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Abstract 26 

Estimating soil moisture typically involves calibrating models to sparse networks of in situ 27 

sensors, which introduces considerable error in locations where sensors are not available. We 28 

address this issue by calibrating parameters of a parsimonious soil moisture model, which 29 

requires only antecedent precipitation information, at gauged locations and then extrapolating 30 

these values to ungauged locations via a hydro-climatic classification system.  Fifteen sites 31 

within the soil climate analysis network (SCAN) containing multi-year time series data for 32 

precipitation and soil moisture are used to calibrate the model.  By calibrating at one of these 33 

fifteen sites and validating at another, we observe that the best results are obtained where 34 

calibration and validation occur within the same hydro-climatic class.  Additionally, soil texture 35 

data are tested for their importance in improving predictions between calibration and validation 36 

sites.  Results have the largest errors when calibration/validation pairs differ hydro-climatically 37 

and edaphically, improve when one of these two characteristics are aligned, and are strongest 38 

when the calibration and validation sites are hydro-climatically and edaphically similar. These 39 

findings indicate considerable promise for improving soil moisture estimation in ungauged 40 

locations by considering these similarities. 41 
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1.  Introduction 52 

Soil moisture estimates are needed routinely for many practical applications, such as irrigation 53 

scheduling and operation of farm machinery. They are typically produced either through remote 54 

sensing or sparse networks of in situ sensors.  Although recent remote sensing studies have 55 

confirmed that such measurements approximate in situ sensor networks (Jackson et al, 2012), 56 

satellite-based sensors provide measurements at a spatial resolution of several kilometers – too 57 

large for daily agricultural decision making.  On the other hand, in situ sensor networks produce 58 

values that are difficult to generalize to locations with no proximal sensors.   Under these 59 

circumstances, dynamic soil moisture evolution models are typically used for soil moisture 60 

estimation at the desired location, using information from the nearest available sensors. This 61 

method of soil moisture estimation immediately raises the issue regarding the type of model that 62 

is most appropriate for such an application. One could think of several different types of models 63 

that may be suitable.  64 

 The first group of soil moisture models considers only the variability of precipitation, as it 65 

has been shown that precipitation variability is the primary mechanism for wetting/drying 66 

(Entekhabi and Rodriguez-Iturbe, 1994).  Many subsequent models employed an “antecedent 67 

precipitation index” (API), defining a pre-established temporal window for antecedent rainfall.  68 

This index is then used to estimate current levels of soil moisture (Saxton and Lenz, 1967) and 69 

has been implemented with recession modeling for soil water in agriculture (Choudhury and 70 

Blanchard, 1983) and also in weather prediction (Wetzel and Chang, 1988).  Other precipitation-71 

focused approaches utilize stochastic models to estimate the distributions of soil moisture values 72 

using an initialization of daily rainfall (Farago, 1985).  Both the stochastic and API approaches 73 

require some initial condition for soil moisture at the forecast location – requiring either 74 

professional judgment or a sensor.  While these issues can be addressed using a soil water 75 

balance model, this type of model must be recalibrated frequently, which most soil moisture 76 

models are not, as its errors are cumulative (Jones, 2004).   77 

 The second group of models adopts a process-based approach, estimating soil moisture 78 

from surface radiation and precipitation (Capehart and Carlson, 1994).  These process-based 79 

models are typically forced by evapotranspiration demand and precipitation at their upper 80 

boundary and, if applicable, by groundwater at their lower boundary.  More sophisticated models 81 



 

 

of this type, such as HYDRUS (Simunek et al, 1998), attempt to improve predictions via detailed 82 

knowledge of hydraulic soil parameters, information regarding root structures, soil temperature 83 

readings, and detailed atmospheric/meteorological information, which are not widely available, 84 

especially for routine applications envisaged here.   85 

 The third group of models are agriculturally-focused, building model projections outward 86 

from existing instrumentation and additional measurements.  Gamache et al (2009) developed a 87 

soil drying model for which cone penetrometers and soil moisture sensors are required. At most 88 

remote sites, these data sources are not currently accessible.  Another similar approach employs 89 

specific soil type information (theoretically, publicly available data), but ultimately requires 90 

proximal sensors to provide the needed soil moisture estimates (Chico-Santamaria, et al, 2009).   91 

 Pan et al (2003) and Pan (2012) addressed many of the shortcomings of the existing 92 

modeling approaches reviewed above by developing what they called a “diagnostic soil moisture 93 

equation” (i.e., model) in the form of a partial differential equation representing the lumped 94 

water balance of a vertical soil column, and representing the soil moisture at any moment in time 95 

as a function of the sum of a temporally decaying sequence of observed past rainfall events.  The 96 

model has the advantage that initial soil moisture conditions are not required (only antecedent 97 

precipitation data), nor must the model be recalibrated periodically.  However, this approach 98 

does require a soil moisture sensor at the relevant location for initial calibration of the model’s 99 

parameters.  This method has the disadvantage that the presence of soil heterogeneity could 100 

necessitate a large number of sensors to account for the spatial variation of soil moisture (Pan 101 

and Peters-Lidard, 2008). Furthermore, decision support often requires estimation at locations 102 

lacking sensors. 103 

 The aim of this paper is to present and test an approach that can help overcome the issues 104 

of calibration at ungauged locations associated with the Pan et al. soil moisture estimation model.  105 

The proposed solution involves calibrating the Pan (2012) diagnostic soil moisture equation 106 

(model) at gauged sites and then extrapolating the calibrated model to ungauged sites by 107 

invoking similarity. Similarity here is defined on the basis of hydro-climatic characteristics, 108 

using a classification system developed by Coopersmith et al (2012),  as well as edaphic (soil) 109 

properties.  The proposed new scheme maintains the advantage of Pan et al.’s parsimonious soil 110 

moisture model in that it does not require specification of initial soil moisture condition, and also 111 



 

 

there is no need to recalibrate periodically.  The model’s simplicity also permits implementation 112 

of the model in a manner that can easily be refit with new parameters, where necessary. Section 113 

2 provides more details on the approach.    114 

 To calibrate and validate the model, data from the U.S. Department of Agriculture’s 115 

(USDA) Soil Climate Analysis Network (SCAN) were used.  This national array of soil moisture 116 

sensors (with co-located precipitation sensors) delivers hourly data at a variety of publically-117 

accessible sites throughout the United States.  Fifteen sensor locations with numerous years of 118 

high-quality, minimally-interrupted data were selected for further analysis.  These sites display 119 

considerable hydrologic diversity, which aids in demonstrating that the nationwide application of 120 

the proposed soil moisture model using precipitation data represents a feasible goal.  With 121 

respect to agricultural decision-support, for energy-limited sites, the value of hourly soil moisture 122 

estimates is found in the determination of whether or not a field is trafficable – whether heavy 123 

equipment will damage fields or become mired.   With respect to water-limited sites, the value of 124 

soil moisture estimates is found in devising optimal irrigation strategies that utilize limited water 125 

resources most efficiently.  Of the fifteen SCAN sites examined, the three sites in New Mexico, 126 

the site in Colorado, the site in Nebraska, the site in Wyoming, and the two in Iowa are all water-127 

limited (8 in total).  The remaining sites (7 in total), located in Pennsylvania (2), Arkansas, 128 

Georgia, South Carolina, North Carolina, and Virginia, are all energy-limited.  Results of the 129 

analysis are given in Section 3, followed by discussion in Section 4 to suggest further 130 

improvements and conclusions are presented in Section 5. 131 

2.  Methodology  132 

The proposed modeling approach involves four steps, summarized in Figure 1 and described in 133 

more detail in the sections below.  First, the diagnostic soil moisture model of Pan (2012) is 134 

calibrated at locations with ample data. Given that the focus of this study is on soil moisture 135 

estimation for agriculture, we only consider prediction during the growing season, which is 136 

appropriate given that the model does not address snow melt processes. Second, the predictions 137 

at these locations are improved using machine learning techniques for error correction.  Third, 138 

the classification system proposed by Coopersmith et al. (2012) is used to generalize the 139 

parameters calibrated at each location, enabling its application at other sites characterized by the 140 

same hydro-climatic class.  Fourth, sites are examined for edaphic (soil property) similarity in 141 



 

 

addition to hydro-climates.  The results of these four steps are then examined to identify which 142 

approach to regionalization performs best. 143 

 144 

Step 1: Calibration Using a Two-Layer Genetic Algorithm 145 

Unlike the original diagnostic soil moisture calibrations, the ultimate objective of this work is to 146 

enable agricultural decision support in near real time.  To this end, the daily model from Pan 147 

(2012) is first modified to yield an hourly model within the same framework.  Genetic algorithms 148 

are then deployed to calibrate the model, enabling more efficient exploration of the parameter 149 

search space than the traditional Monte Carlo search, which was the approach taken by Pan 150 

(2012). 151 

 Genetic algorithms (GAs), a subset of evolutionary algorithms, were originally developed 152 

by Barricelli (1963) and have become increasingly common in environmental and water 153 

resources applications, including the calibration of hydrologic model parameters (e.g., Cheng et 154 

al, 2006; Singh et al, 2008; Zhang et al, 2009).  155 

 In this work, a simple genetic algorithm uses the operations of selection, crossover, and 156 

mutation (for reference, see Goldberg 1989) to search for parameters that minimize prediction 157 

errors from the diagnostic soil moisture equation (Pan, 2012):  158 

 159 

                                                 (1) 160 

 161 

Here      represents the best estimate of soil moisture during a given hour.     denotes residual 162 

soil moisture, the minimum quantity of moisture that is present regardless of the length of time 163 

without precipitation.   , the soil’s porosity, signifies the maximum possible soil moisture value, 164 

at which point the soil becomes saturated.  Finally,    is a parameter related to conductivity and 165 

drainage properties, essentially defining the rate at which soil can dry.  If    assumes a value of 166 

zero, the soil is permanently at its residual soil moisture value,     - a soil that dries infinitely 167 

rapidly.  Conversely, as    becomes large, the soil will permanently assume the value of its 168 



 

 

porosity,    – a soil that dries infinitely slowly.  The   term in Equation 1 is calculated in 169 

Equation 2 below: 170 

 171 
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 173 

Here,    denotes the quantity of rainfall during hour   (day in the original presentation in Pan et 174 

al., 2003).  The soil depth at which an estimation occurs is given by  .  This convolution 175 

summation has a temporal window of   hours for considering past precipitation.  For instance, 176 

today’s soil moisture is strongly influenced by yesterday’s rainfall, influenced to a lesser degree 177 

by last week’s rainfall, and not influenced at all by rainfall from ten years previous.   Given the 178 

general limitation of our datasets and the fact that shallow-depth soil moisture is most relevant to 179 

decision-support, all of our analyses occur with measurements of two inch (~5cm) depth.  180 

 To choose the appropriate value for  , the value of   is calculated at each hour throughout 181 

the dataset – setting   to a very large value (2000 hours, denoted by  ) initially.  Next this “beta 182 

series” (where    ) is correlated with a separate beta series, calculated where    .  If the 183 

correlation coefficient between these two time series approaches unity, then the smaller value of 184 

  is selected.  Otherwise,   is increased incrementally until the correlation between the     185 

beta series and the     beta series approaches unity.  186 

 Finally, the estimated soil water loss at hour  , e.g. due to evapotranspiration or deep 187 

drainage, is expressed by the term,    .   As this algorithm does not presume any more detailed 188 

knowledge of potential evaporation/drainage behaviors, this “eta series,” representing losses due 189 

to evapotranspiration and deep drainage,  is modeled as a sinusoid (Pan, 2012) with period 8,760 190 

(the number of hours in a year).  The eta ( ) series is required to calculate the beta ( ) series (Eq. 191 

2), which is required to use the diagnostic soil moisture equation (Eq. 1).  Thus, before any other 192 

parameters are chosen, a generalized sinusoidal form of   is estimated as given in Equation 3: 193 

 194 



 

 

                                       (3) 195 

 196 

Here,   represents the sinusoid’s amplitude,   denotes the vertical shift, and   signifies the 197 

necessary phase shift.  These three parameters are fitted via the genetic algorithm such that the 198 

correlation between the beta series (using the eta series implied by  ,  , and  ) and the observed 199 

soil moisture series        is maximized.  Once values for the eta series are established, the 200 

remaining three parameters of Equation 1 (   ,   , and   ) are then fitted by a second application 201 

of the genetic algorithm, this time minimizing the sum of squared errors between the estimated 202 

soil moisture series        and the observed values       . 203 

 204 

 205 

Step 2: Error Correction Using The k-Nearest Neighbors Machine Learning Algorithm 206 

After the parameters of the diagnostic soil moisture equation (Eq. 1) have been calibrated, the 207 

hourly precipitation time series is used to generate a soil moisture time series during the growing 208 

season months of interest.  Discrepancies between the observed soil moisture values        and 209 

the estimated values       are computed as shown in Equation 4: 210 

 211 

                                    (4) 212 

 213 

where   represents the error associated with any hour’s soil moisture estimate.   214 

 To correct biases in these errors, the k-Nearest Neighbor algorithm (Fix and Hodges, 215 

1951) is employed to predict   using the characteristics from the training data.  More 216 

specifically, the data are searched for the most similar matches in terms of time of day, day of 217 

year,     ,     , and          .  For example, if the model returns a prediction of      218 

     at 2:00pm during July when rainfall has been heavy recently but drier over a longer period, 219 

KNN will search the training set for other estimates near 0.35 made on mid-summer afternoons 220 



 

 

where a similar recent rainfall pattern has been observed.  Next, the algorithm averages the value 221 

of the error,  , associated with those types of conditions, producing an estimated error,     .   222 

Each validation estimate is then adjusted to be          .This technique allows consistent 223 

model biases, such as underestimating wetter days and overestimating drier days, to be corrected.   224 

 This error correction model also accounts for diurnal soil moisture variations that were not 225 

considered in developing the diagnostic soil equation, which was designed to deliver daily soil 226 

moisture estimates.  Consider a soil moisture estimate at 4pm, after soil has had a full day of 227 

sunlight (theoretically) to dry.  As the diagnostic soil moisture equation only considers drainage 228 

and evapotranspiration losses on a daily basis,      will be larger than     .  Yet, because this 229 

type of mistake presumably occurred frequently throughout the training data, the algorithm will 230 

locate other 4pm estimates, each of which will be biased in the same direction, and our final soil 231 

moisture estimates will take this bias into account, improving the results as shown subsequently. 232 

To assess the performance of the soil moisture models with and without machine 233 

learning, an R
2
 value as defined in Eq. 5) is used, as this value represents the proportion of 234 

variance in soil moisture explained by the developed model. 235 

     
   

   
     (5) 236 

where     denotes the sum of squared residuals and the     term signifies the total sum of 237 

squares, i.e. the sample’s variance.                   238 

 239 

Step 3: Estimation by Hydro-climatic Similarity 240 

This step tests the hypothesis that the classification system by Coopersmith et al. (2012) can be 241 

used to generalize the calibrated parameters for the diagnostic soil moisture equation using 242 

hydro-climatic similarity.  If two locations are assigned the same hydro-climatic classification, 243 

then the calibrated parameters from one SCAN sensor within that class will be assumed to 244 

perform well at another. 245 

This hypothesis was tested at fifteen SCAN sensors for which soil moisture and 246 

precipitation data are available hourly for a period of several years.  These sensors are located in 247 



 

 

diverse geographic locations and hydro-climatic classes in Iowa, North Carolina, Pennsylvania, 248 

New Mexico, Arkansas, Georgia, Virginia, South Carolina, Nebraska, Colorado, and Wyoming.  249 

The data at each of these locations were divided into training/validation sets and parameters were 250 

calibrated using training data only.   Next, these parameters were employed on the validation sets 251 

at the locations for which they were calibrated.  The subsequent R
2
 values (proportion of 252 

variance in soil moisture explained by the machine-learning-enhanced diagnostic soil moisture 253 

equation, see Steel and Torrie, 1960, for reference) defined a baseline level of performance for 254 

that site.  255 

 The process of cross-validation is detailed below: 256 

1. Consider two sites,   and  , chosen from the fifteen available calibrated locations. 257 

2. Estimate the soil moisture values in the validation dataset of site  , using the parameters 258 

calibrated from the training dataset at site  .  259 

3. Record the difference between the R
2
 baseline value at site   (obtained using parameters 260 

calibrated at site  ) and the performance obtained at site   using parameters calibrated at 261 

site  . 262 

4. Repeat steps 1-3 for all 210 possible       pairs where     263 

Note:       and       are not equivalent.  One signifies the performance of parameters 264 

calibrated at site   making predictions at site  , the other signifies the performance of 265 

parameters calibrated at site   making predictions at site  . 266 

 267 

At this point, three types of       pairs emerge.  If the hypothesis is correct, then the first 268 

type, when   and   fall within the same hydro-climatic class, should display limited losses in 269 

predictive power.  The second type, when   and   fall within a “similar” hydro-climatic class 270 

(two classes differing by a single division of the classification tree developed in Coopersmith et 271 

al., 2012) should display greater losses of predictive power.  Finally, the third type, when   and 272 

  fall in two unrelated classes, should display the largest loss of predictive power.   273 

 274 

Step 4: Estimation by Hydro-climatic and Edaphic Similarity 275 



 

 

The final step extends the hypothesis proposed in Step 3 by evaluating the impacts of soil texture 276 

and type on soil moisture predictive power.  The fifteen sites from the SCAN network are 277 

examined based upon the soil textural information available from the Pedon soil reports that 278 

SCAN provides, as well as data from NRCS’s soil survey database
1
.  279 

 This information allows sites already deemed hydro-climatically similar to be further sub-280 

divided into sites that are and are not edaphically similar.   Analogous to the previous section, we 281 

consider pairs of sites,   and  , where parameters are calibrated at site   and validated at site  .  282 

In this case, four groups can be defined – the first, where   and   and hydroclimatically similar, 283 

the second, where   and   are hydroclimatically similar, but differ edaphically, the third, where 284 

  and   are edaphically similar, but differ hydroclimatically, and finally, where   and   are 285 

hydro-climatically and edaphically dissimilar.   286 

 287 

3. Results 288 

This section begins by presenting the results of the machine learning approach used in error 289 

correction during the initial calibration step (Section 3.1).  Next, Section 3.2 presents results for 290 

the hydro-climatic similarity analysis, illustrating the performance of calibration/validation pairs 291 

within the same class and without.  Finally, Section 3.3 shows how the predictive power 292 

improves when both hydro-climatic and edaphic similarity are considered.  293 

 294 

3.1 Testing the Value of Machine Learning Error Correction for Soil Moisture Prediction 295 

Using the Diagnostic Soil Moisture Equation 296 

Figure 2 shows the performance of the calibrated parameters for the 15 SCAN sites using only 297 

the diagnostic soil moisture equation (Step 1 of the methodology) along with the subsequent 298 

improvement in performance following machine learning error correction (Step 2). In each case, 299 

the six parameters required for the implementation of the diagnostic soil moisture equation are 300 

calibrated using training data from before 2010.  Sensors with hourly precipitation and soil 301 

                                                           
1
 http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx 



 

 

moisture time series data between 2004 and 2009 (inclusive) provide four to six years of training 302 

data (some sites are missing one or two years of data).  Only days of the year where snow cover 303 

is unlikely are used to train the algorithm (from the 100th to 300th day of the year in all 304 

locations, for consistency).  Validation data consist of days 100-300 for 2010 and 2011. 305 

The results illustrate that in all fifteen test cases, performance within the validation 306 

sample is improved by machine learning modeling of residuals from the training set, in some 307 

cases, as much as 26.9% of the unexplained variance (site 2091) in soil moisture is corrected 308 

from by this technique.  The average results (far right column, Fig. 2) illustrate that the 309 

diagnostic soil moisture equation explains just 69.2% of the variance in soil moisture (ρ = 0.83) 310 

before machine learning corrections occur, but explains 77.5% of the variance in soil moisture (ρ 311 

= 0.88) thereafter. 312 

To explore these findings in more detail, three of the 15 SCAN sites, chosen to represent 313 

different hydro-climatic locations – New Mexico (#2015, hydroclimate IAQ/southwestern  314 

desert, Loamy Sand), Iowa (#2068, hydroclimate ISCJ/northern midwest plains, Silty Clay 315 

Loam), and Georgia (#2013, hydroclimate LWC/southeastern forest, Sandy Loam) are examined 316 

to illustrate how improvements from adding machine learning error models to the diagnostic soil 317 

moisture equation differ across sites.  These three sites represent three distinct hydro-climatic 318 

classes, with significant differences in soil texture, seasonality of precipitation, aridity, timing of 319 

maximum precipitation, and timing of maximum runoff.  Using error correction models for 320 

prediction at these sites increased R2-values by an average of 8.2%, which is similar to the 8.3% 321 

improvement in R2 averaged across all fifteen sites.  Thus, these three locations are 322 

representative in terms of both hydro-climatic and edaphic diversity and their responsiveness to 323 

machine learning.  324 

The base soil moisture model results from applying Step 1 at the three sites are displayed 325 

in Figures 3-5. These predictions are shown with the results produced by deploying the machine 326 

learning algorithm (KNN) in Step 2 to remove bias and correct errors.  In each image, the blue 327 

line represents the observed soil moisture readings, the red line represents the estimates 328 

generated by the diagnostic soil moisture equation, and the green line represents those 329 

predictions after the machine learning algorithm has removed biases and corrected errors.  Soil 330 

moisture values (y-axis) are presented as volumetric percentage (0-100).  331 



 

 

In Figure 3, the diagnostic soil moisture equation is able to trace the general trend of the 332 

soil moisture time series (ρ = 0.860).  However, during the middle of the time series, in which 333 

the observed soil moisture values fall below 5%, the benefits of machine learning error 334 

correction are most noteworthy.  There are other hours scattered throughout the dataset where the 335 

green line (ML prediction) follows the blue line (observed values) much more closely than the 336 

red line (diagnostic soil moisture equation).  The green line (ρ = 0.917) not only improves upon 337 

the correlation value of Pearson’s Rho (the square root of the R
2
 value in Eq. 5), but also displays 338 

marked improvement for those cases in which the diagnostic soil moisture equation produces 339 

significant errors.   340 

 During the validation period, specifically 2010, wetter conditions were observed than 341 

were present during calibration.  At this SCAN site, before 2010, the average soil moisture value 342 

observed was 28.55%, with only 25% of values exceeding 35% volumetric soil moisture.  343 

However, in 2010, the average soil moisture value measured was 33.16% with 45% of values 344 

exceeding 35%.  The machine learning driven error correction improves the diagnostic soil 345 

moisture equation (ρ = 0.846) significantly (ρ = 0.915), but fails to raise its forecasts to reach 346 

some of the wetter conditions experienced in validation.  Underestimations of this nature, 347 

although detrimental in terms of numerical errors, are not necessarily a problem for decision 348 

support of agricultural or construction activities, for example.  If a model warns that a site is very 349 

wet and in reality, it is even wetter than predicted, the user has still been given adequate warning 350 

not to attempt activity at that site.   It is important to note that small errors are more significant in 351 

terms of decision support (specifically when and where to irrigate) during dry conditions.  352 

Generally, the model’s errors are smaller, in absolute terms, during drier conditions.  This 353 

analysis’s approach to error correction, as it relies on previous errors to predict future errors, will 354 

not address long-term trends within the soil moisture record. 355 

 In Figure 5, a soil moisture series from Georgia is modeled by the diagnostic soil 356 

moisture equation.  Even before adding any error correction, the equation performs well (ρ = 357 

0.936) and the machine learning approach yields a smaller improvement (ρ = 0.941).  It is worth 358 

noting that machine learning does not damage an already excellent performance, offering slight 359 

improvements when possible and essentially no correction when training data suggest the model 360 

has already performed adequately. 361 



 

 

Table 1 presents all fifteen sites for which the diagnostic soil moisture equation has been 362 

calibrated, including information regarding their hydroclimatic class from Coopersmith et al 363 

(2012), their soil textural characteristics, and their performance before and after the KNN bias 364 

correction process.   365 

3.2  Bias Correction – More Detailed Results 366 

In addition to generalizing the parameters calibrated in the diagnostic soil moisture 367 

equation, the error correction approach allows for systematic biases to be removed by searching 368 

training data for similar conditions and then predicting the types of mistakes most likely to occur.  369 

Figure 6, by zooming in upon a 30-day period from Figure 2, illustrates how machine learning 370 

reduces errors by introducing a diurnal cycle into a model that previously lacked one.  The 371 

remaining bias is likely explained by a slightly wetter training dataset as compared with the 372 

validation data.  It is possible that the diurnal cycle at some locations reflects a soil moisture 373 

probe’s dependency on electromagnetic properties driven by temperature change (apparent 374 

permittivity) rather than hydrologic processes (Rosenbaum et al, 2011).  However, the model’s 375 

ability to respond to these nuances would not compromise its performance were these nuances 376 

subsequently removed. 377 

Any corrective algorithm will, over thousands of validation points, push the estimate 378 

away from the observed value in some cases.  However, the results from Table 1 demonstrate 379 

that its overall performance represents an improvement at all sites, and thereby justifies its use.  380 

Regarding the issue of ‘measurement artifacts,’ whether the diurnal cycle is genuine or an 381 

idiosyncratic sensor output, the model is tasked with calibrating itself and correcting biases as 382 

defined by the empirically-reported data.  Figure 6 illustrates its ability to do so.  Were the 383 

sensors to no longer report such a diurnal pattern (i.e. it is merely a measurement artifact, and 384 

subsequently corrected), the machine learning step would no longer observe those biases, and 385 

consequently, no longer introduce such a pattern.  The accuracy of the SCAN network is a 386 

relevant inquiry, but unfortunately, not within the scope of this paper. 387 

By addressing such systematic biases, machine learning enables model performance to 388 

improve with each successive growing season as the training dataset expands.  For instance, 389 

although the fields in Iowa endured flooding during the validation period and subsequently made 390 

errors, such errors would eventually populate the training data.  The next time such flooding 391 



 

 

occurs, the model is likely to recognize the occurrence of those same conditions and adjust the 392 

diagnostic soil moisture equation’s predictions accordingly.  In this vein, model performance is 393 

likely to improve over time, especially with the models already showing reasonable accuracy 394 

using only a few years of training data. 395 

Figure 7, 8, and 9 present these results in more detail for each of the three SCAN sites 396 

presented in Figures 3, 4, and 5.  In each figure, the upper-left image presents the average bias 397 

correction (change in % soil moisture) for each hour of the day (0-23).   At all three sites, bias 398 

corrections display a clear diurnal pattern – that is to say the removal of a diurnal cycle is a 399 

substantial role of machine learning under a variety of hydroclimatic and edaphic conditions.  400 

The upper-right image of each figure presents the bias correction as a function of the unadjusted 401 

soil moisture estimate – essentially, whether there exists a systemic over- or underestimation 402 

when values are high or low.  403 

The first two sites (Figures 7 and 8) do not present a clear pattern, but Figure 9 displays a 404 

trend suggesting that the highest estimates of soil moisture tend to be overestimates and the 405 

lowest estimates of soil moisture tend to be underestimates – but these biases are removed via 406 

machine learning.  The lower-left image presents bias correct as a function of the day of the year 407 

(from 100-300, the days of the year when the model is applied).  At all three sites, the seasonal 408 

cycle does appear in terms of the patterns of bias correction, but the pattern is noisier than the 409 

diurnal cycle.  The magnitude of the adjustments are largest in the monsoon-affected desert of 410 

New Mexico, a bit smaller in the Midwestern plains characterized by less extreme seasonal 411 

behavior, and smallest in the Southeast where seasonal variations are low.   412 

Finally, the lower-right image relates bias correction to the beta series from the diagnostic soil 413 

moisture equation (Pan, 2012), a convolution of a decaying precipitation time series working 414 

backwards temporally from the current time.  Stated differently, these charts relate bias 415 

correction to the amount of antecedent precipitation (with more recent precipitation weighted 416 

more heavily).   In Figure 7 (Plains, Silty Clay Loam), the model tends to underestimate moisture 417 

when large quantities of antecedent rainfall are present, where in Figure 9 (Woods, Sandy 418 

Loam), once antecedent precipitation becomes non-trivial, displays the opposite pattern.  This is 419 

consistent with the finer Midwestern soils’ proclivity for ponding/flooding due to larger 420 

proportions of clay.  In these cases, larger amounts of rain will soak soils from above, and 421 

capillary rise might further soak sensors from below, leading to underestimation from the 422 



 

 

diagnostic soil moisture equation and subsequent machine learning correction.  By contrast, with 423 

sandier soils, drainage occurs easily, leading to higher rates of loss than the eta series (Pan, 2012) 424 

would predict (there is more available water to lose), leading to overestimation with large 425 

amounts of antecedent rainfall. 426 

3.3 Cross-Validation Results for Hydro-climatic Similarity: Qualitative Findings and 427 

Significance Testing 428 

To test the hypothesis that models calibrated in one location can be used in a hydro-climatically 429 

similar location, cross-validation was used as described in Step 3 of Section 2. The fifteen SCAN 430 

sites yield 15
2
 = 225 possible       pairs.  Fifteen of these 225 pairs occur when    , 431 

establishing the baseline level of performance for a given site (validation performed using the 432 

parameters calibrated at that same location).  Of the 210 remaining       pairs, 120 of them 433 

consist of paired catchments in which   and   are located in unrelated classes, 60 consist of 434 

paired catchments in which   and   are located in a “similar” class (different by a single split 435 

within the classification tree), and 30 consist of paired catchments in which   and   fall within 436 

the same hydroclimatic class (but   and   do not represent the same catchment).  Figure 10 437 

presents box plots illustrating the change in R
2
 values for these three sets of pairs in a manner 438 

analogous to the differences shown in Figure 2.  Table 2 presents the quantitative results, again 439 

averaging the deterioration of performance in terms of change in R
2
.   440 

These findings show that calibrating the model at one location and applying those 441 

parameters elsewhere within the same class (green) is preferable to applying those parameters in 442 

a similar, but not identical class (yellow) and vastly superior to applying those parameters in an 443 

unrelated class (red).  The differences between any two clusters (same-class, similar-class, 444 

unrelated class) are all significant at the α = 0.01 level (p < .001 in all cases) as calculated by a 445 

two-sample, heteroscedastic t-test (Welch, 1947).   446 

 447 

3.4  Impact of Soils: Cross-validation Results for Edaphic and Hydro-climatic Similarity 448 

To isolate the impacts of soil types (edaphic similarity) on soil moisture prediction, 449 

groups of sensor locations among the 15 SCAN sites that are hydro-climatically similar were 450 



 

 

analyzed, shown in Figure 11.  The soil textural data for each of these fifteen sensors are plotted 451 

on a soil texture pyramid diagram in Figure 12.  These data were obtained from either Pedon Soil 452 

Reports available through the SCAN network (which provide precise percentages of clay, silt, 453 

and sand), or, where this information was unavailable, from soil information in the national soil 454 

Web database
2
.    455 

Of the thirteen sensors from the four hydro-climatic classes with multiple SCAN sensors 456 

(light green, blue, dark green, and brown in Figures 11 and 12), 30 (x, y) pairs exist where the 457 

model can be calibrated at site x and its parameters applied at site y.  Note that (x, y) is not 458 

equivalent to (y, x) as the sites for calibration and validation are reversed.  Of these 30 pairs, 20 459 

pairs are edaphically similar as well.  However, 10 of them include a pair of points where the soil 460 

types or terrain types are notably misaligned (for example, light green dots in Figure 12 where 461 

two of the three sensors are in silty clay loam and the third is in sandy loam– a notably different 462 

soil).  A similar analysis to the one presented in Figure 10 and Table 2 has been reproduced, 463 

comparing the loss in predictive power (R
2
) for the 20 pairs with similar hydro-climates and soils 464 

against the loss for the 10 pairs in which either the soil texture (Figure 12) or type do not align.  465 

The average loss of 1.0% for the 20 very similar pairs is a much smaller decline than the 8.0% 466 

average decline observed for the 10 pairs for which soil/terrain information suggests 467 

dissimilarity.  These results are significant with a p-value of approximately 0.02.  Additionally, 468 

the upper-most two green dots in Figure 10, where calibrated parameters at one location perform 469 

poorly at another of similar hydro-climatic class, fall within these 10 cases. 470 

These observations show the importance of soil information, or edaphic similarity. While 471 

pairs of calibration/validation locations with similar hydro-climates, but dissimilar soils, show a 472 

decline in performance as compared with pairs of locations where both are similar, so too do 473 

locations with similar soils, but dissimilar hydro-climates.  The shaded circles in Figure 12 474 

illustrate groups of sensors that are quite similar in terms of soil textures.  However, despite their 475 

soil similarities, differences in hydro-climates hinder cross-application, showing a decline in 476 

performance of 10.9% for all (x, y) pairs within the shaded regions of Figure 12 for which x and 477 

y are not from the same hydro-climatic class.   478 

                                                           
2
 http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx 



 

 

As summarized in Figure 13, these results suggest that in cases where both soil type and 479 

hydro-climate align, very little performance is lost when parameters are re-applied (1.0%), 480 

moderate declines in performance are observed when one of these two factors are aligned (8.0% 481 

if hydro-climates align and soil types do not; 10.9% if soil types align, but hydro-climates do 482 

not), and large declines in performance appear when neither align (20.5%).  Clearly both types of 483 

attributes are important and should be considered in future modeling work in which the relative 484 

importance of hydroclimates and soil textures can be examined in greater detail. 485 

 486 

4. Discussion: Future Work to Improve Predictions 487 

This section discusses other approaches that could be used in the future to improve and broaden 488 

the applicability of the methods developed in this work.  First, we will consider micro-489 

topographic effects on soil moisture, as local peaks and valleys can cause soils to dry more or 490 

less rapidly.  Second, we will discuss a conceptual omission within the diagnostic soil moisture 491 

equation – infiltration excess.  Finally, we will discuss the role of future satellite data on soil 492 

moisture modeling. 493 

 4.1 Estimates Enhanced By Topographic Classification 494 

Ultimately, the combination of a hydro-climatic classification system and the diagnostic soil 495 

moisture equation demonstrates a generalization of calibrations, facilitating predictions at any 496 

location where a viable sensor exists within a similar hydro-climatic class and soil type.  497 

However, the lumped, bucket model is not ideally-suited for landscapes with complex 498 

topography.  Conveniently, the majority of SCAN sites are placed on relatively flat surfaces.  499 

Integration of topographic insights is a fertile area for future research.  One possible approach to 500 

further improving predictive accuracy is to disaggregate the soil moisture estimates as a function 501 

of local topography.  While SCAN sites used for soil moisture data are generally located on flat 502 

surfaces, predictions may be needed at locations located on ridges or in valleys where the soils 503 

are likely to be wetter or drier than their surroundings.  This requires the notion of regional 504 

topological classification.   In this manner, the notion of similarity is extended to include hydro-505 

climatology, soil characteristics, and topographic designation (ridge, slope, valley, etc).   506 

Preliminary analyses suggest that small-scale topography does play a meaningful role in the 507 



 

 

wetting/drying process.  Future research with more extensive datasets in locations with more 508 

complex topological contours could improve soil moisture predictions by enabling the models 509 

developed in this work to be adjusted as a function of local topographic classification. 510 

 511 

4.2 An Enhanced Diagnostic Soil Moisture Equation 512 

The diagnostic soil moisture equation could also be improved in future modeling efforts by 513 

considering overland and subsurface flows, specifically in areas characterized by more complex 514 

topography.  Currently, the model assumes that, in the absence of saturation, all rainfall will 515 

ultimately infiltrate, as the porosity parameter serves as an upper bound on soil moisture levels.  516 

The diagnostic soil moisture equation was designed originally as a daily model, and it is 517 

probably rare that on any given day, a significant fraction of precipitation does not infiltrate.  518 

However, at the hourly scale it is quite possible that the water from an intense rainfall event will 519 

not make its way into the soil at the location of the sensor.  To address this lateral transfer 520 

phenomenon, additional parameters can be introduced into the diagnostic soil moisture equation 521 

that place an upper bound on the quantity of rainfall that can be infiltrated during any hour (or 522 

other interval) of the convolution calculation for any particular soil type.  Agricultural decision-523 

support includes trafficability when wet (Coopersmith et al, 2014) and irrigation support when 524 

dry.  While overland flow is perhaps an unneeded component in water-limited catchments where 525 

irrigation schemes represent the most significant soil-moisture-related decision, in wetter 526 

catchments, in which trafficability is a real concern, such an addition could improve the model.  527 

While this approach would require the fitting of additional parameters, it is likely that predictions 528 

would be improved. These additional parameters could also be considered in assessing cross-site 529 

edaphic similarity using the methods described above, although they may be highly correlated 530 

with existing parameters such as porosity, residual soil moisture, and drainage.   531 

 532 

4.3 Water Balance Models and Up-Scaling 533 

The diagnostic soil moisture equation used in this paper (Pan et al, 2003; Pan, 2012) was an 534 

appropriate choice due to its ability to generate soil moisture estimates without the need for 535 



 

 

knowledge of antecedent soil moisture conditions.  Koster and Mahanama (2012) and Orth et al. 536 

(2013) have developed approaches to estimate soil moisture at the watershed scale by leveraging 537 

hydroclimatic variability and long-term streamflow measurements in a water-balance model – 538 

also without employing previous soil moisture conditions.  If the parameters calibrated and then 539 

generalized in this work produce point estimates of soil moisture at a diversity of locations, 540 

integration with a water balance approach could help with the up-scaling process. 541 

   542 

5.  Conclusions 543 

This work has demonstrated the feasibility of estimating soil moisture at locations where soil 544 

moisture sensors are unavailable for calibration, provided they fall within hydro-climatically and 545 

edaphically similar areas to gauged locations.  By calibrating the diagnostic soil moisture 546 

equation via a two-part genetic algorithm, improving its performance via a machine learning 547 

algorithm for error correction, then validating that algorithm at the same location in subsequent 548 

years, a baseline level of predictive performance is established at fifteen locations.  Next, these 549 

results are cross-validated – deploying parameters calibrated at a given site at sites of similar and 550 

different hydro-climatic classes, demonstrating that parameters can be re-applied elsewhere 551 

within the same class, but not without.  Finally, by incorporating edaphic information, we 552 

observe the strongest cross-validation results when hydro-climatic and edaphic characteristics 553 

align.  As only 24 hydro-climatic classes describe the entire nation (and only 6 describe a 554 

significant majority), it is entirely possible that a couple dozen well-placed soil moisture sensors 555 

can enable reasonably accurate soil moisture modeling at any location within the continental 556 

United States.  557 

 It is likely that the types of errors made when parameters are cross-applied between sites 558 

of different hydroclimates will differ from the types of errors that appear when the sites differ 559 

edaphically.  Further research extending beyond model performance into the specific conditions 560 

under which models perform less effectively along with the magnitude and bias of those errors 561 

would be highly illustrative for future researchers. 562 

 This analysis can improve agricultural decision-support by offering insight into locations 563 

that can benefit from targeted irrigation in drier conditions, or conversely, by minimizing risks of 564 



 

 

ruts and damaged equipment when fields are no longer trafficable during wetter conditions.  565 

Scaling the results of these models upward can assist with larger-scale assessments of flood risks 566 

or as calibration/validation tools for satellite estimates of soil moisture.  Scaling these results 567 

downward can help maximize yields.  Given the ubiquity of precipitation data, which are the 568 

only inputs these models require, better understanding of the transferability of modeled 569 

parameters is a step towards far wider availability of soil moisture estimates. 570 

Leveraging these findings, the discussion section also presented the results of preliminary 571 

analysis that illustrates how further improvements in soil moisture predictions could be gained 572 

by disaggregating based on local topography.  This would enable more accurate predictions at 573 

sites characterized by peaks and valleys that dry faster or slower than the relatively flat locations 574 

at which soil moisture algorithms are generally calibrated. Incorporating overland flow into the 575 

diagnostic soil moisture equation and integrating satellite data into the approach could also 576 

improve predictions in the future.   577 

 578 

 579 

 580 

 581 

Figure 1, Methodological flow chart 582 



 

 

 583 
Figure 2, Improvements from machine learning (KNN) models of residuals.   584 

 585 

Figure 3, Soil Moisture Time Series, SCAN Site 2015, New Mexico (USA), Actual Soil 586 

Moisture (Blue Line), Diagnostic Soil Moisture Equation Estimate (Red Line), and 587 

Diagnostic Soil Moisture Equation with Machine Learning Error Correction (Green Line).  588 

Hydroclimate: IAQ (Intermediate Seasonality, Arid, Summer Peak Runoff)   589 

Soil Texture: Loamy Sand 590 

 591 

 592 



 

 

 593 

Figure 4, SM Time Series, SCAN Site 2068, Iowa (USA), line colors from Fig. 3 594 

Hydroclimate: ISCJ (Intermediate Seasonality, Semi-Arid, Winter Peak Runoff, Summer 595 

Peak Precipitation)   596 

Soil Texture: Silty Clay Loam 597 

 598 

 599 

 600 

Figure 5, SM Time Series, SCAN Site 2013, Georgia (USA), line colors from Fig. 3  601 

Actual Soil Moisture (Blue Line), Diagnostic Soil Moisture Equation Estimate (Red Line), 602 

and Diagnostic Soil Moisture Equation with ML Error Correction (Green Line) 603 

Hydroclimate: LWC (Low Seasonality, Winter Peak Precipitation, Winter Peak Runoff) 604 

Soil Texture: Sandy Loam 605 



 

 

 606 

Figure 6, Soil Moisture Time Series, SCAN Site 2015, New Mexico (USA), Actual Soil 607 

Moisture (Blue Line), Diagnostic Soil Moisture Equation Estimate (Red Line), and 608 

Diagnostic Soil Moisture Equation with Machine Learning Error Correction (Green Line) 609 

 610 

 611 
Figure 7, Bias Correction Analysis, SCAN Site 2015 (IAQ, Desert, Loamy Sand) 612 

 613 



 

 

 614 

Figure 8, Bias Correction Analysis, SCAN Site 2068 (ISCJ, Plains, Silty Clay Loam) 615 

 616 

 617 
 618 

Figure 9, Bias Correction Analysis, SCAN Site 2013 (LWC, Woods, Sandy Loam) 619 

 620 

 621 



 

 

 622 

 Figure 10, Loss of Predictive Power (R
2
) (y-axis) Between Baseline Predictions (model 623 

calibrated in the same watershed) and Cross-Validation Predictions (model calibrated in 624 

other watersheds) 625 

 626 

 627 



 

 

Figure 11, 428 MOPEX catchments colored by hydro-climatic class (Coopersmith et al, 2012).   

15 SCAN sensors (for which the Diagnostic Soil Moisture Equation is calibrated) are shown as colored circles.   

Circle colors correspond to the hydro-climatic class of the point in question. 

Circles with dotted borders are unique (no other sensor for calibration is available within that class 

135 



 

 

Figure 12, The 15 SCAN sensors, color-coded to match their hydro-climatic class, with 

similar soil textures shaded. 

 



 

 

 
Figure 13 Venn-Diagram of Modeling Errors with Similar and Different Soils and Hydro-climates 

  
 

Table 1, The Fifteen SCAN Sites: Class & Soil Information and Performance 

SiteID
Hydro-

climate
Soil Information RMSE

RMSE 

w/ KNN
R2 R2         

w/ KNN

2008 LJ Sandy Loam 8.38 7.69 0.590 0.726

2013 LWC Sandy Loam 2.16 2.06 0.876 0.885

2015 IAQ Loamy Sand 3.29 2.37 0.740 0.841

2017 ISQJ Sandy Loam 3.62 3.27 0.637 0.701

2018 IAQ Loamy Sand* 2.23 2.16 0.803 0.828

2028 LPC Loam 4.89 4.71 0.707 0.738

2031 ISQJ Silty Clay Loam 5.46 6.00 0.687 0.750

2036 LPC Silt Loam 4.61 3.95 0.635 0.726

2038 LJ Sandy Loam 4.81 4.51 0.546 0.584

2068 ISCJ Silty Clay Loam 5.28 4.03 0.716 0.837

2089 LJ Sandy Loam 6.7 6.31 0.682 0.697

2091 LPC Silt 8.12 6.89 0.539 0.808

2107 IAQ Loamy Sand 1.98 1.85 0.790 0.843

2108 IAQ Loamy Sand/Sand 1.26 1.12 0.828 0.863

2111 ISQJ Silty Clay Loam 5.38 5.01 0.607 0.796

*Not similar to other sandy soils, see Figure 9. 



 

 

 

 

  

Table 2, Cross-Validation Results 

Unrelated Class Similar Class Same Class

Median -10.5% -7.3% -0.8%

Mean -13.7% -7.7% -3.4%

Standard Deviation 1.0% 1.1% 1.4%
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