

1 **Quantitative contribution of climate change and human**
2 **activities to runoff changes in the Wei River basin, China**

3

4 C.S. Zhan², S.S. Jiang^{3*}, F.B. Sun², Y.W. Jia¹, W.F. Yue³, C.W. Niu¹

5

6 1. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin,
7 China Institute of Water Resources and Hydropower Research, Beijing 100038, China
8 2. Key Laboratory of Water Cycle Relate Land Surface Processes, Institute of
9 Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences,
10 Beijing, 100101, China;

11 3. College of Water Sciences, Beijing Normal University, 100875, Beijing, China;

12

13 * Corresponding author: Shanshan Jiang, 19 Xinjiekou Wai, Haidian, Beijing ,
14 100875, China

15 Tel: +86(10)6488-8975

16 Fax: +86(10)6488-8975

17 Email: jiangshanshan@mail.bnu.edu.cn

18

19

20

21 **Abstract**

22 Surface runoff from the Wei River basin, the largest tributary of the Yellow River in
23 China, has dramatically decreased over last 51 years from 1958 to 2008. Climate
24 change and human activities have been identified as the two main reasons for the
25 decrease in runoff. The study period is split into two sub-periods (1958-1989 and
26 1990-2008) using the Mann-Kendall jump test. This study develops an improved
27 climate elasticity method based on the original climate elasticity method, and
28 conducts a quantitative assessment of the impact of climate change and human
29 activities on the runoff decrease in the Wei River basin. The results from the original
30 climate elasticity method show that climatic impacts contribute 37%~40% to the
31 decrease in runoff, while human impacts contribute 60%~63%. In contrast, the results
32 from the improved climate elasticity method yield a climatic contribution to runoff
33 decrease of 22%~29% and a human contribution of 71%~78%. A discussion of the
34 simulation reliability and uncertainty concludes that the improved climate elasticity
35 method has better mechanism and can provide more reasonable results.

36

37

38

39

40

41 **1. Introduction**

42 Climate change is expected to extensively alter global hydrological cycles (Legesse et
43 al., 2003; Milly, 2005; Piao et al., 2007) by primarily changing the pattern of
44 precipitation (IPCC, 2013; Sun et al., 2012). After precipitation falling into a basin,
45 human activities including land use change, dam construction, river diversion, and
46 other engineering and management practices will modify hydrological cycles locally
47 and therefore temporal and spatial distribution of water resources (Govinda, 1995;
48 Milly et al., 2005). Quantitatively assessing the influence of climate change and
49 human activities on surface runoff is vital for sustainable water resources
50 management.

51 Quantitative evaluation of the effects of climate change and human activities on
52 runoff has yielded significant results, but with complex regional patterns. For instance,
53 Zhang et al. (2008) used the sensitivity of runoff to precipitation and potential
54 evaporation to study the response of runoff to changes in climate and land use/cover
55 in the Loess Plateau of China and pointed out that LUCC(Land Use and Land Cover
56 Change) accounted for over 50% of the reduction in mean annual runoff in 8 out of
57 11 catchments. Bao et al. (2012) discussed the reasons for runoff changes in Haihe
58 River Basin, and analyzed the influence of human activities through the VIC model
59 and then proved human activities were the main driving force for the reduction of
60 water resources. Wang et al. (2009) established a distributed monthly water balance
61 model (DTVGM) to analyze the Chaobai River Basin upstream of Miyun Reservoir in
62 north China, and concluded that human activities were therefore the main cause of

63 runoff changes. Ma et al. (2008) estimated that the effects of climate change
64 accounted for over 64% of the mean annual runoff reduction in the Shiyang River in
65 the arid region of Northwest China. For the same basin, human activities and climate
66 change may have different influences on runoff for different periods. For example,
67 Qiu et al. (2012) analyzed the influence of climate change and human activities on
68 water resources in North China and found that in the 1970s-80s the effects of climate
69 change were dominant, but in the late 1980s and early 1990s the effects of the two
70 factors were similar, and since the 90s the influence of human activities has been
71 slightly higher at around 55%. Guo et al. (2008) employed the SWAT model to
72 analyze the annual and seasonal runoff variability caused by climate change and
73 human activities and found that the main influencing factor on annual runoff was
74 climate change, but that changing land use was the main influence on seasonal runoff
75 changes.

76 So far, there are many different methods used to evaluate and separate the effects
77 of the two factors. One such method is based on physical processes or physical
78 mechanisms. This method controls the evolution of the various elements and analyzes
79 the changes in driving factors and contributions in a physical process simulation. The
80 approach may be physically sound but requires major efforts on model calibration and
81 can lead to remarkably different results because of uncertainty in model structure and
82 parameter estimation (Nash and Gleick, 1991; Revelle and Waggoner, 1983; Schaake,
83 1990; Vogel et al., 1999a). Other methods can be classified as statistical data analysis
84 methods, such as the climate elasticity method used in this paper. The statistical data

85 analysis methods are based on mean annual change trend in long time series, and
86 provide generalized relationships which do not consider species differences. This
87 approach incorporates measured or observed data via a variety of data validation
88 techniques, and analyzes the contributions of different factors on different processes.
89 The method is relatively simple, but requires a large volume of high-quality data
90 (Risbey and Entekhabi, 1996).

91 Many studies have proved that the climate elasticity method is reasonable and
92 credible. Chiew (2006) evaluated rainfall elasticity of streamflow in 219 catchments
93 across Australia using the nonparametric climate elasticity estimator and compared
94 the estimates with results obtained from the conceptual rainfall-runoff model
95 SIMHYD, showing a consistent relationship between climate elasticity values
96 estimated using the rainfall-runoff model and the nonparametric estimator. Ma et al.
97 (2010) used a distributed hydrological model (GBHM) and a climate elasticity model
98 to conduct a quantitative assessment of the impacts of climate change and human
99 activities on inflow into a reservoir. The GBHM simulation and climate elasticity
100 model showed that climate change accounts for about 55% and 51% of the reservoir
101 inflow reduction, respectively. Hu et al. (2012) analyzed the impacts of climate
102 change and human activities on the Baiyangdian upstream runoff, using two
103 assessment methodologies (climate elasticity and hydrological modeling). The climate
104 elasticity method was implemented at the annual scale and was computationally
105 relatively simple; it needed fewer data and parameters to calculate the impacts of
106 climate change on annual runoff. The hydrological model was implemented at the

107 daily scale, and therefore needed more data and parameters but yielded more detailed,
108 high temporal resolution results. These two independent methods based on different
109 time scales could obtain consistent results. Thus, the climate elasticity method is
110 considered to be an important indicator for quantifying the sensitivity of runoff to
111 climate change and for separating the effects of natural and anthropogenic factors at a
112 catchment scale (Dooge et al., 1999; Fu et al., 2007; Milly and Dunne, 2002;
113 Sankarasubramanian et al., 2001; Schaake, 1990; Zheng et al., 2009). However, the
114 main poor point for the climate elasticity method previous research indicates is that
115 the method is used to separate the sensitivity of runoff to climate change without
116 considering the human activities directly, and furthermore the accuracy of the original
117 climate elasticity method should be improved.

118 In this paper we improve the climate elasticity approach by adding the influence
119 of human activities to evaluate the hydrological consequences of climate change and
120 human activities. To compare the original and improved climate elasticity approaches,
121 we choose the Wei River basin as a case study. The application results have a great
122 strategic meaning in the regional economic development and the development of West
123 China (Song et al., 2007). The rest of the paper is structured as follows: Section 2
124 describes the study area and data; Section 3 presents the methodology; Results and
125 discussion are in Section 4. The conclusions are presented in section 5.

126 **2. Study Area and Data**

127 **2.1 Study Area**

128 The Wei River is the largest tributary in the Yellow River. It originates from Niaoshu
129 Mountain, and runs into the Yellow River at Tongguan. The basin is located between
130 104 °00'E to 110 °20'E and 33 °50'N to 37 °18'N with a length of 818 km and a drainage
131 area of 1.35×10^5 km².

132 The Wei River basin is located in temperate continental monsoon climate region.
133 The climate is cold, dry and rainless in winter controlled by the Mongolia high, while
134 hot and rainy in summer affected by the West Pacific subtropical high. The mean air
135 temperature is 7.8 to 13.5 °C, the mean annual precipitation is 400 to 800 mm , , and
136 the mean annual potential evapotranspiration is 800 to1000 mm. The mean annual
137 runoff in depth is 450 to 550 mm with the coefficient of variation falling within 0.1 to
138 0.2 (He et al., 2009).

139 **2.2 Data Description**

140 This study uses the continuous daily series data from 1958 to 2008 at 7 national
141 meteorological observatory stations in and around the Wei River basin. Observed
142 daily mean air temperature, precipitation and solar shortwave radiation could largely
143 reflect climatic change in the region (Fig. 1). In addition, observational runoff data of
144 1958-2008 comes from Hua Country hydrological station which located in the outlet
145 of river downstream.

146 **Figure 1** Location of the meteorological and hydrological stations used in this study

147 The potential evapotranspiration within the watershed can be calculated using
148 Hargreaves method, Hargreaves formula is an empirical formula which was derived
149 using the permeameter by Hargreaves and Samani (1982) to estimate potential
150 evapotranspiration, and is most appropriate in all radiation and temperature estimation
151 methods in North China (Luo and Rong, 2007). The expression is as follows:

152
$$E_0 = 0.0135(T + 17.8) \frac{R_s}{\lambda} \quad (1)$$

153 Where E_0 represents potential evapotranspiration, mm/day; T represents mean air
154 temperature, °C; R_s represents solar shortwave radiation, MJ/(m² day); λ represents
155 latency for vapouring water, $\lambda = 2.45$ MJ/kg.

156 **3. Methodology**

157 **3.1 Detection of hydrologic changes**

158 **3.1.1 Trend analysis**

159 In this study, the Mann-Kendall trend test is used to test the long-term trends of
160 precipitation, evaporation and runoff in the Wei River basin. The Mann-Kendall trend
161 test is a non-parametric statistical test method. It does not need the sample to follow
162 any particular distribution, and is not subject to interference from a small number of
163 outliers. Moreover, the method is relatively simple (Mann H B, 1945; Kendall M G,
164 1975).

165 For a time series X which has n samples, construct variable S :

166
$$S = \sum_{i=1}^{n-1} \sum_{j=i+1}^n \text{sgn}(x_i - x_j) \quad (2)$$

167 Where x_i and x_j represent the values in years i and j , $i > j$, n is the record length of
168 the series, and $\text{Sgn}(x_i - x_j)$ is a characterization of the function.

169 The statistical test value Z_c is calculated by the following formula:

170
$$Z_c = \begin{cases} \frac{S-1}{\sqrt{\text{Var}(S)}}, & S > 0 \\ 0, & S = 0 \\ \frac{S+1}{\sqrt{\text{Var}(S)}}, & S < 0 \end{cases} \quad (3)$$

171 When $|Z_c| \leq Z_{1-\alpha/2}$, we accept the null hypothesis, which indicates the sequence
172 does not have a trend. If $|Z_c| > Z_{1-\alpha/2}$, we reject the null hypothesis and conclude that
173 the sequence does have a significant trend. $Z_{1-\alpha/2}$ is obtained from standard normal
174 distribution function, and α is the significance level of the test.

175 To test the trend of the sequence in the Mann-Kendall test, it is usually necessary
176 to estimate the slope of the monotonic trend, estimated as follows:

177
$$\beta = \text{Med} \left(\frac{x_i - x_j}{i - j} \right), (\forall j < i, 1 \leq j < i \leq n) \quad (4)$$

178 A positive value of β indicates a rising trend (positive rate of change with time),
179 and vice versa for negative β .

180 **3.1.2 Change-point analysis**

181 Under the hypothesis that the time series is independent and stochastic, we can
182 compute the following statistics:

183
$$\text{UF}_k = \frac{S_k - E(S_k)}{\sqrt{\text{Var}(S_k)}} (k = 1, 2, \dots, n) \quad (5)$$

184 Where $E(S_k)$ and $Var(S_k)$ represent the mean and variance of S_k , respectively.

185 Next, the time series order is reversed (i.e., x_n, x_{n-1}, \dots, x_1), and the above process

186 is repeated to yield the statistical variables UB_k ($k=n, n-1, \dots, 1$), such that

187
$$UB_k = -UF_k \quad (6)$$

188 Next, we draw curves of UB_k and UF_k , and if the two curves have an intersection

189 point and if the value of U at this point satisfies $|U| < 1.96$, then that point is regarded

190 as a change point, with a confidence level α of 0.05.

191 Because the time series length in this study is 51 years, a significance test is

192 needed, for which we use the t-test.

193 **3.2 Original climate elasticity method**

194 Runoff (R) can be expressed as a function of climate variables (C) and other

195 characteristics (H) (Hu et al., 2012):

196
$$R = f(C, H) \quad (7)$$

197 While the parameter H represents the combined results of terrain, soil, land use /

198 land cover and human activities (such as artificial water transfer). If the topography

199 and soil in the study area remain constant during the study period, then H can

200 represent human activities. So the runoff change can be expressed as:

201
$$\Delta R = \Delta R_C + \Delta R_H \quad (8)$$

202 While the parameter ΔR represents the total runoff change; and ΔR_C , ΔR_H

203 represent the runoff changes caused by climate change and human activities,

204 respectively.

205 The total runoff change can be obtained from the formula $\Delta R = R_{obs1} - R_{obs2}$, where

206 R_{obs1} and R_{obs2} represent the measured runoff before and after the change point,
207 respectively.

208 Schaake(1990) first introduced the climate elasticity method to analyze the
209 sensitivity of runoff to climate change. Climate elasticity of runoff (ε_x) can be
210 defined as the proportional change in runoff (R) relative to the change in climatic
211 variables (X) (such as changes in precipitation or potential evapotranspiration) (Fu et
212 al., 2007):

213

$$\varepsilon_x = \frac{\partial R / R}{\partial X / X} \quad (9)$$

214 According to the long-term water balance equation ($R = P - E$), we assume that
215 the runoff response to climate factors is mainly caused by the precipitation and
216 potential evapotranspiration. According to the theory of total differential equations,
217 the differential form is as follows:

218

$$\Delta R_c = \varepsilon_p \frac{R}{P} \Delta P + \varepsilon_{E_0} \frac{R}{E_0} \Delta E_0 \quad \text{and} \quad \varepsilon_p + \varepsilon_{E_0} = 1 \quad (10)$$

219 Where ΔR_c represents runoff change caused by climate change, ΔP and ΔE_0 are
220 the change of precipitation and potential evapotranspiration, and ε_p and ε_{E_0} are the
221 precipitation and potential evapotranspiration elasticities of runoff, respectively.

222 According to the Budyko hypothesis, actual evapotranspiration (E) is a function
223 of the dryness indices ($\phi = E_0 / P$), specifically $E = P * F(\phi)$, and the precipitation and
224 potential evapotranspiration elasticities of stream flow can be expressed as:

225

$$\varepsilon_p = 1 + \phi F'(\phi) / (1 - F(\phi)) \quad \varepsilon_{E_0} = -\phi F'(\phi) / (1 - F(\phi)) \quad (11)$$

226 The following formulae (one with a parameter and the others without) for the
227 Budyko hypothesis are often used to estimate $F(\phi)$, as shown in Tab. 1.

228

Table 1 Different Formulae for the Budyko Hypothesis

229 According to Tab.1, the precipitation elasticity (ε_p) and potential
 230 evapotranspiration elasticity (ε_{E_0}) can be determined, allowing the runoff change
 231 caused by climate change (ΔR_c) to be calculated, and thus the contribution of climate
 232 change can be assessed. Calibration of Zhang's (2001) formula using land cover and
 233 land use conditions yielded a parameter value of 1.5.

234 **3.3 Improved climate elasticity method**

235 At the catchment scale, and over a long time period, the water balance equation can
 236 be simplified as $P=E+R$. Here the mean annual runoff R can be divided into
 237 observed runoff and changing runoff caused by human activities, i.e. $R=R_{obs}+R_H$,
 238 where R_{obs} is observed runoff, and R_H refers to mainly water consumption or water
 239 intake by human activities which mainly include measures of water and soil
 240 conservation, river dam construction, water intake from rivers, water transfer and so
 241 on. So the water balance equation can be expressed as $P=R_{obs}+R_H+E$, which in
 242 differential form is:

243
$$dP = dR_{obs} + dR_H + dE \quad (12)$$

244 Meanwhile, according to the Budyko hypothesis $E=PF(\phi)$, $\phi=E_0/P$, the total
 245 differential form can be expressed as:

246
$$dE = [F(\phi) - \phi F'(\phi)] dP + F'(\phi) dE_0 \quad (13)$$

247 When substituted into Equation (12), this leads to:

248
$$dR_{obs} = [1 - F(\phi) + \phi F'(\phi)] dP - F'(\phi) dE_0 - dR_H \quad (14)$$

249 After dividing equation (14) by R_{obs} , we obtain the following equation:

250
$$\frac{dR_{obs}}{R_{obs}} = [1 - F(\phi) + \phi F'(\phi)] \frac{P}{R_{obs}} \frac{dP}{P} - F'(\phi) \frac{E_0}{R_{obs}} \frac{dE_0}{E_0} - \frac{R_H}{R_{obs}} \frac{dR_H}{R_H} \quad (15)$$

251 The climate and anthropic elasticities are calculated as follows:

252
$$\varepsilon_P = [1 - F(\phi) + \phi F'(\phi)] \frac{P}{R_{obs}}$$

253
$$\varepsilon_{E_0} = -F'(\phi) \frac{E_0}{R_{obs}}$$

254
$$\varepsilon_H = -\frac{R_H}{R_{obs}} \quad (16)$$

255 Which satisfy $\varepsilon_p + \varepsilon_{E_0} + \varepsilon_H = 1$.

256 From Tab. 1 and Eq. (16), the elastic coefficients $\varepsilon_P, \varepsilon_{E_0}, \varepsilon_H$ which represent
257 the precipitation, evapotranspiration, and human activities elasticities, can be
258 calculated. Next, the runoff change R_H caused by human activities is computed. The
259 contribution of human activities to runoff can be expressed by P_H ,
260 where $P_H = R_H / \Delta R$, thus the contribution of climate change can also be calculated.

261 **4. Results and Discussion**

262 **4.1 Detection of hydrologic changes**

263 In this study, the Mann–Kendall trend test is adopted to determine the significance of
264 the trends in runoff, precipitation and potential evapotranspiration, and to analyze the
265 trends in meteorological factors and corresponding runoff changes over nearly 50
266 years. Figure 2 shows time series of precipitation, potential evapotranspiration and
267 runoff from 1958–2008, and the runoff series are observed at the hydrological gauging
268 station located the river basin outlet. Qualitative inspection shows that the trends in

269 precipitation and potential evapotranspiration are not obvious, while runoff notably
270 decreases. The fluctuation range of potential evapotranspiration is not obvious in
271 different years, but the fluctuation range of precipitation is significant, and its overall
272 trends are stable. Thus, the decrease of runoff implies that precipitation and potential
273 evapotranspiration are not the only influencing factors on runoff, and instead human
274 activities may have had the main influence on the decreasing runoff.

275 **Figure 2** Time series of annual precipitation, annual potential evapotranspiration and annual
276 runoff in the Wei river basin from 1958-2008

277 The Mann-Kendall test is also used to analyze the change point of the runoff in
278 the Wei River basin, at a confidence level set to $\alpha=0.05$. The normal distribution
279 shows that the critical value was $U_{\alpha/2}=1.96$. The result of change point test is
280 presented in Fig. 3. It can be seen in Figure 3 that the two curves intersect in 1990,
281 and the intersection is within the critical value range $U_{\alpha/2}=\pm 1.96$. The result illustrates
282 that an abrupt change of runoff occurred in 1990.

283 **Figure 3** The result of the abrupt change point test in the Wei river basin

284 According to the results of trend analysis and change-point analysis, the monthly
285 runoff data in the periods of 1958-1990 and 1990-2008 is used to plot the Flow
286 Duration Curve (FDC) that indicates the runoff change of the basin in different
287 periods, and the monthly runoff series are observed at the hydrological gauging
288 station located the river basin outlet. Vogel and Fennessey (1994) provides the details
289 of FDC method, which represents the relationship between the magnitude and
290 frequency of runoff, providing an estimate of percentage of time a given runoff is

291 equal or exceeded over a historical period. The relationship between the magnitude
292 and frequency of monthly average runoff are shown in Fig.4, which indicates the
293 percentage of time runoff is exceeded in the period of 1958-1990 is larger than that in
294 1990-2008, and the runoff relative change for the two periods only have a large
295 fluctuations at the percentage that is less than 10% and more than 90%. The Fig.4 also
296 implies the decrease of runoff in 1990-2008 has the correlations with human activities,
297 and the influence on the decreasing runoff is easier to happen in the high-flow and
298 low-flow periods at which the percentage time runoff is exceeded is less than 10%
299 and more than 90%.

300 **Figure 4** Flow duration curves under different periods in the Wei river basin

301 **4.2 Results of the original and improved climate elasticity methods**

302 **4.2.1 Original climate elasticity method**

303 In order to evaluate the influence on runoff caused by climate change, firstly,
304 Equation (11) is used to calculate the elasticities of precipitation and potential
305 evapotranspiration for 1958-2008, which can be expressed as ε_p and ε_{E_0} ,
306 respectively, as shown in Tab. 2. These results reveal that if precipitation decreases by
307 10%, runoff will decrease by 25.8%~27.7%, and if potential evapotranspiration
308 decreases by 10%, runoff will increase by 15.8%~17.7%. Then, according to the
309 calculated ε_p , ε_{E_0} and Eq. (10), the runoff decrease caused by climate change can be
310 computed. The total contribution of precipitation and potential evapotranspiration to
311 the runoff decrease is 32.1 mm. Therefore, the contribution of climate change to the
312 runoff decrease is 37%~40%, and the contribution of human activities is 60%~63%.

313

Table 2 Results of the original climate elasticity method314 **4.2.2 Improved climate elasticity method**

315 In order to evaluate the influence on runoff caused by human activities, firstly,
 316 Equation (16) is used to calculate the elasticities of precipitation, potential
 317 evapotranspiration and human activities for 1958-2008, which can be expressed as ε_p ,
 318 ε_{E_0} and ε_H , respectively, as shown in Tab.3. We realize that if annual runoff decreases
 319 by 32.1 mm, the decrease caused by human activities is 22.9~24.9 mm. So the
 320 contribution of human activities to runoff decrease is 71%~78%, and the contribution
 321 of climate change is 22%~29%.

322 **Table 3** Results of the improved climate elasticity method323 **4.2.3 Comparison of the simulation results**

324 In this paper, two methods are used to analyze the causes of the runoff decrease in the
 325 Wei River basin. One is the original climate elasticity method, and the other is the
 326 improved climate elasticity method. Each method adopts two formulas based on the
 327 Budyko hypothesis (noting that one formula includes parameters and the other does
 328 not). Results are compared with each other and with those calculated by other
 329 methods, and the precision of the two methods is analyzed. Both methods are
 330 implemented at the annual time scale, and require relatively simple computation. The
 331 contributions of climate change and human activities to runoff variability can thus be
 332 computed by fewer data and parameters compared with other methods. The results of
 333 the original climate elasticity method show that the contributions of climate changes
 334 and human activities to runoff variability are 37%~40% and 60%~63%, respectively.

335 Meanwhile, corresponding contributions calculated using the improved climate
336 elasticity method are 22%~29% and 71%~78%, respectively. Early studies showed
337 that during 1970-1995 the contribution of human activities to runoff decrease was
338 58.3% in the Wei River basin (Zhang and Wang, 2007). In recent years, human
339 activities have intensified, so by 2008 the contribution of human activities should
340 have increased, and may now exceed 60%. Gao et al. (2013) found that the
341 contribution of human activities to reduced stream flow in the Wei River basin was
342 even as high as 82.80%. The results of the improved climate elasticity method are
343 closer to the existing results than those of the original, suggesting that the improved
344 climate elasticity method, which is more adaptable and easier to implement, is much
345 more reliable and practical.

346 Moreover, it is important to note that the improved climate elasticity method is
347 the first to introduce human activities elasticity ε_H . Without the trend analysis and
348 change-point test, the strength of the influence of human activities on runoff changes
349 can be calculated. When calculating the contribution of human activities to runoff
350 changes, the change-point test is needed so that the total runoff decrease can be
351 calculated.

352 The improved climate elasticity method broadens the concept of climate
353 elasticity, and provides more intuitive and practical formula for calculating the
354 contribution of human activities to runoff changes. Compared with the hydrological
355 simulation method, the climate elasticity method not only needs fewer data and
356 parameters, and is more reliable and easier to implement, but can also be easily

357 extended. However, its temporal resolution is low and it lacks a physical basis. There
358 is a trend towards coupling hydrological simulations with the more reliable
359 hydrological and meteorological statistical methods, to quantitatively study
360 hydrological responses to climate change and human activities.

361 **4.3 Discussion**

362 In the paper it is assumed that over a long period of time, change in catchment storage
363 can be neglected so that the water balance equation can be expressed as $P=E+R$. And
364 it is also assumed that the Budyko curve can comparably precisely estimate mean
365 annual evaporation. In fact the two assumptions are fundamental assumptions and
366 commonly used in Budyko-type elasticity studies for long term average (Gentine et al.,
367 2012). We would not think there is any approach that can estimate the mean annual
368 evaporation “precisely” but if any, the Budyko curve would be comparable at least for
369 long term mean.

370 The maximum daily precipitation and also averaged the top five maximum daily
371 precipitation for each year are estimated as shown in Fig.5. The results show that
372 there is no steady decreasing trend in these two measures of extreme rainfall and
373 distribution, while the steady decrease in runoff investigated in this study would
374 require a steady decrease in rainfall intensity if the change in distribution is the cause.
375 Those results are consistent with our experience about this catchment that
376 precipitation and potential evapotranspiration are not the only influencing factors on
377 runoff, and instead human activities have had the main influence on the decreasing
378 runoff.

379 **Figure 5** The top five maximum daily precipitation and the maximum daily precipitation curves

380 The impacts of human activities on runoff are reflected in land use and land
381 cover changes. Land use and land cover change is a gradual process, and the impacts
382 on runoff also accumulate gradually. We can decrease the uncertainty of quantitative
383 predictions by analyzing the LUCC changes in the Wei River basin in 1980, 1990,
384 2000, 2005 and 2007, and then checking whether the results are reasonable. The main
385 type of land cover in the Wei River basin is cultivated land, which covers more than
386 50% of the total area, followed by woodland and grassland.

387 By analyzing the changing areas of cultivated land and woodland and grassland
388 in the Wei river basin in 1980, 1990, 2000, 2005 and 2007, it can be concluded that
389 the year 1990 is the turning point in cultivated land area, since the area decreases
390 during 1980-1990, and then begin to increase again after 1990. The year 1990 is also
391 the turning point in the area of woodland and grassland area, but the corresponding
392 trends are opposite to those of the cultivated area. Because the area of cultivated land
393 and woodland and grassland reaches 90%, and considering the turning points of the
394 three types of land, the year 1990 can be regarded as a more general turning point in
395 surface characteristics. This decreases the uncertainty regarding 1990 as the runoff
396 change point.

397 Major sources of uncertainty in the simulation associated with the climate
398 elasticity may arise from the input data, classification of the stages, and the parameter
399 in the Zhang (2001) formula. Precipitation data used in the models are from 7 rain
400 gauges and meteorological stations in and around the study catchment. The flow data

401 are measured during 1958-2008 from the Hua County hydrological station, which is
402 located at the downstream end of the basin, but may not sufficiently represent the
403 whole basin. Even though the breakpoint test is found to be reasonable, there remain
404 some uncertainties which may be caused by the test method and artifacts when
405 reading the results in the chart. The parameter which is very sensitive in the Zhang
406 (2001) formula is calibrated according to the land cover and land use conditions.

407 Furthermore, it is essential to point out that climate change and human activities
408 are supposed to be two mutually independent variables when separating their impacts
409 on runoff; however, we note that land use and land cover can be influenced by both
410 climate change and by human activities.

411 In this study R is divided into R_{obs} and R_H because the water intake directly from
412 rivers is significant amount in almost all rivers in China. However in the original
413 Budyko-type elasticity this part is not considered directly and the main formulae are

414 $\Delta R = \varepsilon_P \frac{d_P}{P} + \varepsilon_{E_0} \frac{d_{E_0}}{E_0}$ and $\Delta R = \Delta R_C + \Delta R_H$. Then that framework is extended by

415 including the direct influence from water intake to adapt to catchments with intense
416 water consumption and intake, and the main formula is
417 $\Delta R = \varepsilon_P \frac{d_P}{P} + \varepsilon_{E_0} \frac{d_{E_0}}{E_0} + \varepsilon_H \frac{d_{R_H}}{R_H}$. We believe this is a new contribution over the climate
418 elasticity method reported in literatures.

419 **5. Conclusions**

420 Decreasing runoff in many rivers in China has been reported in recent years, and the

421 Wei River basin is one of the most serious cases. This paper is aiming at developing a
422 new approach to quantifying the impact of climate variations and human activities on
423 this decreasing runoff in the Wei River basin. The man-made changes here include
424 land use, vegetation, and other land surface conditions, while climate change and
425 climate variability are reflected in precipitation and potential evapotranspiration. This
426 study uses the Mann-Kendall test to assess the temporal trends in precipitation,
427 potential evapotranspiration and runoff, and also analyzes the point of abrupt change.
428 On this basis, the original climate elasticity method and improved climate elasticity
429 method are used to analyze the quantitative hydrological effects of climate change and
430 human activities; these findings are then compared to existing results from the
431 hydrological simulation method. The study shows as following:

432 In the last 50 years, the runoff from the Wei River basin has obviously decreased,
433 but the precipitation and potential evapotranspiration have shown no clear trend.
434 Therefore it can be seen that climate factors have not obviously contributed to the
435 runoff decrease.

436 From 1958 to 2008, the runoff in the Wei River basin shows an abrupt change in
437 1990, effectively dividing the total runoff into natural runoff process and runoff
438 process affected by human activities. At the same time, this change shows that human
439 activities have significant effects on runoff.

440 Human activities resulted in a shift in land use and land cover in 1990, and the
441 type of land use and land cover has a great influence on runoff. This illustrates that
442 human activities, especially those causing land use and land cover change, are the

443 main reason for the runoff decrease.

444 The original climate elasticity method shows that the contributions of climate
445 change and human activities to runoff decrease are 37%~40% and 60%~63%,
446 respectively, but the improved climate elasticity method indicated that the
447 contributions of climate change and human activities to runoff decrease are 22%~29%
448 and 71%~78%, respectively. The result of the improved climate elasticity method is
449 closer to those existing results concluded based on comprehensive hydrological
450 models, thereby demonstrating that human activities are the main reason for the
451 runoff decrease in the Wei River basin.

452

453 **Acknowledgements**

454 This work was partially supported by the National Natural Science Foundation of
455 China (41271003, 41371043, 50939006), Key Project for the Strategic Science Plan
456 in IGSNRR, Chinese Academy of Sciences (2012ZD003), and the Open Research
457 Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River
458 Basin (China Institute of Water Resources and Hydropower Research)
459 (IWHR-SKL-201311).

460

461 **References**

462 Bao, Z.X., Zhang, J.Y., Wang, G.Q. Fu, G.B., He, R.M., Yan, X.L., Jin, J.L., Liu, Y.L., and Zhang,
463 A.J.:Attribution for decreasing runoff of the Haihe River basin, northern China: Climate
464 variability or human activities?, Journal of Hydrology ,460-461, 117-129, 2012.

465 Chiew, F. H. S.: Estimation of rainfall elasticity of streamflow in Australia, *Hydrol. Sci. J.*, 51,
466 613–625, 2006.

467 Dooge, J.C.I., Bruen, M., and Parmentier, B.: A simple model for estimating the sensitivity of
468 runoff to long-term changes in precipitation without a change in vegetation, *Advance in Water
469 Resources*, 23,153–163, 1999.

470 Fu, G, Charles S. P., and Chiew, F. H. S.: A two-parameter climate elasticity of runoff index to
471 assess climate change effects on annual runoff, *Water Resources Research*,43,W11419,
472 doi:10.1029/2007WR005890, 2007.

473 Gao, P., Geissen, V., Ritsema, C.J., Mu, X.M. and Wang, F.: Impact of climate change and
474 anthropogenic activities on streamflow and sediment discharge in the Wei River basin,
475 China, *Hydrology and Earth System Sciences*, 17,961-972, 2013.

476 Gentine, P., P. D'Odorico, B. R. Lintner, G. Sivandran, and G. Salvucci, Interdependence of
477 climate, soil, and vegetation as constrained by the Budyko curve, *Geophysical Research Letters*,
478 39, L19404, doi:10.1029/2012GL053492, 2012.

479 Govinda R.P. :Effect of climate change on stream flows in the Mahanadi river basin, India, *Water
480 Int*, 20,205–212, 1995.

481 Guo H., Hu Q., and Jiang T.: Annual and seasonal runoff responses to climate and land-cover
482 changes in the Poyang Lake basin, China, *Journal of Hydrology*, 355, 106-122, 2008.

483 Hargreaves, G. H.,and Samani Z. A.: Estimating of potential evapotranspiration, *Journal of
484 irrigation and Drainage Divdide*, *Proceedings of the American Society of Civil
485 Engineers*,108,223-230, 1982.

486 He, H.M., Zhang, Q.F., Zhou, J., Fei J., and Xie X.P. : Coupling climate change with hydrological
487 dynamic in Qinling Mountains, China, Climatic Change, 94, 409–427, 2009.

488 Hu, S.S., Zheng, H.X., Liu, C.M., Yu, J.J., and Wang Z.G: Assessing the Impacts of Climate
489 Variability and Human Activities on Streamflow in the Water Source Area of Baiyangdian Lake,
490 Acta Geographic Sinica, 67,62-70, 2012.

491 IPCC, I. 2013. Climate Change 2013: The Physical Science Basis. Retrieved from
492 <http://www.buildingclimatesolutions.org/view/article/524b2c2f0cf264abcd86106a>.

493 Kendall, M.G. : Rank Correlation Measures, Charles Griffin,London, 202, 1975.

494 Legesse, D., Vallet-Coulob, C., and Gasse, F:Hydrological response of a catchment to climate
495 and land use changes in Tropical Africa: case study South Central Ethiopia, Journal of
496 Hydrology, 275, 67–85, 2003.

497 Luo, J., and Rong, Y.S.: Evaluation on several Empirical methods for estimating potential
498 evapotranspiration in North China[OL], 2007. (in Chinese).

499 Ma, H., Yang, D.W., Tan, S.K., Gao, B., and Hu, Q.F. :Impact of climate variability and human
500 activity on streamflow decrease in Miyun Reservoir catchment, Journal of
501 Hydrology ,389,317–324, 2010.

502 Ma, Z.M., Kang, S.Z., Zhang, L., Tong, L.,and Su, X.L .: Analysis of impacts of climate change
503 and human activity on runoff for a river basin in arid region of northwest China, Journal of
504 Hydrology, 352,239–249, 2008.

505 Mann, H. B.:Nonparametric tests against trend. Econometrica, Journal of the Econometric Society
506 13(3), 245-259, 1945.

507 Milly, P. C. D., Dunne, K. A., and Vecchia, A. V. : Global pattern of trends in runoff and water

508 availability in a changing climate, *Nature* ,438,347–350, 2005.

509 Milly, P.C.D.,and Dunne KA .: Macro-scale water fluxes 2. Water and energy supply control of

510 their inter-annual variability. *Water Resources Research*, 38,1206, doi:10.1029/2001WR000760,

511 2002.

512 Nash, L. L., and Gleick, P. H.: Sensitivity of streamflow in the Colorado basin to climatic changes,

513 *Journal of Hydrology*, 125, 221–241, doi:10.1016/0022-1694(91)90030-L, 1991.

514 Piao, S. L., Friedlingstein, P., Ciais, P., de Noblet-Ducoudre, N., Labat, D., and Zaehle, S.:

515 Changes in climate and land use have a larger direct impact than rising CO₂ on global river

516 runoff trends, *Proc. Natl. Acad. Sci*, 104(39),15242-15247, 2007.

517 Pike, J. G. The estimation of annual run-off from meteorological data in a tropical climate, *Journal*

518 *of Hydrology*, 2,116–123, 1964.

519 Qiu, G. Y., Yin, J., and Shu, G.: Impact of climate and land-use changes on water security for

520 agriculture in Northern China, *Journal of Integrative Agriculture* ,11, 144-150, 2012.

521 Revelle, R. R., and Waggoner , P. E.: Effects of a carbon dioxide-induced climatic change on

522 water supplies in the western United States, in *Changing Climate*, edited by Carbon Dioxide

523 Assess. Comm. et al., pp. 419–432, Natl. Acad., Washington, D. C., 1983.

524 Risbey, J. S., and D. Entekhabi. :Observed Sacramento basin stream-flow response to precipitation

525 and temperature changes and its relevance to climate impact studies, *Journal of Hydrology*

526 184,209–223, doi:10.1016/0022-1694(95)02984-2, 1996.

527 Sankarasubramanian, A., Vogel, R. M., and J. F. Limbrunner. :Climate elasticity of runoff in the

528 United States, *Water Resources Research*, 37,1771–1781, doi:10.1029/2000WR900330, 2001.

529 Schaake, J. C.:From climate to flow, in *Climate Change and U.S.Water Resources*.edited by

530 Waggoner, pp. 177–206, John Wiley, New York, 1990.

531 Song, J.X., Xu, Z.X., Liu, C.M., and Li, H.E.: Ecological and environmental instream flow
532 requirements for the Wei River—the largest tributary of the Yellow River, *Hydrological
533 Processes*, 21, 1066–1073, 2007.

534 Sun, F., Roderick, M. L., and Farquhar, G. D.: Changes in the variability of global land
535 precipitation, *Geophys. Res. Lett.*, 39, L19402, doi:10.1029/2012GL053369, 2012.

536 Turc, L. Le bilan d'eau des sols. Relations entre les precipitations, l'évaporation et l'écoulement,
537 *Ann. Agronomy*, 5, 491–596, 1954.

538 Vogel R.M. and Fennessey N.M.: Flow-duration curves. I: New interpretation and confidences
539 intervals, *Journal of Water Resources Planning and Management*, 120, 485–504, 1994.

540 Vogel, R. M., I. Wilson, and C. Daly. Regional regression models of annual streamflow for the
541 United States, *J. Irrig. Drain. Eng.*, 125, 148–157,
542 doi:10.1061/(ASCE)0733-9437(1999)125:3(148), 1999a.

543 Wang, G.S., Xia, J., and Chen, J.: Quantification of effects of climate variations and human
544 activities on runoff by a monthly water balance model: a case study of the Chaobai River basin
545 in northern China, *Water Resources Research*, 45, W00A11, 2009.

546 Zhang, J.Y., and Wang, G.Q. Research on climate change impact on hydrology and water
547 resources [M], 2007 (in Chinese).

548 Zhang L., Dawes W.R. and Walker G.R.: Response of mean annual evapotranspiration to
549 vegetation changes at catchment scale, *Water Resources Research* 37, 701–708, 2001.

550 Zhang, X.P., Zhang, L., Zhao, J., Rustomji, P., and Hairsine, P.: Response of streamflow to
551 changes in climate and land use/cover in the Loess Plateau, China, Water Resources
552 Research ,44,W00A07, 2008.

553 Zheng, H., Zhang L., Zhu R., Liu C., Sato Y., and Fukushima Y.: Responses of runoff to climate
554 and land surface change in the headwaters of the Yellow River Basin, Water Resources
555 Research ,45,W00A19, doi:10.1029/2007WR006665, 2009.

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

Table 1. Different Formulae for the Budyko Hypothesis

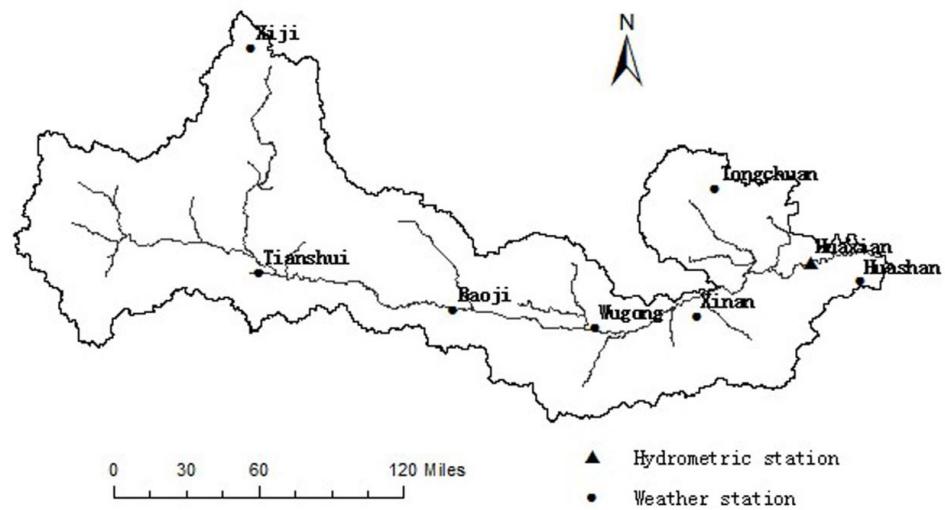
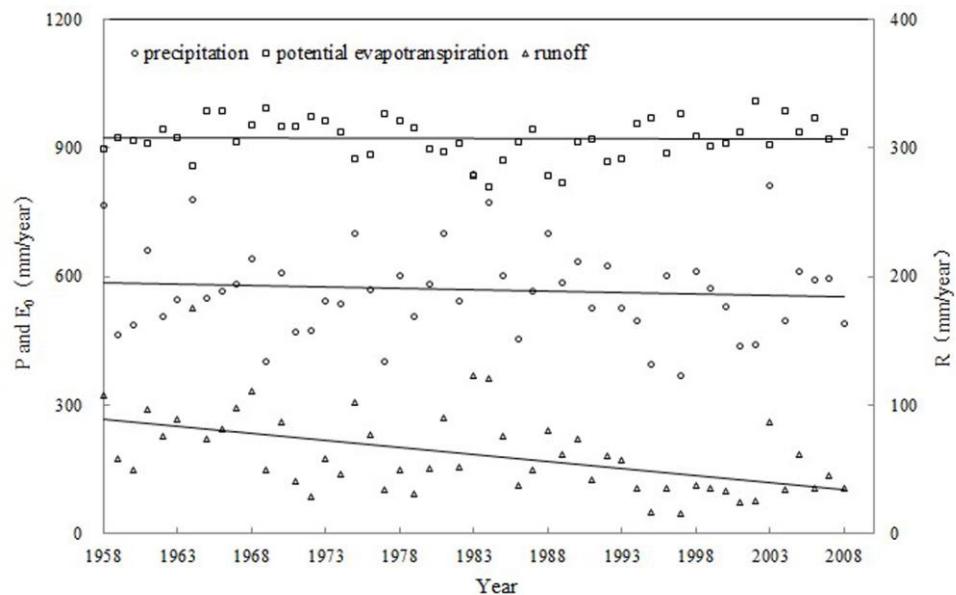

Expression	$F(\phi)$	$F'(\phi)$
Turc (1954); Pike (1964)	$(1+\phi^{-2})^{-0.5}$	$1/\left[\phi^3\left(1+(1/\phi)^2\right)^{1.5}\right]$
Zhang (2001)	$(1+w\phi)/(1+w\phi+1/\phi)$	$(w+2w/\phi-1+1/\phi^2)/(1+w\phi+1/\phi)^2$

Table 2. Results of the original climate elasticity method

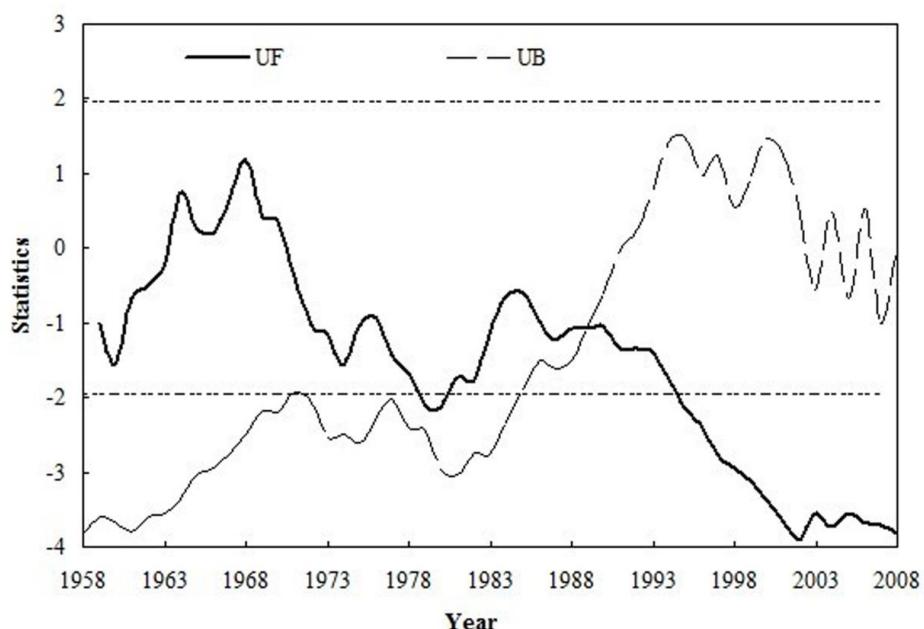
Period	Formula	P /mm	E_0 /mm	ε_p	ε_{E_0}	ΔR_c /mm	ΔR_c /%	ΔR_H /%
1958-2008	Turc (1954); Pike (1964)	569.3	923.1	2.77	-1.77	11.9	37	63
1958-2008	Zhang (2001)	569.3	923.1	2.58	-1.58	12.9	40	60

Table 3. Results of the improved climate elasticity method


Period	Formula	P /mm	E_0 /mm	ε_p	ε_{E_0}	ε_H	ΔR_H /	ΔR_C /	ΔR_H /
							mm	%	%
1958-2008	Turc (1954); Pike (1964)	569.3	923.1	3.53	-2.16	-0.37	22.9	29	71
1958-2008	Zhang (2001)	569.3	923.1	3.89	-2.49	-0.40	24.9	22	78

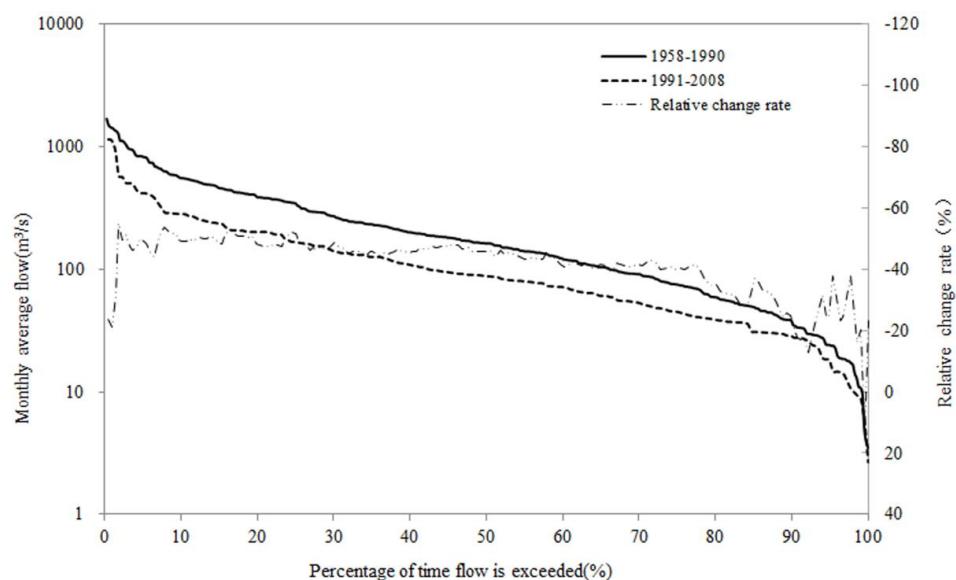
585

586
587


Figure 1 Location of the meteorological and hydrological stations used in this study

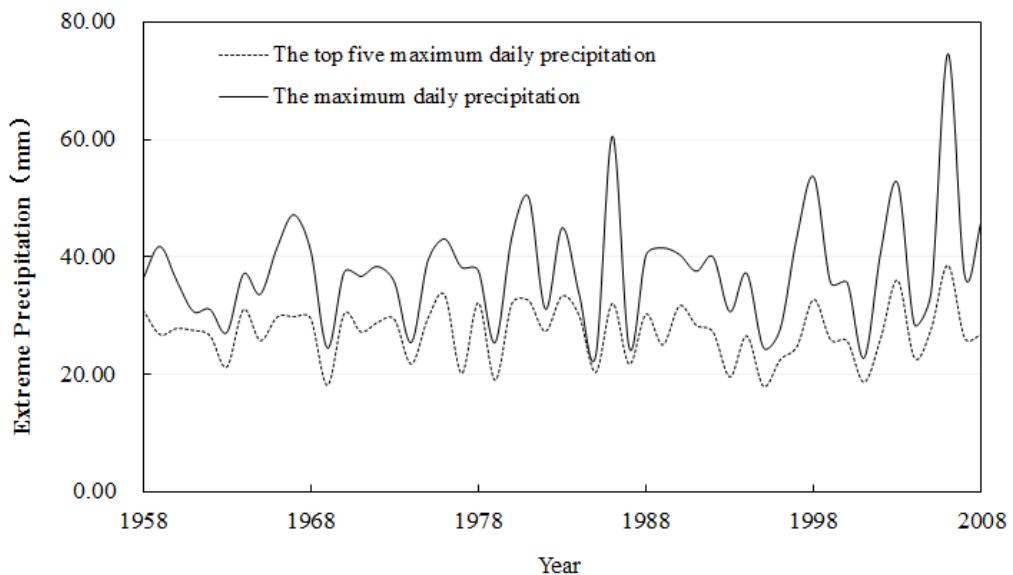
588

589
590


Figure 2 Time series of annual precipitation, annual potential evapotranspiration and annual runoff in the Wei river basin from 1958-2008

591

592


Figure 3 The result of the abrupt change point test in the Wei river basin

593

594

Figure 4 Flow duration curves under different periods in the Wei river basin

595

596 **Figure 5** The top five maximum daily precipitation and the maximum daily precipitation curves