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Abstract 26 

Estimating soil moisture typically involves calibrating models to sparse networks of in situ 27 

sensors, which introduces considerable error in locations where sensors are not available. We 28 

address this issue by calibrating parameters of a parsimonious soil moisture model, which 29 

requires only antecedent precipitation information, at gauged locations and then extrapolating 30 

these values to ungauged locations via a hydro-climatic classification system.  Fifteen sites 31 

within the soil climate analysis network (SCAN) containing multi-year time series data for 32 

precipitation and soil moisture are used to calibrate the model.  By calibrating at one of these 33 

fifteen sites and validating at another, we observe that the best results are obtained where 34 

calibration and validation occur within the same hydro-climatic class.  Additionally, soil texture 35 

data are tested for their importance in improving predictions between calibration and validation 36 

sites.  Results have the largest errors when calibration/validation pairs differ hydro-climatically 37 

and edaphically, improve when one of these two characteristics are aligned, and are strongest 38 

when the calibration and validation sites are hydro-climatically and edaphically similar. These 39 

findings indicate considerable promise for improving soil moisture estimation in ungauged 40 

locations by considering these similarities. 41 
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1.  Introduction 52 

Soil moisture estimates are needed routinely for many practical applications, such as irrigation 53 

scheduling and operation of farm machinery. They are typically produced either through remote 54 

sensing or sparse networks of in situ sensors.  Although recent remote sensing studies have 55 

confirmed that such measurements approximate in situ sensor networks (Jackson et al, 2012), 56 

satellite-based sensors provide measurements at a spatial resolution of several kilometers – too 57 

large for daily agricultural decision making.  On the other hand, in situ sensor networks produce 58 

values that are difficult to generalize to locations with no proximal sensors.   Under these 59 

circumstances, dynamic soil moisture evolution models are typically used for soil moisture 60 

estimation at the desired location, using information from the nearest available sensors. This 61 

method of soil moisture estimation immediately raises the issue regarding the type of model that 62 

is most appropriate for such an application. One could think of several different types of models 63 

that may be suitable.  64 

 The first group of soil moisture models considers only the variability of precipitation, as it 65 

has been shown that precipitation variability is the primary mechanism for wetting/drying 66 

(Entekhabi and Rodriguez-Iturbe, 1994).  Many subsequent models employed an “antecedent 67 

precipitation index” (API), defining a pre-established temporal window for antecedent rainfall.  68 

This index is then used to estimate current levels of soil moisture (Saxton and Lenz, 1967) and 69 

has been implemented with recession modeling for soil water in agriculture (Choudhury and 70 

Blanchard, 1983) and also in weather prediction (Wetzel and Chang, 1988).  Other precipitation-71 

focused approaches utilize stochastic models to estimate the distributions of soil moisture values 72 

using an initialization of daily rainfall (Farago, 1985).  Both the stochastic and API approaches 73 

require some initial condition for soil moisture at the forecast location – requiring either 74 

professional judgment or a sensor.  While these issues can be addressed using a soil water 75 

balance model, this type of model must be recalibrated frequently, which most soil moisture 76 

models are not, as its errors are cumulative (Jones, 2004).   77 

 The second group of models adopts a process-based approach, estimating soil moisture 78 

from surface radiation and precipitation (Capehart and Carlson, 1994).  These process-based 79 

models are typically forced by evapotranspiration demand and precipitation at their upper 80 

boundary and, if applicable, by groundwater at their lower boundary.  More sophisticated models 81 



 

 

of this type, such as HYDRUS (Simunek et al, 1998), attempt to improve predictions via detailed 82 

knowledge of hydraulic soil parameters, information regarding root structures, soil temperature 83 

readings, ionic chemistry, CO2 concentrations, solute transport data, and detailed 84 

atmospheric/meteorological information, which are not widely available, especially for routine 85 

applications envisaged here.   86 

 The third group of models are agriculturally-focused, building model projections outward 87 

from existing instrumentation and additional measurements.  Gamache et al (2009) developed a 88 

soil drying model for which cone penetrometers and soil moisture sensors are required. At most 89 

remote sites, these data sources are not currently accessible.  Another similar approach employs 90 

specific soil type information (theoretically, publicly available data), but ultimately requires 91 

proximal sensors to provide the needed soil moisture estimates (Chico-Santamaria, et al, 2009).   92 

 Pan et al (2003) and Pan 2012 addressed many of the shortcomings of the existing 93 

modeling approaches reviewed above by developing what they called a “diagnostic soil moisture 94 

equation” (i.e., model) in the form of a partial differential equation representing the lumped 95 

water balance of a vertical soil column, and representing the soil moisture at any moment in time 96 

as a function of the sum of a temporally decaying sequence of observed past rainfall events.  The 97 

model has the advantage that initial soil moisture conditions are not required (only antecedent 98 

precipitation data), nor must the model be recalibrated periodically.  However, this approach 99 

does require a soil moisture sensor at the relevant location for initial calibration of the model’s 100 

parameters.  This method has the disadvantage that the presence of soil heterogeneity could 101 

necessitate a large number of sensors to account for the spatial variation of soil moisture (Pan 102 

and Peters-Lidard, 2008). Furthermore, decision support often requires estimation at locations 103 

lacking sensors. 104 

 The aim of this paper is to present and test an approach that can help overcome the issues 105 

of calibration at ungauged locations associated with the Pan et al. soil moisture estimation model.  106 

The proposed solution involves calibrating the Pan (2012) diagnostic soil moisture equation 107 

(model) at gauged sites and then extrapolating the calibrated model to ungauged sites by 108 

invoking similarity. Similarity here is defined on the basis of hydro-climatic characteristics, 109 

using a classification system developed by Coopersmith et al (2012),  as well as edaphic (soil) 110 

properties.  The proposed new scheme maintains the advantage of Pan et al.’s parsimonious soil 111 



 

 

moisture model in that it does not require specification of initial soil moisture condition, and also 112 

there is no need to recalibrate periodically.  The model’s simplicity also permits implementation 113 

of the model in a manner that can easily be refit with new parameters, where necessary. Section 114 

2 provides more details on the approach.    115 

 To calibrate and validate the model, we use data from the U.S. Department of 116 

Agriculture’s (USDA) Soil Climate Analysis Network (SCAN).  This national array of soil 117 

moisture sensors (with co-located precipitation sensors) delivers hourly data at a variety of 118 

publically-accessible sites throughout the United States.  Fifteen sensor locations with numerous 119 

years of high-quality, minimally-interrupted data were selected for further analysis.  These sites 120 

display considerable hydrologic diversity, which aids in demonstrating that the nationwide 121 

application of the proposed soil moisture model using precipitation data represents a feasible 122 

goal.  With respect to agricultural decision-support, for energy-limited sites, the value of hourly 123 

soil moisture estimates is found in the determination of whether or not a field is trafficable – 124 

whether heavy equipment will damage fields or become mired.   With respect to water-limited 125 

sites, the value of soil moisture estimates is found in devising optimal irrigation strategies that 126 

utilize limited water resources most efficiently.  Of the fifteen SCAN sites examined, the three 127 

sites in New Mexico, the site in Colorado, the site in Nebraska, the site in Wyoming, and the two 128 

in Iowa are all water-limited (8 in total).  The remaining sites (7 in total), located in Pennsylvania 129 

(2), Arkansas, Georgia, South Carolina, North Carolina, and Virginia, are all energy-limited.  130 

Results of the analysis are given in Section 3, followed by discussion in Section 4 to suggest 131 

further improvements and conclusions are presented in Section 5. 132 

2.  Methodology  133 

The proposed modeling approach involves four steps, summarized in Figure 1 and described in 134 

more detail in the sections below.  First, the diagnostic soil moisture model of Pan (2012) is 135 

calibrated at locations with ample data. Given that the focus of this study is on soil moisture 136 

estimation for agriculture, we only consider prediction during the growing season, which is 137 

appropriate given that the model does not address snow melt processes. Second, the predictions 138 

at these locations are improved using machine learning techniques for error correction.  Third, 139 

the classification system proposed by Coopersmith et al. (2012) is used to generalize the 140 

parameters calibrated at each location, enabling its application at other sites characterized by the 141 



 

 

same hydro-climatic class.  Fourth, sites are examined for edaphic (soil property) similarity in 142 

addition to hydro-climates.  The results of these four steps are then examined to identify which 143 

approach to regionalization performs best. 144 

 145 

Step 1: Calibration Using a Two-Layer Genetic Algorithm 146 

Unlike the original diagnostic soil moisture calibrations, the ultimate objective of this work is to 147 

enable agricultural decision support in near real time.  To this end, the daily model from Pan 148 

(2012) is first modified to yield an hourly model within the same framework.  Genetic algorithms 149 

are then deployed to calibrate the model, enabling more efficient exploration of the parameter 150 

search space than the traditional Monte Carlo search, which was the approach taken by Pan 151 

(2012). 152 

 Genetic algorithms (GAs), a subset of evolutionary algorithms, were originally developed 153 

by Barricelli (1963) and have become increasingly common in environmental and water 154 

resources applications, including the calibration of hydrologic model parameters (e.g., Cheng et 155 

al, 2006; Singh et al, 2008; Zhang et al, 2009).  156 

 In this work, a simple genetic algorithm uses the operations of selection, crossover, and 157 

mutation (for reference, see Goldberg 1989) to search for parameters that minimize prediction 158 

errors from the diagnostic soil moisture equation (Pan, 2012):  159 

 160 

                                                 (1) 161 

 162 

Here      represents the best estimate of soil moisture during a given hour.     denotes residual 163 

soil moisture, the minimum quantity of moisture that is present regardless of the length of time 164 

without precipitation.   , the soil’s porosity, signifies the maximum possible soil moisture value, 165 

at which point the soil becomes saturated.  Finally,    is a parameter related to conductivity and 166 

drainage properties, essentially defining the rate at which soil can dry.  If    assumes a value of 167 

zero, the soil is permanently at its residual soil moisture value,     - a soil that dries infinitely 168 



 

 

rapidly.  Conversely, as    becomes large, the soil will permanently assume the value of its 169 

porosity,    – a soil that dries infinitely slowly.  The   term in Equation 1 is calculated in 170 

Equation 2 below: 171 

 172 
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 174 

Here,    denotes the quantity of rainfall during hour   (day in the original presentation in Pan et 175 

al.).  The soil depth at which an estimation occurs is given by  .  This convolution summation 176 

has a temporal window of   hours for considering past precipitation.  For instance, today’s soil 177 

moisture is strongly influenced by yesterday’s rainfall, influenced to a lesser degree by last 178 

week’s rainfall, and not influenced at all by rainfall from ten years previous.   Given the general 179 

limitation of our datasets and the fact that shallow-depth soil moisture is most relevant to 180 

decision-support, all of our analyses occur with measurements of two inch (~5cm) depth.  181 

 To choose the appropriate value for  , the value of   is calculated at each hour throughout 182 

the dataset – setting   to a very large value (2000 hours, denoted by  ) initially.  Next this “beta 183 

series” (where    ) is correlated with a separate beta series, calculated where    .  If the 184 

correlation coefficient between these two time series approaches unity, then the smaller value of 185 

  is selected.  Otherwise,   is increased incrementally until the correlation between the     186 

beta series and the     beta series approaches unity.  187 

 Finally, the estimated soil water loss at hour  , e.g. due to evapotranspiration or deep 188 

drainage, is expressed by the term,    .   As this algorithm does not presume any more detailed 189 

knowledge of potential evaporation/drainage behaviors, this “eta series,” representing losses due 190 

to evapotranspiration and deep drainage,  is modeled as a sinusoid (Pan, 2012) with period 8,760 191 

(the number of hours in a year).  The eta ( ) series is required to calculate the beta ( ) series (Eq. 192 

2), which is required to use the diagnostic soil moisture equation (Eq. 1).  Thus, before any other 193 

parameters are chosen, a generalized sinusoidal form of   is estimated as given in Equation 3: 194 

 195 



 

 

                                       (3) 196 

 197 

Here,   represents the sinusoid’s amplitude,   denotes the vertical shift, and   signifies the 198 

necessary phase shift.  These three parameters are fitted via the genetic algorithm such that the 199 

correlation between the beta series (using the eta series implied by  ,  , and  ) and the observed 200 

soil moisture series        is maximized.  Once values for the eta series are established, the 201 

remaining three parameters of Equation 1 (   ,   , and   ) are then fitted by a second application 202 

of the genetic algorithm, this time minimizing the sum of squared errors between the estimated 203 

soil moisture series        and the observed values       . 204 

 205 

 206 

Step 2: Error Correction Using The k-Nearest Neighbors Machine Learning Algorithm 207 

After the parameters of the diagnostic soil moisture equation (Eq. 1) have been calibrated, the 208 

hourly precipitation time series is used to generate a soil moisture time series during the growing 209 

season months of interest.  Discrepancies between the observed soil moisture values        and 210 

the estimated values       are computed as shown in Equation 4: 211 

 212 

                                    (4) 213 

 214 

where   represents the error associated with any hour’s soil moisture estimate.   215 

 To correct biases in these errors, the k-Nearest Neighbor algorithm (Fix and Hodges, 216 

1951) is employed to predict   using the characteristics from the training data.  More 217 

specifically, the data are searched for the most similar matches in terms of time of day, day of 218 

year,     ,     , and          .  For example, if the model returns a prediction of      219 

     at 2:00pm during July when rainfall has been heavy recently but drier over a longer period, 220 

KNN will search the training set for other estimates near 0.35 made on mid-summer afternoons 221 



 

 

where a similar recent rainfall pattern has been observed.  Next, the algorithm averages the value 222 

of the error,  , associated with those types of conditions, producing an estimated error,     .   223 

Each validation estimate is then adjusted to be          .This technique allows consistent 224 

model biases, such as underestimating wetter days and overestimating drier days, to be corrected.   225 

 This error correction model also accounts for diurnal soil moisture variations that were not 226 

considered in developing the diagnostic soil equation, which was designed to deliver daily soil 227 

moisture estimates.  Consider a soil moisture estimate at 4pm, after soil has had a full day of 228 

sunlight (theoretically) to dry.  As the diagnostic soil moisture equation only considers drainage 229 

and evapotranspiration losses on a daily basis,      will be larger than     .  Yet, because this 230 

type of mistake presumably occurred frequently throughout the training data, the algorithm will 231 

locate other 4pm estimates, each of which will be biased in the same direction, and our final soil 232 

moisture estimates will take this bias into account, improving the results as shown subsequently. 233 

To assess the performance of the soil moisture models with and without machine 234 

learning, an R
2
 value as defined in Eq. 5) is used, as this value represents the proportion of 235 

variance in soil moisture explained by the developed model. 236 

     
   

   
     (5) 237 

where     denotes the sum of squared residuals and the     term signifies the total sum of 238 

squares, i.e. the sample’s variance.                   239 

 240 

Step 3: Estimation by Hydro-climatic Similarity 241 

This step tests the hypothesis that the classification system by Coopersmith et al. (2012) can be 242 

used to generalize the calibrated parameters for the diagnostic soil moisture equation using 243 

hydro-climatic similarity.  If two locations are assigned the same hydro-climatic classification, 244 

then the calibrated parameters from one SCAN sensor within that class will be assumed to 245 

perform well at another. 246 

This hypothesis was tested at fifteen SCAN sensors for which soil moisture and 247 

precipitation data are available hourly for a period of several years.  These sensors are located in 248 



 

 

diverse geographic locations and hydro-climatic classes in Iowa, North Carolina, Pennsylvania, 249 

New Mexico, Arkansas, Georgia, Virginia, South Carolina, Nebraska, Colorado, and Wyoming.  250 

The data at each of these locations were divided into training/validation sets and parameters were 251 

calibrated using training data only.   Next, these parameters were employed on the validation sets 252 

at the locations for which they were calibrated.  The subsequent R
2
 values (proportion of 253 

variance in soil moisture explained by the machine-learning-enhanced diagnostic soil moisture 254 

equation, see Steel and Torrie, 1960, for reference) defined a baseline level of performance for 255 

that site.  256 

 The process of cross-validation is detailed below: 257 

1. Consider two sites,   and  , chosen from the fifteen available calibrated locations. 258 

2. Estimate the soil moisture values in the validation dataset of site  , using the parameters 259 

calibrated from the training dataset at site  .  260 

3. Record the difference between the R
2
 baseline value at site   (obtained using parameters 261 

calibrated at site  ) and the performance obtained at site   using parameters calibrated at 262 

site  . 263 

4. Repeat steps 1-3 for all 210 possible       pairs where     264 

Note:       and       are not equivalent.  One signifies the performance of parameters 265 

calibrated at site   making predictions at site  , the other signifies the performance of 266 

parameters calibrated at site   making predictions at site  . 267 

 268 

At this point, three types of       pairs emerge.  If the hypothesis is correct, then the first 269 

type, when   and   fall within the same hydro-climatic class, should display limited losses in 270 

predictive power.  The second type, when   and   fall within a “similar” hydro-climatic class 271 

(two classes differing by a single division of the classification tree developed in Coopersmith et 272 

al., 2012) should display greater losses of predictive power.  Finally, the third type, when   and 273 

  fall in two unrelated classes, should display the largest loss of predictive power.   274 

 275 

Step 4: Estimation by Hydro-climatic and Edaphic Similarity 276 



 

 

The final step extends the hypothesis proposed in Step 3 by evaluating the impacts of soil texture 277 

and type on soil moisture predictive power.  The fifteen sites from the SCAN network are 278 

examined based upon the soil textural information available from the Pedon soil reports that 279 

SCAN provides, as well as data from NRCS’s soil survey database
1
.  280 

 This information allows sites already deemed hydro-climatically similar to be further sub-281 

divided into sites that are and are not edaphically similar.   Analogous to the previous section, we 282 

consider pairs of sites,   and  , where parameters are calibrated at site   and validated at site  .  283 

In this case, four groups can be defined – the first, where   and   and hydroclimatically similar, 284 

the second, where   and   are hydroclimatically similar, but differ edaphically, the third, where 285 

  and   are edaphically similar, but differ hydroclimatically, and finally, where   and   are 286 

hydro-climatically and edaphically dissimilar.   287 

 288 

3. Results 289 

This section begins by presenting the results of the machine learning approach used in error 290 

correction during the initial calibration step (Section 3.1).  Next, Section 3.2 presents results for 291 

the hydro-climatic similarity analysis, illustrating the performance of calibration/validation pairs 292 

within the same class and without.  Finally, Section 3.3 shows how the predictive power 293 

improves when both hydro-climatic and edaphic similarity are considered.  294 

 295 

3.1 Testing the Value of Machine Learning Error Correction for Soil Moisture Prediction 296 

Using the Diagnostic Soil Moisture Equation 297 

Figure 2 shows the performance of the calibrated parameters for the 15 SCAN sites using only 298 

the diagnostic soil moisture equation (Step 1 of the methodology) along with the subsequent 299 

improvement in performance following machine learning error correction (Step 2). In each case, 300 

the six parameters required for the implementation of the diagnostic soil moisture equation are 301 

calibrated using training data from before 2010.  Sensors with hourly precipitation and soil 302 

                                                             
1 http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx 



 

 

moisture time series data between 2004 and 2009 (inclusive) provide four to six years of training 303 

data (some sites are missing one or two years of data).  Only days of the year where snow cover 304 

is unlikely are used to train the algorithm (from the 100th to 300th day of the year in all 305 

locations, for consistency).  Validation data consist of days 100-300 for 2010 and 2011. 306 

The results illustrate that in all fifteen test cases, performance within the validation 307 

sample is improved by machine learning modeling of residuals from the training set, in some 308 

cases, as much as 26.9% of the unexplained variance (site 2091) in soil moisture is corrected 309 

from by this technique.  The average results (far right column, Fig. 2) illustrate that the 310 

diagnostic soil moisture equation explains just 69.2% of the variance in soil moisture (ρ = 0.83) 311 

before machine learning corrections occur, but explains 77.5% of the variance in soil moisture (ρ 312 

= 0.88) thereafter. 313 

To explore these findings in more detail, three of the 15 SCAN sites, chosen to represent 314 

different hydro-climatic locations – New Mexico (#2015, hydroclimate IAQ/southwestern  315 

desert, Loamy Sand), Iowa (#2068, hydroclimate ISCJ/northern midwest plains, Silty Clay 316 

Loam), and Georgia (#2013, hydroclimate LWC/southeastern forest, Sandy Loam) are examined 317 

to illustrate how improvements from adding machine learning error models to the diagnostic soil 318 

moisture equation differ across sites.  These three sites represent three distinct hydro-climatic 319 

classes, with significant differences in soil texture, seasonality of precipitation, aridity, timing of 320 

maximum precipitation, and timing of maximum runoff.  Using error correction models for 321 

prediction at these sites increased R2-values by an average of 8.2%, which is similar to the 8.3% 322 

improvement in R2 averaged across all fifteen sites.  Thus, these three locations are 323 

representative in terms of both hydro-climatic and edaphic diversity and their responsiveness to 324 

machine learning.  325 

The base soil moisture model results from applying Step 1 at the three sites are displayed 326 

in Figures 3-5. These predictions are shown with the results produced by deploying the machine 327 

learning algorithm (KNN) in Step 2 to remove bias and correct errors.  In each image, the blue 328 

line represents the observed soil moisture readings, the red line represents the estimates 329 

generated by the diagnostic soil moisture equation, and the green line represents those 330 

predictions after the machine learning algorithm has removed biases and corrected errors.  Soil 331 

moisture values (y-axis) are presented as volumetric percentage (0-100).  332 



 

 

In Figure 3, the diagnostic soil moisture equation is able to trace the general trend of the 333 

soil moisture time series (ρ = 0.860).  However, during the middle of the time series, in which 334 

the observed soil moisture values fall below 5%, the benefits of machine learning error 335 

correction are most noteworthy.  There are other hours scattered throughout the dataset where the 336 

green line (ML prediction) follows the blue line (observed values) much more closely than the 337 

red line (diagnostic soil moisture equation).  The green line (ρ = 0.917) not only improves upon 338 

the correlation value of Pearson’s Rho (the square root of the R
2
 value in Eq. 5), but also displays 339 

marked improvement for those cases in which the diagnostic soil moisture equation produces 340 

significant errors.   341 

 During the validation period, specifically 2010, wetter conditions were observed than 342 

were present during calibration.  At this SCAN site, before 2010, the average soil moisture value 343 

observed was 28.55%, with only 25% of values exceeding 35% volumetric soil moisture.  344 

However, in 2010, the average soil moisture value measured was 33.16% with 45% of values 345 

exceeding 35%.  The machine learning driven error correction improves the diagnostic soil 346 

moisture equation (ρ = 0.846) significantly (ρ = 0.915), but fails to raise its forecasts to reach 347 

some of the wetter conditions experienced in validation.  Underestimations of this nature, 348 

although detrimental in terms of numerical errors, are not necessarily a problem for decision 349 

support of agricultural or construction activities, for example.  If a model warns that a site is very 350 

wet and in reality, it is even wetter than predicted, the user has still been given adequate warning 351 

not to attempt activity at that site.   It is important to note that small errors are more significant in 352 

terms of decision support (specifically when and where to irrigate) during dry conditions.  353 

Generally, the model’s errors are smaller, in absolute terms, during drier conditions.  This 354 

analysis’s approach to error correction, as it relies on previous errors to predict future errors, will 355 

not address long-term trends within the soil moisture record. 356 

 In Figure 5, a soil moisture series from Georgia is modeled by the diagnostic soil 357 

moisture equation.  Even before adding any error correction, the equation performs well (ρ = 358 

0.936) and the machine learning approach yields a smaller improvement (ρ = 0.941).  It is worth 359 

noting that machine learning does not damage an already excellent performance, offering slight 360 

improvements when possible and essentially no correction when training data suggest the model 361 

has already performed adequately. 362 



 

 

Table 1 presents all fifteen sites for which the diagnostic soil moisture equation has been 363 

calibrated, including information regarding their hydroclimatic class from Coopersmith et al 364 

(2012), their soil textural characteristics, and their performance before and after the KNN bias 365 

correction process.   366 

3.2  Bias Correction – More Detailed Results 367 

In addition to generalizing the parameters calibrated in the diagnostic soil moisture 368 

equation, the error correction approach allows for systematic biases to be removed by searching 369 

training data for similar conditions and then predicting the types of mistakes most likely to occur.  370 

Figure 6, by zooming in upon a 30-day period from Figure 2, illustrates how machine learning 371 

reduces errors by introducing a diurnal cycle into a model that previously lacked one.  The 372 

remaining bias is likely explained by a slightly wetter training dataset as compared with the 373 

validation data.  It is possible that the diurnal cycle at some locations reflects a soil moisture 374 

probe’s dependency on electromagnetic properties driven by temperature change (apparent 375 

permittivity) rather than hydrologic processes (Rosenbaum et al, 2011).  However, the model’s 376 

ability to respond to these nuances would not compromise its performance were these nuances 377 

subsequently removed. 378 

Any corrective algorithm will, over thousands of validation points, push the estimate 379 

away from the observed value in some cases.  However, the results from Table 1 demonstrate 380 

that its overall performance represents an improvement at all sites, and thereby justifies its use.  381 

Regarding the issue of ‘measurement artifacts,’ whether the diurnal cycle is genuine or an 382 

idiosyncratic sensor output, the model is tasked with calibrating itself and correcting biases as 383 

defined by the empirically-reported data.  Figure 6 illustrates its ability to do so.  Were the 384 

sensors to no longer report such a diurnal pattern (i.e. it is merely a measurement artifact, and 385 

subsequently corrected), the machine learning step would no longer observe those biases, and 386 

consequently, no longer introduce such a pattern.  The accuracy of the SCAN network is a 387 

relevant inquiry, but unfortunately, not within the scope of this paper. 388 

By addressing such systematic biases, machine learning enables model performance to 389 

improve with each successive growing season as the training dataset expands.  For instance, 390 

although the fields in Iowa endured flooding during the validation period and subsequently made 391 

errors, such errors would eventually populate the training data.  The next time such flooding 392 



 

 

occurs, the model is likely to recognize the occurrence of those same conditions and adjust the 393 

diagnostic soil moisture equation’s predictions accordingly.  In this vein, model performance is 394 

likely to improve over time, especially with the models already showing reasonable accuracy 395 

using only a few years of training data. 396 

Figure 7, 8, and 9 present these results in more detail for each of the three SCAN sites 397 

presented in Figures 3, 4, and 5.  In each figure, the upper-left image presents the average bias 398 

correction (change in % soil moisture) for each hour of the day (0-23).   At all three sites, bias 399 

corrections display a clear diurnal pattern – that is to say the removal of a diurnal cycle is a 400 

substantial role of machine learning under a variety of hydroclimatic and edaphic conditions.  401 

The upper-right image of each figure presents the bias correction as a function of the unadjusted 402 

soil moisture estimate – essentially, whether there exists a systemic over- or underestimation 403 

when values are high or low.  404 

The first two sites (Figures 7 and 8) do not present a clear pattern, but Figure 9 displays a 405 

trend suggesting that the highest estimates of soil moisture tend to be overestimates and the 406 

lowest estimates of soil moisture tend to be underestimates – but these biases are removed via 407 

machine learning.  The lower-left image presents bias correct as a function of the day of the year 408 

(from 100-300, the days of the year when the model is applied).  At all three sites, the seasonal 409 

cycle does appear in terms of the patterns of bias correction, but the pattern is noisier than the 410 

diurnal cycle.  The magnitude of the adjustments are largest in the monsoon-affected desert of 411 

New Mexico, a bit smaller in the Midwestern plains characterized by less extreme seasonal 412 

behavior, and smallest in the Southeast where seasonal variations are low.   413 

Finally, the lower-right image relates bias correction to the beta series from the diagnostic soil 414 

moisture equation (Pan, 2012), a convolution of a decaying precipitation time series working 415 

backwards temporally from the current time.  Stated differently, these charts relate bias 416 

correction to the amount of antecedent precipitation (with more recent precipitation weighted 417 

more heavily).   In Figure 7 (Plains, Silty Clay Loam), the model tends to underestimate moisture 418 

when large quantities of antecedent rainfall are present, where in Figure 9 (Woods, Sandy 419 

Loam), once antecedent precipitation becomes non-trivial, displays the opposite pattern.  This is 420 

consistent with the finer Midwestern soils’ proclivity for ponding/flooding due to larger 421 

proportions of clay.  In these cases, larger amounts of rain will soak soils from above, and 422 

capillary rise might further soak sensors from below, leading to underestimation from the 423 



 

 

diagnostic soil moisture equation and subsequent machine learning correction.  By contrast, with 424 

sandier soils, drainage occurs easily, leading to higher rates of loss than the eta series (Pan, 2012) 425 

would predict (there is more available water to lose), leading to overestimation with large 426 

amounts of antecedent rainfall. 427 

3.3 Cross-Validation Results for Hydro-climatic Similarity: Qualitative Findings and 428 

Significance Testing 429 

To test the hypothesis that models calibrated in one location can be used in a hydro-climatically 430 

similar location, cross-validation was used as described in Step 3 of Section 2. The fifteen SCAN 431 

sites yield 15
2
 = 225 possible       pairs.  Fifteen of these 225 pairs occur when    , 432 

establishing the baseline level of performance for a given site (validation performed using the 433 

parameters calibrated at that same location).  Of the 210 remaining       pairs, 120 of them 434 

consist of paired catchments in which   and   are located in unrelated classes, 60 consist of 435 

paired catchments in which   and   are located in a “similar” class (different by a single split 436 

within the classification tree), and 30 consist of paired catchments in which   and   fall within 437 

the same hydroclimatic class (but   and   do not represent the same catchment).  Figure 10 438 

presents box plots illustrating the change in R
2
 values for these three sets of pairs in a manner 439 

analogous to the differences shown in Figure 2.  Table 2 presents the quantitative results, again 440 

averaging the deterioration of performance in terms of change in R
2
.   441 

These findings show that calibrating the model at one location and applying those 442 

parameters elsewhere within the same class (green) is preferable to applying those parameters in 443 

a similar, but not identical class (yellow) and vastly superior to applying those parameters in an 444 

unrelated class (red).  The differences between any two clusters (same-class, similar-class, 445 

unrelated class) are all significant at the α = 0.01 level (p < .001 in all cases) as calculated by a 446 

two-sample, heteroscedastic t-test (Welch, 1947).   447 

 448 

3.4  Impact of Soils: Cross-validation Results for Edaphic and Hydro-climatic Similarity 449 

To isolate the impacts of soil types (edaphic similarity) on soil moisture prediction, 450 

groups of sensor locations among the 15 SCAN sites that are hydro-climatically similar were 451 



 

 

analyzed, shown in Figure 11.  The soil textural data for each of these fifteen sensors are plotted 452 

on a soil texture pyramid diagram in Figure 12.  These data were obtained from either Pedon Soil 453 

Reports available through the SCAN network (which provide precise percentages of clay, silt, 454 

and sand), or, where this information was unavailable, from soil information in the national soil 455 

Web database
2
.    456 

Of the thirteen sensors from the four hydro-climatic classes with multiple SCAN sensors 457 

(light green, blue, dark green, and brown in Figures 11 and 12), 30 (x, y) pairs exist where the 458 

model can be calibrated at site x and its parameters applied at site y.  Note that (x, y) is not 459 

equivalent to (y, x) as the sites for calibration and validation are reversed.  Of these 30 pairs, 20 460 

pairs are edaphically similar as well.  However, 10 of them include a pair of points where the soil 461 

types or terrain types are notably misaligned (for example, light green dots in Figure 12 where 462 

two of the three sensors are in silty clay loam and the third is in sandy loam– a notably different 463 

soil).  A similar analysis to the one presented in Figure 10 and Table 2 has been reproduced, 464 

comparing the loss in predictive power (R
2
) for the 20 pairs with similar hydro-climates and soils 465 

against the loss for the 10 pairs in which either the soil texture (Figure 12) or type do not align.  466 

The average loss of 1.0% for the 20 very similar pairs is a much smaller decline than the 8.0% 467 

average decline observed for the 10 pairs for which soil/terrain information suggests 468 

dissimilarity.  These results are significant with a p-value of approximately 0.02.  Additionally, 469 

the upper-most two green dots in Figure 10, where calibrated parameters at one location perform 470 

poorly at another of similar hydro-climatic class, fall within these 10 cases. 471 

These observations show the importance of soil information, or edaphic similarity. While 472 

pairs of calibration/validation locations with similar hydro-climates, but dissimilar soils, show a 473 

decline in performance as compared with pairs of locations where both are similar, so too do 474 

locations with similar soils, but dissimilar hydro-climates.  The shaded circles in Figure 12 475 

illustrate groups of sensors that are quite similar in terms of soil textures.  However, despite their 476 

soil similarities, differences in hydro-climates hinder cross-application, showing a decline in 477 

performance of 10.9% for all (x, y) pairs within the shaded regions of Figure 12 for which x and 478 

y are not from the same hydro-climatic class.   479 

                                                             
2 http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx 



 

 

As summarized in Figure 13, these results suggest that in cases where both soil type and 480 

hydro-climate align, very little performance is lost when parameters are re-applied (1.0%), 481 

moderate declines in performance are observed when one of these two factors are aligned (8.0% 482 

if hydro-climates align and soil types do not; 10.9% if soil types align, but hydro-climates do 483 

not), and large declines in performance appear when neither align (20.5%).  Clearly both types of 484 

attributes are important and should be considered in future modeling work in which the relative 485 

importance of hydroclimates and soil textures can be examined in greater detail. 486 

 487 

4. Discussion: Future Work to Improve Predictions 488 

This section discusses other approaches that could be used in the future to improve and broaden 489 

the applicability of the methods developed in this work.  First, we will consider micro-490 

topographic effects on soil moisture, as local peaks and valleys can cause soils to dry more or 491 

less rapidly.  Second, we will discuss a conceptual omission within the diagnostic soil moisture 492 

equation – infiltration excess.  Finally, we will discuss the role of future satellite data on soil 493 

moisture modeling. 494 

 4.1 Estimates Enhanced By Topographic Classification 495 

Ultimately, the combination of a hydro-climatic classification system and the diagnostic soil 496 

moisture equation demonstrates a generalization of calibrations, facilitating predictions at any 497 

location where a viable sensor exists within a similar hydro-climatic class and soil type.  498 

However, the lumped, bucket model is not ideally-suited for landscapes with complex 499 

topography.  Conveniently, the majority of SCAN sites are placed on relatively flat surfaces.  500 

Integration of topographic insights is a fertile area for future research.  One possible approach to 501 

further improving predictive accuracy is to disaggregate the soil moisture estimates as a function 502 

of local topography.  While SCAN sites used for soil moisture data are generally located on flat 503 

surfaces, predictions may be needed at locations located on ridges or in valleys where the soils 504 

are likely to be wetter or drier than their surroundings.  This requires the notion of regional 505 

topological classification.   In this manner, the notion of similarity is extended to include hydro-506 

climatology, soil characteristics, and topographic designation (ridge, slope, valley, etc).   507 

Preliminary analyses suggest that small-scale topography does play a meaningful role in the 508 



 

 

wetting/drying process.  Future research with more extensive datasets in locations with more 509 

complex topological contours could improve soil moisture predictions by enabling the models 510 

developed in this work to be adjusted as a function of local topographic classification. 511 

 512 

4.2 An Enhanced Diagnostic Soil Moisture Equation 513 

The diagnostic soil moisture equation could also be improved in future modeling efforts by 514 

considering overland and subsurface flows, specifically in areas characterized by more complex 515 

topography.  Currently, the model assumes that, in the absence of saturation, all rainfall will 516 

ultimately infiltrate, as the porosity parameter serves as an upper bound on soil moisture levels.  517 

The diagnostic soil moisture equation was designed originally as a daily model, and it is 518 

probably rare that on any given day, a significant fraction of precipitation does not infiltrate.  519 

However, at the hourly scale it is quite possible that the water from an intense rainfall event will 520 

not make its way into the soil at the location of the sensor.  To address this lateral transfer 521 

phenomenon, additional parameters can be introduced into the diagnostic soil moisture equation 522 

that place an upper bound on the quantity of rainfall that can be infiltrated during any hour (or 523 

other interval) of the convolution calculation for any particular soil type.  Agricultural decision-524 

support includes trafficability when wet and irrigation support when dry.  While overland flow is 525 

perhaps an unneeded component in water-limited catchments where irrigation schemes represent 526 

the most significant soil-moisture-related decision, in wetter catchments, in which trafficability is 527 

a real concern, such an addition could improve the model.  While this approach would require 528 

the fitting of additional parameters, it is likely that predictions would be improved. These 529 

additional parameters could also be considered in assessing cross-site edaphic similarity using 530 

the methods described above, although they may be highly correlated with existing parameters 531 

such as porosity, residual soil moisture, and drainage.   532 

 533 

4.3 NASA’s Soil Moisture Active Passive (SMAP) Mission 534 

With NASA satellite data for soil moisture available at the 36 km, 9 km, and 3 km scales 535 

throughout the United States, and with the SMAP satellite scheduled to launch during 2014 536 



 

 

(O’Neill et al, 2011), the models developed in this work will have ample measurements against 537 

which to test and improve their results, and can be used to help check the accuracy of satellite 538 

measurements.  Future research in LiDAR-driven disaggregation, proposed above, could also be 539 

used to improve satellite soil moisture estimates by accounting for smaller-scale topography. 540 

 541 

4.4 Water Balance Models and Up-Scaling 542 

The diagnostic soil moisture equation used in this paper (Pan et al, 2003; Pan, 2012) was an 543 

appropriate choice due to its ability to generate soil moisture estimates without the need for 544 

knowledge of antecedent soil moisture conditions.  Koster and Mahanama (2012) and Orth et al. 545 

(2013) have developed approaches to estimate soil moisture at the watershed scale by leveraging 546 

hydroclimatic variability and long-term streamflow measurements in a water-balance model – 547 

also without employing previous soil moisture conditions.  If the parameters calibrated and then 548 

generalized in this work produce point estimates of soil moisture at a diversity of locations, 549 

integration with a water balance approach could help with the up-scaling process. 550 

   551 

5.  Conclusions 552 

This work has demonstrated the feasibility of estimating soil moisture at locations where soil 553 

moisture sensors are unavailable for calibration, provided they fall within hydro-climatically and 554 

edaphically similar areas to gauged locations.  By calibrating the diagnostic soil moisture 555 

equation via a two-part genetic algorithm, improving its performance via a machine learning 556 

algorithm for error correction, then validating that algorithm at the same location in subsequent 557 

years, a baseline level of predictive performance is established at fifteen locations.  Next, these 558 

results are cross-validated – deploying parameters calibrated at a given site at sites of similar and 559 

different hydro-climatic classes, demonstrating that parameters can be re-applied elsewhere 560 

within the same class, but not without.  Finally, by incorporating edaphic information, we 561 

observe the strongest cross-validation results when hydro-climatic and edaphic characteristics 562 

align.  As only 24 hydro-climatic classes describe the entire nation (and only 6 describe a 563 

significant majority), it is entirely possible that a couple dozen well-placed soil moisture sensors 564 



 

 

can enable reasonably accurate soil moisture modeling at any location within the continental 565 

United States.  566 

 It is likely that the types of errors made when parameters are cross-applied between sites 567 

of different hydroclimates will differ from the types of errors that appear when the sites differ 568 

edaphically.  Further research extending beyond model performance into the specific conditions 569 

under which models perform less effectively along with the magnitude and bias of those errors 570 

would be highly illustrative for future researchers. 571 

 This analysis can improve agricultural decision-support by offering insight into locations 572 

that can benefit from targeted irrigation in drier conditions, or conversely, by minimizing risks of 573 

ruts and damaged equipment when fields are no longer trafficable during wetter conditions.  574 

Scaling the results of these models upward can assist with larger-scale assessments of flood risks 575 

or as calibration/validation tools for satellite estimates of soil moisture.  Scaling these results 576 

downward can help maximize yields.  Given the ubiquity of precipitation data, which are the 577 

only inputs these models require, better understanding of the transferability of modeled 578 

parameters is a step towards far wider availability of soil moisture estimates. 579 

Leveraging these findings, the discussion section also presented the results of preliminary 580 

analysis that illustrates how further improvements in soil moisture predictions could be gained 581 

by disaggregating based on local topography.  This would enable more accurate predictions at 582 

sites characterized by peaks and valleys that dry faster or slower than the relatively flat locations 583 

at which soil moisture algorithms are generally calibrated. Incorporating overland flow into the 584 

diagnostic soil moisture equation and integrating satellite data into the approach could also 585 

improve predictions in the future.   586 

 587 

 588 

 589 



 

 

 590 

Figure 1, Methodological flow chart 591 

 592 
Figure 2, Improvements from machine learning (KNN) models of residuals.   593 

 594 

Figure 2, Improvements from machine learning (KNN) models of residuals.   595 



 

 

 596 

Figure 3, Soil Moisture Time Series, SCAN Site 2015, New Mexico (USA), Actual Soil 597 

Moisture (Blue Line), Diagnostic Soil Moisture Equation Estimate (Red Line), and 598 

Diagnostic Soil Moisture Equation with Machine Learning Error Correction (Green Line).  599 

Hydroclimate: IAQ (Intermediate Seasonality, Arid, Summer Peak Runoff)   600 

Soil Texture: Loamy Sand 601 

 602 

 603 

Figure 4, SM Time Series, SCAN Site 2068, Iowa (USA), line colors from Fig. 3 604 

Hydroclimate: ISCJ (Intermediate Seasonality, Semi-Arid, Winter Peak Runoff, Summer 605 

Peak Precipitation)   606 

Soil Texture: Silty Clay Loam 607 



 

 

 608 

 609 

Figure 5, SM Time Series, SCAN Site 2013, Georgia (USA), line colors from Fig. 3  610 

Actual Soil Moisture (Blue Line), Diagnostic Soil Moisture Equation Estimate (Red Line), 611 

and Diagnostic Soil Moisture Equation with Machine Learning Error Correction (Green 612 

Line) 613 

Hydroclimate: LWC (Low Seasonality, Winter Peak Precipitation, Winter Peak Runoff) 614 

Soil Texture: Sandy Loam 615 

 616 

 617 



 

 

Figure 6, Soil Moisture Time Series, SCAN Site 2015, New Mexico (USA), Actual Soil 618 

Moisture (Blue Line), Diagnostic Soil Moisture Equation Estimate (Red Line), and 619 

Diagnostic Soil Moisture Equation with Machine Learning Error Correction (Green Line) 620 

 621 
Figure 7, Bias Correction Analysis, SCAN Site 2015 (IAQ, Desert, Loamy Sand) 622 

 623 

Figure 8, Bias Correction Analysis, SCAN Site 2068 (ISCJ, Plains, Silty Clay Loam) 624 



 

 

 625 
Figure 9, Bias Correction Analysis, SCAN Site 2013 (LWC, Woods, Sandy Loam) 626 

 627 

 628 



 

 

 629 

 Figure 10, Loss of Predictive Power (R
2
) (y-axis) Between Baseline Predictions (model 630 

calibrated in the same watershed) and Cross-Validation Predictions (model calibrated in 631 

other watersheds) 632 

 633 

 634 



 

 

Figure 11, 428 MOPEX catchments colored by hydro-climatic class (Coopersmith et al, 2012).   

15 SCAN sensors (for which the Diagnostic Soil Moisture Equation is calibrated) are shown as colored circles.   

Circle colors correspond to the hydro-climatic class of the point in question. 

Circles with dotted borders are unique (no other sensor for calibration is available within that class 

135 



 

 

Figure 12, The 15 SCAN sensors, color-coded to match their hydro-climatic class, with 

similar soil textures shaded. 

 



 

 

 
Figure 13 Venn-Diagram of Modeling Errors with Similar and Different Soils and Hydro-climates 

  
 

Table 1, The Fifteen SCAN Sites: Class & Soil Information and Performance 

SiteID
Hydro-

climate
Soil Information RMSE

RMSE 

w/ KNN
R2 R2         

w/ KNN

2008 LJ Sandy Loam 8.38 7.69 0.590 0.726

2013 LWC Sandy Loam 2.16 2.06 0.876 0.885

2015 IAQ Loamy Sand 3.29 2.37 0.740 0.841

2017 ISQJ Sandy Loam 3.62 3.27 0.637 0.701

2018 IAQ Loamy Sand* 2.23 2.16 0.803 0.828

2028 LPC Loam 4.89 4.71 0.707 0.738

2031 ISQJ Silty Clay Loam 5.46 6.00 0.687 0.750

2036 LPC Silt Loam 4.61 3.95 0.635 0.726

2038 LJ Sandy Loam 4.81 4.51 0.546 0.584

2068 ISCJ Silty Clay Loam 5.28 4.03 0.716 0.837

2089 LJ Sandy Loam 6.7 6.31 0.682 0.697

2091 LPC Silt 8.12 6.89 0.539 0.808

2107 IAQ Loamy Sand 1.98 1.85 0.790 0.843

2108 IAQ Loamy Sand/Sand 1.26 1.12 0.828 0.863

2111 ISQJ Silty Clay Loam 5.38 5.01 0.607 0.796

*Not similar to other sandy soils, see Figure 9. 



 

 

 

 

  

Table 2, Cross-Validation Results 

Unrelated Class Similar Class Same Class

Median -10.5% -7.3% -0.8%

Mean -13.7% -7.7% -3.4%

Standard Deviation 1.0% 1.1% 1.4%
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