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Abstract. Watershed-scale hydrological and biogeochemical models are usually 13 

discretized at resolutions coarser than where significant heterogeneities in topography, 14 

abiotic factors (e.g., soil properties), and biotic (e.g., vegetation) factors exist. Here we 15 

report on a method to use fine-scale (220 m gridcells) hydrological model predictions to 16 

build reduced order models of the statistical properties of near-surface soil moisture at 17 

coarse-resolution (25 times coarser; ~7 km). We applied a watershed-scale hydrological 18 

model (PAWS-CLM4) that has been previously tested in several watersheds. Using these 19 

simulations, we developed simple, relatively accurate (R2 ~ 0.7 − 0.8) reduced order 20 

models for the relationship between mean and higher-order moments of near-surface soil 21 

moisture during the non-frozen periods over five years. When applied to transient 22 

predictions, soil moisture variance and skewness were relatively accurately predicted (R2 23 

~ 0.7 − 0.8), while the kurtosis was less accurately predicted (R2 ~ 0.5). We also tested 24 

sixteen system attributes hypothesized to explain the negative relationship between soil 25 

moisture mean and variance toward the wetter end of the distribution and found that, in 26 

the model, 59% of the variance of this relationship can be explained by the elevation 27 

gradient convolved with mean evapotranspiration. We did not find significant 28 

relationships between the time rate of change of soil moisture variance and covariances 29 

between mean moisture and evapotranspiration, drainage, or soil properties, as has been 30 

reported in other modeling studies. As seen in previous observational studies, the 31 

predicted soil moisture skewness was predominantly positive and negative in drier and 32 

wetter regions, respectively. In individual coarse-resolution gridcells, the transition 33 
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between positive and negative skewness occurred at a mean soil moisture of ~0.25 − 0.3. 1 

The type of numerical modeling experiments presented here can improve understanding 2 

of the causes of soil moisture heterogeneity across scales, and inform the types of 3 

observations required to more accurately represent what is often unresolved spatial 4 

heterogeneity in regional and global hydrological models. 5 

  6 
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1 Introduction 1 
Representation of the structure and dynamics of fine-scale spatial structure in 2 

hydrological states and fluxes has been shown to significantly influence coarse-scale 3 

surface energy budgets (e.g., ET (Wood, 1997; Wood, 1998; Vivoni et al., 2010)), runoff 4 

and streamflow (Arrigo and Salvucci, 2005; Vivoni et al., 2007; Barrios and Frances, 5 

2012), regional-scale feedbacks with the atmosphere (Nykanen and Foufoula-Georgiou, 6 

2001), and biogeochemical responses (Dai et al., 2012; Zhang et al., 2012). It has been 7 

argued that the relevant spatial scale for hydrological state and flux heterogeneity is on 8 

the order of 100 m (Wood et al., 2011), while for biogeochemical dynamics it may be as 9 

small as 1 m (Burt and Pinay, 2005; Groffman et al., 2009; Frei et al., 2012; McClain et 10 

al., 2003). The current suite of land models representing coupled hydrological and 11 

biogeochemical cycles and used for analyses of water resources and water quality (e.g., 12 

HydroGeoSphere (Li et al., 2008), CATHY (Weill et al., 2011), PIHM (Qu and Duffy, 13 

2007), tRIBS (Ivanov et al., 2004), Noah-MP+CATHY (Niu et al., 2013), GSFlow 14 

(Markstrom et al., 2008), LEAF-Hydro-Flood (Miguez-Macho and Fan, 2012), GEOtop 15 

(Rigon et al., 2006), MIKE-SHE (McMichael et al., 2006), WEP-L (Jia et al., 2006), and 16 

PAWS (Shen, 2009; Shen and Phanikumar, 2010), and regional (e.g., (Subin et al., 17 

2011)) and global (e.g., (Koven et al., 2013; Tang et al., 2013)) climate prediction are 18 

typically applied at resolutions that are orders of magnitude larger than these scales. 19 

Unfortunately, there are few large-scale observational datasets with which to test the 20 

impact of the discrepancies in scale between model representation and known variability 21 

of coupled hydrological and biogeochemical processes. This problem is particularly acute 22 

for biogeochemical dynamics, which generally depend strongly on the hydrological state.  23 

Watershed-scale hydrological models are often tested against, or calibrated to, stream 24 

flow observations. The impact of these types of calibrations on the relative accuracy of 25 

surface soil moisture heterogeneity is not well characterized. For example, Nykanen and 26 

Foufoula-Georgiou (2001) used observations form the 1997 SGP experiment to 27 

investigate the impact of nonlinear soil moisture dependencies of parameters on the scale 28 

dependency of those parameters. They showed that failing to consider this scale 29 

dependency could cause large biases in predicted surface runoff. Gebremichael et al. 30 

(2009) compared scaling characteristics of spatial soil moisture fields from the same 1997 31 
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SGP experiment with predicted values from a distributed hydrologic model. 1 

Inconsistencies between the observed and predicted soil moisture mean and spatial 2 

scaling parameters indicated that while the model accurately reproduced outlet stream 3 

flow the underlying mechanisms leading to runoff might have been inaccurately 4 

simulated. 5 

Quantifying relationships between the statistical properties of the soil moisture field 6 

and spatial scale may allow prediction of heterogeneity at scales finer than those resolved 7 

by the model. Since the pioneering work of Rodriguez-Iturbe (1995) and Wood (1998), 8 

who described the power law decay of variance as a function of the observation scale, 9 

many studies have quantified the variance-scale relationship. Hu et al (1997) showed that 10 

the variance (𝜎!!)  of the soil moisture (𝜃) field at different spatial averaging areas (A) can 11 

be related to the ratio of those areas raised to a scaling exponent (𝛾; i.e., ‘simple scaling’). 12 

They also showed that 𝛾 is related to the spatial correlation structure of the soil moisture 13 

field and that it decreases as soils dry. Their scaling analysis of higher-order moments 14 

indicated that soil moisture might not always follow simple scaling. A number of 15 

investigators have since demonstrated that the relationship between 𝜎!! and spatial scale 16 

is not log-log linear across all spatial scales, and that the relationship can depend on the 17 

mean soil moisture (𝜇!) field (e.g., (Mascaro et al., 2010, 2011; Famiglietti et al., 1999; 18 

Nykanen and Foufoula-Georgiou, 2001; Das and Mohanty, 2008; Joshi and Mohanty, 19 

2010)).  20 

It has been further observed that soil moisture mean is often related to its variance 21 

and higher-order moments. Most commonly, an upward convex relationship between 𝜇! 22 

and 𝜎!! has been reported when a sufficiently large range of mean moistures is analyzed 23 

(e.g., (Teuling and Troch, 2005; Lawrence and Hornberger, 2007; Teuling et al., 2007; 24 

Famiglietti et al., 2008; Pan and Peters-Lidard, 2008; Brocca et al., 2010; Brocca et al., 25 

2012; Tague et al., 2010; Rosenbaum et al., 2012; Li and Rodell, 2013; Choi and Jacobs, 26 

2011)). Theoretical analyses have indicated that an upward convex relationship is 27 

consistent with current understanding of soil moisture dynamics (e.g., Vereecken et al. 28 

(2007)).  29 

Famiglietti et al. (2008) used over 36,000 soil moisture observations in four field 30 

campaigns to demonstrate that soil moisture variability generally increased with extent 31 
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scale and followed fractal scaling. Their reported soil moisture standard deviation versus 1 

mean moisture content exhibited a convex upward relationship, with the peak of their 2 

best-fit relationships occurring at ~0.15 mean soil moisture. Brocca et al. (2012), using 3 

data from 46 sites over two years in two adjacent ~200 km2 areas, observed a peak in the 4 

convex upward relationship around 0.2-0.25 mean soil moisture. Choi and Jacobs (2011) 5 

studied observations from two years of the Walnut Creek watershed, Iowa, Soil Moisture 6 

Experiment (2002, 2005). They observed a convex upward relationship during the 2002 7 

observations when the soil moisture range extended down to ~0.1, but not in 2005 when 8 

mean soil moisture did not drop below ~0.15. Rosenbaum et al. (2012) concluded that the 9 

relationship between the 0-5 cm soil moisture spatial standard deviation and mean also 10 

had a convex up shape, but peaked at a higher mean soil moisture level (0.35-0.40), 11 

although their range of mean soil moisture extended substantially further (0.58) than the 12 

other studies cited above.  13 

Several studies have also investigated the relationships between observed soil 14 

moisture mean and higher order moments (skewness (𝑠!) and kurtosis (𝑘!)). For 15 

example, Famiglietti et al. (1999) used observations from the SGP97 experiment to 16 

conclude that the distribution of surface soil moisture content evolved from negatively 17 

skewed under very wet conditions, to normal in the midrange of mean moisture, to 18 

positively skewed under dry conditions. For the same SGP97 dataset, Ryu and Famiglietti 19 

(2005) discussed the bimodality of the soil moisture distributions (which will be reflected 20 

in 𝑘!), and concluded that it resulted primarily from fractional precipitation within the 21 

observational footprint. 22 

A fewer number of studies have combined observations of soil moisture with 23 

distributed hydrological model predictions to investigate spatial scaling properties. Li and 24 

Rodell (2013) examined spatial statistics of in situ, satellite-retrieved, and modeled soil 25 

moisture over three large climate regions. The relationship between 𝜎!! and 𝜇! had an 26 

upward convex shape for the in situ measurements, but not for the modeled relationship. 27 

Manfreda et al. (2007) examined the statistical structure of soil moisture patterns using 28 

modeled soil moisture obtained from the North American Land Data Assimilation 29 

System (NLDAS). They concluded that 𝜎!! followed a power law relationship with 30 

averaging area and the dynamics of the relationship were controlled by mean soil water 31 
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content. Maxwell (2010) performed transient simulations of an arid mountain system and 1 

showed that the land-energy fluxes were spatially correlated and that the soil saturation 2 

vertical structure did not follow a simple scaling relationship. Ivanov et al. (2010) studied 3 

the relationship between soil moisture mean and its coefficient of variation using a 4 

numerical model applied to a small hillslope, and demonstrated hysteretic patterns during 5 

the wetting-drying cycle. They concluded that the system response is not unique given 6 

the same initial mean state, but that it depends on the magnitude of precipitation inputs.  7 

The relationships between soil moisture mean and statistical moments potentially 8 

depend on a wide range of factors and on spatial extent. As reviewed in Brocca et al. 9 

(2007), soil moisture statistical properties can be impacted by lateral redistribution 10 

(Moore et al., 1988; Williams et al., 2003), radiation (Moore et al., 1993; Western et al., 11 

1999), soil characteristics (Hu et al., 1997; Famiglietti et al., 1998; Seyfried, 1998), 12 

vegetation characteristics (Qiu et al., 2001; Hupet and Vanclooster, 2002), elevation 13 

above the drainage channel (Crave and GascuelOdoux, 1997), downslope gradient (Merot 14 

et al., 1995), bedrock topography (Chaplot and Walter, 2003), specific upslope area 15 

(Brocca et al., 2007), and landscape unit (Park and van de Giesen, 2004; Wilson et al., 16 

2004). Famiglietti et al. (1998) argued that under wet conditions, the best correlation of 17 

soil moisture variability was with soil porosity and hydraulic conductivity, and under dry 18 

conditions, with relative elevation, aspect, and clay content. Western et al. (1999) found 19 

that during wet conditions the best predictor of the soil moisture spatial pattern was the 20 

specific area (through lateral redistribution) while during dry conditions the best predictor 21 

was the potential solar radiation index (through aspect and evapotranspiration). Lawrence 22 

and Hornberger (2007) argued that trends across climate zones are related to the wilting 23 

point and porosity. 24 

Albertson and Montaldo (2003) and Montaldo and Albertson (2003) presented a 25 

theoretical argument for the impact of various factors on the relationship between soil 26 

moisture mean and variance. They showed that covariances between anomalies of soil 27 

moisture, infiltration, drainage, and ET control the production and destruction of variance 28 

over time. Teuling and Troch (2005) applied a similar approach to study the impacts of 29 

vegetation, soil properties, and topography on the controls of soil moisture variance. 30 
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Building on these previous studies, we begin with a downscaling hypothesis that 1 

consistent relationships between the transient higher-order statistical moments and mean 2 

near-surface soil moisture fields exist (i.e., a ‘downscaling’ closure relationship). We 3 

leave the problem of upscaling these relationships and their impact on the coarse-4 

resolution transient solution for further work. In particular, we used a five-year, high-5 

resolution hydrological simulation of the Clinton River Watershed in Michigan to 6 

characterize relationships between 𝜇! and 𝜎!!, 𝑠!, and 𝑘!. Although we expected these 7 

relationships to vary with depth, we only evaluated the depth interval 0-10 cm to make 8 

the analysis scope tractable; future work will address this shortcoming. We also tested the 9 

extent to which using discrete bins across the mean moisture range improved 10 

characterization of spatial soil moisture heterogeneity. We then applied these 11 

relationships to investigate hypothesized controllers of soil moisture heterogeneity as a 12 

function of soil properties, evapotranspiration, topography, etc. The value of using a 13 

model, compared to observations alone, for this analysis is that we have continuous and 14 

spatially explicit estimates of states and fluxes, and since we know the mechanisms 15 

included in the model, we can attribute patterns to individual processes. 16 

In the Methods section we describe the Clinton River Watershed, the numerical 17 

model we applied (PAWS-CLM), model forcing and surface characterization applied, 18 

simulations performed, and our approach to generating a surrogate, or reduced order 19 

(ROM), model of fine-scale soil moisture heterogeneity. In the Results and Discussion 20 

section we discuss the surrogate model estimates, the value of using a binned approach to 21 

characterizing soil moisture variability, and predicted controls on the relationship 22 

between soil moisture mean and variance. The last section provides a brief summary and 23 

conclusions. 24 

2 Methods 25 

2.1 The	
  Clinton	
  River	
  Watershed	
  	
  26 

Our study domain is the Clinton River watershed (Figure 1), an 1837 km2, humid 27 

continental-climate basin draining into Lake St. Clair that was described in detail by Shen 28 

et al. (2013b). Precipitation is relatively uniformly distributed throughout the year but 29 

there is strong seasonal variation in solar radiation and air temperature that affect 30 
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evapotranspiration (ET) demands. This watershed is well suited for our study because of 1 

its varied topography and subsurface properties, heterogeneity of surface and subsurface 2 

lateral exchanges, and heterogeneity in vegetation. The basin has rugged hills on the 3 

highlands of the west and flat, low-lying plains toward the east. This contrast in 4 

topography, as shown later, impacts large-scale groundwater flow and the differences 5 

between hilly and flat terrain soil moisture dynamics. Urban areas of varying intensity 6 

span the southern portion of the watershed, the northwest is largely forested, and the 7 

northeast is dominated by agriculture. Glacial drifts and lucastrine deposits in the 8 

southeast form the unconfined aquifer, underlain by shale rock that bears little water. 9 

High-resolution elevation (30 m), land use (30 m), soil (1:12,000 to 1:63,360 SSURGO), 10 

river hydrography (1:24,000), well-log based aquifer characteristics (~1000 m), land-11 

based climate forcing data (12 stations; precipitation, temperature, humidity, and wind 12 

speeds), and simulated steady state carbon and nitrogen states (220 m) are used as inputs 13 

to the model (Shen et al., 2013b).  14 

2.2 PAWS-­‐CLM4	
  Model	
  Description	
  and	
  Simulations	
  Performed	
  15 

We applied the PAWS+CLM model to generate watershed-scale predictions for the 16 

analyses presented here. PAWS (Process-based Adaptive Watershed Simulator) (Shen et 17 

al., 2013b; Shen and Phanikumar, 2010) is a computationally efficient, physically-based 18 

hydrologic model that has recently been coupled with CLM4.0 (Lawrence et al., 2011). 19 

PAWS+CLM explicitly solves the physically-based governing partial differential 20 

equations for overland flow, channel flow, subsurface flow, wetlands, and the dynamic 21 

two-way interactions among these components. The model evaluates the integrated 22 

hydrologic response of the surface–subsurface system using a novel non-iterative method 23 

that couples runoff and groundwater flow to vadose zone processes approximating the 24 

three-dimensional (3D) Richards equation. By reducing the dimensionality of the fully 25 

3D subsurface problem, the model significantly reduces the computational demand with 26 

little loss of physics representation. We run the model with hourly time steps, but 27 

aggregate the results to a diurnal time step for the analyses performed here. 28 

The PAWS+CLM model has been tested extensively with analytical and 3D 29 

benchmarks and compares favorably with other physically-based models (Maxwell et al., 30 

2014). It has been applied in several U.S. Midwest watersheds, including the 1140 km2 31 
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Red Cedar River (Shen and Phanikumar, 2010), the 1837 km2 Clinton River (Shen et al., 1 

2013b), the 4527 km2 Upper Grand, the 5232 km2 Kalamazoon River, the 14430 km2 2 

Grand River, and the 22260 km2 Saginaw River basins. More recently, physically-based 3 

reactive transport of nutrients and bacteria has been integrated and the model has been 4 

applied to a desert environment in Southern California to evaluate groundwater 5 

sustainability. 6 

We applied PAWS+CLM at 220 m ×	
 220 m horizontal resolution across the Clinton 7 

River watershed. Although this resolution is coarser than the hyper-resolution called for 8 

in Wood et al. (2011) and proof-of-concept work in Kollet et al. (2010), it provides 9 

substantial resolution of topographic and landuse variation across a horizontal 256×280 10 

grid. Twenty vertical layers were used to discretize the subsurface between the land 11 

surface and bedrock top. Therefore the vertical spatial resolution varies throughout the 12 

basin depending on the depth to bedrock. As described in Shen et al. (2013a), to create a 13 

PAWS+CLM model for the Clinton River watershed, daily weather data were obtained 14 

from the National Climatic Data Center (NCDC, 2010). We obtained 30 m resolution 15 

National Elevation Dataset (NED) to generate average cell elevation and lowland storage 16 

bottom elevation. The 30 m resolution IFMAP 2001 land use and land cover data 17 

(MDNR, 2010) were aggregated to provide land use information. Three dominant land 18 

use types (PFTs) were modeled in each horizontal cell. The soil color data is extracted 19 

from a global dataset (GSDT, 2000). We obtained the spatial distribution of lateral 20 

conductivities of the unconfined aquifer (glacial drift) as well as depths to bedrock by 21 

interpolating well records from the WELLOGIC database (GWIM, 2006; Simard, 2007) 22 

using Kriging. The bedrock has very low permeability as it is composed of shale and 23 

some limestone. The model was calibrated against USGS gaging station 04165500 24 

(Clinton River at Mt. Clemens) using a parallel version of the differential evolution 25 

algorithm (Chakraborty, 2008). The simulations were performed from 2001 to 2008 with 26 

the first three years used as model ‘spin-up’ and 2004−2008 included in our analysis. We 27 

used daily-averaged top 10 cm soil moisture (𝜃) fields for the analyses presented here. To 28 

simplify our attempt at estimating quantitative relationships between the spatial 29 

properties of the fine-resolution moisture fields and the mean moisture fields, we focused 30 

on the unfrozen periods during each year (days 130-300). The 2004-2008 temporal 31 



 10 

average soil moisture predicted in the 220 m simulation is shown in Figure 1. There is a 1 

large-scale spatial pattern in the soil moisture field, being generally higher on the eastern 2 

lowland plains than on the western hills, due to basin-scale groundwater flow. However, 3 

contrary to the coarser-resolution soil moisture map provided previously (Figure 10d in 4 

Shen et al. (2013b)), Figure 1 shows fine-scale features, e.g., high surface moisture near 5 

channels and high moisture in clayey soils near the eastern boundary. 6 

2.3 Developing	
  Surrogate	
  Models	
  for	
  Surface	
  Soil	
  Moisture	
  Moments	
  7 

We developed two classes of simple surrogate models to represent soil moisture 8 

spatial heterogeneity as a function of mean soil moisture in coarse-resolution gridcells. 9 

We chose a factor of 25 in resolution to define the coarse-resolution gridcells, resulting in 10 

thirty-four 7040 m coarse-resolution gridcells across the watershed. The first class of 11 

surrogate model was separate polynomials describing the relationships between 𝜇! and 12 

𝜎!!, 𝑠!, and 𝑘! for each coarse-resolution gridcell. We tested the impact on the accuracy 13 

of the relationship for best-fit 1st, 2nd, and 3rd order polynomials. The second class of 14 

surrogate model represents the fraction of high-resolution gridcells in each coarse-15 

resolution gridcell that fall into a particular mean soil-moisture bin. A disadvantage of 16 

this latter approach is that it is not as easy to mathematically synthesize the patterns, 17 

while a potential advantage is that it represents the probability distribution function of the 18 

moisture even in the case where the first few statistical moments do not fully capture its 19 

properties. 20 

2.4 Relationships	
  between	
  Soil	
  Moisture	
  Heterogeneity	
  and	
  System	
  Properties	
  21 

We investigated the relationship between daily 𝜎!! and 𝜇! over the 𝜇! range where 𝜎!! 22 

decreases with increasing 𝜇!. As shown below, most of the 𝜇! predictions were above the 23 

~0.2 breakpoint (as often observed and predicted here) for the peak of a convex-up 24 

relationship between 𝜎!! and 𝜇!. Therefore, many of the coarse-resolution gridcells were 25 

relatively well characterized by a linear fit with a negative slope, although about 20% of 26 

the gridcells were predicted to have a full convex-up relationship. For the latter gridcells, 27 

we evaluated the best-fit slope for the portion of the data to the wetter side of the peak of 28 

the convex-up relationship.  29 
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We investigated sixteen hypothesized controllers of this slope (based on the literature 1 

cited in the Introduction), all of which are represented explicitly or implicitly in 2 

PAWS+CLM: specific upslope area, gradient, variance of the gradient in each coarse-3 

resolution gridcell, aspect, soil characteristics (porosity, clay content, conductivity), 4 

temporal mean evapotranspiration (𝐸! (W m-2)), temporal variance in 𝐸!, bedrock 5 

topography, temporal mean groundwater depth (𝐺! (m)), temporal variance in 6 

groundwater depth (𝐺! (m)), elevation, mean surface roughness, variance in roughness, 7 

and stream drainage density. We used TopoToolbox (Schwanghart and Kuhn, 2010) to 8 

evaluate the topographic indices used in the analysis. 9 

3 Results and Discussion 10 

3.1 Comparing	
  Model	
  Predictions	
  to	
  Observations	
  11 

PAWS+CLM has been extensively tested and demonstrated favorable comparisons 12 

with various observations from several basins (Shen et al., 2013b; Shen and Phanikumar, 13 

2010; Niu and Phanikumar, 2012). In the Clinton River watershed, the model has been 14 

shown to satisfactorily reproduce streamflow observations both at the basin outlet and 15 

uncalibrated inner gages (Nash-Sutcliffe model efficiency coefficient ~ 0.65), spatially 16 

distributed water table depths (R2=0.66), soil temperature, and MODIS satellite-based 17 

observations of Leaf Area Index (LAI) and evapotranspiration (ET) (Shen et al., 2013b). 18 

In other basins, PAWS+CLM was able to match observed transient water table depths 19 

from a USGS monitoring well and water storage anomalies measured by the GRACE 20 

satellite. 21 

In addition to the comparisons described above, we compared simulated versus 22 

observed soil moisture at a site in Romeo, MI from an Enviro-weather Automated 23 

Weather Station Network (Figure 2). Since maintenance records indicated problems with 24 

the soil moisture sensor installation in 2008, we only show comparisons in 2009. The 25 

winter freeze-up at the beginning of 2009, shown as a period of very low soil moisture, 26 

was well captured by the model. The subsequent large variations due to freeze and thaw 27 

were also closely reproduced, with some over-estimation near the end of the freezing 28 

cycle (early April 2009). In May, soil moisture was over estimated during the recession 29 

periods after storms. In late Spring, plants may preferentially increase rooting density 30 
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near the surface when there is high moisture content, leading to a stronger recession of 1 

near-surface moisture (Sivandran and Bras, 2013). However, the current static rooting 2 

algorithm in CLM cannot reproduce this mechanism, and therefore may be partly 3 

responsible for this bias. From June to November the model accurately predicted the 4 

mean, range of fluctuations (0.25~0.34), and general trend. However, toward the end of 5 

the year, the predicted freeze-up was not present in the observations. These mismatches 6 

may be attributed to differences between grid average moisture of a 220 m cell and the 7 

site-specific moisture measured by the probe or local variation and uncertainty in 8 

subsurface properties. 9 

3.2 Predicted	
  Mean	
  Moisture	
  10 

The range and dynamics of predicted mean moisture at the coarse-resolution varied 11 

substantially across the watershed (Figure 1; Figure 3). The western upland gridcells 12 

tended to be drier overall with the mean moisture increasing toward the east and south, 13 

which are lower elevation gridcells receiving both surface and sub-surface water inputs. 14 

The low precipitation inputs in 2006 had proportionally larger impacts in the wetter, 15 

eastern gridcells, resulting in up to 25% decreases in mean saturation. 16 

3.3 Relationships	
  Between	
  Soil	
  Moisture	
  Mean	
  and	
  Higher-­‐Order	
  Moments	
  	
  17 

Using the 0-10 cm soil moisture predictions from the 220 m resolution simulation, we 18 

evaluated 𝜇!, 𝜎!!, 𝑠!, and 𝑘! at every time point (daily) for each of the thirty-four 19 

7040 m ×7040 m coarse-resolution gridcells (Figure 4 shows representative transient 20 

profiles for one subregion over 90 d of the simulation). We used these temporally 21 

resolved values to build 1st, 2nd, and 3rd order best-fit polynomial relationships, with the 22 

3rd order fits having generally the best predictive power and therefore applied in the 23 

remainder of our analysis. Overall, these surrogate models accurately captured the 24 

relationships between 𝜇! and 𝜎!!, 𝑠!, and 𝑘!, with mean R2 values of 0.73, 0.74, and 25 

0.75, respectively. 26 

Different types of 𝜎!! ~ 𝜇! relationships were predicted among the thirty-four coarse-27 

resolution gridcells across the watershed. Some gridcells exhibited large, negative slopes 28 

with little scattering, e.g., #10, #17, #40, # 41, indicating that soil moisture heterogeneity 29 

in these cells was strongly controlled by mean moisture, and that the variability was 30 
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smallest on the wettest days. Some cells have much smaller slopes, e.g., #6, #7, #22 and 1 

#23, suggesting that their variability was less sensitive to mean moisture. These cells 2 

tended to have very small spatial variability throughout the year. Most gridcells with 3 

monotonic 𝜎!! ~ 𝜇! relationships did not experience mean moisture below ~0.25. 4 

However, for some (e.g., gridcells #10, #17, #24), this monotonic, approximately linear 5 

relationship extended down to 𝜇! ~ 0.2. We did not observe any gridcells with a purely 6 

upward 𝜎!! ~ 𝜇! slope. On the other hand, about 20% of the gridcells had convex up 𝜎!! ~ 7 

𝜇! relationships (e.g., gridcells #19, $26, #32 and #3). These gridcells primarily reside in 8 

the large topographic gradient in the middle of the watershed that alternates between 9 

recharge and discharge across the year (Salvucci and Entekhabi, 1995; Shen et al., 2013b) 10 

and correspond with relatively higher drainage densities (Figure 6). Higher drainage 11 

density corresponds to larger topographic variation, and this region connects upland hills 12 

and lowland plains and is characterized by a sharp change in elevation. As a result it is 13 

also a transition zone over which the distance to the water table decreases strongly. 14 

Therefore the 7040 m cells in these regions all included large variations in soil moisture, 15 

and they shift from high to low water table regimes seasonally. The differences in these 16 

relationships indicate that at the 7040 m ×7040 m scale, the 𝜎!! ~ 𝜇! relationships are 17 

determined locally, a finding consistent with that by Mascaro et al. (2010), where 18 

coefficients in a predictive formula for scaling exponents were related to local attributes. 19 

For a particular coarse-resolution gridcell, the scattering of the 𝜎!! ~ 𝜇! points around 20 

the polynomial fit, or departure from a deterministic function, can be attributed to 21 

different hydrologic processes that similarly affect the mean but differently affect the 22 

spatial heterogeneity. For example, homogeneous precipitation increases surface moisture 23 

evenly across the domain, and therefore decreases the variance. This homogenizing effect 24 

acts as the major driver that sets the negative slope in the 𝜎!! ~ 𝜇! curves. However, an 25 

increase in regional groundwater flow would create spatial heterogeneity that adds to the 26 

variance. This effect is clear in the transition zones (e.g., gridcells #19, #26). A 27 

floodwave that inundates riparian zones (which are represented in PAWS+CLM) would 28 

increase the mean soil moisture and spatial heterogeneity in the gridcell by increasing soil 29 

moisture only in the riparian zones. Gridcells that are further to the west have smaller 𝜎!! 30 
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ranges for particular values of 𝜇!, and have soil moisture that are less impacted by 1 

exfiltration. 2 

As mentioned above, Famiglietti et al. (2008) used data from several ground-based 3 

measurement campaigns in the Southern Great Plains and Iowa to characterize 4 

relationships between 𝜇!, 𝜎!!, and 𝑠!. They found convex up relationships between 𝜎!! 5 

and 𝜇! at 800 m and 50 km scales with a mean moisture range between [~0.05, 0.4], and 6 

fit an exponential function to the standard deviation: 𝜎! = 𝑘!𝜇!exp −𝑘!𝜇! . For the 7 

range of mean moisture we predicted in the Clinton Watershed [~0.2, 0.45] (i.e., a 8 

smaller range than used in the Famiglietti et al. (2008) study), the overall monotonically 9 

declining trend in 𝜎!! with 𝜇! qualitatively matched the trend they reported (lower left 10 

panel of Figure 5). There were, however, gridcells with higher variance that did not fit 11 

this pattern (i.e., #19, #26, #33). We calculated 𝑘! (1.3±0.3) and 𝑘! (7.1±1.0) across the 12 

7040 m coarse-resolution gridcells and found a mean R2 for all the gridcells of 0.48. 13 

These predicted values of 𝑘! and 𝑘! matched well those reported by Famiglietti et al. 14 

(2008) for their 1.6 km scale (1.2 and 7.1, respectively). We note also that the 3rd order 15 

polynomial fit explained more of the variance of the modeled relationships than did the 16 

exponential relationship, but we are not aware of a mechanistically-based rationale for a 17 

choice of this relationship. 18 

The relationships between 𝜇! and 𝑠! also varied across the watershed (Figure 7). For 19 

the gridcells toward the west (in the four western columns), which are typically drier than 20 

those to the east, 𝑠! was predominantly positive across the mean moisture range, 21 

implying a consistently right-skewed probability density function. The transition between 22 

positive and negative 𝑠! occurred in several of these gridcells at 𝜇! of about 0.3 − 0.35 23 

(#4, #10, #17). For the wetter gridcells to the east (column 5 − 7), the 𝜇! distribution was 24 

predominantly left-skewed (i.e., 𝑠! < 0), even though part of the 𝜇! range was drier than 25 

the transition values for the gridcells farther to the west. For the sixth and seventh column 26 

(farthest east), 𝜇! was predicted to be above 0.3 for the entire simulation period, and most 27 

of these gridcells (and those in the southern portion of column 5) showed a decreasing 𝑠! 28 

with increasing 𝜇!. This pattern is consistent with the fact that there is a maximum 𝜇! 29 

value possible (corresponding to fully saturated), and as more of the 220 m gridcells 30 

reach this level the probability density function becomes more left skewed. 31 
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Comparing our predictions (lower left panel of Figure 7) to the 800 m and 50 km 𝑠! 1 

relationships with 𝜇! reported in Famiglietti et al. (2008) indicates good qualitative 2 

agreement: a monotonic decrease from positive 𝑠! values between 0 and 1 at 𝜇! of ~0.2 3 

to a 𝑠! value of between about -1 and -2 at 𝜇! of ~0.4. In our predictions, and somewhat 4 

visible in the Famiglietti et al. (2008) observations, there is a divergence of 𝑠! values 5 

toward the wetter end of the 𝜇! range. The best linear fit to these predictions had a slope 6 

of -13 and intercept of 4.2, which corresponded well to values inferred from their 7 

observations at the 1.6 km scale. However, the slope and intercepts inferred from their 8 

observations varied substantially and inconsistently across scale, making this comparison 9 

inconclusive. 10 

The relationships between predicted 𝑘! and 𝜇! (Figure S1) can be divided into a few 11 

characteristic shapes: (1) monotonically increasing (e.g., #11, 27, 34, 41); (2) relatively 12 

constant (e.g., #18, 23); and (3) convex down (e.g., #13, 14, 20). To the extent that 𝑘! 13 

represents an index of ‘peakedness’ in the moisture distribution, an increase in 𝑘! with 14 

increasing mean moisture is consistent with the limit in the range occurring at full 15 

saturation, and with 𝑠! becoming more negative in this part of the range. The more 16 

strongly convex down shapes occur in gridcells where the mean soil moisture range 17 

extends toward fully saturated, so the relationships that are more constant with 𝜇! 18 

variations may simply be a result of that gridcell not experiencing periods with higher 𝜇!. 19 

Finally, we also tested our results against the theoretical predictions of Montaldo and 20 

Albertson (2003), who concluded that the time derivative of the root-zone soil moisture 21 

variance (!!!
!

!"
) would increase as the covariance between soil moisture and infiltration 22 

increased, or decrease as the covariance between soil moisture and either drainage or 23 

transpiration increased. We tested these potential dependencies by comparing our 24 

predicted values of !!!
!

!"
 to 𝜃!𝐾!, 𝜃!𝑞!!, and 𝜃!𝐸!, where 𝐾 is the soil hydraulic 25 

conductivity (which affects infiltration), 𝑞! is the drainage flux, 𝐸 is the 26 

evapotranspiration, the prime represents anomalies compared to the spatial mean of that 27 

variable, and the overbar represents a spatial average. We evaluated these relationships 28 

with daily, weekly, and monthly averaging periods using the model predictions and found 29 

very weak relationships. These results indicate that the creation and destruction of 30 
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variance in a watershed model that represents a range of moisture redistribution 1 

mechanisms is more complex than can be represented by these inferred dependencies. 2 

3.4 Predicted	
  Soil	
  Moisture	
  PDF	
  as	
  a	
  Function	
  of	
  Mean	
  Moisture	
  3 

Because 𝜎!!, 𝑠!, and 𝑘! of the soil moisture field do not fully characterize the 4 

probability distribution function, we also examined the dependence of the proportion of 5 

high-resolution gridcells in each coarse-resolution gridcell occupying 𝜇! bins (e.g., seven 6 

bins are shown in Figure 8). The advantages of this binning approach are that it more 7 

fully represents the heterogeneity in 𝜇! and allows visualization of variation within-8 

coarse-resolution gridcells. 9 

An interesting observation from Figure 8 is that the coarse-resolution gridcells that 10 

have a clear convex up shape for variance versus mean moisture have the peak of that 11 

distribution very close to where the 3rd and 4th quartile bands have equal representation 12 

(not shown). Thus, when the coarse-resolution gridcell has more of its fine-scale soil 13 

moisture mean values occupying the wettest quartile, the system variance begins to 14 

decline as mean moisture increases. In the gridcells that have a monotonically decreasing 15 

relationship, the transition between 3rd and 4th quartile mean moisture bands occurs to the 16 

drier end of the 𝜇! range. 17 

It is also interesting to note the different behavior of the wettest bin (the gray line). In 18 

many of the drier cells in the upland area (e.g., #23, #24, #10), this bin remains relatively 19 

constant across the 𝜇! range. This pattern likely occurs because these regions have larger 20 

topographic variation and are effective at redistributing moisture, therefore preventing the 21 

wettest areas (or source areas (Lyon et al., 2004; Dunne and Black, 1970; Frankenberger 22 

et al., 1999)) from expanding in area. In many cells on the western plains (e.g., #27, #28, 23 

#40, #47), there appears to be a threshold soil moisture value, around 0.35, above which 24 

the wettest bin suddenly grows very rapidly as mean moisture increases. This rapid 25 

change is due to the upper limit of saturation set by soil porosity and the flatter terrain.  26 

3.5 Relationships	
  between	
  Soil	
  Moisture	
  Heterogeneity	
  and	
  System	
  Properties	
  27 

As mentioned in the Introduction, many of the convex up relationships reported in the 28 

literature appear to have a peak in this relationship at 𝜇! of ~0.2, although that value is 29 

not universal (e.g., Rosenbaum et al. (2012)). This transition point represents the 30 
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transition between system properties (e.g., roughness, hydraulic conductivity) and fluxes 1 

(e.g., evapotranspiration) that tend to homogenize soil moisture versus those that lead to 2 

more heterogeneity. For example, imagine a flat region with a distribution of plants of 3 

equal potential evapotranspiration but with drought tolerances that are different functions 4 

of soil moisture (Figure S2 shows an example using CLM4.5’s estimate of water stress 5 

on photosynthesis (𝛽!) for soils with different sand composition). A precipitation event 6 

that occurs on a dry coarse-resolution gridcell would tend to alleviate the drought stress 7 

in a fraction of the plants, thereby leading to a higher heterogeneity in soil moisture (and 8 

therefore 𝜎!!). If the precipitation continued and 𝜇! increased to a level where none of the 9 

plants were stressed, the now relatively more homogeneous evapotranspiration would 10 

tend to reduce 𝜎!!. As discussed in the Methods, many controllers of these tradeoffs have 11 

been inferred from observations, and include topographical features, evapotranspiration, 12 

and edaphic properties. 13 

Because most of the coarse-resolution gridcells in our computational domain did not 14 

experience 𝜇! below ~0.2, we investigated the relationship between 𝜎!! and 𝜇! over the 15 

range where 𝜎!! decreases with increasing 𝜇!. In our predictions, ~80% of the coarse-16 

resolution gridcells were relatively well characterized by a linear fit with a negative slope. 17 

For the remaining ~20%, we evaluated the best-fit slope for the portion of the data to the 18 

wetter side of the peak of the convex-up relationship.  19 

Of the sixteen hypothesized controllers of this slope (𝑚) that we investigated (see 20 

Methods), six had independent linear best-fits with R2 > 0.05: gradient (𝑔; R2 = 0.07), 21 

mean of evapotranspiration (𝐸! (W m-2); R2 = 0.16), temporal mean of the spatial 22 

variance of evapotranspiration (R2 = 0.05), porosity (R2 = 0.08), mean of groundwater 23 

depth (R2 = 0.06), and mean of stream density (R2 = 0.05). Using a stepwise linear 24 

regression with these six variables and allowing for first order interactions, the best-fit 25 

model explained 59% of the variance in 𝑚 and had the form: 𝐶! + 𝐶!𝑔𝐸!, where 𝐶! and 26 

𝐶! are constants. Thus, over the five years of simulation, the rate at which 𝜎!! declined 27 

with increasing 𝜇! was controlled primarily by the elevation gradient convolved with the 28 

temporal mean of evapotranspiration. In this relationship, increases in this product leads 29 

to less negative values of 𝑚 (i.e., less sensitive response of 𝜎!! to variations in 𝜇!). The 30 

larger the gradient and higher the evapotranspiration in the gridcell, the lower the 31 
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response of soil moisture spatial heterogeneity to mean soil moisture. This conclusion is 1 

consistent with the ideas that (1) high evapotranspiration gridcells are more likely to be 2 

those with lower likelihood of partial water stress limitation and (2) the high gradient 3 

gridcells more efficiently mix surface water thereby reducing soil moisture gradients. 4 

3.6 Applying	
  the	
  Simple	
  Surrogate	
  Models	
  to	
  Predict	
  Fine-­‐Scale	
  Heterogeneity	
  5 

We also evaluated whether the simple polynomial surrogate models can be used to 6 

predict dynamic variations in 𝜎!!, 𝑠!, and 𝑘! given variations in 𝜇!. For this exercise, we 7 

used the first three years of the simulations to train the 3rd order polynomial surrogate 8 

model. We then applied those surrogates across the five years of simulation to evaluate 9 

estimates for 𝜎!!, 𝑠!, and 𝑘! within each coarse-resolution gridcell and compared those 10 

estimates to the moments calculated directly from the fine-resolution simulation.  11 

The surrogate-estimated values of 𝜎!! over time corresponded well to those from the 12 

fine-scale solution, with an R2 value of 0.78 and mean absolute bias of 0.00014 (Figure 13 

9). The estimates relatively accurately captured several of the dominant transients that 14 

occurred, including during the 2006 drought in, e.g., gridcells #26, #27, and #28. These 15 

gridcells span a 𝜇! gradient from relatively drier to wetter, and that transition is apparent 16 

in the 𝜎!! gradient across these gridcells (from a value ~0.001 to ~0.006). The temporal 17 

dynamics during drying are also different between these gridcells; e.g., during 2006 the 18 

response in gridcell #26 is a reduction in 𝜎!!, while in gridcells #27 and #28 the response 19 

is an increase in 𝜎!!. This differential response occurred because gridcells #27 and #28 20 

had 𝜇! that was high enough before the drought that, even though they dried, remained to 21 

the right of the peak in the convex up relationship between 𝜎!! and 𝜇!. In contrast, 22 

gridcell #26 had a 𝜇! value before the drought that was close to the peak in that 23 

relationship and the reduction in 𝜇! therefore resulted in a reduction in 𝜎!!. 24 

The surrogate-estimated values of 𝑠! over time corresponded well to those from the 25 

fine-scale solution, with an R2 value of 0.74 and mean absolute bias of 0.11 (Figure 10). 26 

The temporal variability in 𝑠! was largest in the coarse-resolution gridcells in the eastern 27 

(wetter) portion of the watershed, and in particular, during 2006 as the soils dried. During 28 

this period, for example, 𝑠! in gridcells #27 and #28 increased rapidly in Spring and then 29 

stabilized at a value near zero, indicating a relatively uniform distribution of 𝜇!. 30 
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Interestingly, the relatively drier gridcell #26 did not have as strong a response in 𝑠!, but 1 

all three gridcells stabilized at values indicating a more uniform 𝜇! distribution. 2 

The polynomial surrogate model for 𝑘! was less accurate than those for either 𝑠! or 3 

µμ!, with an R2 value of 0.51 and mean bias of 0.43 (Figure S3). In contrast to the 𝑠! 4 

dynamics, 𝑘! was relatively temporally variable in both the western (e.g., gridcells #15, 5 

#29) and eastern portions of the watershed. In most years in many of the wetter 6 

southeastern gridcells there was a reduction in 𝑘! (i.e., a flattening of the µμ!   pdf) 7 

following the spring thaw followed by periodic increases associated with precipitation 8 

events. In contrast, during the 2006 dry period, the southeastern wetter gridcells showed a 9 

reduction that was sustained over the summer.  10 

4 Limitations and Future Work 11 
Many factors impact near-surface soil moisture heterogeneity in watersheds; 12 

characterizing this heterogeneity and its relationships with the mean moisture field, 13 

topographical features, vegetation, and climate forcing could improve regional to global-14 

scale estimates of surface energy and greenhouse gas exchanges (which depend on soil 15 

moisture). The approach we applied here, using a tested high-resolution numerical model, 16 

showed promise in this regard, yet a number of limitations remain for future work. For 17 

example, we did not consider the temporal pattern of the relationships. We note, though, 18 

that we did not observe hysteresis in the relationships between the mean moisture field 19 

and higher-order moments, as has been reported previously (Ivanov et al., 2010; Vivoni 20 

et al., 2010). The high-dimensional state space, especially the influence of vertical soil 21 

moisture profiles, also needs to be examined in detail. We also considered only one 22 

watershed over a relatively short (five-year) period. A longer study, covering several 23 

decades, would better capture the inter-annual range in precipitation and vegetation status 24 

(and therefore soil moisture) that the watershed experiences. Repeating the analyses 25 

described here for other watersheds with different topography, vegetation, bedrock 26 

features, soil properties, etc., could yield insights on the impacts these various properties 27 

have on soil moisture heterogeneity and its relationship with mean soil moisture. Such an 28 

analysis could also be used to test the extent to which relationships developed in one 29 

watershed could be used for other watersheds, and more specifically, for which watershed 30 

features such an extrapolation would be appropriate. We also note that soil moisture 31 
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heterogeneity exists at scales much smaller than we simulated here (220 m), including 1 

down to the soil macropore scale, where the soil biogeochemical transformations that 2 

impact ecosystem function and climate occur. Further computational and data 3 

enhancement that examine variability at hyper-resolution (on the order of 10 m) are the 4 

next reasonable steps and are possible with current computational resources. Developing 5 

modeling structures that account for, at some level, this wide range of scales will be 6 

important for consistently representing terrestrial ecosystem processes. 7 

Finally, an important application of the relationships developed here would be to 8 

apply them with coarse-resolution simulations to substantially reduce computational costs 9 

for regional and global simulations. Comparisons between fine and coarse-resolution 10 

simulations of a particular watershed have been used to transfer nonlinearity from 11 

microscale to mesoscale models via non-stationary effective parameters (Barrios and 12 

Frances, 2012). The approach we envision here would combine that type of model 13 

calibration with a cost function that includes a larger suite of observations, including the 14 

ability to capture the fine-scale predicted soil moisture heterogeneity and its relationship 15 

with mean moisture. 16 

5 Summary and Conclusions 17 
We applied a watershed-scale hydrological model (PAWS+CLM4) that has been 18 

previously tested in the Clinton River watershed in Michigan to investigate relationships 19 

between fine-scale near-surface soil moisture mean and spatial heterogeneity. We used 20 

fine-resolution (220 m) simulations to calculate statistical properties of soil moisture at a 21 

resolution 25 times coarser (~7 km), and then (1) developed and evaluated simple 22 

polynomial surrogate models relating soil moisture mean to its variance, skewness, and 23 

kurtosis during the non-frozen portion of five years; (2) applied those surrogates over the 24 

time period to evaluate their accuracy; and (3) investigated the relationship between the 25 

predicted soil moisture mean and variance and topographic and hydrological system 26 

properties.  27 

The surrogate models accurately reproduced the relationships between the soil 28 

moisture mean and higher order moments (R2 ~0.7-0.8). Driving the surrogate model 29 

with the mean coarse-resolution soil moisture predictions across the simulation period 30 

gave comparably accurate predictions for variance and skewness, and a less accurate (R2 31 
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~ 0.5) prediction of kurtosis. This close correspondence between the surrogate and fine-1 

resolution model predictions argues that these types of reduced order models can be used 2 

to inform heterogeneity at scales below those explicitly represented at coarse resolution. 3 

It also argues that the surrogates can be effectively applied to understand controls on 4 

spatial heterogeneity of soil moisture, as discussed below.  5 

In our predictions, and in many reported observations, there is typically a reduction in 6 

soil moisture variance with increasing mean past a particular intermediate value of the 7 

mean. Many possible controllers of this relationship have been hypothesized; in our 8 

predictions the approximately linear relationship was estimated (R2 = 0.59) using only the 9 

elevation gradient convolved with the mean of evapotranspiration in the coarse-resolution 10 

gridcell. Increases in the elevation gradient and mean evapotranspiration each, and even 11 

more strongly in combination, caused a shallower slope in the soil moisture mean versus 12 

variance relationships. An explanation for this pattern is that high evapotranspiration 13 

gridcells are more likely to be those with lower likelihood of partial water stress 14 

limitation and the high gradient gridcells more efficiently mix surface water. However, 15 

because we inferred these patterns from a full-complexity model with multiple interacting 16 

processes, we believe carefully designed modeling experiments that isolate in turn the 17 

various processes will be helpful for better understanding the controls on these 18 

relationships. We conclude that these types of experiments can improve understanding of 19 

the causes of soil moisture heterogeneity across scales, and inform the types of 20 

observations required to more accurately represent what is often unresolved spatial 21 

heterogeneity in regional and global hydrological and biogeochemical models. 22 
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6 Figures 1 
 2 
 3 

  4 
Figure 1. Topography and predicted 2004-2008 temporal average soil moisture of the 5 
Clinton River watershed (the black line outlines the watershed). The 3D elevation and 6 
shading represent the digital elevation model, which is enhanced by a 1:50 ratio, and the 7 
color represents the average soil moisture. 8 

 9 

 10 
Figure 2. Comparison between 220 m resolution predicted and measured soil moisture for a 11 
site in Romeo, MI. The large differences in December 09 are caused by the model predicting 12 
freezing in the top 10 cm of soil, while the observations suggest unfrozen conditions. 13 
[plot_obs_pred_moisture.m] 14 
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 1 

 2 
Figure 3. Fine-resolution (220 m) simulated 0 – 10 cm soil moisture mean (𝝁𝜽). The 3 
individual plots are distributed in the same pattern as the coarse-resolution gridcell they 4 
represent in the watershed (see watershed boundary in Figure 1). 5 
[model_moisture_zones_using_coarse_gridcells.m] 6 

 7 
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 1 
Figure 4. Example 90-day soil moisture mean (𝜇!; blue solid line), variance (𝜎!!; green 2 
dashed line), skewness (𝑠!; red dashed-dotted line), and kurtosis (𝑘!; black dotted line) 3 
for gridcell #26. [plot_mean_moments_vs_time.m] 4 
 5 
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 1 
Figure 5. In each subplot (except for the two in the bottom left hand corner), soil moisture 2 
variance (𝝈𝜽𝟐) is plotted versus mean (𝝁𝜽) for that coarse-resolution gridcell based on the 3 
fine-resolution (220 m) model predictions (blue dots) and the best-fit 3rd order polynomial 4 
fits (green line). The individual 7040 m coarse-resolution gridcells are placed in their 5 
relative position in the watershed. Bottom left hand corner: (a) Soil moisture variance (𝝈𝜽𝟐) 6 
versus mean (𝝁𝜽) for all gridcells combined; (b) the pdf of R2 values referenced to the 7 
polynomial fit from each coarse-resolution gridcell. [model_moisture_zones_using_coarse_gridcells.m] 8 

 9 
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 1 
Figure 6. Drainage density (length of streams per area) for streams of order 1 and higher. 2 
Areas with clear convex up shapes for soil moisture variance versus mean tend to be in 3 
gridcells with higher drainage density. [relate_param_system_properties.m] 4 
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 1 
Figure 7. In each subplot (except for the two in the bottom left hand corner), soil moisture 2 
skewness (𝒔𝜽) is plotted versus mean (𝝁𝜽) for that coarse-resolution gridcell based on the 3 
fine-resolution (220 m) model predictions (blue dots) and the best-fit 3rd order polynomial 4 
fits (green line). The individual 7040 m coarse-resolution gridcells are placed in their 5 
relative position in the watershed. Bottom left hand corner: (a) Soil moisture skewness (𝒔𝜽) 6 
versus mean (𝝁𝜽) for all gridcells combined; (b) the pdf of R2 values referenced to the 7 
polynomial fit from each coarse-resolution gridcell. [model_moisture_zones_using_coarse_gridcells.m] 8 

 9 
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 1 

 2 

 3 
Figure 8. Relationships between mean coarse-resolution gridcell soil moisture (𝝁𝜽) and the 4 
proportion of the gridcell in each of ten moisture bins (the wettest seven bins are shown) 5 
that span that coarse-resolution gridcell’s 𝝁𝜽 range. The individual 7040 m coarse-6 
resolution gridcells are placed in their relative position in the watershed.  7 

 8 
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 1 
Figure 9. Comparison over time between the fine-resolution (220 m) simulated soil moisture 2 
variance (𝝈𝜽𝟐) and that predicted by the surrogate model using the mean of the fine-3 
resolution soil moisture (𝝁𝜽). The individual 7040 m coarse-resolution gridcells are placed 4 
in their relative position in the watershed. Bottom left hand corner: (a) the pdf of R2 values 5 
between the surrogate model and fine-resolution model predictions of soil moisture variance 6 
across all the coarse-resolution gridcells; (b) mean absolute bias between the surrogate and 7 
fine-model predictions of soil moisture variance across all the coarse-resolution gridcells. 8 
[model_moisture_zones_using_coarse_gridcells.m] 9 
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 1 
Figure 10. Comparison over time between the fine-resolution (220 m) simulated soil 2 
moisture skewness (𝒔𝜽) and that predicted by the surrogate model using the mean of the 3 
fine-resolution soil moisture (𝝁𝜽). The individual 7040 m coarse-resolution gridcells are 4 
placed in their relative position in the watershed. Bottom left hand corner: (a) the pdf of R2 5 
values between the surrogate model and fine-resolution model predictions of soil moisture 6 
skewness across all the coarse-resolution gridcells; (b) mean absolute bias between the 7 
surrogate and fine-model predictions of soil moisture skewness across all the coarse-8 
resolution gridcells. [model_moisture_zones_using_coarse_gridcells.m] 9 

 10 
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7 Supplemental Material 2 
 3 

 4 
Figure S1. In each subplot (except for the two in the bottom left hand corner), soil moisture 5 
kurtosis (𝒌𝜽) is plotted versus mean (𝝁𝜽) for that coarse-resolution gridcell based on the 6 
fine-resolution (220 m) model predictions (blue dots) and the best-fit 3rd order polynomial 7 
fits (green line). The individual 7040 m coarse-resolution gridcells are placed in their 8 
relative position in the watershed. Bottom left hand corner: (a) Soil moisture kurtosis (𝒌𝜽) 9 
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versus mean (𝝁𝜽) for all gridcells combined; (b) the pdf of R2 values referenced to the 1 
polynomial fit from each coarse-resolution gridcell. [model_moisture_zones_using_coarse_gridcells.m] 2 

 3 

 4 
Figure S2. The water stress term on photosynthesis applied in CLM4 as a function of 5 
percent sand of the soil.  6 
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 1 
Figure S3. Comparison over time between the fine-resolution (220 m) simulated soil 2 
moisture kurtosis (𝒌) and that predicted by the surrogate model using the mean of the fine-3 
resolution soil moisture (𝝁𝜽). The individual 7040 m coarse-resolution gridcells are placed 4 
in their relative position in the watershed. Bottom left hand corner: (a) the pdf of R2 values 5 
between the surrogate model and fine-resolution model predictions of soil moisture kurtosis 6 
across all the coarse-resolution gridcells; (b) mean absolute bias between the surrogate and 7 
fine-model predictions of soil moisture kurtosis across all the coarse-resolution gridcells. 8 
[model_moisture_zones_using_coarse_gridcells.m] 9 
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