parametric Spearman Rank test (e.g. Masih et al., 2011) was applied to test the statistical significance of the trends. The results revealed statistically significant increase (at 99% significance level) in the area under all categories of drought (e.g. moderate, severe and extreme droughts) for the African continent during 1901-2011. Figure 4 exhibits these findings and the visual inspection also indicates the increasing trend in the geospatial extent of the African continent under drought.

Most African countries ~~observe are highly vulnerable to~~ single and multi-year droughts when seen from purely hydro-climatic point of view. For instance, number of severe droughts occurred in Northern and Southern Africa during the 20th century are comparable to those observed in Eastern and Western Africa ~~where comparatively more droughts are reported in literature and available data bases which are generally considered as the most vulnerable regions~~ (Table 2 and Table 3). However, distinct geospatial and temporal patterns exist in the drought episodes mainly driven by the diverse nature of the climate and drought inducing physical mechanisms (discussed later in this paper). ~~It can be inferred from the studies reviewed in this paper (Table 2) that the~~ The multi-year and prolonged droughts are more common in Sahel compared to any other regions (e.g. Mishra and Singh, 2010; Rojas et al., 2011). In contrast, ~~studies for the~~ East Africa ~~region report faces comparatively mostly very severe seasonal droughts often not spanning less prolonged over many years but very extreme droughts~~ (e.g. Dutra et al., 2013).

The geospatial spread of drought depicts large variation within a country or a basin, beside regional heterogeneity. This point is clearly indicated by Figure 2 and 3 and also highlighted by other studies (e.g. Anderson et al., 2012; Moeletsi and Walker, 2012; Mussá et al., 2014; Rojas et al., 2009; Rulinda et al., 2012; Trambuer et al., 2014). The increasingly available information and tools based on remote sensing, analysis of global climatic data sets (e.g.

1 global SPEI products) and hydrological and climatic modelling offer great opportunity to
2 identify these geospatial differences and drought hot spots. For instance, a remote sensing
3 based study by Rojas et al. (2009) identified hot spots regions at sub-national level depicting
4 higher probabilities of facing agricultural droughts. ~~The most vulnerable regions identified by
5 their study were: Tensift and Centre in Morocco, Brakna in Mauritania, North Darfur in
6 Sudan, Samenawi Keith Bahri in Eritrea, Coast and Eastern in Kenya, Manyara, Tanga,
7 Arusha and Kilimanjaro in Tanzania, Juba Hoose, Juba Dhexe and Shabelle Hoose in
8 Somalia, Kaabong and Kiruhura in Uganda, Southern in Sierra Leone, Gbapolu in Liberia
9 and Otjozondjupa in Namibia. The studies indicate that the semi-arid and sub-humid regions
10 of Africa are the most drought prone regions (e.g. World Bank and GFDRR, 2010). These
11 countries are highly vulnerable to drought owing to high climatic variability and also due to
12 other reasons such as poverty, high dependency on rainfed agriculture and weak infrastructure
13 to manage resources and recover from disasters. Moreover, vulnerability to drought varies per
14 country. For instance the economic impact of the 1991-92 drought was much higher on the
15 GDP of Malawi and Zimbabwe compared to South Africa and Botswana (Benson et al.,
16 1998). The lowest negative impacts in Botswana on people livelihoods and food security
17 during drought periods of 1982-87 and 1992 were mainly attributed to a small and largely
18 accessible national population, availability of domestic and international resources, existence
19 of rural infrastructure, government commitment, district-level capacity and a timely and fairly
20 comprehensive food security and nutrition monitoring system (Belbase and Morgan, 1994).~~

21 There is increasing availability of drought monitoring and forecasting tools for decision
22 making which can provide real time monitoring and forecasting of drought across the region
23 (e.g. Tadesse et al., 2008; Anderson et al., 2009; Dutra et al., 2013; Vicente-Serrano et al.,
24 2012). However, the use of these tools in decision making is still limited and could be
25 promoted. For instance, despite inherent uncertainties in the available drought monitoring and
26 forecasting systems, the 2010-11 drought in the Horn of Africa was well predicted by
27 European Centre for Medium-Range Weather Forecasts (ECMWF). But this information was
28 not timely used for better preparedness and mitigation of the drought, which finally caused
29 heavy toll affecting about 12 million people (Dutra et al., 2013).

30

3.2 Past, present and future pattern of droughts

There are few studies available to date which offer possibility of comparing droughts observed during 1900-2013 (instrumental era) with those witnessed in the past centuries. This comparison is important as African climate displays high decadal and century scale variability. The work of Touchen et al. (2008 and 2011) provides a long term perspective on droughts in Northwest Africa (Morocco, Algeria and Tunisia). They used tree-ring records to construct the Palmer Drought Severity Index (PDSI) for the period A. D. 1179 to 2002. These studies reveal that the frequency of occurrence of a single drought event was 12 to 16 times per century before the 20th century, which was increased to 19 during the 20th century. The most severe multi-year drought occurred during 1999-2002, whereas 1847 and 2002 were identified as the driest single years with PDSI values of -3.74 and -3.90, respectively. The latter half of the 20th century is seen as the driest period in the last 9 centuries. This shift to drier conditions was attributed to anthropogenic climate change.

A number of researchers studied historic droughts in Africa based on lake sediment analyses. Evidence from the sediment analysis of the lake Bosumtwi, Ghana indicated several prolonged periods of drought during the last three millennia, most recent ones around 200 to 300 years ago (Shanahan et al., 2009). Comparing 1970s droughts in Sahel with earlier drought episodes occurred during the past three millennia, they concluded that these more severe and prolonged droughts were recorded in the past centuries, not anomalous and monsoon had generated even more severe and prolonged droughts in the past. Verschuren et al. (2000) investigated droughts over the period A.D 900 to 2000 based on sediment analysis of Lake Naivasha Kenya in Equatorial East Africa. The period AD 1000 to 1270 (Medieval Warm Period) was found to be the driest one over the last 1100 years. Additionally, dry conditions were found around AD 1380-1420, 1560-1620 and 1760-1840 during relatively wet period of AD 1270-1850 (Little Ice Age). These drought episodes were more severe than recorded droughts in the 20th century. Bessems et al. (2008) noted extreme droughts in Equatorial East Africa about 200 years ago based on the sediment analysis of three lakes (Chibwera and Kanyamukali in western Uganda, and Baringo in central Kenya). The authors, Verschuren et al. (2000), and Bessems et al. (2008), compared their findings with the available evidence from the cultural history of east Africa and found consistency between two sets of observations.

1 Endfield and Nash (2002) described the discourse on long-term desiccation of the African
2 continent emerged during 19th century. Their study is based on the analysis of the missionary
3 documents from southern Africa (Botswana and South Africa). The authors constructed a
4 chronology of intra-decadal climatic variability for the period 1815-1900 and showed that the
5 major multi-year droughts occurred in 1820-7, 1831-5, 1844-51, 1857-65, 1877-86 and 1894-
6 9. The study inferred that the discourse on long-term desiccation evolved during this period
7 was merely triggered by these episodes of droughts rather than underpinned by long-term
8 climatic deterioration. Nevertheless, the discourse on desiccation still remains an important
9 subject in the current drought research. The evidence presented in the previous section
10 pointed out to the increased aridity and intensification of droughts, especially during the
11 second half of the 20th century (e.g. Dai 2011; Elagib and Elhang, 2008; Kasei et al., 2010;
12 Quassou et al., 2007; Manatsa et al., 2008; Touchan et al., 2008 and 2011; Richard et al.,
13 2001). Dai (2013) predicted likelihood of increased droughts and aridity over central and
14 southern Africa during the 21st century. On the contrary, the Sahel region may receive more
15 rainfall. Large uncertainties exist in these findings and thus require caution in making regional
16 or continental conclusions. Druyan (2011) reviewed 10 studies which are based on the
17 simulations of atmosphere-ocean global climate models on future climate of Sahel. Some
18 studies ~~predicted projected~~ wetter conditions and some ~~predicted projected~~ more frequent
19 droughts, thus, no consensus was observed. The large uncertainties and differences in these
20 predictions were attributed to model limitations and complexity of many physical
21 mechanisms governing the precipitation trends.

22

23 3.3 Causes of droughts

24 ~~It is important to acknowledge that droughts, at first, are is a part of natural climatic~~
25 ~~variability in the African continent, which is quite high at intra-annual, inter-annual, decadal~~
26 ~~and century time scales (e.g. Nicholson, 2000). in the African continent.~~ Many studies
27 attempted to investigate the natural ~~and anthropogenic~~ causes that could be associated with
28 droughts in Africa (Caminade and Terray 2010; Dai 2011 and 2013; Dutra et al., 2013;
29 Giannini et al., 2008 ~~and 2013; Hastenrath et al., 2007;~~ Herweijer and Seager, 2008; Jury et
30 al., 1996; Kerr, 1985; Lebel et al., 2009; Manatsa et al., 2008; ~~Nicholson, 2000 Hastenrath et~~
31 ~~al., 2007;~~ Richard et al., 2001; Shanahan et al., 2009; Tierney et al., 2013; Vicente-Serrano,
32 2012; Zeng, 2003). ~~Some of them also focus on anthropogenic factors responsible for drought~~

(e.g. Dai 2011 and 2013; Lebel et al., 2009; Zeng, 2003). The review of these studies revealed that there are ~~a number complex array~~ of factors ~~contributing in inducing drought conditions~~ ~~inter playing in an intricate manner~~. ~~There is no unique set of factors responsible for geospatial and temporal variation of droughts across the continent. However, despite regional differences in the factors causing droughts in a specific region, The physical mechanisms causing droughts differ by region, although~~ ENSO and SSTs are regarded major influencing factors across the continent. ~~For instance, Nicholson (2000) demonstrates that ENSO, SST and land-atmospheric feedback are the major governing factors on the rainfall variability in Africa. The author states that these factors alone or in combination can change the atmospheric dynamics and circulation patterns, for instance, causing changes in the Hadley and Walker circulations or upper level jet streams.~~

Droughts in Southern Africa occur most of the time during the warm phase of ENSO (El Niño Southern Oscillation). Nicholson and Kim (1997) studied the correlation between precipitation and ENSO (El Niño Southern Oscillations) in the Pacific. They found that among the 20 extreme rainfall events analyzed, 15 events appeared to be modulated by the ENSO. Their results suggest that the southern part of Africa is negatively correlated with warm ENSO. Phillips et al. (1998) studied the possibility of using ENSO predictions to reduce the risks associated with rainfall variability in agricultural production in Zimbabwe. The analysis showed that during the El Niño phase a decrease on the precipitation was noticed, which is in agreement with the findings of (Nicholson and Kim 1997). Rouault and Richard (2005) studied the temporal and spatial extent of the droughts in South Africa based on the SPI (Standardized Precipitation Index) from 1900 to 2004. Their results show that 8 out of 12 droughts detected coincide with El Niño years, which confirms the strong relationship between the ENSO and the drought events in southern Africa. However, some studies point that the occurrence of droughts during El Niño years does not happen always as there are many other local and global factors influencing the drought phenomenon. However, this does not happen always as there are many other local and global factors influencing the drought phenomenon. For instance, Richard et al. (2001) examined droughts during 1950 to 1988 in Southern Africa. They found that droughts during 1970-88 were intense and widespread compared to those during 1950-1969. The El Niño was the main governing factor for droughts during 1970-88. However, this observation require caution because droughts may not occur during El Niño periods, i.e., as happened during 1925-26 and 1997-98. For the droughts during 1950-1969, regional oceanic and atmospheric anomalies (e.g. southwest

1 Indian Ocean SST) were named as the main causes. Manatsa et al. (2008) suggested that El
2 Niño alone is not a sufficient predictor of droughts in Southern Africa. They recommend that
3 March to June extreme positive Darwin Sea Level Pressure anomalies are ideal additional
4 candidate for drought monitoring and forecasting in Zimbabwe and Southern Africa.

5 Contrary to Southern Africa, East Africa region faces droughts during cold phase of ENSO
6 (La Niña). For instance, Dutra et al. (2013) indicated that strong La Niña event was the main
7 cause of 2010-11 drought in the Horn of Africa. Lott et al. (2013) investigated whether the
8 2010-11 drought was caused by human intervention or not. They did not find any evidences
9 of human activities on this event and also attributed this with La Niña events. Tierney et al.
10 (2013) also suggested that the recent drought in the Horn of Africa, was partly due to the
11 prevailing La Niña conditions in the tropical Pacific. On the other hand, Hasternath et al.
12 (2007) argue that the low rainfall in this region occurs during fast westerlies which are usually
13 accompanied by anomalously cold waters in the northwestern and warm anomalies in the
14 southeastern extremity of the equatorial Indian Ocean Basin. This mechanism was found
15 responsible for 2005 drought in the Horn of Africa. Tierney et al. (2013) suggested that the
16 Indian Ocean drives rainfall variability in East Africa by altering the local Walker circulation.
17 Moreover, it is argued that warming of the central Indian Ocean, accelerated by greenhouse
18 gas and aerosol emissions after later half of the 20th century, are correlated with the decline in
19 precipitation over Eastern Africa (Funk et al., 2008; Williams and Funk, 2011). These studies
20 suggested that warming of the central Indian Ocean drives changes in the local Walker
21 circulation causing reduction in the seasonal rainfall and inducing drought conditions in the
22 region.

23 Droughts in Sahel are caused by an array of complex processes and feedback mechanisms.
24 Caminade and Terry (2010) stated that conditions that favour lower summer rainfall in Sahel
25 are: when Atlantic ocean north of equator is cool and the same is warm below the equator, El
26 Niño events and, increased vertical thermal stability from a warming troposphere and
27 deterioration of vegetation cover, which increases albedo and decreases evapotranspiration.
28 Most of the studies on Sahel droughts concur that the recent severe droughts in Sahel were
29 caused by the ocean warming (southward warming gradient of the Atlantic ocean and steady
30 warming of the Indian Ocean), southward shift of Inter Tropical Convergence Zone (ITCZ)
31 (Caminade and Terry 2010; Dai, 2011; Giannini et al., 2008; Janicot et al., 1998; Kerr, 1985;
32 Lebel et al., 2009; Zeng, 2003). The land-atmosphere feedbacks through natural vegetation

1 and land cover change are also important factors. Anthropogenic contribution in land use
2 change altering the land surface feedback mechanisms is also seen as a factor. Some studies
3 were done with the objective of examining whether the climate in the Sahel region is sensitive
4 to land use changes or not. For instance, Zheng and Eltahir (1997) investigated the interaction
5 between vegetation and climate in the Sahel region by means of simulations of the West
6 African monsoons with a simple zonally-symmetric model. Their results show that the
7 impacts of land cover changes in the Sahel region along the border with Sahara are
8 insignificant. However, deforestation along the southern coast of West Africa can cause
9 significant reduction of the rainfall and affect on the monsoon circulation. Several studies
10 suggested aerosol emissions were an important driver of the recent Sahel droughts (e.g.
11 Desboeufs et al., 2010; Hwang et al., 2013; Moulin and Chiapello, 2004; Prospero and Lamb,
12 2003). Furthermore, human induced green house gas emission is also considered as a
13 contributory factor to oceans warming (e.g. Dai, 2013). Despite recognition of these two
14 anthropogenic factors, their relative contribution compared to natural factors in inducing
15 Sahel droughts is debated and regarded as a minor secondary factor, if so.

16 In Northwest Africa, neither SST nor ENSO shows a clear relationship with drought patterns
17 (Touchan et al., 2008). Further research is required to understand mechanisms causing
18 droughts in this region. The limited studies are available on causes of droughts in Northwest
19 Africa. The North Atlantic Ocean SST does influence on rainfall variability in the region but
20 this relationship is rather weak and could not explain major droughts in the region (Li et al.,
21 2003; Touchan et al., 2011). Similarly, ENSO is seen as a potential factor, but a strong
22 relationship is not demonstrated by ENSO about modulating droughts in this region (Esper et
23 al., 2007; Touchan et al., 2008). The North Atlantic Oscillation (NAO) indicates variable
24 influence on the rainfall in the region, with negative correlation with western parts but no
25 correlation with eastern parts (Touchan et al., 2013). However, no relationship is found
26 between NAO and droughts in the region. Touchan et al. (2013) argued that anthropogenic
27 green house gas emission is an important factor causing drying in this region. The review of
28 these studies suggested that the causes of droughts in the Northwest Africa are not well
29 established and require further research.

30

31

4 Conclusions

The climate of African continent exhibits large geospatial and temporal variability. Droughts are recurrent features varying from failure of rains in one season or up to one or more years. The vulnerability to droughts is high ~~because of high frequency as well as~~ due to poverty, and large dependency on rainfed agriculture and other factors. Therefore, droughts continue to incur heavy toll to people, animals, environment and economy. The planning and management of droughts requires a paradigm change shifting from crisis management to risk management. ~~The e~~Comprehensive studies on ~~the~~ historic droughts events could significantly guide in better planning and mitigation strategies of droughts. There is significantly increasing number of information and scientific studies on various aspects of drought. However, these studies do not provide a long-term and/or continental scale perspective. This study is a first of its kind to build such a perspective on droughts in Africa with the aim on conducting geospatial and long-term analysis of the droughts. The study is underpinned by a comprehensive review of available information and scientific literature and analysis of the EM-DAT and SPEI data sets.

The analysis of droughts during 1900-2013 indicated that droughts have been intensified in terms of their frequency, severity and geospatial coverage over the last few decades. The droughts that occurred in 1972-73, 1983-84 and 1991-92 were most intense and widespread. All of the regions witnessed severe droughts in the last few decades, for instance, the 2010-11 drought in East Africa (Horn of Africa), 1999-2002 drought in North Africa, 2001-03 drought in Southern Africa and persistent droughts in Sahel during 1970s and 1980s. Few studies are available to construct drought chronologies before 20th century. However, studies based on lake sediment analysis indicated episodes of severe droughts prolonged for decades and even centuries in the past over West and Equatorial East Africa, which are also documented in the cultural histories of these regions. The studies underpinned by tree-ring chronologies in Northwest Africa indicated quite a number of moderate to severe droughts in the past, about 12-16 events per century which has increased to 19 during 20th century. Southern Africa also faced several single and multi-year droughts during 19th century, as indicated by the analysis of missionaries' correspondence.

~~The predictions on future drought patterns based on global climate model simulations remain uncertain for most of the regions, with the exception of likelihood of increased droughts in central and southern Africa. Drought predictions based on the global climate models~~

1 simulations show varying results and thus remain uncertain for most of the African continent.
2 However, the results of simulation models suggested high likelihood of increased droughts in
3 central and southern Africa. Despite considerable improvements in these models, they are still
4 not able to accurately represent the~~There is~~
5 causing the droughts across various regions of the continent (e.g. ENSO and SSTs, wind and
6 pressure anomalies, land-atmospheric feedback mechanisms). Their complex interactions
7 induce uncertainty in the drought predictions.~~and require further efforts, though significant~~
8 ~~progress has been made in forecasting tools and global climate change simulation models.~~

9 The available evidence from the past clearly shows that the African continent is very likely to
10 face extreme and widespread droughts in future. The vulnerability is likely to increase due to
11 fast growing populations, increasing water demands and degradation of land and
12 environmental resources. Addressing such a daunting and evident challenge calls for much
13 more serious and committed action from communities, governments, regional bodies,
14 international organizations and donors than that is witnessed at present. This review advances
15 available information and scientific understanding of the droughts in Africa.~~The material~~
16 ~~presented in this paper will be very useful to guide long term drought planning and mitigation~~
17 ~~approaches at country, regional and continental levels and will also serve as a guide to~~
18 ~~governments and regional organizations in Africa, international community and donors to (re)~~
19 ~~align their drought related policies and strategies.~~

21 Acknowledgements

22 This study was carried out in the scope of the DEWFORA (Improved Drought Early Warning
23 and Forecasting to strengthen preparedness and adaptation to droughts in Africa) project
24 which is funded by the Seventh Framework Programme for Research and Technological
25 Development (FP7) of the European Union (Grant agreement no: 265454).

1 **References**

- 2 Anderson, W. B., Zaitchik, B. F., Hain, C. R., Anderson, M. C., Yilmaz, M. T., Mecikalski,
3 J., and Schultz, L.: Towards an integrated soil moisture drought monitor for East Africa,
4 *Hydrology and Earth System Sciences.*, 16, 2893-2913, 10.5194/hess-16-2893-2012, 2012.
- 5 [Barbosa, P., Naumann, G., Valentini, L., Vogt, J., Dutra, E., Magni, D., and De Jager, A.: A](#)
6 [Pan-African map viewer for drought monitoring and forecasting, 14th Waternet Symposium,](#)
7 [Dar es Salaam, Tanzania, 30 October to 1 November 2013.](#)
- 8 Belbase, K., and Morgan, R.: Food security and nutrition monitoring for drought relief
9 management: The case of Botswana, *Food Policy*, 19, 285-300,
10 [http://dx.doi.org/10.1016/0306-9192\(94\)90076-0](http://dx.doi.org/10.1016/0306-9192(94)90076-0), 1994.
- 11 Benson, C., and Clay, E.: The Impact of Drought on Sub-Saharan African Economies. A
12 Preliminary Examination, *World Bank - Technical Papers*, 1998.
- 13 Calow, R. C., Macdonald, A. M., Nicol, A. L., and Robins, N. S.: Ground water security and
14 drought in Africa: linking availability, access, and demand, *Ground Water*, 48, 246-256,
15 [10.1111/j.1745-6584.2009.00558.x.](https://doi.org/10.1111/j.1745-6584.2009.00558.x), 2010.
- 16 Caminade, C, and Terray, L.: Twentieth century Sahel rainfall variability as simulated by
17 ARPEGE AGCM, and future changes, *Climate Dynamics*, 35: 75-94, 2010.
- 18 Clarke, C. L., Shackleton, S. E., and Powell, M.: Climate change perceptions, drought
19 responses and views on carbon farming amongst commercial livestock and game farmers in
20 the semiarid Great Fish River Valley, Eastern Cape province, South Africa, *African Journal of*
21 *Range & Forage Science*, 29, 13-23, [10.2989/10220119.2012.687041](https://doi.org/10.2989/10220119.2012.687041), 2012.
- 22 Cornforth, R.: Weathering the drought in Africa, *Planet Earth*, Issue SPRING, March 2013,
23 30-31, 2013.
- 24 Couttenier, M., and Soubeyran, R.: Drought and Civil War in Sub-Saharan Africa, *The*
25 *Economic Journal*, n/a-n/a, [10.1111/eco.12042](https://doi.org/10.1111/eco.12042), 2013.
- 26 The International Disaster Database: <http://www.emdat.be/glossary/9#letterd>, 2009.
- 27 Dai, A.: Drought under global warming: a review, *Wiley Interdisciplinary Reviews: Climate*
28 *Change*, 2, 45-65, [10.1002/wcc.81](https://doi.org/10.1002/wcc.81), 2011.

- 1 Dai, A.: Increasing drought under global warming in observations and models, *Nature*
2 *Climate Change*, 3, 52-58,
3 <http://www.nature.com/nclimate/journal/v3/n1/abs/nclimate1633.html#supplementary-information>, 2013.
- 5 [Desboeufs, K., Journet, E., Rajot, J. L., Chevaillier, S., Triquet, S., Forment, P., and Zakou, A.: Chemistry of rain events in West Africa: evidence of dust and biogenic influence in convective systems. Journal of Atmospheric Chemistry and Physics, 10, 9283-9293, 2010.](#)
- 8 Dondero, T. J.: Nutrition and health needs in drought-stricken Africa, *Public Health Rep*, 100,
9 634-638, 1985.
- 10 Druyan, L. M.: Studies of 21st-century precipitation trends over West Africa, *International Journal of Climatology*, 31, 1415-1424, 10.1002/joc.2180, 2011.
- 12 Dube, L. T., and Jury, M. R.: The Nature of Climate variability and impacts of drought over KwaZulu-Natal, South Africa, *South African Geographical Journal* 82,
14 10.1080/03736245.2000.9713692, 2000.
- 15 Dube, L. T., and Jury, M. R.: Meteorological structure of the 1992/93 drought over Eastern South Africa from ECMWF and satellite OLR analyses, *South African Geographical Journal*, 84, 170-181, 10.1080/03736245.2002.9713768, 2002.
- 18 Dube, L. T., and Jury, M. R.: Structure and precursors of the 1992 / 93 drought in KwaZulu-Natal, South Africa from NCEP reanalysis data, *WaterSA*, 29, 201-208,
20 <http://dx.doi.org/10.4314%2Fwsa.v29i2.4857> 2003.
- 21 Dutra, E., Magnusson, L., Wetterhall, F., Cloke, H. L., Balsamo, G., Boussetta, S., and Pappenberger, F.: The 2010–2011 drought in the Horn of Africa in ECMWF reanalysis and seasonal forecast products, *International Journal of Climatology*, 33, 1720-1729,
24 10.1002/joc.3545, 2013.
- 25 Elagib, N. A., and Elhag, M. M.: Major climate indicators of ongoing drought in Sudan, *Journal of Hydrology*, 409, 612-625, <http://dx.doi.org/10.1016/j.jhydrol.2011.08.047>, 2011.
- 27 Endfield, G. H., and Nash, D. J.: Drought, desiccation and discourse: Missionary correspondence and nineteenth-century climate change in central southern Africa,
29 *Geographical Journal*, 168, 33-47, 2002.

- 1 [Esper, J., Frank, D., Büntgen, U., Verstege, A., Luterbacher, J., and Xoplaki, E.: Long-term](#)
2 [drought severity variations in Morocco. Geophysical Research Letters, 34:L17702.](#)
3 [doi:10.1029/2007GL030844, 2007.](#)
- 4 Falkenmark, M., and Rockström, J.: Building resilience to drought in desertification-prone
5 savannas in Sub-Saharan Africa: The water perspective, Natural Resources Forum, 32, 93-
6 102, 10.1111/j.1477-8947.2008.00177.x, 2008.
- 7 [Funk, C., Dettinger, M. D., Michaelsen, J. C., Verdin, J. P., Brown, M. E., Barlow, M., and](#)
8 [Hoell, A.: Warming of the Indian Ocean threatens eastern and southern African food security](#)
9 [but could be mitigated by agricultural development. Sustainability Science,](#)
10 [www.pnas.org/cgi/doi/10.1073/pnas.0708196105, PNAS, 105\(32\): 11081-11086, 2008.](#)
- 11 GFDRR (Global Facility for Disaster Reduction and Recovery). 2011. Disaster Risk
12 Management Programs for Priority Countries. Washington, DC: World Bank.
13 http://gfdrr.org/sites/gfdrr.org/files/publication/DRM_CountryPrograms_2011.pdf.
- 14 Giannini, A., Biasutti, M., and Verstraete, M. M.: A climate model-based review of drought
15 in the Sahel: Desertification, the re-greening and climate change, Global and Planetary
16 Change, 64, 119-128, 2008.
- 17 [Giannini, A., Salack, S., Lodoun, T., Ali, A., Gaye, A.T., and Ndiaye, O.: A unifying view of](#)
18 [climate change in the Sahel linking intra-seasonal, interannual and longer time scales.](#)
19 [Environmental Research Letters, 8 \(2013\) 024010 \(8pp\) doi:10.1088/1748-9326/8/2/024010,](#)
20 [2013.](#)
- 21 [Gibbs, W. J., and Maher, J. V.: Rainfall Deciles as Drought Indicators. Bureau of](#)
22 [Meteorology Bull. 48. Commonwealth of Australia, Melbourne, Australia, 1967](#)
- 23 Govaerts, Y., and Lattanzio, A.: Estimation of surface albedo increase during the eighties
24 Sahel drought from Meteosat observations, Global and Planetary Change, 64, 139-145,
25 <http://dx.doi.org/10.1016/j.gloplacha.2008.04.004>, 2008.
- 26 Green, R. H.: The political economy of drought in Southern Africa 1991–1993, Health Policy
27 and Planning, 8, 255-266, 10.1093/heapol/8.3.255, 1993.
- 28 Hastenrath, S., Polzin, D., and Mutai, C.: Diagnosing the 2005 Drought in Equatorial East
29 Africa, Journal of Climate, 20, 4628-4637, 10.1175/jcli4238.1, 2007.

- 1 [Hwang, Y.-T., Frierson, D. M. W., and Kang, S. M.: Anthropogenic sulfate aerosol and the](#)
2 [southward shift of tropical precipitation in the late 20th century. Geophysical Research,](#)
3 [Letters, 40, doi:10.1002/grl.50502, 2013.](#)
- 4 Herweijer, C., and Seager, R.: The global footprint of persistent extra-tropical drought in the
5 instrumental era, International Journal of Climatology, 28, 1761-1774, 10.1002/joc.1590,
6 2008.
- 7 IFAD (International Fund for Agricultural Development). 2010. Climate Change Strategy.
8 <http://www.ifad.org/climate/strategy/e.pdf>
- 9 IFAD (International Fund for Agricultural Development). 2011a. Addressing climate change
10 in west and central Africa.
<http://www.ifad.org/operations/projects/regions/pa/pub/climate.pdf>
- 12 IFAD (International Fund for Agricultural Development). 2011b. Addressing climate change
13 in east and southern Africa.
<http://www.ifad.org/operations/projects/regions/pf/pub/climate.pdf>
- 15 Jager, J. M. d., Potgieter, A. B., and Berg, W. J. v. d.: Framework for forecasting the extent
16 and severity of drought in maize in the Free State Province of South Africa, Agricultural
17 Systems, 57, 351-365, [http://dx.doi.org/10.1016/S0308-521X\(98\)00023-7](http://dx.doi.org/10.1016/S0308-521X(98)00023-7), 1998.
- 18 [Janicot, S., Harzallah, A., Fontaine, B., and Moron, V.: West African Monsoon Dynamics and](#)
19 [Eastern Equatorial Atlantic and Pacific SST Anomalies \(1970–88\). Journal of Climate, 11:](#)
20 [1874-1882, 1998.](#)
- 21 Jury, M.R., Pathack, B., De W Rautenbach, C.J., and Vanheerden, J.: Drought over South
22 Africa and Indian Ocean SST: Statistical and GCM results, Global Atmosphere and Ocean
23 System, 4(1) 47-63, 1996.
- 24 Kasei, R., Diekkrüger, B., and Leemhuis, C.: Drought frequency in the Volta Basin of West
25 Africa, Sustainability Science, 5, 89-97, 10.1007/s11625-009-0101-5, 2010.
- 26 Kerr, R. A.: Fifteen years of African drought, Science, 227, 1453-1454
27 10.1126/science.227.4693.1453, 1985.
- 28 Lebel, T., Cappelaere, B., Galle, S., Hanan, N., Kergoat, L., Levis, S., Vieux, B., Descroix, L.,
29 Gosset, M., Mougin, E., Peugeot, C. and Seguis, L. AMMA-CATCH studies in the Sahelian

- 1 region of West-Africa: An overview. Journal of Hydrology 375(1–2):3-13
2 doi:<http://dx.doi.org/10.1016/j.jhydrol.2009.03.020>., 2009.S.
3 [Li, S., and Robinson, W. A., and Peng, S.: Influence of the North Atlantic SST tripole on](#)
4 [northwest African rainfall. Geophysical Research, 108 \(D19\), 4594,](#)
5 [doi:10.1029/2002JD003130, 2003.](#)
- 6 Lodoun, T., Giannini, A., Traoré, P. S., Somé, L., Sanon, M., Vaksmann, M., and
7 Rasolodimby, J. M.: Changes in seasonal descriptors of precipitation in Burkina Faso
8 associated with late 20th century drought and recovery in West Africa, Environmental
9 Development, 5, 96-108, <http://dx.doi.org/10.1016/j.envdev.2012.11.010>, 2013.
- 10 [Lott, F., Christidis N., Stott, P. A.: Can the 2011 East African drought be attributed to](#)
11 [human-induced climate change?, Geophys Res Lett, doi:10.1002/grl.50235, 2013.](#)
- 12 Manatsa, D, Chingombe, W., Matsikwa, H., and Matarira, C. H.: The superior influence of
13 Darwin Sea level pressure anomalies over ENSO as a simple drought predictor for Southern
14 Africa, Theoretical and Applied Climatology, 92, 1–14, DOI 10.1007/s00704-007-0315-3,
15 2008.
- 16 [Masih, I., Uhlenbrook, S., Maskey, S., and Smakhtin, V.: Streamflow trends and climate](#)
17 [linkages in the Zagros Mountain, Iran. Climatic Change 104: 317-338. DOI 10.1007/s10584-](#)
18 [009-9793-x, 2011.](#)
- 19 [McKee, T. B., Doesken, N. J. and Kleist J.: The relation of drought frequency and duration to](#)
20 [time scales. In: Department of Atmospheric Science & C. S. University \(eds\) Eighth](#)
21 [Conference on Applied Climatology, Anaheim, California, 1993.](#)
- 22 Mishra, A. K., and Singh, V. P.: A review of drought concepts, Journal of Hydrology, 391,
23 202-216, 10.1016/j.jhydrol.2010.07.012, 2010.
- 24 Moeletsi, M. E., and Walker, S.: Assessment of agricultural drought using a simple water
25 balance model in the Free State Province of South Africa, Theoretical Applied Climatology,
26 108:425–450, DOI 10.1007/s00704-011-0540-7, 2012.
- 27 [Moulin, C., and Chiapello, I.: Evidence of the control of summer atmospheric transport of](#)
28 [African dust over the Atlantic by Sahel sources from TOMS satellites \(1979–2000\).](#)
29 [Geophysical Research Letters 31\(2\):L02107 doi:10.1029/2003gl018931, 2004.](#)

- 1 Msangi, J. P.: Drought Hazard and Desertification Management in the Drylands of Southern
2 Africa, Environ Monit Assess, 99, 75-87, 10.1007/s10661-004-4002-x, 2004.
- 3 Mussá, F. E. F., Zhou, Y., Maskey, S., Masih, I, and Uhlenbrook, S.: Groundwater as an
4 emergency source for drought mitigation in the Crocodile River catchment, South Africa,
5 Hydrology and Earth System Sciences Discussion (Submitted)
- 6 Naumann, G., Barbosa, P., Carrao, H., Singleton, A., and Vogt, J.: Monitoring Drought
7 Conditions and Their Uncertainties in Africa Using TRMM Data, Journal of Applied
8 Meteorology and Climatology, 51, 1867-1874, 10.1175/jamc-d-12-0113.1, 2012.
- 9 [Nicholson, S. E., and Kim, J.: The relationship of the El Niño-southern oscillation to African rainfall. International Journal of Climatology 17\(2\):117-135, 1997.](#)
- 10 [Nicholson, S. E.: 2000. The nature of rainfall variability over Africa on time scales of decades to millenia. Global and Planetary Change 26:137–158, 2000.](#)
- 11 Ntale, H. K., and Gan, T. Y.: Drought indices and their application to East Africa, International
12 Journal of Climatology, 23, 1335-1357, 10.1002/joc.931, 2003.
- 13 O'Meagher, B., du Pisani, L. G., and White, D. H.: Evolution of drought policy and related
14 science in Australia and South Africa, Agricultural Systems, 57, 231-258,
15 [http://dx.doi.org/10.1016/S0308-521X\(98\)00017-1](http://dx.doi.org/10.1016/S0308-521X(98)00017-1), 1998.
- 16 Ouassou, A, Ameziane, T., Ziyad, A., and Belghiti, M. 2007. Application of the Drought
17 Management Guidelines in Morocco, Options Méditerranéennes, Series B, No. 58, 343-372.
- 18 [Palmer, W.C.:Keeping track of crop moisture conditions, nationwide: the new crop moisture index. Weatherwise 21, 156–161, 1968.](#)
- 19 [Phillips, O. L., Malhi, Y., Higuchi, N., Laurance, W. F., Núñez, P. V., Vásquez, R. M., Laurance, S. G., Ferreira, L. V., Stern, M., Brown, S., and Grace, J.: Changes in the Carbon Balance of Tropical Forests: Evidence from Long-Term Plots, Science, 282, 439-442, 10.1126/science.282.5388.439, 1998.](#)
- 20 [Prospero, J. M. and Lamb, P. J.: African Droughts and Dust Transport to the Caribbean: Climate Change Implications Science:1024-1027 doi:DOI:10.1126/science.1089915, 2003.](#)
- 21 Richard, Y., Fauchereau, N., Poccard, I., Rouault, M., and Trzaska, S.: 20th century droughts
22 in southern Africa: spatial and temporal variability, teleconnections with oceanic and

- 1 atmospheric conditions, International Journal of Climatology, 21, 873-885, 10.1002/joc.656,
2 2001.
- 3 Rouault, M., Richard, Y.; Intensity and spatial extent of droughts in southern Africa,
4 Geophysical Research Letters, 32, L15702, doi:10.1029/2005GL022436, 2005
- 5 Rojas, O., Vrieling, A., and Rembold, F.: Assessing drought probability for agricultural areas
6 in Africa with coarse resolution remote sensing imagery, Remote Sensing of Environment,
7 115, 343-352, <http://dx.doi.org/10.1016/j.rse.2010.09.006>, 2011.
- 8 Rulinda, C. M., Dilo, A., Bijker, W., and Stein, A.: Characterising and quantifying vegetative
9 drought in East Africa using fuzzy modelling and NDVI data, Journal of Arid Environments,
10 78, 169-178, 2012.
- 11 Sehmi, N. S., and Kundzewicz, Z. W.: Water, drought and desertification in Africa. ,
12 Sustainability of water resources under increasing uncertainty Proceedings of an international
13 symposium of the Fifth Scientific Assembly of the International Association of Hydrological
14 Sciences IAHS, Rabat, Morocco, 57-65, 1997.
- 15 Shanahan, T. M., Overpeck, J. T., Anchukaitis, K. J., Beck, J. W., Cole, J. E., Dettman, D. L.,
16 Peck, J. A., Scholz, C. A., and King, J. W.: Atlantic Forcing of Persistent Drought in West
17 Africa, Science, 324, 377-380, 10.1126/science.1166352, 2009.
- 18 Sheffield, J., Wood, E. F., and Roderick, M. L.: Little change in global drought over the past
19 60 years, Nature, 491, 435-438,
20 <http://www.nature.com/nature/journal/v491/n7424/abs/nature11575.html#supplementary-information>, 2012.
- 22 [Sheffield, J., Wood, E. F., Chaney, N., Guan, K., Sadri, S., Yuan, X., Olang, L., Amani, A., Ali, A., Demuth, S., and Ogallo, L.: A drought monitoring and forecasting system for Sub-Saharan African water resources and food security, Bulletin of the American Meteorological Society, doi: <http://dx.doi.org/10.1175/BAMS-D-12-00124.1>, 2013.](#)
- 26 Smakhtin, V. U., and Schipper, E. L. F.: Droughts: The impact of semantics and perceptions,
27 Water Police, 10, 131-143, 2008.
- 28 Syroka, J, and Nucifora, A.: National drought insurance for Malawi, Policy Research
29 Working Paper, 5169, The World Bank,

- 1 <http://www.wds.worldbank.org/servlet/WDSContentServer/WDSP/IB/2010/01/11/000158349>
2 <20100111161125/Rendered/PDF/WPS5169.pdf>.
- 3 Tierney, J. E., Smerdon, J. E., Anchukaitis, K. J., and Seager, R.: Multidecadal variability in
4 East African hydroclimate controlled by the Indian Ocean. *Nature* 493(7432):389-392,
5 <doi:10.1038/nature11785>, 2013.
6 <doi: http://www.nature.com/nature/journal/v493/n7432/abs/nature11785.html#supplementary-information>.
- 7
- 8 Tøttrup, A. P., Klaassen, R. H. G., Kristensen, M. W., Strandberg, R., Vardanis, Y.,
9 Lindström, Å., Rahbek, C., Alerstam, T., and Thorup, K.: Drought in Africa Caused Delayed
10 Arrival of European Songbirds, *Science*, 338, 1307, 10.1126/science.1227548, 2012.
- 11 Touchan, R., Anchukaitis, K. J., Meko, D. M., Attalah, S., Baisan, C., and Aloui, A.: Long
12 term context for recent drought in northwestern Africa, *Geophysical Research Letters*, 35,
13 L13705, 10.1029/2008gl034264, 2008.
- 14 Touchan, R., Anchukaitis, K. J., Meko, D. M., Sabir, M., Attalah, S., and Aloui, A.:
15 Spatiotemporal drought variability in northwestern Africa over the last nine centuries, *Clim~~ate~~
16 dynamics*, 37: 237-252, 2011.
- 17 Trambauer, P., Maskey, S., Werner, M., Pappenberger, F., van Beek, L. P. H., and
18 Uhlenbrook, S.: Identification and simulation of space-time variability of past hydrological
19 drought events in the Limpopo river basin, *Southern Africa, Hydrology and Earth System
20 Sciences Discussion*, <submitted, 11, 2639-2677, doi:10.5194/hessd-11-2639-2014>, 2014.
- 21 Traore, Z., and Fontane, D.: Managing Drought Impacts: Case Study of Mali, Africa, *Journal
22 of Water Resources Planning and Management*, 133, 300-308, doi:10.1061/(ASCE)0733-
23 9496(2007)133:4(300), 2007.
- 24 Uganai, L. S., and Kogan, F. N.: Drought Monitoring and Corn Yield Estimation in Southern
25 Africa from AVHRR Data, *Remote Sensing of Environment*, 63, 219-232,
26 [http://dx.doi.org/10.1016/S0034-4257\(97\)00132-6](http://dx.doi.org/10.1016/S0034-4257(97)00132-6), 1998.
- 27 UNISDR (United Nations International Strategy for Disaster Reduction). 2004. *Living With
28 Risk: A Global Review of Disaster Reduction Initiatives*. Geneva, Switzerland: UNISDR.
- 29 UNISDR (United Nations International Strategy for Disaster Reduction). 2010. Declaration of
30 the Second African Ministerial Conference on Disaster Risk Reduction, Nairobi, Kenya, April

- 1 14-16. [www.unisdr.org/preventionweb/files/13655_MinisterialDeclarationinEnglishadop\[1\].pdf](http://www.unisdr.org/preventionweb/files/13655_MinisterialDeclarationinEnglishadop[1].pdf).
- 3 Verschuren D., Laird K.R. and Cumming B.F. 2000. Rainfall and drought in equatorial East
4 Africa during the past 1100 years. *Nature* 403: 410–414.
- 5 Verschuren, D., 2004. Decadal and century-scale climate variability in tropical Africa during
6 the past 2000 years. In: Battarbee, R.W., Gasse, F., Stickley, E. (Eds.), *Past climate variability*
7 through Europe and Africa. Springer, Dordrecht, pp. 139–158.
- 8 Vicente-Serrano, S. M., Beguería, S., Gimeno, L., Eklundh, L., Giuliani, G., Weston, D., El
9 Kenawy, A., López-Moreno, J. I., Nieto, R., Ayenew, T., Konte, D., Ardö, J., and Pegram, G.
10 G. S.: Challenges for drought mitigation in Africa: The potential use of geospatial data and
11 drought information systems, *Applied Geography*, 34, 471-486,
12 <http://dx.doi.org/10.1016/j.apgeog.2012.02.001>, 2012.
- 13 [Williams, A. P. and Funk, C.: A westward extension of the warm pool leads to a westward](#)
14 [extension of the Walker circulation, drying eastern Africa. Climate Dynamics, DOI](#)
15 [10.1007/s00382-010-0984-y, 2011.](#)
- 16 World Bank, GFDRR: Report on the status of disaster risk reduction in Sub-Saharan Africa,
17 The World Bank, Washington DC.
18 <http://www.gfdrr.org/sites/gfdrr.org/files/publication/AFR.pdf> , 2010.
- 19 [Zargar, A., Sadiq, R., Naser, B. and Khan, F. I.: A review of drought indices. Environmental](#)
20 [Reviews:333-349 doi:10.1139/a11-013, 2011.](#)
- 21 Zeng, N.: Drought in the Sahel, *Science*, 302, 999-1000, 10.1126/science.1090849, 2003.
- 22 [Zheng, X. and Eltahir, E. A. B.: The response to deforestation and desertification in a model](#)
23 [of West African monsoons. *Geophysical Research Letters* 24\(2\):155-158](#)
24 [doi:10.1029/96gl03925, 1997.](#)
- 25

1 Table 1. Overview of number of droughts and their impact across the world during 1900-
2 2014.

Continent	# of events	# of people Killed	# of people affected	Damage ($\times 10^3$ USD)
Africa	291	847,143	362,225,799	2,920,593
Americas	134	77	69,505,391	50,471,139
Asia	153	9,663,389	1,707,836,029	44,251,865
Europe	42	1,200,002	15,488,769	25,481,309
Oceania	22	660	8,034,019	12,303,000
Total	642	11,711,271	2,163,090,007	135,427,906

3 Source: EM-DAT: The International Disaster Database. Centre for Research on the
4 Epidemiology of Disasters-CRED. <http://www.emdat.be/database> (accessed on 13th January
5 2014).

6
7

1 Table 2. Summary of the selected literature reviewed in this study.

Reference	Drought enlisted by region/country/basin during 1900 to 2013	Remarks
North Africa		
Quassou et al. (2007)	Morocco: 1904-05, 1917-20, 1930-35, 1944-45, 1948-50, 1960-61, 1974-75, 1981-84, 1986-87, 1991-93, 1994-95, 1999-2003	The study shows that droughts of 1944-45, 1982-83, 1994-95 and 1999-2000 were the driest agricultural seasons. Most severe hydrological droughts were 1980-81, 1985-86, 1991-92, 2000-01, 2002-03. This study describes the institutional change in drought management in Morocco with progress, though slow, from crisis management to more risk management.
Touchan et al. (2011)	North Africa: Morocco, Algeria and Tunisia. 1945-46, 1981-82, 1999-2000	The study uses tree-ring chronologies to investigate climate of North Africa region and have constructed PDSI for Morocco, Algeria and Tunisia back to A.D. 1179. The later half of the 20th century emerged as the driest among last nine centuries.
Touchan et al. (2008)	Northwestern Africa: Algeria and Tunisia. 1920s, 1940s, 1945, 1999-2002	The study uses tree-ring chronologies to investigate climate of North Africa region and have constructed PDSI for Algeria and Tunisia for the period AD 1456-2002. The study mentions 19 droughts occurred during 20th century compared to 12 to 16 droughts per century during earlier periods. However, specific years or decades in which they occur are not given. The multi-year drought of 1999-2002 is the most severe in the last 5 centuries.
Elagib and Elhang (2011)	Sudan: 1969-70, 1972-73, 1979-85, 1990-91, 2002-08	The study examines the drought episodes in Sudan using PDI drought index estimated from rainfall and temperature of 14 stations across Sudan for the period 1940s to 2008. The study shows several multi-year droughts after 1970s and suggested intensifying drought evidence. El-Niño is a major driver of droughts in Sudan.
West Africa		
Dai (2011)	West Africa, Sahel. 1970s, 1980s	These droughts were attributed to southward shift of the warmest SSTs in the Atlantic and warming in the Indian Ocean.
Druryan (2011)	West Africa-Sahel. 1970s, 1980s	No trend in future droughts in Sahel in late 21st century. Some studies say wet and some dry conditions.
Giannini et al. (2008)	West Africa, Sahel. 1970s, 1980s	The study investigates the droughts in Sahel during 1970s and 1980s using global climate models. The results suggest that the origin of these droughts is global in scale and external to the region. These droughts are attributed to warming of tropical oceans, especially the pacific and Indian Oceans, superimposed on an enhanced warming of the southern compared to the northern hemisphere most evident in Atlantic. Land surface changes, driven by precipitation changes and also anthropogenic activities, may have acted to amplify these droughts.

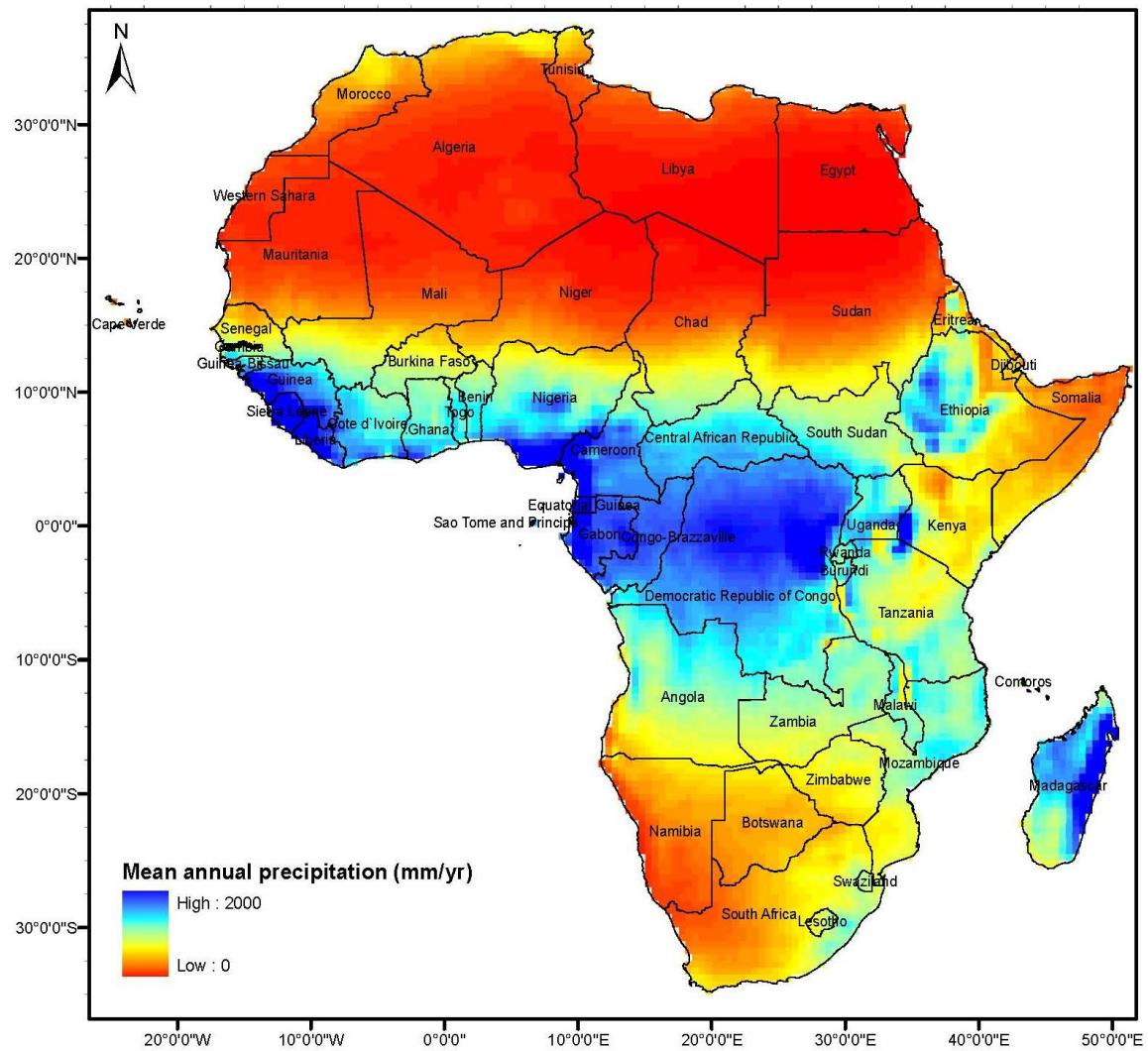
Reference	Drought enlisted by region/country/basin during 1900 to 2013	Remarks
Kasei et al. (2010)	West Africa, Volta Basin. Burkina Faso, Ghana, Mali, Togo. 1961, 1970, 1983, 1984, 1992, 2001.	Using rainfall data of 1961 to 2005, intensity, extent and recurrence frequency was estimated using SPI as a drought indicator. 1983-84 drought was most severe covering 90% of the basin area. Akosombo lake recorded lowest flows during 1983. The study show that dry years have become more frequent and occur at shorter intervals. Areal coverage of drought has also increased.
Mishra and Singh (2010)	West Africa, Sahel. 1910s, 1940s, 1960s, 1970s, 1980s	The study reviews drought concepts and provide a critical evaluation of most widely used indicators for drought assessment. But the review remains limited in terms of description of the historic droughts and only briefly mentions few of them with their main impacts and recommends further work in this direction.
Lebel et al. (2009)	West Africa, Sahel. 1970s, 1980s	A wealth of data is collected under AMMA-Catch case sites in Mali, Niger and Benin on land surface processes and atmospheric dynamics. This will help to better understand the interactions between atmospheric, oceanic and terrestrial systems enabling a better understanding and prediction of rainfall in this region.
Shanahan et al. (2009)	West Africa, Lake Bosumtwi, Ghana. 1970s Sahel drought	The study indicates that the severe droughts of Sahel in 1970s is not anomalous in the context of past three millennia and monsoon is capable of longer and more severe future droughts. The findings are based on sediment analysis from Lake Bosumtwi in Ghana.
Zeng (2003)	West Africa, Sahel. Late 1960s onward.	The study shows lower rainfall in Sahel since 1960s but the exact drought years are not mentioned. The study focuses on reviewing the existing evidence on causes of droughts in Sahel. The study shows that combination of various factors are responsible of droughts in Sahel and are not yet fully understood and thus could not be adequately predicted. Therefore, combination of improved climatic predictions, sensible land use practices and green house gas emission reductions are very important for the future of this region.
East Africa		
Anderson et al. (2012)	East Africa: 2010-2011 drought in Ethiopia, Somalia and Kenya	The study demonstrated the usefulness of remotely sensed data and hydrological modeling for tracking the progression and severity of drought.
Dutra et al. (2013)	Horn of Africa: 2010-11 in Ethiopia and Somalia	The study shows that drought was caused by failure of rainfall in both October-December (short rainfall) and March-May (long rainfall) seasons. The drought was attributed to La Nina conditions. This drought was well forecasting by the ECMWF forecasting system.
Hastenrath and Polzin (2007)	East Africa. Kenya. 2005	Drought was attributed to increased pressure in the west and accelerated westerlies (wind) anomalies

Reference	Drought enlisted by region/country/basin during 1900 to 2013	Remarks
Ntale and Gan (2003)	East Africa. Kenya and Tanzania. 1949-50.	The study reviewed various drought indicators and compared the performance of Palmer drought severity index (PDSI), Bhalme-Mooley Index (BMI) and Standardized Precipitation Index (SPI). Different indicators may yield different drought results. SPI was recommended for East Africa region.
Rulinda et al. (2012)	East Africa. Burundi, Kenya, Rwanda, Tanzania, Uganda. 2005-2006	Analyzed spatial propagation of vegetative drought during September 2005 to April 2006 using 10-day NOAA AVHRR images. The drought reached peak in January 2006.
Tierney et al. (2013)	East Africa, Horn of Africa. 2010-11	This drought was regarded as the worst during past 60 years. The study concluded that the Indian Ocean SSTs are the primary influence on East African rainfall over multidecadal and perhaps longer timescales.
Southern Africa		
Belbase and Morgan (1994)	Southern Africa: Botswana. 1978-79, 1982-87, 1991-92.	The case study highlight the salient features of the relatively successful drought management experience in Botswana.
Manatsa et al. (2008)	Southern Africa: Zimbabwe: 1902-03, 1911-16, 1926-27, 1941-42, 1963-64, 1972-73, 1982-84, 1986-87, 1991-92	The study identified droughts in Zimbabwe based on SPI estimation from the regionally averaged rainfall for the period 1900-2000. The moderate to severe droughts are noted here, with 1991-92 as the most extreme drought of the 20th century. The study indicate that ENSO (El Niño) alone is not a sufficient predictor of droughts and show that March to June extreme positive Darwin Sea Level Pressure anomalies are ideal additional candidate for drought monitoring and forecasting in Zimbabwe and Southern Africa.
Msangi (2004).	Southern Africa. 1902, 1909-11, 1917-18, 1921-22, 1925, 1929, 1933-34, 1939-1940, 1953, 1969, 1972-73, 1976, 1980-82, 1984-85	Information on drought years and respective country is not given. The study mainly focused on analyzing the drought management efforts by international and regional organizations, national institutions and NGOs and communities. The study stressed the need of adopting people centered mitigation measures and calling for informed global action as the success lies with people in the south and those in the north.
Mussá et. al. (2013)	South Africa: Crocodile River catchment. 1945, 1951, 1958, 1966, 1970/71, 1978, 1983-84, 1992-95 and 2003-04	The main focus of the study is to analyze whether groundwater can be used as an emergency source of water in cases of severe droughts in the Crocodile catchment. The study used the SPI and SRI drought indicators to identify meteorological and hydrological droughts, respectively. It implies that the 1992-95 drought was the most severe one in the last 70 years where the upper and lower areas of the catchments were the most affected.

Reference	Drought enlisted by region/country/basin during 1900 to 2013	Remarks
Richard et al. (2001)	Southern Africa. 1951, 1960, 1964, 1965, 1968, 1970, 1973, 1982, 1983, 1987	Droughts were not referred per country. The study focused on analyzing droughts during 1950 to 1988 during summer rainfall period January-March. Droughts during 1970-88 period were intense and widespread compared to those during 1950-1969. The ENSO was the main governing factor for droughts during 1970-88 (though not always), whereas, regional oceanic and atmospheric anomalies (e.g. southwest Indian Ocean SST) were the main causes.
Rouault and Richard (2005)	Southern Africa (South of 10°S). 1906, 1916, 1924, 1933, 1949, 1970, 1983, 1984, 1992, 1993, 1995, 1996, 2002, 2003, 2004.	The study discussed these droughts and corresponding area under them at an aggregated level of the African continent. Country or regional estimates are not available. SPI estimates for the period 1900-1999 are used. The ENSO (El Niño conditions) was attributed to 8 out of these 12 droughts occurred during 20th century. The area of the African continent under drought has significantly increased, especially after 1980s.
Vogel et al. (2010)	Southern Africa. 1982-93, 1991-92, 1994-95, 2001-03	This study stresses the need of learning from past drought events to better manage in future. The response to drought and general management options practiced in SADC countries are reviewed, in special reference to indicated droughts.
More than one region		
Calow et al. (2010)	2002-03, 2004-05 and 2005-06 droughts in Ethiopia. 1991-92 drought in Lesotho, Malawi, South Africa and Zimbabwe, Ghana.	The study shows the impacts of droughts on groundwater resources and consequently on water supply security. The communities enter into spiral of water insecurity when shallow groundwater supplies fail and additional demand on remaining resources causes mechanical failures. Declining access to food and access to safe water are interrelated, but the latter usually receive less attention in drought management. Groundwater can act as buffer during droughts by increasing the coverage of groundwater supplies to rural communities underpinned by sound hydrological and socio-economic information.
Couttenier and Soubeyran (2013)	Sub-Saharan Africa. 1980s.	No country or year specific information presented, though droughts in Sudan in 1980s and in Uganda during 1980s and 2003-5 are linked to civil war. Overall, link between drought and civil war was described as weak.
Rojas et al. (2011)	Morocco: 1992, 1995, 1997; Tunisia and Algeria: 1999-2002; Sahel: early-mid 1980s; Ethiopia and Kenya: 1984 and 2000; Ethiopia, Eritrea and Somalia: 1987; Southern Africa: 1982-83 and 1991-92 (most countries).	The study examined the major droughts occurred in African continent during 1980-2010. The study proposed that Pixel-Vegetation Health Index (VHI), estimated using remote sensing data (AVHRR) is a promising agricultural drought monitoring indicator and was able to track major droughts during 1981-2009 reported in the selected literature.

Reference	Drought enlisted by region/country/basin during 1900 to 2013	Remarks
Tadesse et al. (2008)	Sub-Saharan Africa: 1972-74 and 1984-85 (Sahel and East Africa), 1992-93 (southern Africa), 2000-02 (Horn of Africa)	The droughts resulted in severe food shortages and famine are mentioned. The need of moving from a crisis management to risk management approaches is stressed and the use of the available drought and food security monitoring tools is recommended to reduce the impacts of droughts.
Vicente-Serrano et al. (2012)	Ethiopia, Sudan and Sahel region: 1974, Zimbabwe; 1990-91; Kenya: 1999-2001; Many countries: 1984 . Congo River: 1960s, 1970s. Orange River: 1980s, 1990s	The study demonstrated how the development of drought information systems based on geospatial technology, that combines static and real time information could improve the possibilities of drought mitigation in Africa.

1


2

1 Table 3. Summary of drought events recorded for 1900-2013 in EM-DAT data base.

Region/Countries	Drought Years	# of events	# of People Killed	# of People affected	Economic Damage (× 10 ³ USD)
Overall African Continent		291	847143	362225799	2920593
North Africa		18	150012	31153400	900100
Algeria	1981, 2005	2	12	0	0
Morocco	1966, 1971, 1983, 1984, 1999	5	0	412000	900100
Tunisia	1977, 1988	2	0	31400	0
Sudan	1980, 1983, 1987, 1990, 1991, 1996, 1999, 2009, 2012	9	150000	30710000	0
Middle Africa		25	3058	11379800	84500
Angola	1981, 1985, 1989, 1997, 2001, 2004, 2012	7	58	4443900	0
Cameroon	1971, 1990, 2001, 2005	4	0	586900	1500
Central Africa Republic	1983	1	0	0	0
Chad	1910, 1940, 1966, 1969, 1980, 1993, 1997, 2001, 2012	9	3000	5456000	83000
Congo	1983	1	0	0	0
Sao Tome et Principe	1983	1	0	93000	0
Zaire/Congo Dem Rep	1978, 1983	2	0	800000	0
West Africa		94	170012	74500255	507354
Benin	1969, 1980	2	0	2215000	651
Burkina Faso	1910, 1940, 1966, 1969, 1976, 1980, 1988, 1990, 1995, 1998, 2001, 2011	12	0	8413290	0
Cape Verde Is	1900, 1910, 1920, 1940, 1946, 1969, 1980, 1992, 1998, 2002	10	85000	40000	0
Cote d'Ivoire	1980	1	0	0	0
Gambia The	1910, 1940, 1968, 1969, 1976, 1980, 2002, 2012	8	0	1258000	700
Ghana	1971, 1977, 1980	3	0	12512000	100
Guinea	1980, 1998	2	12	0	0
Guinea Bissau	1910, 1940, 1969, 1980, 1980, 2002, 2006	6	0	132000	0
Liberia	1980	1	0	0	0
Mali	1910, 1940, 1966, 1976, 1980, 1991, 2001, 2005, 2006, 2010, 2011	11	0	6927000	0
Mauritania	1910, 1940, 1965, 1969, 1976, 1978, 1980, 1993, 1997, 2001, 2010, 2011	12	0	7398907	59500
Niger	1903, 1906, 1910, 1940, 1966, 1980, 1988, 1990, 1997, 2001, 2005, 2009, 2011	13	85000	23655058	0
Nigeria	1981	1	0	3000000	71103

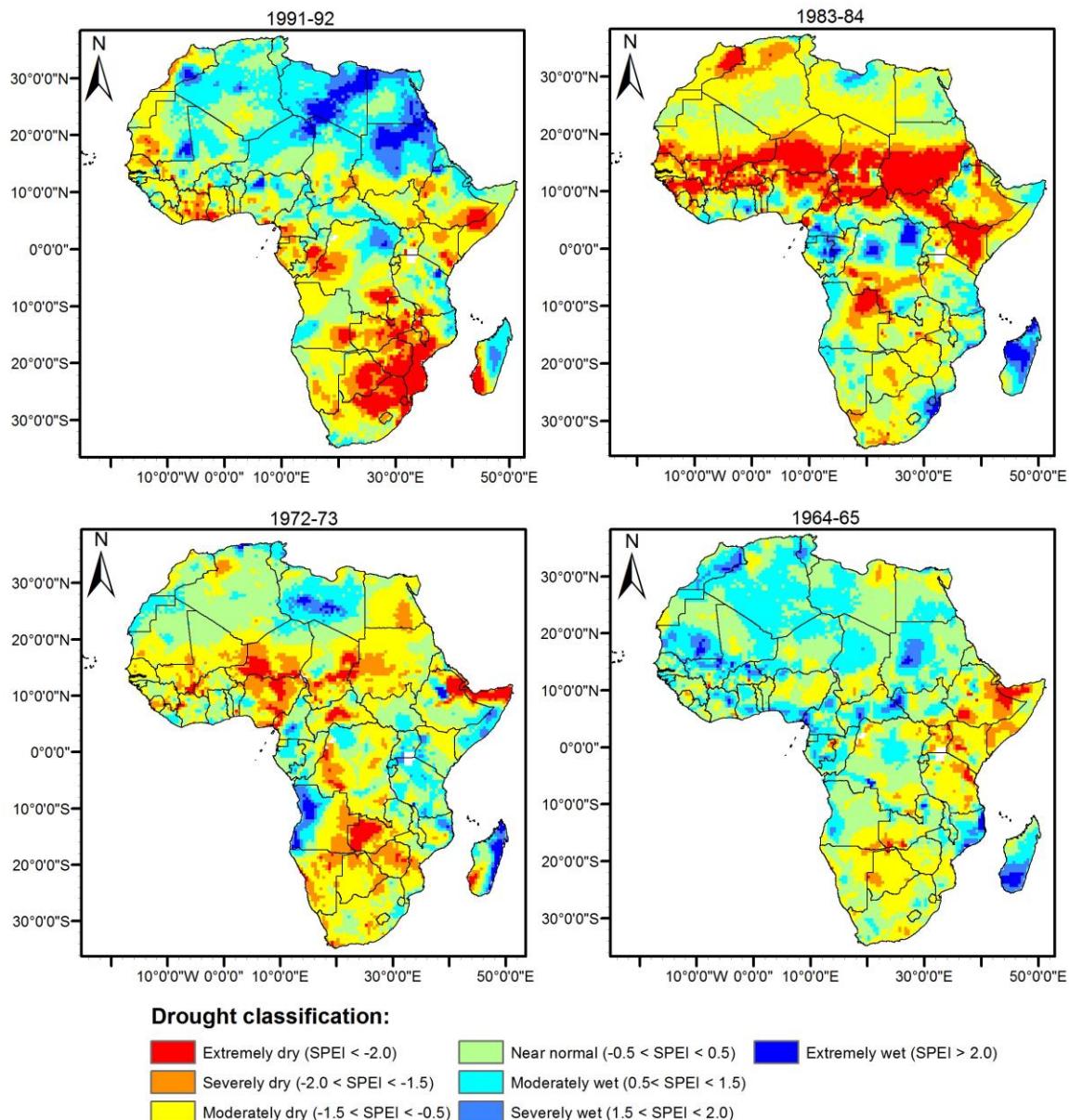
Region/Countries	Drought Years	# of events	# of People Killed	# of People affected	Economic Damage (× 10 ³ USD)
Senegal	1910, 1940, 1966, 1969, 1976, 1979, 1980, 2002, 2011	9	0	8399000	374800
Togo	1971, 1980, 1989	3	0	550000	500
East Africa		122	523561	220892229	371900
Burundi	1999, 2003, 2005, 2008, 2009, 2010	6	126	3062500	0
Comoros	1981	1	0	0	0
Djibouti	1980, 1983, 1988, 1996, 1999, 2005, 2007, 2008, 2010	9	0	1188008	0
Eritrea	1993, 1999, 2008	3	0	5600000	0
Ethiopia	1965, 1969, 1973, 1983, 1987, 1989, 1997, 1998, 1999, 2003, 2005, 2008, 2009, 2012	15	402367	66941879	92600
Kenya	1965, 1971, 1979, 1983, 1991, 1994, 1996, 1999, 2004, 2005, 2008, 2010, 2012	13	196	47200000	1500
Madagascar	1981, 1988, 2000, 2002, 2005, 2008	6	200	3515290	0
Malawi	1987, 1990, 1992, 2002, 2005, 2007, 2012	7	500	21578702	0
Mauritius	1999	1	0	0	175000
Mozambique	1979, 1981, 1987, 1990, 1998, 2001, 2003, 2005, 2007, 2008, 2010	12	100068	17757500	50000
Rwanda	1976, 1984, 1989, 1996, 1999, 2003	6	237	4156545	0
Somalia	1964, 1969, 1973, 1980, 1983, 1987, 1988, 1999. 2004, 2005, 2008, 2010, 2012	13	19673	13183500	0
Tanzania Uni Rep	1967, 1977, 1984, 1988, 1990, 1996, 2003, 2004, 2006, 2011	10	0	12737483	0
Uganda	1967, 1979, 1987, 1998, 1999, 2002, 2005, 2008, 2010	9	194	4975000	1800
Zambia	1981, 1983, 1990, 1995, 2005	5	0	4173204	0
Zimbabwe	1981, 1990, 1998, 2001, 2007, 2010	6	0	14822618	51000
Southern Africa		32	500	24300115	1056739
Botswana	1965, 1968, 1970, 1981, 1990, 2005	6	0	1344900	3000
Lesotho	1968, 1983, 1990, 2002, 2007, 2011	6	0	2736015	1000
Namibia	1981, 1990, 1995, 1998, 2001, 2002, 2013	7	0	1114200	51000
South Africa	1964, 1980, 1981, 1986, 1988, 1990, 1995, 2004	8	0	17475000	1000000
Swaziland	1981, 1984, 1990, 2001, 2007	5	500	1630000	1739

1

2

3

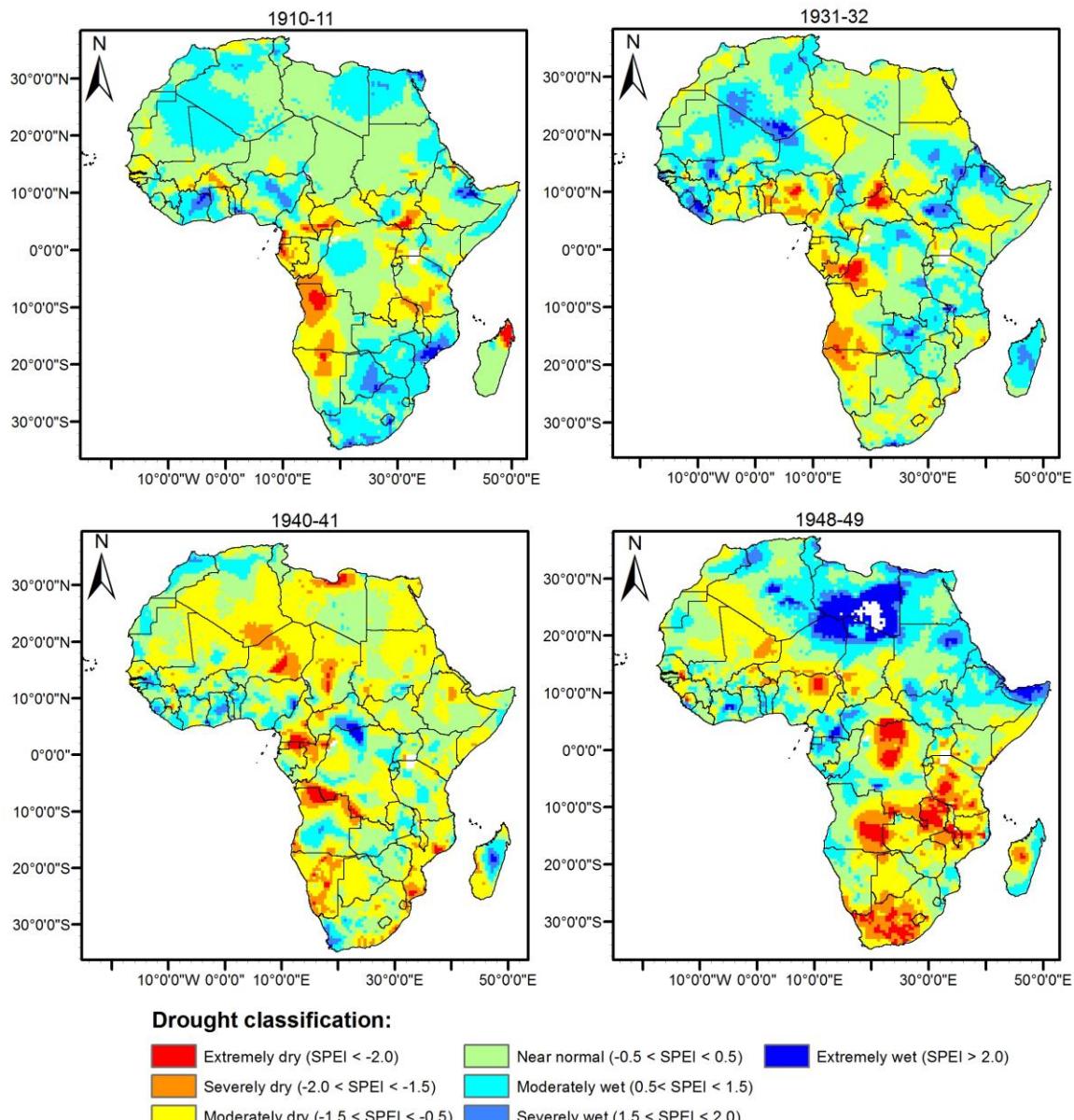
4 Figure 1. Map of the African continent with country names and rainfall pattern. (Data source:
 5 ERA-Interim corrected with GPCP v2.1, period: 1979-2010. See Trambauer et al. (2014) for
 6 detailed explanation)


7

8

9

10


11

1

2 Figure 2. Geospatial coverage of extreme droughts of 1964-65, 1972-73, 1983-84 and 1991-
3 92 indicated by 12 months SPEI (October to September). (Data source: Global SPEI database
4 available at <http://sac.csic.es/spei/database.html>, version 2.2 retrieved in Jan 2014)

5

1
2 Figure 3. Geospatial coverage of selected droughts 1910-11, 1931-32, 1940-41 and 1948-49
3 indicated by 12 months SPEI (October to September). (Data source: Global SPEI database
4 available at <http://sac.csic.es/spei/database.html>, version 2.2 retrieved in Jan 2014).
5
6

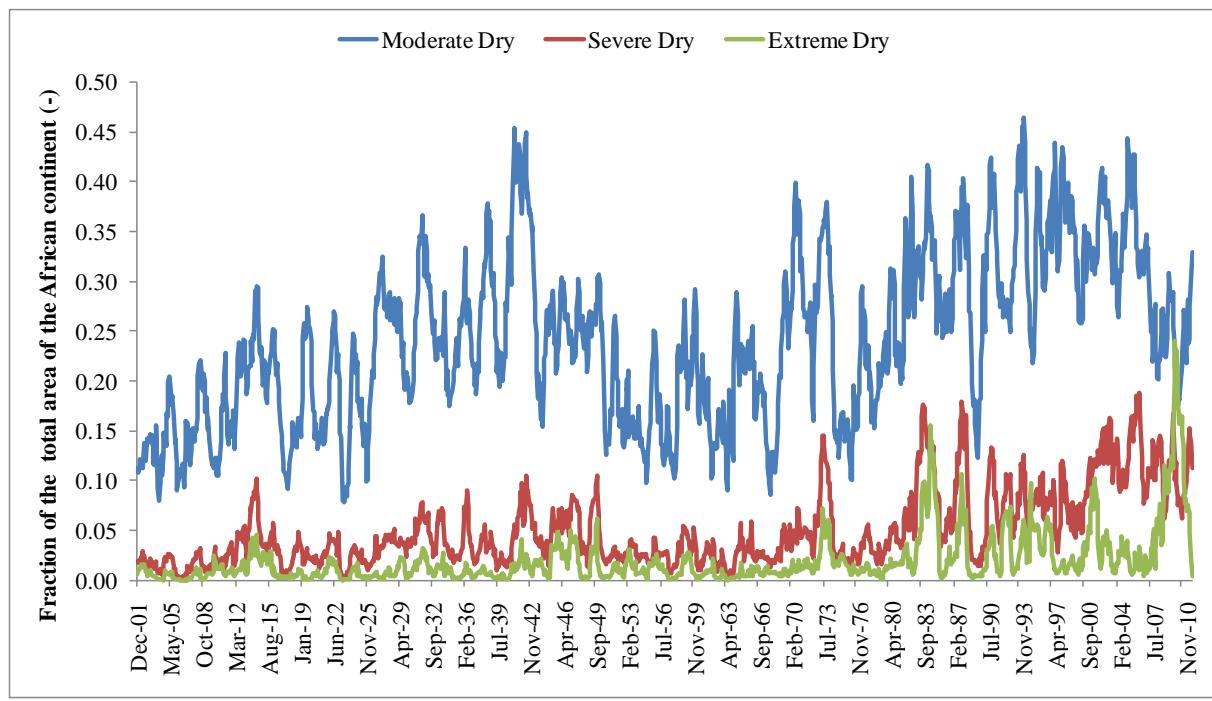


Figure 4. Fraction of the African continent under different drought conditions computed from the 12 month SPEI dataset. (Data source: Global SPEI database available at <http://sac.csic.es/spei/database.html>, version 2.2 retrieved in May 2014). Note: Moderate dry ($-1.5 < \text{SPEI} < -0.5$); Severe Dry ($-2.0 < \text{SPEI} < -1.5$); Extreme Dry ($\text{SPEI} < -2.0$).