1 Modelling runoff from a Himalayan debris-covered glacier

 $\mathbf{2}$

3 K. Fujita¹ and A. Sakai¹

4 [1] {Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan}

5 Correspondence to: K. Fujita (cozy@nagoya-u.jp)

6

 $\overline{7}$ Abstract. Although the processes by which glacial debris-mantles alter the melting of glacier ice have been 8 well studied, the mass balance and runoff patterns of Himalayan debris-covered glaciers and the response of 9 these factors to climate change are not well understood. Many previous studies have addressed mechanisms of 10ice melt under debris mantles by applying multiplicative parameters derived from field experiments, and other 11 studies have calculated the details of heat conduction through the debris layer. However, those approaches 12cannot be applied at catchment scale because distributions of thickness and thermal property of debris are 13heterogeneous and difficult to measure. Here, we established a runoff model for a Himalayan debris-covered glacier in which the spatial distribution of the thermal properties of the debris mantle is estimated from 1415remotely sensed multi-temporal data. We applied the model to the Tsho Rolpa Glacial Lake-Trambau Glacier 16basin in the Nepal Himalaya, using hydro-meteorological observations obtained for a 3.5-year period (1993– 171996). We calculated long-term averages of runoff components for the period 1980-2007 using gridded 18reanalysis datasets. Our calculations suggest that excess meltwater, which implies the additional water runoff 19compared with the ice-free terrain, from the debris-covered area contributes significantly to the total runoff, 20mainly because of its location at lower elevations. Uncertainties in runoff values due to estimations of the 21thermal properties and albedo of the debris-covered surface were assessed to be approximately 8% of the 22runoff from the debris-covered area. We evaluated the sensitivities of runoff components to changes in air 23temperature and precipitation. As expected, warmer air temperatures increase the total runoff by increasing the 24melting rate; however, increased precipitation slightly reduces the total runoff, as ice melting is suppressed by 25the increased snow cover and associated high albedo. The response of total runoff to changing precipitation is 26complex because of the different responses of individual components (glacier, debris, and ice-free terrain) to

29 **1. Introduction**

30 Glaciers are considered to play an important role as the water resources to densely populated Asian regions 31 (e.g. Cruz et al., 2007). Recent studies have revealed that the response of glaciers to climate variations varies 32considerably in Asian highland regions (e.g. Fujita and Nuimura, 2011; Bolch et al., 2012; Yao et al., 2012), 33 and that the response depends partly on the characteristics of the debris mantles on Himalayan glaciers (Scherler et al., 2011). Terminus positions of heavily debris-covered glaciers seem to be insensitive to changes 3435in climate (Scherler et al., 2011), while surface lowering over debris-covered areas seems to be comparable to 36 that in debris-free ablation areas (Nuimura et al., 2011, 2012; Kääb et al., 2012). It is still unclear whether 37 heterogeneity in climatic forcing or debris cover patterns is responsible for observed temporal variations in 38 glacial melt observed in different Himalayan glacier systems. Experimental studies have revealed that thin 39 debris layers accelerate the melting of underlying ice, whereas thick debris layers suppress melting (e.g. Østrem, 1959; Mattson et al., 1993). Some numerical simulations of conductive heat flux through the debris 4041layer have successfully reproduced patterns of ice melting under the debris layer (e.g. Nicholson and Benn, 422006; Reid and Brock, 2010). However, these heat conduction models cannot be applied to basin-scale mass 43balance calculation of debris-covered glacier because the spatial distributions in debris thickness and thermal 44 conductivity are nearly impossible to measure. On the other hand, some hydrological studies in glacierized 45catchments containing debris-covered glaciers have parameterized ice melting under the debris layer (e.g. 46 Lambrecht et al., 2011; Immerzeel et al., 2012; Juen et a., 2013). Although these studies have been validated 47by hydrologic and/or other observational data, continuity in surface conditions over time cannot be guaranteed, especially in systems with rapidly changing glaciers. In addition, the debris-covered surfaces of real glaciers 4849exhibit highly heterogeneous and rugged topography, over which no representative thickness is obtainable. 50Heat absorption in such rugged topography, which includes ice cliffs and supraglacial ponds, is considered to be one of the significant sources of heat for melting in debris-covered areas (Sakai et al., 2000a, 2002). 5152Therefore, prediction of basin-scale patterns of ice melt on debris-covered glaciers from a simple relationship

53 between debris thickness and ice melting is exceedingly difficult.

54To overcome the difficulties discussed above, we have adopted the 'thermal resistance' parameter proposed by Nakawo and Young (1982). This parameter is defined as the debris thickness divided by the thermal 55conductivity of the debris layer and its spatial variations may be obtained from remotely sensed data, such as 5657data obtained from Landsat or ASTER imagery. Nakawo and Rana (1999) used this approach to estimate the distribution of thermal resistance on glaciers from Landsat TM data, and successfully reproduced runoff from 5859the debris-covered Lirung Glacier in the Langtang region of Nepal. Subsequently, Suzuki et al. (2007) 60 demonstrated temporally consistent values of thermal resistance on glaciers in the Bhutan Himalaya, as 61 determined from ASTER data taken on different dates, for which surface temperature and albedo were 62 calibrated using field measurement conducted at the same time as ASTER acquisitions. Zhang et al. (2011) 63 obtained the thermal resistance distribution of a debris-covered glacier in southeastern Tibet and validated the 64 calculated thermal resistance, melt, and runoff with in situ measurements. However, these studies did not 65evaluate uncertainties in thermal resistance values, or how these affect both the calculated ice melt under the debris and the resulting runoff. In this study, therefore, our goal was to obtain thermal resistance values and to 66 67 evaluate uncertainties in the values based on ASTER data acquired in different seasons and years. In addition, 68 we establish an integrated runoff model that incorporates variations in surface conditions, such as debris-covered and debris-free glacier surfaces as well as ice-free terrain. Model performance was tested for a 69 70catchment with a debris-covered glacier in the Nepal Himalaya. We evaluated and discussed the uncertainties associated with thermal resistance and albedo, and the sensitivity of runoff to meteorological variables. 71

72

73 **2. Location, data and models**

Abbreviation, unit and value of all parameters used in this study are summarized in Table 1.

75

76 **2.1. Delineation and classification of the catchment**

We chose as our study site the Tsho Rolpa Glacial Lake–Trambau Glacier basin located at the head of the
Rolwaring Valley, in the east Nepal Himalaya (27.9°N, 86.5°E, Fig. 1). Tsho Rolpa is one of the largest glacial

lakes in the Nepal Himalaya. We delineated the basin using a digital elevation model produced from
multi-temporal ASTER data (ASTER-GDEM, 2009; Tachikawa et al., 2011). The basin extends from 4500 to
6850 m a.s.l., with a total area of 76.5 km² (Fig. 1a and Table 2).

We divided the surface features of the basin into four categories: debris-covered glacier (debris), debris-free glacier (glacier), ice-free terrain (ground), and lake surface (Tsho Rolpa) to perform the following runoff calculations. Using the clearest available ASTER image acquired on February 2006 (Fig. 1a), we calculated the normalized difference water index (N_W) and normalized difference snow/ice index (N_S) from reflectance of the ASTER sensors (r_n) using the following equations:

87

88
$$N_W = (r_3 - r_1)/(r_3 + r_1)$$
, (1)

89
$$N_S = (r_2 - r_4)/(r_2 + r_4)$$
. (2)

90

The N_W has been successfully used to delineate glacial lake boundaries in the Himalayas (Fujita et al., 2009). The N_S has been used to evaluate snow cover extent in North America (Hulka, 2008). Thresholds of N_W and N_S are assumed to be 0.42 and 0.94, respectively, to best distinguish the surfaces. Debris-covered surface was visually distinguished from ice-free terrain using surface morphology such as rugged relief and ice flow features (Nagai et al., 2013). Steep slope terrain without snow or ice (steeper than 30°) was also defined as ice-free terrain. The resulting basin surface category map is shown in Fig. 1b, and the hypsometry (areaaltitude profile) based on the ASTER-GDEM is shown in Fig. 2.

98

99 2.2. Meteorological and hydrological data

Air temperature, solar radiation, relative humidity, and wind speed are required as input variables for models in this study. Meteorological, hydrological, and limnological observations were conducted in the 1990s (Fig. S1; Yamada 1998; Sakai et al., 2000b). The observations are used to confirm the plausibility of the gridded data and to validate the calculated runoff, for which we use gridded data as model inputs to examine the long-term mean and seasonal cycle of runoff components. Air temperature, solar radiation, relative humidity, and wind speed are taken from the NCEP/NCAR reanalysis gridded data (NCEP-1, Kalnay et al., 1996). Air temperature at the elevation of the observation site (4540 m a.s.l.) is linearly interpolated from air temperatures at geopotential heights of 500 hPa and 600 hPa; the temperature lapse rate is also obtained from these data. Wind speed at a 2-m height from the surface (U) is estimated from 10-m wind in the reanalysis data (U_{10}), based on the assumption of a logarithmic dependence of wind speed on height:

111
$$U = U_{10}[\ln(2.0/z_0)/\ln(10.0/z_0)]$$
, (3)

112

where surface roughness (z_0) is assumed to be 0.1 m. The ground-based Aphrodite daily precipitation data are 113used, which have a spatial resolution of $0.5^{\circ} \times 0.5^{\circ}$ (Yatagai et al., 2009). All variables except for wind speed 114show significant correlations between gridded and observational data (Fig. S2). Air temperature shows a 115116particularly high linear correlation, with little bias. The statistical parameters strongly support 117representativeness of the temperature though temperature generally shows a good consistency among in-situ 118and reanalysis data because of the climatic seasonality. Solar radiation, relative humidity, and wind speed 119show less significant or no correlations. Fujita and Ageta (2000) have pointed out that uncertainties in these 120variables are less important for the mass balance of Tibetan glaciers than those of air temperature and precipitation. Although correlation of pentad (5-day) precipitation is weaker than that of air temperature, it is 121122still significant (Fig. S2). We therefore use the gridded data for all variables except for precipitation, and 123compare modelled and observed runoffs to find the best set of calibration coefficients using the Aphrodite 124precipitation data and elevation corrected precipitation (Section 3.2).

125

126 **2.3. Thermal resistance**

127 Thermal resistance is defined as debris thickness divided by the thermal conductivity of the debris layer 128 (Nakawo and Young, 1982). Suzuki et al. (2007) established a methodology to obtain the thermal resistance 129 distribution from ASTER and reanalysis climate data. Zhang et al. (2011) confirmed that the distribution of 130 thermal resistance was well correlated with that of debris thickness from in situ measurements over a southeastern Tibetan glacier with a rather gentle and homogeneous debris-covered surface. We obtained the thermal resistance of the debris-covered area from multi-temporal ASTER data following their methods. The thermal resistance (R_T) is defined by debris thickness (h) and is thermal conductivity (λ) as:

134

135
$$R_T = h/\lambda$$
 (4)

136

Assuming no heat storage in the debris layer, no heat conduction into temperate glacier ice, and a linear temperature profile within the debris layer, the conductive heat flux through the debris layer (G_d , W m⁻²) is described with the surface temperature (T_s) and the temperature at the interface between debris and ice (T_i), which is assumed to be melting point as:

141

142
$$G_d = (T_s - T_i)/R_T$$
 (5)

143

144 The conductive heat flux from the surface toward the debris—ice interface is described as a residual term of the 145 heat balance at the debris surface, according to:

146

147
$$G_d = T_s/R_T = (1 - \alpha_d)H_{SR} + H_{LR} - \varepsilon\sigma(T_s + 273.15)^4 + H_S + H_L$$
 (6)

148

All components are positive when the fluxes are directed towards the ground. Although turbulent heat fluxes 149have to be taken into account in the exact heat exchange over the debris surface, Suzuki et al. (2007) 150151demonstrated that these fluxes are negligible because there is only limited mass flux in the low density air at 152Himalayan high elevation. Clear sky conditions, which are required for satellite data utilization, are also 153associated with a reduced importance of turbulent heat fluxes, especially of latent heat. We therefore assumed that the turbulent heat fluxes were zero ($H_S = H_L = 0$). We can then obtain the thermal resistance at a given 154point without knowing the debris thickness and thermal conductivity if we know the downward short-wave 155156and long-wave radiation fluxes, the albedo, and the surface temperature.

157	We selected eight cloud-free images of ASTER level 3A1 data, which is a se	emi-standard ortho-rectified		
158	product available from ERSDAC Japan (Table S1). Surface albedo is calculated using three visible near			
159	infrared sensors (VNIR; bands 1–3) using the equations described in Yüksel et al.	(2008). Surface temperature		
160	is obtained from an average of five sensors in the thermal infrared (TIR; band	s 10–14) using the formula		
161	proposed by Alley and Nilsen (2001). The spatial resolution of the thermal resist	ance is then constrained by		
162	the coarsest resolution of the ASTER TIR sensors (90 m). We utilize NCEP/NCA	AR reanalysis 6-hourly data		
163	(Kalnay et al., 1996) for both downward radiation fluxes at the time (noon) closest to ASTER acquisition.			
164				
165	2.4. Models			
166	2.4.1. Snow melt and albedo			
167	Heat balance over the snow surface (Q_s) and daily snow melt (M_s) are estimated as:			
168				
169	$Q_{s} = (1 - \alpha_{s})H_{SR} + H_{LR} - \varepsilon\sigma(T_{s} + 273.15)^{4} + H_{S} + H_{L} ,$	(7)		
170	$M_s = t_{day} Q_s / l_m \ .$	(8)		
171				
172	The turbulent fluxes (H_s and H_L) are estimated by bulk formulae as:			
173				
174	$H_S = c_p \rho_a C_s U(T_a - T_s) \ ,$	(9)		
175	$H_L = l_e \rho_a C_s U \tau_w [h_r q(T_a) - q(T_s)] .$	(10)		

177 A wetness parameter (τ_w) is assumed to be 1 for the snow and ice surfaces while it varies over debris-cover. 178 Snow surface albedo on a given day (α_{day}) is calculated with a scheme proposed by Kondo and Xu (1997), in 179 which an exponential reduction of snow albedo with time after a fresh snowfall is assumed as:

180

181
$$\alpha_{day} = (\alpha_{day-1} - \alpha_f)e^{-1/k} + \alpha_f$$
 (11)

183 The number of days after the latest fresh snow date is set to zero (day = 0) when snowfall is greater than 5 mm 184 w.e., and the albedo of firn (α_f) is taken as the minimum snow albedo (0.4). The parameter *k* depends on air 185 temperature, according to:

186

187
$$k = 5.5 - 3.0T_a$$
 $[T_a < 0.5^{\circ}C]$,
188 $k = 4.0$ $[T_a \ge 0.5^{\circ}C]$. (12)

189

190 The albedo of the initial fresh snow (day = 0) also depends on air temperature:

191

192
$$\alpha_0 = 0.88$$
 $[T_a < -1.0^{\circ}C]$,
193 $\alpha_0 = (\alpha_f - 0.88)(T_a + 1.0)/4.0 + 0.88$ $[-1.0^{\circ}C \le T_a \le 3.0^{\circ}C]$,
194 $\alpha_0 = \alpha_f$ $[T_a > 3.0^{\circ}C]$. (13)

195

Surface albedo is affected by the glacier ice or debris surface if the snow layer is thin. According to Giddings and LaChapelle (1961), the penetration of solar radiation into snow is assumed to follow Fick's second law of diffusion with a term for simultaneous absorption, and the surface snow albedo (α_s) over the underlying ice or debris surface is calculated as:

200

201
$$\alpha_s = [2 - w(1 - y)]/[2 + w(1 - y)]$$
,

$$202 \qquad w = 2(1 - \alpha_{day})/(1 + \alpha_{day})$$

203
$$y = [2 - 2\alpha_b - w(1 + \alpha_b)]e^{-Kx} / [-w(1 + \alpha_b)\cosh Kx - 2(1 - \alpha_b)\sinh Kx]$$
. (14)

,

204

Extinction coefficient of snow (*K*) is assumed to be 30 m⁻¹ (Greuell and Konzelmann, 1994), and albedo of the underlying surface (α_b) is taken to be ice (α_i) or debris (α_d) based on the targets. The albedo of glacier ice (α_i) is assumed to be 0.2 based on our field observations on Asian glaciers (Takeuchi and Li, 2008; Fujita et al., 208 2011).

210 **2.4.2.** Probability of snow and rain

Precipitation across the Himalayan regions takes place mainly during the summer monsoon season so that the precipitation phase (snowfall or rainfall) has to be taken into account. Based on observational reports in Tibet (Ueno et al., 1994; Sakai et al., 2006a), we assume the probability of snowfall (P_s) and rainfall (P_r) to depend on air temperature as follows:

- 215
- $216 \qquad P_s = P_p \qquad \qquad [T_a \le 0.0^{\circ} \text{C}] \ ,$

217
$$P_s = (1 - T_a/4.0)P_p$$
 [0.0°C < T_a < 4.0°C],
218 $P_s = 0$ [$T_a \ge 4.0$ °C], (15)

219
$$P_r = P_p - P_s$$
 (16)

220

221 **2.4.3.** Energy and mass balance of the debris-free glacier

Energy and mass balance over the debris-free glacier surface are calculated in 50 m elevation bands from a model established by Fujita and Ageta (2000), which has successfully calculated the glacier mass balance, equilibrium line altitude and runoff of several Asian glaciers (e.g. Fujita et al., 2007, 2011; Sakai et al., 2009a, 2010; Fujita and Nuimura, 2011; Zhang et al., 2013). The basic equation can be written:

226

227
$$Q_g = (1 - \alpha_s)H_{SR} + H_{LR} - \varepsilon\sigma(T_s + 273.15)^4 + H_S + H_L - G_g .$$
(17)

228

Downward long-wave radiation (H_{LR}) is estimated from an empirical equation using air temperature, relative humidity and the ratio of solar radiation to that at the top of atmosphere based on Glover and McCulloch (1958) and Kondo (1994). We determine the surface temperature by iterative calculations, in which the conductive heat flux into the glacier ice (G_g) is calculated by changing the ice temperature profile. Daily runoff water (D_g) is obtained as:

235
$$D_g = t_{day} Q_g / l_m + P_r + \max[H_L / l_e, 0] - R_f$$
 (18)

Here refrozen ice in the snow layer (R_f) is obtained from the change in the ice temperature profile when surface water is present. All details are described in Fujita and Ageta (2000) and Fujita et al. (2007).

239

240 **2.4.4.** Energy and mass balance of debris-covered surface

We calculate heat balance at the debris-covered surface using Eq. (6), but also take into account the turbulent heat fluxes to give results valid for various weather conditions, such as clear, cloudy, rainy, and snowy conditions though these were neglected when the thermal resistance was obtained under the clear sky assumption (see Section 2.3). We use an alternative bulk coefficient (C_d) for the turbulent heat fluxes over the debris surface in Eqs. (9) and (10). In addition, we assume that the wetness parameter (τ_w) for the latent heat flux in Eq. (10) changes with the thermal resistance (R_T) as:

247

248
$$au_w = e^{-300R_T}$$
, (19)

249

because Suzuki et al. (2007) revealed that the debris surface was wet ($\tau_w \approx 1$) when its thickness was thin and became exponentially drier ($\tau_w \approx 0$) with increased thermal resistance in the Bhutan Himalaya. We determine the surface temperature that satisfies Eq. (6) by iterative calculation. Once the surface temperature is determined and the heat flux toward the ice-debris interface is positive, the daily melt of ice beneath the debris layer (M_d) and then daily runoff (D_d) generated at a given point are obtained as:

255

$$256 \qquad M_d = t_{dav} G_d / l_m \quad , \tag{20}$$

257
$$D_d = M_d + P_r + \max[H_L/l_e, 0].$$
 (21)

258

It is assumed that all heat flux into the debris layer is used to melt ice. Condensation of vapour is also taken into account if available (H_L/l_e) though it is generally negligible in many cases. If seasonal snow covers the debris surface, no ice melt beneath the debris layer is assumed until the snow cover completely melts away. Daily runoff in the presence of snow is thus obtained from Eq. (21), but with the ice melt beneath the debris-layer (M_d) replaced by the snow-melt (M_s) in Eq. (8). The spatial resolution for the debris-covered surface is 90 m, which is constrained by the ASTER TIR data used to obtain the surface temperature in the thermal resistance calculation (Section 2.3).

266

267 **2.4.5.** Runoff from ice-free terrain and the lake

Runoff from ice-free terrain is calculated for 50-m elevation bands, based on a simple bucket model proposed by Motoya and Kondo (1999). The potential evaporation rate (E_p) is obtained from the energy balance:

270

271	271 $(1 - \alpha_w)H_{SR} + H_{LR} - \varepsilon\sigma(T_s + 273.15)^4 + H_S + H_L = 0$,			(22)		
070	05	4	11 /1			(22)

272
$$\beta E_p = -t_{day} H_L / l_e = -t_{day} \rho_a \beta C_t(U) [h_r q(T_a) - q(T_s)]$$
 (23)

273

Here albedo of ice-free terrain (α_w) is assumed to be 0.1. Evaporation efficiency (β) depends on soil moisture content:

276

$$277 \quad \beta = W_a / W_{amax} \quad , \tag{24}$$

278

which is expressed as a ratio of water contents (W_a) in the surface storage just below the surface to the maximum water content (W_{amax}) (Fig. 3). The bulk coefficient (C_t) is parameterized with wind speed (U) as:

281

282
$$C_t(U) = 0.0027 + 0.0031U$$
. (25)

283

Runoff from the ice-free terrain (D_t) is obtained when the surface storage is full:

286
$$D_t = P_r + \max[M_s + \max[H_L/l_e, 0], 0] - \beta E_p - (W_{amax} - W_a)$$
, (26)
287 $W_n = W_{amax}$. (27)

If there is snow cover, snow-melt (M_s) is calculated using Eqs. (7) and (8), in which direct liquid condensation is taken into account if available. If there is no snow, evaporated water (βE_p) is reduced from the rainwater value. Water is first used to fill the surface storage capacity ($W_{amax} - W_a$) in all cases. If there is insufficient water to fill the surface storage, no runoff is generated ($D_t = 0$) and the water content in the next time step (W_n) is given by:

294

295
$$W_n = max[P_r - \beta E_p + W_a, 0]$$
. (28)

296

If evaporation is greater than the sum of rain and water content, evaporated water is constrained by the water in the surface storage ($\beta E_p = W_a$) and no water content is expected in the next time step ($W_n = 0$).

We have little information on the water balance of the Tsho Rolpa Glacial Lake, although the water circulation within the lake has been thoroughly investigated (Sakai et al., 2000b). Therefore we assumed that precipitation would immediately be removed as runoff from the lake (D_i), giving the maximum runoff without evaporative loss because the outlet is located just below the lake, though the water surface should be a significant source of evaporation.

304

305 **2.4.6. Bucket model calculating river runoff**

All water generated over the debris-covered part (D_d) , debris-free snow or ice (D_g) , ice-free terrain (D_t) and the lake (D_l) is added to the river system through two types of storage, internal and ground storage (Motoya and Kondo, 1999). A schematic diagram that also includes the surface storage for ice-free terrain is shown in Fig. 3. The surface water inflow (F_a) , which is made up of the individual surface water inflows (D_d, D_g, D_l, D_l) , is added to the internal storage. Outflow from the internal storage (F_b) will occur and be directly added to the final runoff when the volume of water stored (W_b) exceeds the maximum capacity $(W_{bmax}, 500 \text{ mm})$ according 312to: 313 $F_b = F_a - (W_{bmax} - W_b).$ (29)314315316Leakage from the internal storage (F_c) is simultaneously calculated as: 317318 $F_c = k_b W_b$. (30)319320 We here assume that 30% of the internally stored water will be lost in a day ($k_b = 0.3$). Part of the leakage 321from the internal storage will be directly added to the final runoff and the rest will flow into the ground 322storage (W_c). There is no limit on the capacity of the ground storage. Leakage from the ground storage (F_d) is 323given by: 324 $F_d = k_c W_c$, (31)325326This flow, which is assumed to be 3% of the ground storage ($k_c = 0.03$) will form the continuous basal flow of 327 328the river system. We obtain the final runoff (F_f) as: 329 $F_f = F_b + r_c F_c + F_d \quad .$ (32)330331332The fraction (r_c) is assumed to be 0.8. The final runoff can be calculated for individual runoffs from the 333 debris-covered surface (R_d) , the debris-free glacier (R_g) , the ice-free terrain (R_t) , and the lake (R_l) . We 334summarize these runoffs by considering a debris grid with 90 m resolution and the hypsometry of the 335 debris-free glacier surface and ice-free terrain in 50-m elevation bands (Fig. 2). 336

13

337

3. Results

338 **3.1 Distributions of thermal resistance and albedo**

339 We calculated the distribution of thermal resistance from eight ASTER images (Figs. 4 and 5). Some images 340showed a plausible distribution of thermal resistance (Fig. 4) but a fragmented distribution was obtained in 341winter images (Fig. 5). Because the ice-debris interface is assumed to be at the melting point temperature in 342the calculation of thermal resistance (T_i in Eq. (5)), it may not be possible to calculate the thermal resistance 343under cold winter conditions. We therefore obtain an average distribution of the thermal resistance from the 344four plausible distributions as shown in Fig. 1b. Where calculations were not possible for the debris-covered part, as shown by grey shading in Fig. 1b and at higher elevations, zero thermal resistance is assumed, 345346 implying a debris-free glacier. We assumed that the topographical features unchanged through the simulation 347period 1979-2007.

Comparisons of individual thermal resistances against the average show some degree of variability (Fig. 6a). A linear regression of standard deviation against the average suggests that the thermal resistance has an uncertainty of 30% (Fig. 6c). We simultaneously obtain a distribution of surface albedo, which is required to calculate the thermal resistance and complete the energy mass balance model of the debris-covered surface. Although one image taken in October 2004 shows rather large scatter (Fig. 6b), the uncertainty in albedo expressed as a standard deviation is of a similar level to that of thermal resistance (Fig. 6d). We evaluate the influences of these uncertainties on runoff from the debris-covered surface later (Section 4.1).

355

356 3.2. Validation

A one-year cycle of the calculation runs from 1 October to 30 September of the next year. We first conducted a four-year calculation from 1 October 1992 to 30 September 1996, and compared the results with the observed runoff at the outlet of the Tsho Rolpa Glacial Lake (shown as a yellow cross in Fig. 1a). Because the reanalysis air temperature represents the observations well (Fig. S2), we seek the best set of precipitation ratio relative to the Aphrodite precipitation and elevation gradient of precipitation to produce the best estimate of total runoff. We calculated both the root mean square error (D_{RMS}) and the Nash–Sutcliffe model efficiency (E_N) of the simulation against the observed runoff (Nash and Sutcliffe, 1970). We found that the best 364 estimation was obtained along an isoline of the precipitation ratio of 74% against the original Aphrodite 365 precipitation averaged over the whole basin (Fig. 7). We adopt 55% as the precipitation ratio and 35% km⁻¹ as 366 the elevation gradient of precipitation for the subsequent analysis (thin dashed lines in Fig. 7) based on the 367comparison of precipitation (Fig. S2), and elevation gradients of precipitation observed in another Himalayan 368 catchment (Seko, 1987; Fujita et al., 1997). Daily runoff is well reproduced for the three hydrological years 369(Fig. 8). We also performed the calculation using gap-filled meteorological variables without assuming an 370 elevation gradient of precipitation, for which the original observed data were used where available. We 371obtained similar values of D_{RMS} and E_N at the precipitation ratio of 75%. This implies that reanalysis gridded 372 data are useful to drive the models if the temperature representativeness is sufficiently good and precipitation 373data are calibrated accordingly.

In Fig. 8, the model overestimates the runoff at the beginning of melting season. This discrepancy could be caused by model settings in which the generated meltwater was immediately put into the internal storage (Fig. 3). At the beginning of melting season, meltwater could be retained within the snowpack (Gao et al., 2012) or internal channels of glacier. In addition, the lake could be a strong buffer to cause runoff delay when lake level rose.

379

380 3.3. Long-term averages

381We further calculated the average value of each components in long-term to understand the present condition 382of the basin. We calculated daily runoff in the period 1979–2007 (28 hydrological years) and then obtained seasonal cycle (Fig. 9) and annual average (Table 2). We assumed that geometry and surface condition of the 383384basin have been unchanged in the calculation though expansion of the glacial lake should have supplied 385excess meltwater in the runoff by calving of the glacier front. Runoff contribution and seasonal cycle show 386 that runoff from the debris-covered surface accounts for more than half of the total runoff (55%). Comparing 387 area ratio and runoff contribution, the ice melt beneath debris cover supplies significant excess water to the 388total runoff, which implies the additional water runoff compared with the ice-free terrain (Table 2). This is 389 clearly shown in terms of runoff depth. Both annual averages (Table 2) and seasonal cycle (Fig. 9b) suggest that the debris-covered area yields runoff depth approximately seven times greater than from the debris-free glacier surface or ice-free terrain. Both runoff depths from the debris-free glacier surface and ice-free terrain are slightly less than that due to precipitation because of evaporative loss. The similar runoff depths of debris-free glacier surface and ice-free terrain suggest that the entire debris-free glacier is in a state of balanced budget (Table 2).

395

4. Discussion

4.1. Uncertainty caused by thermal resistance and albedo of debris cover

398 In earlier work on thermal resistance, Suzuki et al. (2007) calibrated surface temperature and albedo with field 399measurements performed at the same time as ASTER acquisitions in the Bhutan Himalaya. In this study, 400 however, we have no in situ data for calibration so that the reanalysis data are used without adjustment. Our 401 thermal resistances have greater scatter than those of Suzuki et al. (2007, fig. 5) probably because uncalibrated 402data were used. On the other hand, Zhang et al. (2011) obtained the thermal resistance distribution of a 403 debris-covered glacier in southeastern Tibet from a single ASTER image. They validated the thermal 404resistance and melt calculations with their in situ measurements of debris thickness and melt rate. However, 405these studies did not evaluate how the uncertainty of thermal resistance affects the calculated melt under the debris or runoff. We therefore calculated the influence of uncertainties in thermal resistance and albedo (Figs. 4064076c and 6d). At some points there are insufficient data to calculate the standard deviation of thermal resistance, 408so for such points we use an estimate from the linear regression (Fig. 6c). The standard deviation of the albedo 409was obtained for all points so that the regression curve was not used (Fig. 6d). We obtain the runoff anomaly 410(dR) from the control calculation in Section 3.3 by averaging positive and negative cases according to:

411

412
$$dR(v) = [R(v + \delta_v) - R(v - \delta_v)]/2$$
, (33)

413

414 where v and δ_v denote the parameter used for the control calculation (thermal resistance or albedo) and its

standard deviation, respectively. Changes in albedo (R_{Tave} , $d\alpha$) or thermal resistance (dR_T , α_{ave}) reduce the debris runoff (Table 3). Uncertainty due to albedo (-8%) has a slightly larger effect than that due to thermal resistance (-5%). The simultaneous change of both parameters (dR_T , $d\alpha$) results in an additive impact on the debris runoff (-13%). Combinations in which the two parameters are changed in different directions (+ δR_T and $-\delta\alpha$, $-\delta R_T$ and $+\delta\alpha$) suggest that the uncertainty due to albedo has more effect on the debris runoff than that due to thermal resistance. In the absence of calibration data, the use of multiple ASTER images to derive thermal resistance and albedo gives a runoff uncertainty within 8%.

422

423 **4.2. Uncertainty caused by other parameters**

424Because value of parameters was used as the original studies proposed in this study (Table 1), relevant 425uncertainties were masked by the corrected precipitation. Here we performed a sensitivity analysis by 426changing the parameter by $\pm 30\%$, which was equivalent to the degree of uncertainty in the thermal resistance 427and albedo of debris cover. We averaged anomalies using Eq. (33) and then expressed by percentage to the 428control values (Table 4). Nash–Sutcliffe model efficiency coefficient (E_N) was obtained against the control 429calculation. Albedo of firm (α_f) seems to alter the calculated runoff significantly while those of glacier ice (α_i) 430or ice-free terrain (α_w) are less influential. In addition to wider range of change in the firm albedo (±0.12) rather than those in glacier ice (± 0.06) and ground (± 0.03) by the 30% perturbation, timing of disappearance 431432of snow cover could be significantly altered by the setting of firn albedo. Bulk coefficient for the snow-ice 433surface (C_s) is slightly more influential than those for the debris surface (C_d) and for the ice-free terrain (C_d) , probably because of the same reason mentioned above. Assumption of wetness for the debris surface (τ_w) 434435was tested not by changing 30%, but by two extremes; no water ($\tau_w = 0$) and water surface ($\tau_w = 1$). Among 436these two extreme settings, uncertainty due to wetness parameter on debris runoff is less than half of those due to thermal resistance and albedo (Table 3). Although parameter settings in the bucket model (W_{bmax} , k_b , k_c , r_c) 437438 seem not to affect the runoff amount, a low value of the Nash-Sutcliffe model efficiency coefficient suggests 439that change in the fraction for leakage from the internal storage (r_c) could alter the seasonal cycle of runoff. As 440 a whole, boundary conditions such as thermal resistance and albedo are key parameters in the runoff 441 modelling for the Himalayan debris-covered glacier.

442

443 **4.3. Effects of debris cover, lake and glacier**

444It is clear that the debris-covered area is supplying significant excess meltwater to the total runoff (Table 2 and 445 Fig. 9). Elevation profiles of debris-covered and debris-free surfaces suggest comparable runoffs from both 446surfaces (Fig. 10a), so that the significant excess meltwater may be attributed to the lower elevation of the 447debris-covered area (Fig. 2). To evaluate whether the excess meltwater is generated by accelerated melt due to thinner and darker debris cover or by the lower elevation of the debris-covered area, we performed a 448449 sensitivity calculation by assuming no debris cover (the no debris assumption in Table 3). Compared with the 450control calculation, a debris-free surface would yield slightly less water (-3%), implying that the significant 451excess water is generated mainly by the lower elevation of the debris-covered area, and is slightly increased 452by the acceleration effect of thin and dark debris. This is the opposite of that estimated for the Lirung Glacier 453in the Langtang region, Nepal (Nakawo and Rana, 1999), where the debris cover significantly suppressed the melting of ice underneath. In fact, the regional distribution of thermal resistance suggested that the debris 454455cover over the Trambau Glacier was thinner than that over the other glaciers in the Khumbu and neighbouring 456 regions (Suzuki et al., 2007). Suzuki et al. (2007) pointed out that not only the Trambau Glacier but also other glaciers having glacial lake tended to have thinner debris-cover in terms of thermal resistance. Sakai and 457458Fujita (2010) also demonstrated that glacial lakes in the Nepal and Bhutan Himalayas were found at the 459termini of debris-covered glaciers at which thinning since the Little Ice Age was greater than 50 m and slope 460was gentler than 2°. Although it is still unclear whether the thinner debris triggered the glacial lake formation 461 or thick debris portion has turned into the glacial lake, topographical setting should affect the debris-covered 462area through debris supply (Nagai et al., 2013). Recent studies have revealed that the thinning rates of 463debris-covered surfaces were comparable to those of debris-free surfaces in the Himalayas (Nuimura et al., 464 2011, 2012; Kääb et al., 2012). Because the surface thinning of a glacier is affected not only by surface 465melting but also by dynamics (the degree of compressive flow in the ablation area), we cannot naively 466 attribute the significant thinning of the debris-covered surface to the comparable melt of debris-covered ice

467 (Sakai et al., 2006b; Berthier and Vincent, 2012). Nevertheless, the significant melting of ice under the debris
468 layer would be one of the reasons for the significant thinning of debris-covered areas in the Himalayas.

469 Another surface feature of the basin is the Tsho Rolpa Lake, one of the largest glacial lakes in the Nepal 470Himalaya. In our calculation size of the lake is assumed to be constant, but the lake has expanded since the 1950s at a rate of 0.03 km² yr⁻¹ (Yamada, 1998; Komori et al., 2004; Sakai et al., 2009b). We therefore 471performed another sensitivity calculation without a lake. The thermal resistance (0.0151 m^{-1} K⁻¹ W), albedo 472473(0.230) and elevation (4560 m a.s.l.) over the lake are taken from values at the lowermost part of the debris-covered area (approximately 500 m from the glacier terminus). Runoff from the debris-covered surface 474and the lake significantly increases by 22% from the control (Table 3). This suggests that ice located at a 475476lower elevation is the main source of excess meltwater in the basin, and the meltwater might have decreased 477with expansion of the lake.

478Glaciers are recognized as water resources in the Asian highlands. The disappearance of glaciers is projected 479to result in severe depletion of river water that will threaten human life (e.g. Cruz et al., 2007). In this regard, 480the contribution of glacier meltwater to river runoff has been evaluated in a number of studies (e.g. Immerzeel 481et al., 2010; Kaser et al., 2010). However, considering that precipitation could be still expected over the terrain 482after the glaciers disappear, the reduction in glaciers would not directly result in such a severe depletion of river runoff. A future runoff projection for a Himalayan catchment demonstrated that increased precipitation 483484and seasonal snow melt would compensate for the decrease in glacier meltwater (Immerzeel et al., 2012). We 485therefore simply assumed that runoff depth over the ice-free terrain (941 mm) was applicable to the whole 486basin and then evaluated the runoff under the no ice environment (Table 4). Because the excess meltwater is 487added to the control total runoff, the no ice assumption results in a significant runoff reduction of 43%. 488Although an increase in evaporation, which is expected under the climatic conditions resulting in the 489disappearance of a glacier, is not taken into account, river water will still be available from the basin. In terms 490 of future water availability, more uncertainty will be caused by projected changes in precipitation.

491

492 **4.3. Sensitivities**

493 To understand how the basin consisting of debris-covered glaciers responds to changes in climatic variables 494such as air temperature and precipitation, we calculated the runoff sensitivities by altering the annual air 495temperature and precipitation, by $\pm 0.1^{\circ}$ C for air temperature or $\pm 10\%$ for precipitation from the control 496conditions. We assumed no topographical change here though glacier extent and surface features would 497 change as responses to long-term climate change. The runoff anomaly is obtained in the same way as 498uncertainty (section 4.1), by averaging positive and negative cases for which signs are taken into account (Eq. 499 (33)). Warmer air temperature significantly increases melting of ice over both debris-covered and debris-free surfaces and thus total runoff, while increased evaporative water loss over the ice-free terrain is negligible 500(Table 5). Elevation profiles of response to the warming show no significant difference between 501502debris-covered and debris-free surface at a given elevation (Fig. 10b). The doubled sensitivity of runoff depth 503over the debris-covered area should be attributed to its lower elevation as discussed in Section 4.2 (Table 5). 504Because the debris-free glacier surface mainly consists of the high accumulation zone reaching to above 6000 505m a.s.l., warming will have a limited impact overall. On the other hand, an increase in precipitation will 506potentially prolong the duration of high albedo snow cover, which suppresses absorption of solar radiation, 507and will result in a runoff reduction from ice, while runoff from the ice-free terrain and the lake will increase 508with precipitation (Table 5). These opposing responses compensate for each other and thus result in a smaller influence on total runoff than that caused by warming. The elevation profiles of response show greater 509510sensitivity over the debris-free glacier than over the debris-covered ice, which may be caused by different albedo settings for glacier ice and debris (Fig. 10b). These sensitivities to changes in air temperature and 511precipitation cannot simply be compared directly. Considering the standard deviations of air temperature 512513(0.47°C) and precipitation (93 mm, 9.4%) for the period 1979–2007 (28 years), we obtain the variability in 514runoff associated with the variability in climatic variables (Table 5). Variability of the total runoff caused by air temperature variability is 23 times greater than that caused by precipitation variability though this result 515516could be variable if we used a different time span.

517 The small changes applied above simply result in a linear response, but we further tested runoff sensitivity to 518 precipitation by changing the precipitation over a wider range, from 40% to 200% of that used in the control 519calculation. Runoffs from the ice-free terrain and the lake respond linearly to changing precipitation in 520proportion to their areas, while those from debris-covered and debris-free surfaces respond non-linearly (Fig. 52111a). In particular, a deficit of precipitation will yield extreme ice melt because it gives a dark surface without 522snow cover (blue line in Fig. 11a). Glacier runoff will become stable under conditions of extreme humidity 523because of compensation between suppressed ice melting and increased rain water. Summing components 524with different sensitivities results in a complicated total runoff response (black line in Fig. 11a). This suggests 525that present climatic and topographic conditions of the target basin have the smallest sensitivity to changing precipitation. If the precipitation regime changes significantly for a long period of time, runoff would respond 526527more significantly than under the present regime though the glacier extent would also change with time. Seasonal cycles of runoff under the two extreme conditions (50% and 200% of the control) show impressive 528529responses (Fig. 11b). A wetter climate simply increases the runoff during the humid monsoon season, which is 530affected by precipitation seasonality (blue line in Fig. 11b) while a drier climate significantly alters the 531seasonal cycle of runoff (orange line in Fig. 11b). Reduced precipitation will accelerate ice melting in the 532spring as the dark ice surface uncovered by high albedo snow. Although such an effect may not be obvious in 533the sensitivity obtained by changing precipitation over a small range (±10% for instance), a change in 534precipitation could potentially alter the seasonality of runoff, which is important for regional water availability (e.g. Kaser et al., 2010). 535

536

537 **5.** Conclusions

We have developed an integrated runoff model, in which the energy–water–mass balance is calculated over different surfaces such as debris-covered surface, debris-free glacier and ice-free terrain. To take into account the effect of debris on ice melt, we adopted an index of thermal resistance, defined as debris thickness divided by debris conductivity, which could be obtained from thermal remote sensing data and reanalysis climate data. Using multiple ASTER data taken on different dates, we obtained distributions of thermal resistance and albedo for the Trambau Glacier in the Nepal Himalaya that were not calibrated by in situ observational data. Both thermal resistance and albedo had uncertainties of approximately 30% (Fig. 6), and we calculated that these uncertainties could translate into a runoff uncertainty of approximately 8% (Table 3).

546 Our calculation, which was validated with observational runoff data in the 1990s (Fig. 8), showed that 547 meltwater from both debris-covered and debris-free ice bodies contributed to half of the total present runoff 548 (Table 4). In particular, the debris-covered ice supplied significant excess meltwater to the total runoff (Fig. 9). 549 A sensitivity analysis, in which no debris cover was assumed, suggested that the excess meltwater was 550 attributable mainly to the lower elevation location and less importantly to the acceleration effect of thinner 551 debris cover (Table 3) because the elevation profiles of runoff from debris-covered and debris-free surfaces 552 were comparable (Fig. 10a).

553Sensitivity analysis showed that change in precipitation affects runoffs from the ice (both debris-covered and debris-free) and the ice-free terrain in opposing directions. Increased precipitation suppresses ice melting 554555through the high albedo of snow cover whereas runoff from ice-free terrain increases with precipitation. The 556two effects compensate each other, so that the response of the total runoff is smaller than that for changes in 557air temperature (Table 5). However, the potential response to change in precipitation could be complicated for a large perturbation (Fig. 11a). In particular, a deficit of precipitation could alter the seasonal cycle of runoff 558559(Fig. 11b). It is also noted that responses of glacier extent and/or debris distribution have to be taken into 560account for longer time scale though the static condition was assumed in this study.

Other studies calculating heat conduction through a debris layer have accurately reproduced the melt rate of 561562ice beneath the debris mantle if its thickness and conductivity are known (Nicholson and Benn, 2006; Reid and Brock, 2010). Even for a single glacier, however, the distributions of debris thickness and thermal 563564conductivity are unobtainable because of the heterogeneously rugged surface of debris-covered areas. In this 565regard, our approach using thermal resistance is a practical solution to calculate the ice melting under the 566debris cover on a large scale, such as a basin or region because the concept of thermal resistance involves 567coexistences of debris with various thickness, ice cliffs and supra-glacial ponds (Nakawo et al., 1993). The 568assumption of a linear temperature profile within the debris layer may cause large uncertainty in both deriving 569thermal resistance and calculating ice melt. In particular, this linear approximation is unrealistic when the 570debris layer is too thick. Further research is required to understand whether this method can be applied to thicker debris layers or whether any modifications are required. Apart from debris processes, settings for precipitation (ratio to reanalysis data and elevation gradient) will be the main source of uncertainty. In particular, precipitation would decrease with elevation at extremely higher and thus colder environment. Mass balance data from such high elevation enable us to gain more insight on hydrology in the Himalayan catchment.

- 576
- Acknowledgements. This study is supported by the Funding Program for Next Generation World-Leading
 Researchers (NEXT Program).
- 579

580 **References**

- Alley, R. E. and Nilsen, M. J.: Algorithm theoretical basis document for: brightness temperature Version 3.1,
 Jet Propulsion Laboratory, 14 pp., 2001.
- 583 ASTER-GDEM: http://gdem.ersdac.jspacesystems.or.jp/, last access: 20 December 2013, 2009.
- Berthier, E. and Vincent, C.: Relative contribution of surface mass-balance and ice-flux changes to the
 accelerated thinning of Mer de Glace, French Alps, over 1979-2008, J. Glaciol., 58, 501–512,
 doi:10.3189/2012JoG11J083, 2012.
- 587 Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J. G., Frey, H., Kargel, J. S., Fujita, K., Scheel,
- M., Bajracharya, S., and Stoffel, M.: The state and fate of Himalayan glaciers, Science, 336, 310–314,
 doi:10.1126/science.1215828, 2012.
- 590 Cruz, R. V. et al. in IPCC Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of
- 591 Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
- 592 (eds Parry, M. L. et al.) 469–506 (Cambridge Univ. Press, 2007).
- 593 Fujita, K. and Ageta, Y.: Effect of summer accumulation on glacier mass balance on the Tibetan Plateau
- revealed by mass-balance model, J. Glaciol., 46, 244–252, doi:10.3189/172756500781832945, 2000.
- 595 Fujita, K. and Nuimura, T.: Spatially heterogeneous wastage of Himalayan glaciers, P. Natl. Acad. Sci. USA,
- 596 108, 14011–14014, doi:10.1073/pnas.1106242108, 2011.

- Fujita, K., Sakai, A., and Chhetri , T. B.: Meteorological observation in Langtang Valley, Nepal Himalayas,
 1996, Bull. Glacier Res., 15, 71–78, 1997.
- Fujita, K., Ohta, T., and Ageta, Y.: Characteristics and climatic sensitivities of runoff from a cold-type glacier
 on the Tibetan Plateau, Hydrol. Process., 21, 2882–2891, doi:10.1002/hyp.6505, 2007.
- Fujita, K., Sakai, A., Nuimura, T., Yamaguchi, S., and Sharma, R. R.: Recent changes in Imja Glacial Lake
 and its damming moraine in the Nepal Himalaya revealed by in situ surveys and multi-temporal ASTER
- 603 imagery, Environ. Res. Lett., 4, 045205, doi:10.1088/1748-9326/4/4/045205, 2009.
- 604 Fujita, K., Takeuchi, N., Nikitin, S. A., Surazakov, A. B., Okamoto, S., Aizen, V. B., and Kubota, J.: Favorable
- climatic regime for maintaining the present-day geometry of the Gregoriev Glacier, Inner Tien Shan, The
 Cryosphere, 5, 539–549, doi:10.5194/tc-5-539-2011, 2011.
- 607 Gao, H., He, X., Ye, B., and Pu, J.: Modeling the runoff and glacier mass balance in a small watershed on the
- 608 Central Tibetan Plateau, China, from 1955 to 2008, Hydrol. Process., 26, 1593–1603, 10.1002/hyp.8256,
 609 2012.
- Giddings, J. C. and LaChapelle, E.: Diffusion theory applied to radiant energy distribution and albedo of snow,
 J. Geophys. Res., 66, 181–189, doi:10.1029/JZ066i001p00181, 1961.
- Glover, J. and McCulloch, G.: The empirical relation between solar radiation and hours of sunshine, Q. J. Roy.
 Meteor. Soc., 84, 172–175, 1958.
- 614 Greuell, W. and Konzelmann, T.: Numerical modelling of the energy balance and the englacial temperature of
- Greenland Ice Sheet. Calculations for the ETH-Camp location (West Greenland, 1155 m a.s.l.). Global
- 616 Planet. Change, 9, 91–114, doi:10.1016/0921-8181(94)90010-8, 1994.
- 617 Hulka J.: Calibrating ASTER for snow cover analysis, Proc. 2008, The 11th AGILE Int. Conf. Geogr. Inf. Sci.,
- 618 University of Girona, Spain, http://itcnt05.itc.nl/agile_old/Conference/2008-Girona/PDF/63_DOC.pdf, last
- 619 access: 19 December 2013, 2008.
- 620 Immerzeel, W., van Beek, L. P. H., and Bierkens, M. F. P.: Climate change will affect the Asian water towers,
- 621 Science, 328, 1382–1385, doi:10.1126/science.1183188, 2010.
- 622 Immerzeel, W., van Beek, L. P. H., Konz, M., Shrestha, A. B., and Bierkens, M. F. P.: Hydrological response

- to climate change in a glacierized catchment in the Himalayas, Climatic Change, 110, 721–736,
 doi:10.1007/s10584-011-0143-4, 2012.
- Juen, M., Mayer, C., Lambrecht, A., Han, H., and Liu, S.: Impact of varying debris cover thickness on
 ablation: a case study for Koxkar Glacier in the Tien Shan, The Cryosphere, 8, 377–386,
 doi:10.5194/tc-8-377-2014, 2014.
- Kääb, A., Berthier, E., Nuth, C., Gardelle, J., and Arnaud, Y.: Contrasting patterns of early twenty-first-century
 glacier mass change in the Himalayas, Nature, 488, 495–498, doi:10.1038/nature11324, 2012.
- 630 Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White,
- 631 G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C.,
- Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-year reanalysis
 project, B. Am. Meteorol. Soc., 77, 437–471, 1996.
- Kaser, G., Großhauser, M., and Marzeion, B.: Contribution potential of glaciers to water availability in
 different climate regimes, P. Natl. Acad. Sci. USA, 107, 20223–20227, doi:10.1073/pnas.1008162107,
 2010.
- Komori, J., Gurung, D. R., Iwata, S., and Yabuki, H.: Variation and lake expansion of Chubda Glacier, Bhutan
 Himalayas, during the last 35 years, Bull. Glaciol. Res., 21, 49–55, 2004.
- Kondo, J.: Meteorology of the Water Environment-Water and Heat Balance of the Earth's Surface (in
 Japanese), Asakura Shoten Press, Tokyo, 1994.
- 641 Kondo, J. and Xu, J.: Seasonal variations in the heat and water balances for nonvegetated surfaces, J. Appl.
- 642 Meteor., 36, 1676–1695, doi:10.1175/1520-0450(1997)036<1676:SVITHA>2.0.CO;2, 1997.
- 643 Lambrecht, A., Mayer, C., Hagg, W., Popovnin, V., Rezepkin, A., Lomidze, N., and Svanadze, D.: A
- 644 comparison of glacier melt on debris-covered glaciers in the northern and southern Caucasus, The 645 Cryosphere, 5, 525–538, doi:10.5194/tc-5-525-2011, 2011.
- 646 Mattson, L. E., Gardner, J. S., and Young, G. J.: Ablation on debris covered glaciers: an example from the
- Rakhiot Glacier, Punjab, Himalaya, Int. Assoc. Hydrol. Sci. Publ., 218, 289–296, 1993.
- 648 Motoya, K. and Kondo, J.: Estimating the seasonal variations of snow water equivalent, runoff and water

- temperature of a stream in a basin using the new bucket model, J. Jpn. Soc. Hydrol. Water Resour., 12,
 391–407, 1999.
- Nagai, H., Fujita, K., Nuimura, T., and Sakai, A.: Southwest-facing slopes control the formation of
 debris-covered glaciers in the Bhutan Himalaya, The Cryosphere, 7, 1303–1314,
 doi:10.5194/tc-7-1303-2013, 2013.
- Nakawo, M. and Rana B.: Estimate of ablation rate of glacier ice under a supraglacial debris layer, Geogr.
 Ann., 81A, 695–701, 1999.
- Nakawo, M., Morohashi, T., and Uehara, S.: Satellite data utilization for estimating ablation of debris covered
 glaciers, Int. Assoc. Hydrol. Sci. Publ., 218, 75–83, 1993.
- Nakawo, M. and Young, G. J.: Estimate of glacier ablation under a debris layer from surface temperature and
 meteorological variables, J. Glaciol., 28, 29–34, 1982.
- Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I A discussion of
 principles, J. Hydrol., 10, 282–290, doi:10.1016/0022-1694(70)90255-6, 1970.
- Nicholson, L. and Benn, D. I.: Calculating ice melt beneath a debris layer using meteorological data, J.
 Glaciol., 52, 463–470, doi:10.3189/172756506781828584, 2006.
- Nuimura, T., Fujita, K., Fukui, K., Asahi, K., Aryal, R., and Ageta, Y.: Temporal changes in elevation of the
- debris-covered ablation area of Khumbu glacier in the Nepal Himalaya since 1978, Arct. Antarct. Alp. Res.,
- 666 43, 246–255. doi:10.1657/1938-4246-43.2.246, 2011.
- 667 Nuimura, T., Fujita, K., Yamaguchi, S., and Sharma, R. R.: Elevation changes of glaciers revealed by
- 668 multitemporal digital elevation models calibrated by GPS survey in the Khumbu region, Nepal Himalaya,
- 669 1992–2008, J. Glaciol., 58, 648–656. doi:10.3189/2012JoG11J061, 2012.
- Østrem, G.: Ice melting under a thin layer of moraine and the existence of ice cores in moraine ridges, Geogr.
 Ann., 41, 228–230, 1959.
- Reid, T. D. and Brock, B. W.: An energy-balance model for debris-covered glaciers including heat conduction
- 673 through the debris layer, J. Glaciol., 56, 903–916, doi:10.3189/002214310794457218, 2010.
- 674 Sakai, A. and Fujita, K.: Formation conditions of supraglacial lakes on debris-covered glaciers in the

- 675 Himalayas, J. Glaciol., 56, 177–181, doi:10.3189/002214310791190785, 2010.
- Sakai, A., Takeuchi, N., Fujita, K., and Nakawo, M.: Role of supraglacial ponds in the ablation processes of a
 debris–covered glacier in the Nepal Himalayas, Int. Assoc. Hydrol. Sci. Publ., 264, 119–130, 2000a.
- 678 Sakai, A., Chikita, K., and Yamada, T.: Expansion of a moraine-dammed glacier lake, Tsho Rolpa, in
- Rolwaling Himal, Nepal Himalaya, Limnol. Oceanogr., 45, 1401–1408, doi:10.4319/lo.2000.45.6.1401,
 2000b.
- Sakai, A., Nakawo, M., and Fujita, K.: Distribution characteristics and energy balance of Ice cliffs on
 debris-covered glaciers, Nepal Himalaya, Arct. Antarct. Alp. Res., 34, 12–19, 2002.
- 683 Sakai, A., Matsuda, Y., Fujita, K., Matoba, S., Uetake, J., Satow, K., Duan, K., Pu, J., Nakawo, M., and Yao,
- T.: Meteorological observation at July 1st Glacier in northwest China from 2002 to 2005, Bull. Glaciol.
 Res., 23, 23–31, 2006a.
- Sakai, A., Fujita, K., Duan, K., Pu, J., Nakawo, M., and Yao, T.: Five decades of shrinkage of July 1st glacier,
 Qilian Shan, China, J. Glaciol., 52, 11–16, doi:10.3189/172756506781828836, 2006b.
- Sakai, A., Fujita, K., Nakawo, M., and Yao, T.: Simplification of heat balance calculation and its application to
 the glacier runoff from the July 1st Glacier in northwest China since the 1930s, Hydrol. Process., 23, 585–
 596, doi:10.1002/hyp.7187, 2009a.
- Sakai, A., Nishimura, K., Kadota, T., and Takeuchi, N.: Onset of calving at supraglacial lakes on debris
 covered glaciers of the Nepal Himalayas, J. Glaciol., 55, 909–917, doi:10.3189/002214309790152555,
 2009b
- Sakai, A., Fujita, K., Narama, C., Kubota, J., Nakawo, M., and Yao, T.: Reconstructions of annual discharge
 and equilibrium line altitude of glaciers at Qilian Shan, northwest China, from 1978 to 2002, Hydrol.
 Process., 24, 2798–2806, doi:10.1002/hyp.7700, 2010.
- Scherler, D., Bookhagen, B., and Strecker, M. R.: Spatially variable response of Himalayan glaciers to climate
 change affected by debris cover, Nat. Geosci., 4, 156–159, doi:10.1038/ngeo1068, 2011.
- 699 Seko, K.: Seasonal variation of altitudinal dependence of precipitation in Langtang valley, Nepal Himalayas.
- 700 Bull. Glacier Res., 5, 41–47, 1987.

- Suzuki, R., Fujita, K., and Ageta, Y.: Spatial distribution of the thermal properties on debris-covered glaciers
 in the Himalayas derived from ASTER data, Bull. Glaciol. Res., 24, 13–22, 2007.
- Tachikawa, T., Hato, M., Kaku, M., and Iwasaki, A.: Characteristics of ASTER GDEM version 2, Int. Geosci.
 Remote Sens. Symp. (IGARSS), 3657–3660, 2011.
- Takeuchi, N., and Li, Z.: Characteristics of surface dust on Ürümqi glacier No. 1 in the Tien Shan mountains,
 China, Arct. Antarct. Alp. Res., 40, 744–750, 2008.
- Ueno, K., Endoh, N., Ohata, T., Yabuki, H., Koike, M., Ohta, T., and Zhang, Y.: Characteristics of
 precipitation distribution in Tanggula, Monsoon, 1993, Bull. Glacier Res., 12, 39–46, 1994.
- Yamada, T.: Glacier lake and its outburst flood in the Nepal Himalaya, Monograph No. 1, Data C. Glacier
 Res., Jpn. Soc. Snow Ice, Tokyo, 96 pp., 1998.
- Yao, T., Thompson, L., Yang, W., Yu, W., Gao, Y., Guo, X., Yang, X., Duan, K., Zhao, H., Xu, B., Pu, J., Lu,
 A., Xiang, Y., Kattel, D. B., and Joswiak, D.: Different glacier status with atmospheric circulations in
 Tibetan Plateau and surroundings, Nature Clim. Change, 2, 663–667, doi:10.1038/nclimate1580, 2012.
- Yatagai, A., Arakawa, O., Kamiguchi, K., Kawamoto, H., Nodzu, M. I., and Hamada, A.: A 44-year daily
 gridded precipitation dataset for Asia based on a dense network of rain gauges, SOLA, 5, 137–140,
 doi:10.2151/sola.2009–035, 2009.
- Yüksel, A., Akay, A. E., and Gudogan, R.: Using ASTER imagery in land use/cover classification of eastern
 Mediterranean landscapes according to CORINE land cover project, Sensors, 8, 1237–1251,
 doi:10.3390/s8021287, 2008.
- 720 Zhang, G., Kang, S., Fujita, K., Huintjes, E., Xu, J., Yamazaki, T., Haginoya, S., Yang, W., Scherer, D.,
- Schneider, C., and Yao, T.: Energy and mass balance of the Zhadang Glacier surface, central Tibetan
 Plateau, J. Glaciol., 59, 137–148. doi:10.3189/2013JoG12J152, 2013.
- 723 Zhang, Y., Fujita, K., Liu, S., Liu, Q., and Nuimura, T.: Distribution of debris thickness and its effect on ice
- melt at Hailuogou Glacier, southeastern Tibetan Plateau, using in situ surveys and ASTER imagery, J.
- 725 Glaciol., 57, 1147–1157, doi: 10.3189/002214311798843331, 2011.
- 726

Table 1. Abbreviation, unit and value of parameters used in this study.

Parameter	Symbol	Unit	Value
Normalized difference water index	N_W	dimensionless	_
Normalized difference snow/ice index	N_S	dimensionless	_
Reflectance of band (<i>n</i>) of ASTER sensor	<i>r</i> _n	$W m^{-2}$	_
Thermal resistance	R_T	$m^2 K W^{-1}$	_
Debris thickness	h	m	_
Thermal conductivity of debris	λ	$m^{-1} K^{-1} W$	_
Downward short-wave radiation flux	H_{SR}	$W m^{-2}$	_
Downward long-wave radiation flux	H_{LR}	$W m^{-2}$	_
Sensible turbulent heat flux	H_S	$W m^{-2}$	_
Latent turbulent heat flux	H_L	$W m^{-2}$	_
Conductive heat flux through the debris layer	G_d	$W m^{-2}$	_
Conductive heat flux into the glacier ice	G_g	$W m^{-2}$	_
Heat for snow melting	Q_s	$W m^{-2}$	_
Heat for ice/snow melting of the debris-free glacier	Q_g	$W m^{-2}$	-
Stefan–Boltzmann constant	σ	$W m^{-2} K^{-4}$	5.67×10^{-8}
Emissivity in the Stefan–Boltzmann equation	ε	dimensionless	1.0
Specific heat of air	c_p	$\mathrm{J}~\mathrm{K}^{-1}~\mathrm{kg}^{-1}$	1006
Air density	$ ho_a$	kg m ⁻³	-
Bulk coefficient for debris surface	C_d	dimensionless	0.005
Bulk coefficient for snow-ice surface	C_s	dimensionless	0.002
Bulk coefficient for ice-free terrain	C_t	dimensionless	_
Latent heat of evaporation of water	l_e	$J kg^{-1}$	$2.5 imes 10^6$
Latent heat of fusion of ice	l_m	$J kg^{-1}$	3.33×10^5
Length of a day	t_{day}	sec	86,400
Air temperature	T_a	°C	_
Relative humidity	h_r	dimensionless	_
Wind speed at a 2-m height	U	$m s^{-1}$	_
Wind speed at a 10-m height	U_{10}	$m s^{-1}$	_
Roughness length	Z_0	m	0.1
Precipitation	P_p	mm w.e. day^{-1}	_
Snowfall	P_s	mm w.e. day^{-1}	_
Rainfall	P_r	mm day^{-1}	_
Surface temperature	T_s	°C	_
Temperature at the interface between debris and ice	T_i	°C	0.0
Saturated specific humidity	q	$kg kg^{-1}$	_
Wetness parameter for the debris	$ au_w$	dimensionless	_

Albedo of debris	$lpha_d$	dimensionless	-
Albedo of snow	α_s	dimensionless	_
Albedo of ice-free terrain	$lpha_w$	dimensionless	0.1
Albedo of firn	$lpha_{f}$	dimensionless	0.4
Albedo of the underlying surface	α_b	dimensionless	α_i or α_d
Albedo of glacier ice	α_i	dimensionless	0.2
Number of days after the latest fresh snow date	day	dimensionless	-
Extinction coefficient of snow	K	m^{-1}	30.0
Depth of snow layer	x	m	_
Melt of ice beneath the debris layer	M_d	mm w.e. day^{-1}	-
Snow melt	M_s	mm w.e. day^{-1}	_
Refrozen ice in snow layer	R_{f}	mm w.e. day^{-1}	_
Potential evaporation rate	E_p	mm w.e. day^{-1}	_
Runoff from debris covered glacier	D_d	mm day^{-1}	_
Runoff from debris-free glacier	D_g	mm day^{-1}	-
Runoff from ice-free terrain	D_t	mm day^{-1}	_
Runoff from lake	D_l	mm day^{-1}	_
Evaporation efficiency	β	dimensionless	-
Water stored in surface storage	W_a	mm	_
Maximum capacity of surface storage	W _{amax}	mm	5.0
Water stored in surface storage in the next day	W_n	mm	_
Water stored in internal storage	W_b	mm	_
Maximum capacity of internal storage	W _{bmax}	mm	500.0
Water stored in ground storage	W_{c}	mm	_
Inflow into internal storage	F_a	mm day ⁻¹	-
Outflow from internal storage	F_b	mm day^{-1}	_
Leakage from internal storage	F_{c}	mm day^{-1}	_
Leakage from ground storage	F_d	mm day^{-1}	-
Final runoff	F_{f}	mm day^{-1}	-
Leak rate from internal storage	k_b	dimensionless	0.3
Leak rate from ground storage	k_c	dimensionless	0.03
Fraction for leakage from the internal storage	r _c	dimensionless	0.8
Final runoff from debris-covered surface	R_d	mm day^{-1}	-
Final runoff from debris-free glacier	R_g	mm day^{-1}	-
Final runoff from ice-free terrain	R_t	mm day^{-1}	-
Final runoff from lake	R_l	mm day^{-1}	_

728 Note: "w.e." denotes water equivalent and "mm w.e." is equivalent to kg m^{-2} .

Table 2. Area, ratio of area, annual runoff, runoff contribution, and runoff depth of the Tsho Rolpa Glacial Lake–
Trambau Glacier basin for different surface types. Errors represent inter-annual variability calculated for the period
1979–2007 (28 years).

	Area	Ratio	Annual runoff	Contribution	Runoff depth
	(km^2)	(%)	(million m ³)	(%)	(mm)
Total	76.5	100.0	125.5 ± 12.7	100.0	1641 ± 166
Glacier	28.5	37.3	23.5 ± 7.9	18.7	825 ± 276
Debris	11.6	15.1	69.7 ± 6.1	55.5	6030 ± 529
Ground	34.9	45.6	31.2 ± 3.2	24.8	893 ± 91
Lake	1.5	2.0	1.2 ± 0.1	0.9	764 ± 72

- Table 3. Uncertainty in runoff due to thermal resistance (R_T) and albedo (α) , and topographical assumptions of debris-covered area of the Trambau Glacier. Influences are obtained by averaging anomalies from positive and negative cases (Eq. (33) in Section 4.1). Combinations of changes in both parameters in different directions were also tested $(+\delta R_T \text{ and } -\delta \alpha, -\delta R_T \text{ and } +\delta \alpha)$. Errors represent inter-annual variability calculated for the period 1979– 2007 (28 years).
- 741

Difference from control	Annual runoff	Change in percent	Annual runoff depth
	(million m ³)	(%)	(mm)
R_{Tave} , d α	-5.9 ± 1.0	-8.5	-511 ± 87
dR_T , α_{ave}	-3.6 ± 0.2	-5.2	-315 ± 17
Both change (dTR, d α)	-9.5 ± 1.2	-13.6	-820 ± 101
$+\delta R_T$ and $-\delta \alpha$	2.7 ± 0.8	3.9	237 ± 73
$-\delta R_T$ and $+\delta \alpha$	-1.7 ± 0.7	-2.4	-145 ± 60
No debris assumption	-2.0 ± 2.9	-2.9	-172 ± 254
Control (debris)	69.7 ± 6.1	(100.0)	6030 ± 529
No lake assumption*	15.5 ± 0.6	21.8	1183 ± 49
Control (debris+lake)*	70.8 ± 6.2	(100.0)	5420 ± 476

*Control variables for the no lake assumption are the summations of debris and lake.

743

Table 4. Uncertainty in runoff due to parameters used in the model of the Tsho Rolpa Glacial Lake–Trambau Glacier basin. Influences are obtained by changing

each parameter by $\pm 30\%$, averaged anomalies from positive and negative cases (Eq. (33)), and then expressed as percentage to the control values (Table 1). Nash-

747 Sutcliffe model efficiency coefficient (E_N) is obtained against the	e control calculation.
--	------------------------

Parameter	Control value	Total	Glacier	Debris	Ground	Lake	E_N
Albedo of glacier ice (α_i)	0.2	-1.3	-7.0	0.0	-	_	0.999
Albedo of firm (α_f)	0.4	-13.2	-46.0	-7.2	-2.3	—	0.965
Albedo of ice-free terrain (α_w)	0.1	0.0	-	_	0.2	—	1.000
Bulk coefficient for debris surface (C_d)	0.005	-0.6	-	-1.1	-	—	0.999
Bulk coefficient for snow-ice surface (C_s)	0.002	-1.6	-4.8	-0.6	-1.7	—	0.998
Bulk coefficient for ice-free terrain (C_t , Eq. (25))	N/A	0.0	-	_	-0.2	—	1.000
Wetness parameter for debris $(au_w, 0 \text{ or } 1)$	N/A	-1.7	-	-3.1	-	—	0.996
Maximum capacity of internal storage (W_{bmax})	500 mm	0.0	0.0	0.0	0.0	0.0	1.000
Leak rate from internal storage (k_b)	0.3	0.0	0.0	0.0	0.0	0.0	0.998
Leak rate from ground storage (k_c)	0.03	0.1	0.1	0.0	0.0	0.0	0.999
Fraction for leakage from internal storage (r_c)	0.8	0.2	0.2	0.1	0.2	0.2	0.980

Note: "N/A" denotes that no specific value is available because of given boundary conditions or parameterization. "-" denotes that parameter
setting does not affect result. Influence of wetness parameter was obtained by two extreme cases (0 and 1). Upper bound of fraction for the
leakage from the internal storage was set at 1.0.

Table 5. Annual runoff and runoff depth associated with the presence of ice in the Tsho Rolpa Glacial Lake–
Trambau Glacier basin. Errors represent inter-annual variability calculated for the period 1979–2007 (28 years).

	Annual runoff	Contribution	Annual runoff depth
	(million m ³)	(%)	(mm)
No ice assumption	71.9 ± 7.1	57.3	941 ± 93
Control (total)	125.5 ± 12.7	100.0	1641 ± 166
Difference	-60.2	-42.7	-788
Precipitation	78.5 ± 7.3	62.6	1027 ± 96

Table 6. Sensitivities of annual runoff (million m³) and runoff depth (mm) (parentheses) associated with changes in

air temperature (d T_a , 0.1°C) and precipitation (d P_p , 10% or 103 mm) for the Tsho Rolpa Glacial Lake–Trambau

Glacier basin. Also shown are sensitivities associated with inter-annual variability (δ , standard deviation) of air

temperature and precipitation calculated for the period 1979–2007 (28 years).

761

	dT_a (per 0.1°C)	dP_p (per 10%)	$\delta T_a (0.47^{\circ}\mathrm{C})$	δP_p (9.4%, 97 mm)
Total	3.5 (45)	-0.8 (-10)	16.4 (215)	-0.7 (-10)
Glacier	1.9 (67)	-3.1 (-110)	9.0 (315)	-2.9 (-103)
Debris	1.6 (139)	-1.2 (-101)	7.6 (656)	-1.1 (-95)
Ground	-0.03 (-1)	3.4 (97)	-0.2 (-5)	3.2 (92)
Lake	0.0 (0)	0.1 (76)	0.0 (0)	0.1 (72)

762

764765

Figure 1. Tsho Rolpa Glacial Lake–Trambau Glacier basin. (a) Catchment (green line) and (b) categorized surface features with thermal resistance of debris cover. Inset box shows locations of Kathmandu (KTM), Mt. Everest (EV), and the study site. Average thermal resistance is superimposed on the debris-covered area where available. Yellow cross in (a) denotes the location at which meteorological and hydrological observations were conducted in the 1990s. The background image is ASTER data taken in February 2006.

Figure 2. Hypsometry of the Tsho Rolpa Glacial Lake–Trambau Glacier basin categorized by surface features (Fig.1b).

777Figure 3. Schematic diagram of the bucket model used in this study (modified after Motoya and Kondo, 1999). 778Surface storage is used to calculate energy and water balance of the ice-free terrain (see the Sect. 2.3.3). Internal 779 and ground storages are used to calculate final daily runoffs for the individual components such as the 780debris-covered surface (R_d) , the debris-free glacier (R_g) , the ice-free terrain (R_l) , and the lake (R_l) .

Figure 4. Distributions of thermal resistance for individual ASTER scenes on the Trambau Glacier, which we used to generate the averaged thermal resistance for the calculations (Fig. 1b).

Figure 5. Distributions of thermal resistance in individual ASTER scenes on the Trambau Glacier, which were not used in the runoff calculations.

Figure 6. Scattergrams of (a) Thermal resistance (R_T) and (b) albedo of multi-temporal ASTER data against their averages, which are used to calculate ice melting under the debris-covered surface of the Trambau Glacier. Also shown are standard deviations (σ) of (c) thermal resistance (R_T) and (d) albedo.

- 796
- 797

798

Figure 7. Root mean square difference (D_{RMS} ; color shading) and Nash–Sutcliffe model efficiency coefficient (E_N , contour lines) of the model performance for the Tsho Rolpa Glacial Lake–Trambau Glacier basin calculated for the period 1993–1996 (location shown as yellow cross in Fig. 1a), as a function of precipitation ratio (horizontal axis) against the original Aphrodite precipitation and elevation gradient of precipitation (vertical axis). We adopt 55% as the precipitation ratio and 35% km⁻¹ as the elevation gradient of precipitation for subsequent analysis (thin dashed lines). The thick dashed line denotes the 74% precipitation ratio isoline for the whole basin.

Figure 8. Observed and calculated runoff at the outlet of the Tsho Rolpa Glacial Lake–Trambau Glacier basin for
the period 1993–1996 (location shown as yellow cross in Fig. 1a).

Figure 9. Seasonal cycles of (a) daily runoff and (b) daily runoff depth of the Tsho Rolpa Glacial Lake–Trambau Glacier basin calculated for the period 1979–2007 (28 years). Shading denotes inter-annual variability obtained for the same period. The inter-annual variability of runoff depth from the lake is not shown for better visibility in (b). Also shown is the seasonal cycle of precipitation averaged for the whole basin (thin red lines).

Figure 10. Elevations profiles of (a) annual runoff depth over debris-free glacier (Glacier) and debris-covered (Debris) surfaces, and of (b) responses under conditions of warming (air temperature increase 0.1°C) and wetting (precipitation increase 10%) of the Trambau Glacier calculated for the period 1979–2007 (28 years). Shading and error bars in (a) denote inter-annual variability for the same period.

822

Figure 11. (a) Response of annual runoffs to changing precipitation ration against the control condition and (b) seasonal cycles of total runoff (thick lines) and precipitation (thin dotted lines) in the two extreme cases of the Tsho Rolpa Glacial Lake–Trambau Glacier basin calculated for the period 1979–2007 (28 years). Response in (a) is described by the anomaly with respect to the control calculation.