
Manuscript prepared for Hydrol. Earth Syst. Sci.
with version 5.0 of the LATEX class copernicus.cls.
Date: 19 June 2014

Historical land-use induced evapotranspiration changes estimated
from present-day observations and reconstructed land-cover maps
J. P. Boisier1,*, N. de Noblet-Ducoudré1, and P. Ciais1
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Abstract. Recent results from the LUCID model intercom-
parison project have revealed large discrepancies in the simu-
lated evapotranspiration (ET) response to the historical land-
use change. Distinct land-surface parameterizations are be-
hind those discrepancies, but understanding those differences5

rely on evaluations using still very limited measurements.
Model benchmarking studies with observed ET are required
in order to reduce the current uncertainties in the impacts
of land use in terrestrial water flows. Here we present new
estimates of historical land-use induced ET changes based10

on three observations-driven products of ET. These prod-
ucts are used to derive empirical models of ET as a func-
tion of land-cover properties and environmental variables.
An ensemble of reconstructions of past ET changes are de-
rived with the same set of land-cover maps used in LUCID,15

with which we obtain an average decrease in global terres-
trial ET of 1260± 850 km3 yr�1 between the preindustrial
period and the present-day. This estimate is larger in magni-
tude than the mean ET change simulated within LUCID with
process-based models, and substantially weaker than other20

estimates based on observations. Although decreases in an-
nual ET dominate in deforested regions, large summertime
increases in ET are diagnosed over areas of large cropland
expansion. The multiple ET reconstructions carried out here
show a large spread that we attribute principally to the dif-25

ferent land-cover maps adopted and to the crops’ ET rates
deduced from the various products assessed. We therefore
conclude that the current uncertainties of past ET changes
could be reduced efficiently with improved historical land-
cover reconstructions and better estimates of cropland ET.30

1 Introduction

Land-use induced land-cover change (LULCC) has been one
of the major environmental changes driven by human activ-
ities. During the last 300 years, the large-scale deforestation35

that occurred in the northern temperate regions has signifi-
cantly contributed to the rise in concentration of atmospheric
carbon dioxide and to the underlying global temperature in-
crease (e.g., Pongratz and Caldeira, 2012; Ciais et al., 2013).

In addition to the biogeochemical impact of LULCC on40

climate, more direct and regionally important perturbations
are driven by changes in the physical properties of the surface
(biogeophysical effects). These changes are often difficult to
characterize because of the multiple mechanisms involved
(Davin and de Noblet-Ducoudré, 2010). Local cooling driven45

by an increase in surface albedo, and warming, due to re-
duced evaporative cooling, are two possible effects of de-
forestation of opposite sign (Bonan, 2008). The latter effect
may dominate in the tropics, as several modelling (e.g., No-
bre et al., 1991; Costa and Foley, 2000; Sampaio et al., 2007;50

Brovkin et al., 2009; Davin and de Noblet-Ducoudré, 2010)
and observational (Gash and Nobre, 1997; Von Randow et
al., 2004; Da Rocha et al., 2009; Loarie et al., 2011) studies
have shown. In contrast, because of the strong snow mask-
ing effect exerted by the forest canopy, the radiative (albedo)55

impact of forest clearing has likely led to surface cooling at
high latitudes (e.g., Betts, 2001; Govindasamy et al., 2001;
Bounoua et al., 2002; Brovkin et al., 2009).

The climate impact of past LULCC is particularly uncer-
tain in temperate regions, in part because of the unknown60

net effect of the above-mentioned radiative and non-radiative
effects of deforestation, but also because the direction of
change in evapotranspiration is clearly not one-sided (Ster-
ling et al., 2013).
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2 Boisier et al.: Land-use induced evapotranspiration changes estimated from observations

Evapotranspiration (ET) is a key variable of the climate65

system as it affects both the energy and the water balance
of the surface. Changes in ET due to LULCC or other land-
use practices, such as irrigation, have received special atten-
tion over the past decade because of their potential effects
on climate and water resources. Although most studies sug-70

gest that historical LULCC has led to a decrease in global
ET (e.g., Gordon et al., 2005; Findell et al., 2007; Sterling
et al., 2013) and consequent increase in runoff (Piao et al.,
2007), the large-scale changes in ET remain quite uncer-
tain, as do the geographical and seasonal variations of such75

changes (Pitman et al., 2009; Pielke et al., 2011).
Studies at regional scales have shown that ET increases

resulting from widespread irrigation have induced surface
cooling and other impacts on climate in India (Douglas et
al., 2006; Roy et al., 2007; Guimberteau et al., 2012), in the80

Middle East and Asia (Lee et al., 2011), in the North Amer-
ican Great Plains (Adegoke et al., 2007; Mahmood et al.,
2006) and in California (Lobell and Bonfils, 2008), among
others. Puma and Cook (2010) have suggested that large-
scale ET increases and cooling induced by irrigation, may85

have been as large in magnitude as the opposite effect driven
by deforestation; a finding consistent with the results of Gor-
don et al. (2005) and Haddeland et al. (2007). Observations-
based studies have also shown that well-watered cropland
can evaporate more than temperate forest (Baldocchi et al.,90

1997; Teuling et al., 2010; Sterling et al., 2013).
The LUCID project (“Land Use and Climate: Identifica-

tion of Robust Impacts”) has compared outputs from dif-
ferent climate models each forced with the same historical
change in crop and pasture area. Recent results have revealed95

very large uncertainties in the simulated ET responses to
LULCC (Pitman et al., 2009; Boisier et al., 2012; de Noblet-
Ducoudré et al., 2012). The simulated changes in ET were
found to vary in both magnitude and sign across the various
models, and from season to season, despite the fact that none100

of the models included irrigation or detailed cropland man-
agement. About one-third of this inter-model dispersion was
explained by differences in the land-cover maps prescribed
in each model, and the remaining two-thirds by their distinct
land surface parameterizations and resultant model sensitivi-105

ties to LULCC (Boisier et al., 2012).
Most impacts of historical LULCC on continental wa-

ter budgets reported in the literature have been addressed
through modelling studies. Few studies have estimated the
historical large-scale ET changes based on observations.110

Gordon et al. (2005) calculated global ET change induced
by deforestation and irrigation separately. They estimated
a moderate decrease in total land ET of 400 km3 yr�1,
resulting from the opposing effects of deforestation
(�3000 km3 yr�1) and irrigation (+2600 km3 yr�1). Ster-115

ling et al. (2013) estimated the changes in terrestrial ET be-
tween potential and actual land cover based on a large and
diverse record of ET measurements, including values from
irrigated crops. They calculate an annual mean global ET de-

crease of 3500 km3 yr�1, i.e., a value substantially larger in120

amplitude than the Gordon et al. (2005) estimate.
The short period covered by ET observations and the lim-

ited number of measuring sites, explain the scarcity of studies
addressing large-scale changes in ET based on observations.
Nevertheless, several global gridded ET products have been125

recently produced, some of them being outputs of land sur-
face models (LSMs) forced with atmospheric observations
or reanalysis. Other products use simpler (semi-empirical)
models to diagnose ET from surface and satellite observa-
tions of key drivers of ET. A number of them also use avail-130

able ET measurements for calibration (e.g., Jung et al., 2010;
Zhang et al., 2010). Many of these gridded products of ET
have been evaluated in the context of the LandFlux-EVAL
initiative (Jiménez et al., 2011; Mueller et al., 2011, 2013).

The aim of the present study is to provide new data-driven135

estimates of the past ET changes caused by LULCC (i.e.
other factors such as climate and CO2 changes being con-
stant), and compare them with results from the LUCID cli-
mate models. We also explore the seasonal and geographi-
cal distribution of the inferred ET changes, as well as quan-140

tifying the uncertainties related both to the nature of the
observation-based ET dataset used and to the land-cover
maps adopted. To address these objectives we start with three
global products of present-day ET, each of them derived with
a different approach. A multivariate regression technique is145

used to construct empirical models of ET as a function of
key environmental drivers and land-cover properties (vegeta-
tion partitioning and Leaf Area Index - LAI). These models,
along with a set of land-cover maps of 1870 and 1992 from
the LUCID project, are used to diagnose multiple present-150

day and preindustrial ET climatologies.
This paper is organized as follows. Datasets and method-

ologies are described in Sect. 2. The LULCC derived from
the LUCID land-cover maps, as well as the inferred LAI used
in the ET reconstructions, are presented is Sect. 3. Section 4155

describes the diagnosed and simulated changes in ET, while
Sect. 5 investigates the ET sensitivity of our reconstructions
to specific land-use transitions. Discussion and conclusions
are presented in Sect. 6.

2 Material and methods160

2.1 Observations-based datasets

Several gridded datasets are used in this paper, and summa-
rized in Table 1. Three products of ET are used in a multivari-
ate analysis to derive, respectively, three different empirical
models of ET (described in Sect. 2.3).165

The “Global Land surface Evaporation: the Amsterdam
Methodology” ET (hereafter GLEAM) uses a semi-empirical
approach to derive total ET from both the soil-vegetation ET
and the evaporation of rainfall intercepted by the canopy (Mi-
ralles et al., 2011). A modified Priestley-Taylor ET model170
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Boisier et al.: Land-use induced evapotranspiration changes estimated from observations 3

is nurtured with meteorological data and a computed soil
moisture stress factor. The input dataset used to derived grid-
ded ET includes observations-based and satellite information
of land-cover (short versus tall canopy, vegetation optical
depth), soil moisture and other meteorological variables.175

The Max Planck Institute ET product (MPI) is based on
the analysis of ET data from 253 eddy-covariance measure-
ment sites (Jung et al., 2010). In-situ observations of ET and
of a large set of explanatory variables, including land sur-
face properties (vegetation type and optical properties) and180

climatic variables, are analyzed with a model tree ensemble
(MTE) approach. The resultant MTE models are used to cre-
ate gridded maps of monthly ET from 1982 to 2008, based on
global datasets of the associated predictors (surface analyses
and remote sensing data).185

As with GLEAM, the Numerical Terradynamic Simula-
tion Group ET product (NTSG) is based on a semi-empirical
model of ET (Zhang et al., 2010). In this case, a modified
Penman-Monteith approach is adopted to explicitly calcu-
late the soil evaporation and the canopy ET components. A190

Priestley-Taylor model is also used for evaporation over wa-
ter bodies. Global fields of ET from 1983 to 2006 are derived
using remotely sensed data of land-cover, NDVI and radia-
tion, as well as meteorological data from reanalysis. Local
measurements of ET from 34 FLUXNET sites are also used195

in NTSG to calibrate canopy conductance as a biome-specific
parameter.

A short evaluation of the three products of ET is presented
in Appendix A. Despite the different procedures used to de-
rive these datasets, there is a reasonably large agreement on200

the climatological mean distribution of ET. However, signifi-
cant differences from one product to another are found in the
amplitude of the interannual ET variability (Fig. A1).

Gridded datasets of surface incoming solar (SD) and long-
wave (LD) radiation, precipitation (P ) and snow water equiv-205

alent (SWE) are used as environmental constraints in our em-
pirical models of ET. The satellite products of the Surface
Radiation Budget (SRB) project and of the National Snow
and Ice Data Center (NSIDC) are used for radiation fluxes
and SWE, respectively. The observation-based gridded prod-210

uct of the Global Precipitation Climatology Centre (GPCC)
is adopted for P .

Other variables, such as the net radiation or the near-
surface temperature, although suitable predictors for ET,
were deliberately omitted because of their large dependen-215

cies on the type of land cover. Including them could thus have
produced misleading results when evaluating the changes
in ET due to LULCC. In our approach, the surface albedo
and the resultant net radiation are implicitly accounted for
through the land-cover partitioning. Hence, the radiative ef-220

fect of LULCC in the diagnosed ET is included since the
albedo-induced change in net radiation will follow the pre-
scribed change in land cover.

Land-cover for the purposes of this study has been simpli-
fied and grouped within five classes: evergreen trees, decidu-225

ous trees, grasses, crops and bare soil. Our choice to use only
those main groups is intended to simplify the analysis and
give consistent land-cover partitioning in different datasets,
notably within the various plant functional types (PFTs) used
in LUCID LSMs (Sect. 2.2). This simplified land-cover parti-230

tioning allows capturing the spatial ET variability induced by
differences in plant properties, such as canopy conductance,
root depth, surface roughness or albedo.

In addition to the grid areal fraction occupied by the five
classes of land cover (F

v

), the spatial and seasonal LAI distri-235

bution for each land-cover class is also used to characterize
the global distribution of vegetation. LAI is not used inde-
pendently from F

v

. Instead, we make use of the Beer’s law to
combine the two variables and define an effective land-cover
fraction per vegetation class (F ⇤

v

):240

F ⇤
v

= F
v

(1� e�kLv ), (1)

where L
v

is the specific LAI of the vegetation group v. The
light extinction coefficient k is set to the commonly used
value of 0.5. The effective area occupied by the vegetation
in a grid cell is then defined as the total fraction derived from245

the four classes of vegetation, and the effective bare soil area
as:

F ⇤
soil

= 1�
X

v

F ⇤
v

. (2)

We use the MODIS land-cover product MCD12Q1 (Friedl
et al., 2010) and the reprocessed MODIS LAI of Yuan et250

al. (2011) to derive monthly mean (2001-2009) maps of F
v

and L
v

, respectively. Based on the PFT classification of the
MODIS land cover, we aggregated the areal fractions of the
different PFTs into the main classes used here. The maps of
L
v

were derived from both the LAI and land-cover data from255

MODIS, following a methodology adapted from Boisier et
al. (2013). The application of this method to create biome-
dependent LAI maps, as well as its evaluation, is described
in Appendix B.

2.2 LUCID simulations260

Global climate simulations done in the context of the LU-
CID project (Pitman et al., 2009) are intended for two pur-
poses. We want first to estimate the past LULCC-induced
ET changes together with the associated uncertainties arising
from historical land-cover reconstructions. Results from LU-265

CID have indeed demonstrated that current climate models
implement the historical crop and pasture datasets in differ-
ent ways, increasing the spread in the simulated impacts of
LULCC, notably on ET (de Noblet-Ducoudré et al., 2012).
To account for this uncertainty, we use the same vegetation270

maps of 1870 and 1992 prescribed in each LUCID land sur-
face model (LSM) to force the observations-based empirical
models of ET derived here (Sect. 2.3) and, with them, to per-
form several reconstructions of past and present-day ET (Fig.
1).275
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4 Boisier et al.: Land-use induced evapotranspiration changes estimated from observations

Secondly, we use the data simulated within LUCID to con-
trast the modelled historical changes in ET with the ones di-
agnosed here.

The set of LUCID simulations used here were carried out
by six atmospheric global circulation models (AGCMs) cou-280

pled to LSMs (Table 1). The modelling experiment includes
two types of simulations each with the same prescribed
present-day sea-surface temperature/sea-ice coverage (from
1970 to 1999) and atmospheric CO2 concentration (set to
375 ppm). The types of simulation differ only in the land-285

cover prescribed in the corresponding LSMs, representing re-
spectively the vegetation distribution of 1870 and 1992. The
land-cover distribution results from the combination of the
“background” map of vegetation of the host model (potential
or observed, depending on the LSM) with the historical crop-290

land and pasture distribution of the SAGE (Ramankutty and
Foley, 1999) and HYDE (Goldewijk, 2001) datasets. Hence,
the historical LULCC that is finally prescribed varies from
model to model due to differences in the background land-
cover maps and in the strategies adopted on including the295

agricultural data.
Further details of the LUCID simulations are given by de

Noblet-Ducoudré et al. (2012). All the LUCID data were
interpolated and analyzed in a common rectangular grid of
2.0�.300

2.3 Multivariate analysis and evapotranspiration re-
constructions

The goal of this study is to calculate LULCC-induced
changes in ET. This implies that we develop a method that
calculates ET given a specific land-cover map, at the global305

scale. The methodology we developed to achieve such cal-
culations is presented in this section and summarized in Fig.
1.

We use an implementation of Multivariate Adaptative Re-
gression Splines (MARS) for Python (py-earth) to construct310

empirical models of ET based on the present-day data de-
scribed in Sect. 2.1 . This technique builds an additive model
of piecewise linear (hinge) functions of the predictor ba-
sis, capturing non-linear dependencies of a given variable
to multiple explanatory variables (Friedman, 1991). The co-315

efficients of the basis are calculated in a two-step iterative
computation that uses a least squares method to minimize the
error between partial predictions and observations. The first
step (forward phase) adds a large number of basis functions,
while the second step (pruning phase) selects the best basis320

sample, leading to a simpler model with a high predictive
performance.

Some advantages of MARS, compared to other multivari-
ate methods that could have been used here (e.g. regression
trees or neural networks), are the high predictive capabili-325

ties, transparency and continuous character of the model con-
structed (Hastie et al., 2009).

The global ET products presented in Sect. 2.1 are used to
derive three different MARS-based ET models as a function
of a unique set of explanatory variables (Fig. 1). In the com-330

putation of these models we account for both the spatial and
temporal variability of the input variables. The effective frac-
tion of the five land-cover classes used (F ⇤

v

) are not included
as independent predictors in the ET models, but are used to
weigh the environmental predictors. Further details on the335

MARS analysis and an evaluation of the predictive skill of
the resulted ET models are described in Appendix C.

Preindustrial (PI) and present-day (PD) reconstructions of
ET are then computed by forcing each MARS-based ET
model with the land-cover maps of 1870 and 1992 used by340

six LSMs in the LUCID simulations (Sect. 2.2). Hence, we
derive 18 different pairs of reconstructed ET that only differ
in the choice of the F

v

values used in Eq. (1) and the ET
information deduced from each product.

It should noted that all reconstructions are carried out345

with the same environmental data used in the MARS com-
putations (Sect. 2.1) and the MODIS-based LAI of each
land-cover class (L

v

). Therefore, the diagnosed ET changes
between PI and PD represent instantaneous responses to
LULCC, and do not include any biogeophysical feedback in-350

volving a perturbation in downward radiation, precipitation
or snow-cover, nor in a biome-dependent LAI.

3 Changes in land-cover and in leaf area index between
1870 and 1992

Figures 2a-c show the change between 1870 and 1992 in355

the fraction of crops, grasses and forest as deduced from the
LUCID land-cover maps (the mean changes from the var-
ious datasets are shown). The expansion of cropland, no-
tably in North America and in west Eurasia, is a main fea-
ture of LULCC between 1870 and 1992. The change in crop360

area prescribed in LUCID LSMs reflects this pattern, in line
with the historical land-use change deduced from SAGE (Ra-
mankutty and Foley, 1999). In most LSMs, such change
mainly occurs at the expense of forest. Given that pastures
are considered as natural grasses in most LUCID LSMs, the365

prescribed change in grass area from 1870 to 1992 results
from the balance between the positive change when natural
biomes are converted to managed pastureland, and the nega-
tive change when natural grasses are converted to croplands.

The rules defining how forest and natural grassland are de-370

creased when crops and pasture expand are thus crucial in
drawing up the final figure for deforestation, as discussed by
de Noblet-Ducoudré et al. (2012). For the LSMs assessed
here, the global deforested area between 1870 and 1992
varies strongly, ranging from ⇠ 4 to 10million km2 for JS-375

BACH and TESSEL, respectively. These two examples il-
lustrate the discrepancy in the LULCC reconstructions that
result from different protocols. When the agricultural units
(crops and pastures in this case) are allocated over natural

jboisier


jboisier




Boisier et al.: Land-use induced evapotranspiration changes estimated from observations 5

grasslands as priority, the resulting change in forest area is380

comparatively low (as in the JSBACH case). The opposite
case (favoured deforestation) occurred in the case of TES-
SEL.

Foliage density is a key parameter in both the simulated
and diagnosed ET. As described in Sect. 2.1, the present-385

day LAI as well as the changes in LAI from 1870 to 1992
are implicitly accounted for in the diagnosed ET through Eq.
(1). Yet, the change in LAI as diagnosed with our MODIS-
based reconstructions is in itself an interesting result. Such
an estimate is also important if we are to correctly interpret390

the diagnosed LULCC-induced changes in ET. Hence, based
on the LUCID land-cover maps and the seasonally and ge-
ographically varying LAI values we derived from MODIS
data for each of the four classes of vegetation (L

v

, see Ap-
pendix B), we computed the monthly distribution of LAI for395

1870 and 1992 as:

L(yr) =
X

v

F
v

(yr)L
v

. (3)

Figure 2d shows the change in annual mean LAI [�L=
L(1992)�L(1870)] computed with the six LUCID LULCC
datasets (the average from the six reconstructions is shown).400

Since deforestation is the dominating perturbation between
1870 and 1992, and given that LAI of forest is usually larger
than that of short vegetation (see Fig. B1), most areas of the
globe show decreases in LAI, and the spatial pattern of such
changes is similar to that of deforestation. Increases in LAI405

between 1870 and 1992 are also diagnosed, notably in sum-
mer and over regions where LULCC is dominated by tran-
sitions from natural grasses to crops with a higher LAI (the
occurrence and amplitude of such transitions depends on the
land-cover dataset chosen; not shown).410

Looking at Fig. 2d in detail, the distribution of �L high-
lights some regions that could be particularly sensitive to
LULCC in terms of ET, such as the southern part of North
America or southeastern Amazonia. These regions show
comparatively large decreases in LAI, despite moderate de-415

forestation between 1870 and 1992. As described next, the
impact of LULCC on the mean annual LAI in temperate and
boreal regions results mainly from the changes in summer,
when canopies are fully developed.

Figure 3 shows the monthly mean LAI reconstructed for420

1992 and �L averaged over four regions we are particu-
larly interested in because of their strong historical LULCC.
These regions, as indicated in Fig. 2d, correspond to the land
areas within defined domains in Eurasia (hereafter EA), in
North America (NA), in South America (SA) and in South-425

east Asia (SEA). The reconstructed mean LAI depicted in
Fig. 3a (solid lines) is plotted along with the ones simulated
(prescribed in some cases; de Noblet-Ducoudré et al., 2012)
by the LUCID LSMs (dashed lines). In both cases, the mean
obtained from the six LSMs ±1.0 inter-model mean absolute430

deviation (MD) are shown. The MODIS-based reconstructed
LAI shows a clear seasonal cycle in the northern temper-

ate regions (EA and NA), with a winter minimum of near
null LAI and a maximum in summer of around 2.0m2m�2.
In these two regions there are large differences between435

the present-day reconstructed and simulated LAI. The latter
overestimate the former by nearly 1.0m2m�2 throughout the
year. The mean LAI in SA and in SEA are larger than those
observed in EA and NA both in the models and reconstruc-
tions, and without clear seasonal cycles, indicating a large440

contribution of tropical and subtropical evergreen forest in
these regions.

A large spread between the LUCID models LAI compared
to the reconstructions is also noticeable in Fig. 3a. Given
that the reconstructed LAI accounts for the various LUCID445

LSMs’ maps of land cover, the spread in the simulated LAI
highlights intrinsic model dependencies (parameterizations).
Although remarkable, this spread is not surprising, given
the very different treatments of the vegetation phenology in-
cluded in the LUCID LSMs assessed here. For instance, three450

of them compute LAI (JSBACH, LPJmL and ORCHIDEE)
while the other three models prescribe it. Further, those mod-
els prescribing LAI have used different datasets as reference,
and one of them (TESSEL) does not prescribe a seasonally
varying LAI (de Noblet-Ducoudré et al., 2012).455

These results echo recent model inter-comparison stud-
ies reporting large uncertainties and a systematic overestima-
tion in modelled LAI when compared to satellite data (e.g.,
Anav et al., 2013). Besides the known uncertainties in the
observation-based LAI datasets (e.g., Garrigues et al., 2008;460

Fang et al., 2013), Anav et al. (2013) suggest that the model
LAI biases could in part be attributed to missing land-surface
parameterizations accounting for nutrient (Nitrogen) limita-
tion or ozone effects on GPP; both of these processes would
increase the simulated plant carbon allocation and LAI.465

The reconstructions show clear decreases (⇠ 10%) in LAI
from 1870 to 1992 in the four regions assessed as having in-
tense LULCC (solid lines in Fig. 3b). In EA and NA, the
amplitude of �L is maximized in the corresponding sum-
mer, while in SA and SEA there is a substantial year-round470

decrease. The effect of using different LULCC data is partic-
ularly important in the reconstructed �L over NA and EA.
The MD between the individual results (around 0.15m2m�2

in summer; grey shaded area in Fig. 3b) is as large as the
mean �L.475

Also noticeable is how different the reconstructed �L are
compared to the simulated ones (dashed lines in Fig. 3b).
This is particularly clear in EA and NA, where the simulated
mean �L shows an opposite seasonal pattern with respect
to the one reconstructed. In the other two regions the mod-480

els underestimate �L in all seasons when compared to the
reconstructions.

The contrasting diagnosed versus modelled LAI responses
to LULCC are in part explained by an overestimation of the
model cropland LAI during the growing season compared to485

the values derived from MODIS –a feature that is particu-
larly marked in those LSMs that simulate LAI (de Noblet-
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Ducoudré et al., 2012). However, it should also be noted that
the simulated LAI responds to changes in both land cover
and climate (accounting for interactions/feedbacks between490

land surfaces and the atmosphere), while the latter is not ac-
counted for in the MODIS-based reconstructions derived in
this study.

4 Diagnosed changes in evapotranspiration

Mean annual changes in ET (�ET) between the preindus-495

trial period (PI) and present-day (PD) were calculated based
on each of the three ET products, and using the six pairs of
land-cover maps from the LUCID LSMs (Fig. 1). Those 18
reconstructed ET climatologies were averaged to produce the
mean annual �ET displayed in Fig. 4. This multi-product500

mean highlights the main patterns of LULCC-induced �ET.
A decrease in annual ET is observed in most areas with land-
cover perturbations; this is true for South America, Africa,
India and Oceania. However, in the northern temperate re-
gions the signal is not as strong, except in the southernmost505

regions of change in North America. The annual mean �ET
is moderate in most cases, and only the regions mentioned
above show relative anomalies above 5 %. The spread ob-
tained from the various estimates is quite large and of an or-
der of magnitude similar to the diagnosed mean annual �ET510

(see contour line in Fig. 4). As described next, the nature of
the LULCC data adopted represents the main source of un-
certainty in our estimates.

Table 2 summarizes the global changes in annual ET in
terms of volume of terrestrial water vapour. We diagnosed515

from the reconstructions an average decrease in global ET
of around 1250 km3 yr�1 between PI and PD. Relative to
this value, we obtain a large uncertainty between individ-
ual reconstructions (MD of 850 km3 yr�1), arising both from
the ET product used (MD of 470 km3 yr�1) and from the520

LULCC dataset adopted (MD of 780 km3 yr�1).
For comparison, Table 2 also indicates the global �ET

simulated by the LUCID AGCM/LSMs, as well as the ones
diagnosed in previous studies based on observations. LUCID
simulations show a model-mean �ET of �760 km3 yr�1,525

with a large inter-model dispersion (MD of 720 km3 yr�1).
Both the diagnosed and simulated global �ET are substan-
tially weaker in amplitude than the recent estimate of Sterling
et al. (2013).

Although irrigation is not explicitly considered in our di-530

agnosed ET, it should be partially accounted for in an im-
plicit way given that two ET products (MPI and NTSG) have
used in situ ET observations for calibration, including irri-
gated crops. Considering irrigation, our diagnosed �ET fall
within the estimates of Gordon et al. (2005, �400 km3 yr�1)535

and Sterling et al. (2013, �3500 km3 yr�1). However, in
view of the large uncertainties associated with the LULCC
datasets, comparisons between independent estimates might
be misleading. Further, the two references mentioned above

have computed past ET climatologies with potential (pre-540

agricultural) vegetation maps, i.e., their prescribed land-
cover perturbations between the past and the present are
likely to be larger in amplitude than the ones used in this
study.

As can be seen in Fig. 4, areas with strong LULCC such545

as in North America or Eurasia do not show clear annual
ET responses to LULCC. The weak annual �ET over these
regions results from contrasting �ET from season to season,
and between the various ET product-based estimates.

Figure 5 illustrates the monthly mean �ET diagnosed with550

the three ET products on average over the four regions of
study. Clear differences are observed between the various es-
timates. There are however some patterns that distinguish the
results from MPI and NTSG on the one hand, and that from
GLEAM on the other. The reconstructed �ET based on MPI555

and NSTG, although with biases between them, show similar
seasonal patterns in EA, NA and SA. In EA, �ET is charac-
terized by positive values during the early boreal summer and
a minimum (a decrease in ET in the case of MPI) during the
autumn. In NA, the seasonal pattern of �ET is even clearer:560

the results from these two products show a decrease and an
increase in ET in spring and in summer, respectively. In SA,
the MPI and NSTG-based �ET also show a clear seasonal
pattern, characterized by negative values during most part of
the year, particularly large ET decreases in the austral winter,565

and increases in late summer.
The ET reconstructions based on GLEAM show year

round decreases of ET between PI and PD in all the four
regions assessed. Although �ET derived with this product
is clearly different from those based on MPI and NTSG, the570

seasonality shows some similarities with the other products
in EA and NA. By contrast, the result from GLEAM in SA
shows a year-round decrease in ET that clearly differentiates
it from the other two products.

For comparison, the multi-product mean �ET is also plot-575

ted in Fig. 5, as well as mean �ET resulting from the LU-
CID climate model simulations. The uncertainties are large
and of the same order of magnitude in both cases. Never-
theless, some consistent signals of �ET can be determined,
such as the year-round decreases in SA and SEA. The dis-580

tinct seasonal pattern of �ET in EA is suggested in both the
reconstructed and the simulated results. By contrast, the sim-
ulated mean �ET does not show a clear pattern in NA, as
compared to the one shown by the reconstructions.

The regional means �ET depicted in Fig. 5 suggest some585

robust seasonal features, but they still mask some contrast-
ing ET responses to LULCC within the regions assessed, no-
tably across the areas affected by strong LULCC in north-
ern temperate latitudes. This can be observed in Fig. 6,
which presents the spatial distribution of the seasonal (two-590

monthly) mean �ET in North America and Eurasia. The
ET differences between PI and PD derived from the three
assessed ET products show positive and negative anoma-
lies of large amplitudes during the late spring and sum-
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mer. The North American Great Plains are particularly af-595

fected by large �ET values in all the three reconstructions,
with anomalies exceeding 10% in many areas (the relative
changes are not shown). Clear differences can be observed
between the various estimates. Those based on GLEAM (Fig.
6a) and NTSG (Fig. 6c) are at both extremes, showing re-600

spectively the strongest negative and positive �ET values.
Meanwhile, the reconstruction based on MPI (Fig. 6b) shows
clear similarities in the seasonal and spatial patterns of �ET
with that based on NTSG, in accordance with the regional
mean �ET shown in Fig. 5. Both cases present a clear late605

summer maximum in �ET over the North American area of
large cropland expansion (Fig. 2).

The distribution of �ET shown in Fig. 6 reveals spatially
coherent signals compared to specific land-use transitions be-
tween 1870 and 1992. As mentioned above, increases in ET610

are obtained in the MPI and NTSG reconstructions in regions
where crops were partially allocated in place of grass, such
as in northern North America (Fig. 2). On the other hand, re-
gions with an increase in grass and decrease in forest, such
as in southern North America or in the mid-Eurasian area615

north of the Caspian Sea (areas of large expansion in pas-
ture), show systematic decreases in ET in all the three recon-
structions. To better understand the different ET sensitivities
to LULCC estimated from the three datasets assessed, in the
section that follows we try to quantify the ET response asso-620

ciated with three different types of land-cover transitions.

5 Sensitivity of evapotranspiration to specific land-
cover transitions

Although the ET products assessed show a general agree-
ment in the global distribution of ET (Fig. A1), specific625

biome-dependent ET should explain the differences between
the three diagnosed ET responses to LULCC. These differ-
ences arise when the long-term mean ET rates of the various
products are compared over dominant types of land cover.
Figure 7 illustrates this comparison for three major groups of630

vegetation: crops, grasses and forest. Regions with dominant
land cover are defined as the grid cells (at 1.0-degree of res-
olution) showing at least 75 % of their area covered by the
corresponding class.

Averaged over the northern extratropical regions (above635

20� N), the monthly mean ET of the three products shows
similar rates and seasonal patterns over grasslands and forest
(Fig. 7). However, a larger contrast is observed over crop-
lands, where the ET from GLEAM clearly underestimates
those from the other two products. This difference is consis-640

tent with the diagnosed ET response to LULCC in areas of
large cropland expansion, larger (with positive anomalies in
some cases) in the cases of MPI and NTSG with respect to
that of GLEAM (Fig. 6). However, this analysis does not al-
low direct comparisons of ET across the various land-cover645

classes, because they were obtained from different regions
and therefore from different climate regimes.

In order to quantify the response of ET to specific changes
in land cover under equivalent environmental conditions, we
have examined at each grid cell the transition between 1870650

and 1992 from a given land-cover type (A) to another (B)
using the following rule:

�A!B =
�FB ��FA

2
, (4)

where �F
v

is the change in the areal fraction of a generic
land-cover type v. Hence, if A is totally converted to B, then655

�A!B equals 1.0. If A is partially converted to B, and no
other transition occurs simultaneously in a given grid cell,
the change in ET as a response to a total transition from A
to B can be estimated as the ratio between the actual �ET
and �A!B. Figure 8 illustrates how the diagnosed �ET in660

the northern extratropics relates to the three major land-use
transitions we are particularly interested in: forest-to-grass,
forest-to-crops and grass-to-crops.

Figure 8a shows, as example, the local (grid cells) �ET
deduced from the MPI product in July, plotted as function of665

each type of transition. In order to avoid misleading results
from mixing simultaneous transitions, the only grid cells re-
tained are those for which the selected transition is, as mini-
mum, four times larger in amplitude than the fractional area
change of all other (not involved) land-cover units (this factor670

was defined by inspection with the criteria of retaining a sig-
nificant number of grid-cells for the analysis). This example
illustrate the dominant ET response to the specific transition
selected. That is, a decrease in ET when forests are replaced
with grasses, an increase in ET when cropland is allocated at675

the expense of grasses, and a no clear signal to the forest-to-
crops transition. The normalized mean ET responses to each
transition (sensitivity) may then by quantified as the slope of
the linear fit between �ET and �A!B. This analysis is illus-
trated as dashed lines for the particular case shown in Fig.680

8a, and generalized for all seasons and product-based �ET
reconstructions in Fig. 8b.

For the northern extratropical regions, a similar behaviour
is observed for the three ET products for a transition from
forest to grassland, which is characterized by decreases of685

ET throughout the year but maximized in the boreal sum-
mer, when the mean anomalies reach ⇠�35mmmonth�1.
This preferred ET response to deforestation is consistent with
what is expected from reduced LAI and the underlying de-
crease in transpiration and in evaporation from intercepted690

rainfall.
By contrast, when a land-cover transition involves changes

in the area under crops, the ET sensitivity shown by the three
products disagrees both in sign and magnitude. The results
based on NTSG and GLEAM show respectively a summer-695

time increase and decrease in ET for a transition from forest
to crops, while MPI produces a weak ET response. When
grasses are converted to crops, NTSG and MPI show clear
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increases in ET, while GLEAM-based anomalies are weak
compared to the other products. These patterns highlight then700

different estimates of crops’ ET rates across the various prod-
ucts assessed, in line with the results shown in Fig. 7.

The results shown in Fig. 8b help to interpret seasonal
patterns of �ET derived with the reconstructions. The dis-
tinct ET response to LULCC based on the MPI and the705

NTSG products, characterized by summer ET increases in
areas of large expansion of cropland, agrees with their ET
sensitivities to transitions from forest or grassland to crop-
land. Hence, the results based on NTSG show large positive
ET anomalies, particularly when cropland replaces grass-710

land (Fig. 6). The reconstruction based on MPI shows a
similar ET response to these types of land-cover transition
but of lower amplitude. In turn, the ET sensitivity based on
GLEAM reveals weak to negative ET anomalies for the three
major land-cover transitions from 1870 to 1992, explaining715

the dominant ET decreases between the PI and PD diagnosed
with this product. In summary, the analysis described in this
section suggests that the disagreement between the changes
in ET deduced with the different products is principally a re-
sult of their specific cropland ET estimates.720

6 Discussion and conclusions

This study presents novel observations-based estimates of
LULCC-induced changes in evapotranspiration (ET) be-
tween the preindustrial period and present-day, together with
associated error bars based on a) uncertainties in the histor-725

ical reconstruction of global land-cover distribution, and b)
uncertainties on the data-driven global ET products.

Our study moreover provides seasonal and spatial details
of ET changes that haven’t been discussed in any other ear-
lier work based on observations who only reported annual730

changes. Our results have demonstrated that while most parts
of the globe show annual mean ET decreases, extensive areas
in the northern hemisphere extratropics have experienced ET
increases, specifically during the growing season in regions
of large historical expansion of cropland. In those regions735

the impact of past LULCC on annual ET masks strong sea-
sonally varying changes in ET and points to the necessity
of having access to observation-based reconstructions at the
seasonal time scale.

Previous results from the LUCID intercomparison project740

have revealed very large uncertainties in modelled ET re-
sponse to LULCC between the preindustrial period and the
present, and an important fraction of these uncertainties was
attributed to the reconstructed historical scenarios of LULCC
(Boisier et al., 2012). To account for this uncertainty, the past745

changes in ET were estimated here using six different histor-
ical scenarios of LULCC previously used in LUCID.

We have diagnosed a global land annual ET change of
around �1250 km3 yr�1 between the preindustrial period
and present-day. This value is larger in amplitude than the750

simulated mean response to LULCC obtained from the LU-
CID climate models, and is placed between the data-driven
estimates of Gordon et al. (2005) and Sterling et al. (2013).
However, our reconstructed past changes in ET show a very
large dependency on the land-use maps adopted, as previous755

results from LUCID have also shown. Hence, no straightfor-
ward comparisons can be made between independent esti-
mates that prescribe different LULCC. Constraining the cur-
rent protocols used to reconstruct maps of land cover and
deriving realistic historical scenarios of land-use change rep-760

resent then a major challenge for reducing the actual uncer-
tainties on past changes in the terrestrial water budget.

In addition to the land-cover reconstructions, another
source of uncertainty in the diagnosed ET change arises from
intrinsic sensitivities to LULCC deduced from the various765

ET datasets adopted here. Our results show that these sensi-
tivities are mainly related to the products’ present-day crop
ET estimates; we therefore highlight the necessity of revisit-
ing how datasets treat crops.

The large differences in LAI shown by the LUCID mod-770

els, and the associated uncertainties in simulated ET, reiterate
previous findings pointing out the need for in-depth evalua-
tions of the vegetation phenology simulated in LSMs (e.g.,
Richardson et al., 2012; Anav et al., 2013).

Including irrigation is crucial to proper assessments of775

past land-use induced ET changes (Gordon et al., 2005). Al-
though not explicitly accounted for in this study, irrigation
should be partially included in our ET reconstructions based
on the MPI and NTSG products given their FLUXNET data
calibration. Regarding this aspect, it is noteworthy that the780

diagnosed ET based on these two products, despite the very
different procedures used to derive them, show similar sensi-
tivities to LULCC and, therefore, consistent spatial and sea-
sonal patterns of ET change between the preindustrial period
and the present.785

Given that the preindustrial ET reconstructions were cal-
culated using present-day data of the environmental drivers
(precipitation, radiation and snow cover) and, implicitly, with
current atmospheric CO2 concentrations, the estimated ET
changes do not consider any feedback that involves these790

drivers. This assumption could be particularly important for
precipitation. Previous results from LUCID have shown that
precipitation responds to LULCC synchronously with the
changes in ET, hence amplifying the impacts on ET when at-
mospheric feedbacks are accounted for (Boisier et al., 2012).795

The set of diagnosed ET presented here were derived with
empirical multivariate models of ET. It is important to re-
call that the ET products used to derive these models were
themselves obtained with empirical or semi-empirical meth-
ods. Although a number of site-level ET measurements were800

used to calibrate two products, these remain very limited in a
global-scale context. Considering this, our results should be
carefully interpreted since they involve uncertainties inher-
ent both in the multivariate analysis carried out here and in
the nature of the ET product used. Accounting for the spe-805
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cific product-based ET sensitivities to LULCC is therefore
crucial. This is why we apply the same methodology to three
ET products originally derived in quite different ways.

The increasing numbers of ground-based observations and
satellite data, combined with statistical tools, allow accurate810

estimates of the current large-scale ET to be derived (e.g.,
Jung et al., 2010). Here, we have demonstrated that simi-
lar methods are also suitable for constraining uncertainties
in the historical changes in ET, bringing a new class of es-
timates independent from global climate model simulations.815

Similar methods could also be applied to evaluate the histori-
cal impact on other key variables of the climate system (e.g.,
Boisier et al., 2013), driven by LULCC or by another climate
forcing, as well as to perform future projections.

Appendix A820

Evaluation of gridded products of evapotranspiration

A comparison of the ET products used in this study is pre-
sented in Fig. A1. The three datasets agree fairly well on the
spatial distribution of climatological (1984-2006) annual ET,
characterized by values above 1000mmyr�1 in some trop-825

ical areas and very low rates in dry regions (Fig. A1a). The
zonal mean of annual ET, depicted in the right-hand panels
of Fig. A1a (solid lines), show similar patterns for the three
products, with values below 500mmyr�1 in the extratropics
and a maximum of around 1000mmyr�1 near the Equator.830

In contrast to the climatological ET, large discrepancies
between the products can be seen in the year-to-year vari-
ability of ET. The standard deviation (SD) of annual ET
time-series (1984-2006) were calculated locally and aver-
aged zonally (dashed lines on the right panels of Fig. A1a),835

revealing large differences in the magnitude of the interan-
nual variability shown by the products. Near the Equator, the
mean SD ranges from around 25mmyr�1 (MPI) to around
100mmyr�1 (GLEAM). The spatial distribution of SD is
not homogeneous between the products either (not shown).840

Given the differences in the temporal variability of ET
shown by these products, we considered it pertinent to evalu-
ate how ET relates at interannual time-scales with some key
drivers of ET. In particular, we studied the role of precipita-
tion (P ) and downward radiation (RD). The correlation co-845

efficient between annual time-series of ET and P (⇢
E,P

) and
between ET and RD (⇢

E,R

) tend to oppose each other when
compared geographically, i.e., in areas where one pair are
positively correlated, the other pair are negatively correlated,
and vice versa. In a similar approach to that adopted by (Teul-850

ing et al., 2009), the spatial distribution of ⇢
E,P

and of ⇢
E,R

may be used to define the boundaries between water-limited
(typically when ⇢

E,P

> 0 and ⇢
E,R

< 0) and energy-limited
(⇢

E,P

< 0 and ⇢
E,R

> 0) regions for ET.
To quantify the regime which dominates in different re-855

gions, we calculated ⇢
E,P

minus ⇢
E,R

(see Sect. 2.1 and Ta-

ble 1 for details on the datasets used for P and RD). The re-
sultant geographical distribution of this metric is illustrated
for each product in Fig. A1b.

In spite of the differences in the temporal ET variabil-860

ity, the three datasets show a general (large-scale) agreement
in the ET regimes defined by ⇢

E,P

� ⇢
E,R

. However, some
discrepancies are also apparent, such as in boreal regions,
where MPI and NTSG show ET is clearly energy-limited
(⇢

E,P

< ⇢
E,R

); but in the case of GLEAM, ⇢
E,P

� ⇢
E,R

do865

not show a dominant sign.

Appendix B

Construction of biome-dependent LAI

Remotely sensed LAI data is used to characterize the spatial
and seasonal foliage density distribution of each of the four870

classes of vegetation assessed (evergreen trees, deciduous
trees, grasses and crops). In order to create biome-dependent
maps of LAI (L

v

), we adapted the methodology described
by Boisier et al. (2013), used in a similar analysis but with
surface albedo data.875

The method basically extracts local monthly LAI values
for each vegetation type, based on high-resolution grid cells
with dominant land cover. In this case, the input datasets are
the MODIS land cover (MCD12Q1; Friedl et al., 2010) and
the Beijing Normal University (BNU) reprocessed MODIS880

LAI (Yuan et al., 2011). Both products were initially pro-
cessed at 1/40� of resolution. The first step extracts LAI val-
ues in grid cells with dominant land cover, defined as the
ones showing more than 95 % of it surface area covered by
one of the four classes of vegetation used in this study (i.e.,885

F
v

> 0.95; see Sect. 2.1).
In a second step, the available LAI values per dominant

land cover computed in the initial grid are averaged onto a
1.0� grid. For a given vegetation class, at least 5 % of the
1.0� pixel must contains LAI values (i.e., more than 80 sub-890

pixels should be dominant in the vegetation type assessed).
Otherwise, a backup method is applied, which estimates L

v

as the coefficients of a simple a linear regression. The regres-
sion model has the same form as Eq. (3), but is computed
with the MODIS LAI and F

v

values observed in the sub-895

pixels (i.e., 40⇥ 40 observations). The resultant L
v

obtained
with the backup method is retained only if the corresponding
regression confidence interval (at the 95% confidence level)
is lower than 0.5m2m�2. Finally, those 1.0-degree grid cells
for which L

v

could not be obtained with one of the two meth-900

ods were filled with the value of the nearest available neigh-
bour.

Through Eq. (3), the spatially and seasonally varying L
v

can be used to reconstruct global maps of LAI for differ-
ent land-cover conditions, as was done with the LUCID set905

of land-cover maps to diagnose the LULCC-induced LAI
changes between 1870 and 1992 (Sect. 3). To evaluate the
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method described above, we also reconstructed LAI maps
using the same land-cover dataset use to derive L

v

. The re-
sultant monthly LAI values match the observed ones very910

well (R2 = 0.99), with a mean absolute error (MAE) of
0.02m2m�2.

Figure B1 shows the reconstructed LAI map in July as
well as the monthly LAI averaged over the four regions as-
sessed in this study. As the foliage density in the northern915

hemisphere is fully developed in July, the LAI distribution
depicted in Fig. B1a closely follows the spatial distribution
of forest. That is, LAI is maximized in the northern temper-
ate and boreal forest areas, as well as in tropical rainforest,
the latter with values above 5.0m2m�2. The reconstructed920

regional mean LAI values are almost identical to the ones
observed (solid lines and red dots in Fig. B1b, respectively),
characterized by marked seasonal cycles in northern temper-
ate regions (EA and NA) and roughly constant values in SA
and SEA.925

Figure B1c illustrates the regional monthly mean L
v

ob-
tained for each of the four classes of vegetation assessed.
Deciduous forest shows large summer LAI compared to
the other groups in EA and NA, and a strong seasonal cy-
cle. In these two regions, evergreen trees show moderate930

LAI, comparable to that of short vegetation. Crops’ LAI
show a slightly larger annual maximum than grasses (⇠
2.0m2m�2), and an earlier growing season in EA com-
pared to NA. The LAI difference between forest and short
vegetation is more clearly manifested in SA and SEA, with935

both kinds of tree showing nearly constant LAI of around
4.0m2m�2. Crops’ LAI in SA show a marked seasonal cy-
cle compared to the other groups of vegetation.

Appendix C

Multivariate ET models940

As described in Sect. 2.3, three empirical ET models were
constructed using a multivariate regression tool based on
Multivariate Adaptive Regression Splines (MARS). Each of
them resulted from the analysis of each ET product assessed
here (Table 1). To construct those models, we first considered945

the mean ET in a grid-cell (Eg) as the linear combination of
the components associated with each land-cover class (E

v

).
That is,

Eg =
X

v

F ⇤
v

E
v

(x), (C1)

where x represents an array of the environmental predictors,950

including the monthly mean, the long-term monthly mean
and the long-term annual mean of P , L

D

, S
D

and SWE.
If E

v

is an additive model of the basis defined by the ele-
ments of x (as the hinge functions used in MARS), we can

rewrite E
g

as955

Eg = ↵0 +
X

v,i,K

↵v,i

K

H
K

(F ⇤
v

x
i

), (C2)

with ↵0 and ↵v,i

K

, the parameters of the MARS model com-
puted for each of the 60 basis, resulted from the 5 land-
cover classes [N(v)] by 12 environmental predictors[N(i)].
H

K

represent the hinge functions obtained for a given basis.960

The knots position and number [N(K)] are automatically se-
lected in the MARS routine.

The MARS analysis is performed with the monthly data
of ET and the explanatory variables from 1984 to 2006, the
overlapping period between all data, except for F ⇤

v

, for which965

we have used the mean (2001-2009) monthly values derived
from MODIS as present-day data (Table 1). The complete
dataset was previously regridded (averaged) onto a 1.0� rect-
angular projection, since all data are available at equal or
higher resolutions (Table 1).970

The full dataset comprises more than 3⇥106 observations
(number of pixel-months). In order to increase the computa-
tional efficiency, we use a random subset of the full record
(about 9 %) as input during the training process. Prelimi-
nary tests showed that the predictive performance of the con-975

structed models is not improved by using larger samples in
the training data.

In order to evaluate the predictive skill of the MARS-based
ET models, we reconstructed ET with each model and the
complete predictor dataset, and we compared them to the ac-980

tual ET. Figure C1 shows the scatter diagrams between the
observed ET (product) and the reconstructed ones. Consid-
ering the full record (i.e., collecting together all the pixel-
month values from 1984 to 2006), the reconstructed ET ex-
plains about 90, 91 and 95 % of the observed ET variance985

in the case of GLEAM, NTSG and MPI, respectively. The
typical errors (MAE) are, in the same order, 8.2, 6.9 and
5.3mmmonth�1. These errors are reduced by factor ⇠ 2,
when the climatological monthly values are considered, in-
dicating that an important fraction of the errors occurs at the990

interannual time-scale. This is somehow expected since the
input dataset record is quite larger in space (about 11 000
pixels) than in time (276 months).

The skill of MARS models to predict the spatial and sea-
sonal distribution of ET is reasonably good despite the rel-995

ative simplicity of the set of explanatory variables used and
their independence with respect to the ET datasets. The en-
vironmental data adopted here are in most cases different to
those originally used to derive the ET products (Table 1). Yet,
the typical error of the reconstructed ET climatologies, rang-1000

ing from ⇠ 2.9mmmonth�1 (MPI) to ⇠ 4.1mmmonth�1

(GLEAM), remains lower but of the same order as the di-
agnosed changes in ET in regions of important land-cover
perturbations (see Fig. 6).

Besides the predictive skills of the MARS ET models de-1005

rived here, an important fraction of the resulting errors in the
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ET reconstructions should be attributable to the omission of
key drivers of ET originally accounted for in a given product,
such as the soil moisture in the case of GLEAM. In contrast,
we consider that the contribution of the land-cover partition-1010

ing to the spatial ET variability of the products is fairly well
captured by the reconstructions and, therefore, the MARS
models are able to estimate changes in ET driven by LULCC.
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Pitman, A. J., de Noblet-Ducoudré, N., Cruz, F. T., Davin, E. L.,
Bonan, G. B., Brovkin, V., Claussen, M., Delire, C., Ganzeveld,1225

L., Gayler, V., van den Hurk, B. J. J. M., Lawrence, P. J., van
der Molen, M. K., Müller, C., Reick, C. H., Seneviratne, S. I.,
Strengers, B. J., and Voldoire, A.: Uncertainties in climate re-
sponses to past land cover change: first results from the LU-
CID intercomparison study, Geophys. Res. Lett., 36, L14814,1230

doi:10.1029/2009GL039076, 2009.
Pongratz, J. and Caldeira, K.: Attribution of atmospheric CO2

and temperature increases to regions: importance of prein-
dustrial land use change, Environ. Res. Lett., 7, 034001,
doi:10.1088/1748-9326/7/3/034001, 2012.1235

Puma, M. J. and Cook, B. I.: Effects of irrigation on global cli-
mate during the 20th century, J. Geophys. Res., 115, D16120,
doi:10.1029/2010JD014122, 2010.



Boisier et al.: Land-use induced evapotranspiration changes estimated from observations 13

Ramankutty, N. and Foley, J. A.: Estimating historical changes
in global land cover: croplands from 1700 to 1992, Global1240

Biogeochem. Cy., 13, 997–1027, doi:10.1029/1999GB900046,
1999.

Richardson, A. D., Anderson, R. S., Arain, M. A., Barr, A. G.,
Bohrer, G., Chen, G., Chen, J. M., Ciais, P., Davis, K. J., De-
sai, A. R., Dietze, M. C., Dragoni, D., Garrity, S. R., Gough, C.1245

M., Grant, R., Hollinger, D. Y., Margolis, H. A., McCaughey,
H., Migliavacca, M., Monson, R. K., Munger, J. W., Poulter, B.,
Raczka, B. M., Ricciuto, D. M., Sahoo, A. K., Schaefer, K., Tian,
H., Vargas, R., Verbeeck, H., Xiao, J., and Xue, Y.: Terrestrial
biosphere models need better representation of vegetation phe-1250

nology: results from the North American Carbon Program Site
Synthesis, Glob. Change Biol., 18, 566–584, doi:10.1111/j.1365-
2486.2011.02562.x, 2012.

Roy, S. S., Mahmood, R., Niyogi, D., Lei, M., Foster, S. A.,
Hubbard, K. G., Douglas, E., and Pielke, R.: Impacts of the1255

agricultural Green Revolution – induced land use changes on
air temperatures in India, J. Geophys. Res., 112, D21108,
doi:10.1029/2007JD008834, 2007.

Rudolf, B., Becker, A., Schneider, U., Meyer-Christoffer, A., and
Ziese, M.: GPCC Status Report December 2010, Global Precipi-1260

tation Climatology Centre – GPCC, Offenbach, Germany, 7 pp.,
2010.

Sampaio, G., Nobre, C., Costa, M. H., Satyamurty, P., Soares-Filho,
B. S., and Cardoso, M.: Regional climate change over eastern
Amazonia caused by pasture and soybean cropland expansion,1265

Geophys. Res. Lett., 34, L17709, doi:10.1029/2007GL030612,
2007.

Sterling, S. M., Ducharne, A., and Polcher, J.: The impact of global
land-cover change on the terrestrial water cycle, Nature Clim.
Change, 3, 385–390, doi:10.1038/nclimate1690, 2013.1270

Teuling, A. J., Hirschi, M., Ohmura, A., Wild, M., Reichstein, M.,
Ciais, P., Buchmann, N., Ammann, C., Montagnani, L., Richard-
son, A. D., Wohlfahrt, G., and Seneviratne, S. I.: A regional
perspective on trends in continental evaporation, Geophys. Res.
Lett., 36, L02404, doi:10.1029/2008GL036584, 2009.1275

Teuling, A. J., Seneviratne, S. I., Stöckli, R., Reichstein, M., Moors,
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Table 31. Dataset used in this study.

Variablesa Source Period Description/references

ET GLEAM 1984–2007 Priestley-Taylor based ET model. Forcing: SRB (rad.),
GPCP/CMORPH (meteorol.), LPRM (soil moist., temp, veget.
optical depth), ISCCP (temp.) and NSIDC (SWE) (Miralles et al.,
2011).

ET MPI 1982–2008 ET upscalling from eddy-covariance obs. (FLUXNET). Use AVHRR
NDVI and CRU/GPCC for climatic vars. (Jung et al., 2010).

ET NTSG 1983–2006 Penman-Monteith and Priestley-Taylor (open water) models. Use
AVHRR (NDVI), SRB (radiation), NCEP/NCAR rea. (meteor.).
FLUXNET obs. for calibration of canopy conductance (Zhang et al.,
2010).

P GPCC 1901–2010 Gauge-based monthly gridded precipitation product release 5 (Rudolf
et al., 2010).

SD, LD SRB 1984–2007 NASA/GEWEX SRB project release-3.0 remote sensed radiation
data.

SWE NISDC 1979–2006 Satellite monthly EASE-Grid Snow Water Equivalent (Armstrong et
al., 2007).

Fv MODIS 2001–2010 Land-cover product MCDQ1 release 5. PFT classification (Friedl et
al., 2010).

LAI MODIS-BNU 2001–2009 Reprocessed MODIS leaf area index (Yuan et al., 2011).

Fv , LAI, ET LUCID 1970–1999 Simulations from six AGCM/LSMsb. Prescribed SST/SICs from 1970
to 1999, [CO2] set to 370ppm and two land-cover maps of 1870 and
1992 (Pitman et al., 2009; de Noblet-Ducoudré et al., 2012).

a Excepting land-cover fraction (Fv), dataset correspond to monthly fields of evapotranspiration (ET), surface downward solar (SD) and longwave (LD)
radiation, snow water equivalent (SWE) and precipitation (P ). b ARPEGE/ISBA, CCSM/CLM, EC-Earth/TESSEL, LMDZ/ORCHIDEE,
ECHAM5/JSBACH and SPEEDY/LPJmL (see de Noblet-Ducoudré et al., 2012, and references therein).

Table 32. Change in global terrestrial evapotranspiration (PD–PI).

Estimate �ET (km3 yr�1) LULCC Irrigation

This study
Diagnosed �1260± 850a (±780b;±470c) 1870–1992 (LUCID) No/Implicit
Simulated �760± 720d 1870–1992 (LUCID) No

Gordon et al. (2005) �3000 potential – actual No
�400 potential – actual Yes

Sterling et al. (2013) �3500 potential – actual Yes

a Mean deviation (MD) between all reconstructed �ET (3 products ⇥ 6 LULCC forcings). b Uncertainty associated to the
LULCC forcing (MD computed across the various LULCC and then averaged). c Uncertainty associated to the ET products
(MD computed across the various products and then averaged). d MD between the individual LUCID AGCM/LSM results.
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Fig. 1. Methodology followed to estimate the LULCC-induced evapotranspiration (ET) changes between the preindustrial period and the
present. The dataset used (boxes) includes gridded maps of present-day ET, land-cover (LC), leaf area index (LAI), radiation (SD, LD),
precipitation (P ) and snow cover (SWE) (see Table 1). Solid arrows indicate the input dataset used to compute the MARS-based ET models
( bE). Dotted arrows indicate the data used as forcing in the computation of the ET reconstructions.

Fig. 2. Differences in the fractional area (%, absolute) covered by (a) crops, (b) grass and (c) forest between 1992 and 1870. Maps of land-
cover change correspond to those prescribed in LUCID LSMs (model-mean). (d) MODIS-based reconstructed change in annual mean leaf
area index from 1870 to 1992. Contour lines indicate the four regions used later for specific analysis.
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Fig. 3. (a) Monthly mean LAI in 1992 and (b) LAI change from 1870 to 1992 averaged over four regions of study (indicated Fig. 2d).
Reconstructed (MODIS-based) and simulated (LUCID) LAI are shown as solid-black and dashed-green lines, respectively. Mean LAI is
plotted along with a range of ±1.0 mean absolute deviation, resulting from individual reconstructions (based on the different LULCC data;
grey shading), and from the individual model results (green shading).

Fig. 4. Land-use induced change (PD–PI) in annual evapotranspiration (�ET) estimated from multiple products of ET and LULCC maps (the
average �ET is shown). Contour line encloses the areas where the spread between the various estimates of �ET (mean absolute deviation)
exceeds 20mmyr�1.
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Fig. 5. Monthly mean evapotranspiration (ET) change (PD–PI) averaged over the four regions of study: (a) Eurasia, (b) North America, (c)
South America and (d) Southeast Asia. Product-based estimates and the simulated changes in ET are illustrated. Shaded areas indicate the
mean ±1.0 mean absolute deviation from the individual estimates or model data.

Fig. 6. Change (PD–PI) in seasonal evapotranspiration reconstructed from (a) GLEAM, (b) MPI and (c) NTSG. Two-monthly means corre-
spond to March–April (MA), May–June (MJ), July–August (JA) and September–October (SO).
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Fig. 7. Monthly mean ET associated to dominant classes of vegetation in the Northern Hemisphere extratropics (> 20� N). Results from
GLEAM, MPI and NTSG illustrated as solid, dashed and dotted lines, respectively. Regions with dominant vegetation (areal fraction> 75%
in 1.0� grid) are shown in the bottom panel.
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Fig. 8. (a) Evapotranspiration (ET) change (PD–PI) diagnosed from MPI in July, plotted against three land-use transitions: forest-to-grass,
forest-to-crops and grass-to-crops. Dashed lines indicate the linear fit between the data. (b) Normalized monthly mean ET response to
specific land-use transitions. Results based on the GLEAM, MPI and NTSG ET reconstructions are shown as solid, dashed and dotted lines,
respectively. Analysis constrained to northern extratropical areas (> 20� N).
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Fig. 9. (a) Mean annual (1984–2006) evapotranspiration (ET) from GLEAM (top), MPI (middle) and NTSG (bottom). Right panels indicate
the zonal mean of annual ET (solid line), and of interannual ET standard deviation (dashed line; x-axis values in brackets). (b) Difference
between the interannual correlation of ET and precipitation (⇢E,P ), and that of ET and downward radiation (⇢E,R). Right panels indicated
the zonal mean of ⇢E,P (red line) and ⇢E,R (blue line).

Fig. 10. (a) Reconstructed global distribution of Leaf Area Index (LAI) in July based on MODIS data. (b) Monthly mean LAI averaged over
the four regions of study: Eurasia (EA), North America (NA), South America (SA) and southeast Asia (SEA). Reconstructed and observed
values indicated as solid line and red dots, respectively. (c) Regional and monthly mean LAI per land-cover class: crops (black line), grasses
(red), evergreen trees (green) and deciduous trees (blue).
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Fig. 11. Reconstructed vs. observed monthly evapotranspiration (ET) based on the (a) GLEAM, (b) MPI and (c) NTSG ET products. The
full dataset (pixel-months) and the long-term monthly mean values are illustrated as grey and black dots, respectively. The mean absolute
error (MAE) and coefficient of determination (R2) between the reconstructions and the observations are indicated.


