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Abstract 1 

Global-scale assessments of freshwater fluxes and storages by hydrological models under 2 

historic climate conditions are subject to a variety of uncertainties. Using the global 3 

hydrological model WaterGAP 2.2, we investigated the sensitivity of simulated freshwater 4 

fluxes and water storage variations to five major sources of uncertainty: climate forcing, land 5 

cover input, model structure/refinements, consideration of human water use and calibration 6 

(or no calibration) against observed mean river discharge. In a modelling experiment, five 7 

variants of the standard version of WaterGAP 2.2 were generated that differed from the 8 

standard version only regarding the investigated source of uncertainty. The basin-specific 9 

calibration approach for WaterGAP was found to have the largest effect on grid cell fluxes as 10 

well as on global AET and discharge into oceans for the period 1971-2000. Regarding grid 11 

cell fluxes, climate forcing ranks second before land cover input. Global water storage trends 12 

are most sensitive to model refinements (mainly modelling of groundwater depletion) and 13 

consideration of human water use. The best fit to observed time series of monthly river 14 

discharge or discharge seasonality is obtained with the standard WaterGAP 2.2 model version 15 

which is calibrated and driven by daily observation-based WFD/WFDEI climate data. 16 

Discharge computed by a calibrated model version using monthly CRU 3.2 and GPCC v6 17 

climate input reduced the fit to observed discharge for most stations. Taking into account 18 

uncertainties of climate and land cover data, global 1971-2000 discharge into oceans and 19 

inland sinks ranges between 40 000 and 42 000 km³ yr-1. Global actual evapotranspiration, 20 

with 70 000 km3 yr-1, is rather unaffected by climate and land cover uncertainties. Human 21 

water use reduced river discharge by 1000 km3 yr-1, such that global renewable water 22 

resources are estimated to range between 41 000 and 43 000 km3 yr-1. The climate data sets 23 

WFD (available until 2001) and WFDEI (starting in 1979) were found to be inconsistent with 24 

respect to short wave radiation data, resulting in strongly different actual evapotranspiration. 25 

Global assessments of freshwater fluxes and storages would therefore benefit from the 26 

development of a global data set of consistent daily climate forcing from 1900 to current. 27 
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1 Introduction 1 

The estimation of global scale freshwater fluxes, in particular river discharge, is essential to 2 

assess e.g. availability and scarcity of water resources for humans and the environment both 3 

in recent times (Hoekstra et al., 2012; Oki and Kanae, 2006; Prudhomme et al., 2014) and in 4 

future scenarios (Döll and Müller Schmied, 2012; Masaki et al., 2014; Schewe et al., 2014). 5 

Global amounts and spatial distribution of precipitation (Harris et al., 2014; Schneider et al., 6 

2014) and evapotranspiration (Jasechko et al., 2013; Jung et al., 2010; Sterling et al., 2012) 7 

were estimated as well as groundwater related fluxes like groundwater recharge (Döll and 8 

Fiedler, 2008; Koirala et al., 2014; Portmann et al., 2013) or, as consequence of an 9 

overexploitation of groundwater resources, groundwater depletion (Wada et al., 2010). 10 

There are different ways to estimate global scale freshwater fluxes and storages. Interpolation 11 

of in-situ measurements works well with a dense monitoring network, as for precipitation 12 

products (e.g. GPCC (Schneider et al., 2014), CRU (Harris et al., 2014) and many more) or, 13 

even with less dense point measurements in combination with other data sources like remote 14 

sensing for evapotranspiration (Jung et al., 2010). In particular, remote sensing is used to 15 

derive spatio-temporal input data for evapotranspiration schemes (Miralles et al., 2011; 16 

Vinukollu et al., 2011; Wang and Liang, 2008) or to assess total continental water storage 17 

variations (Schmidt et al., 2006). Spatio-temporal patterns of consistent multiple fluxes and 18 

storages can be obtained using land surface models (LSMs) and global hydrological models 19 

(GHMs). LSMs, which have evolved as “land components” of Global Circulation Models 20 

(GCMs), usually have a high temporal resolution, solve the energy balance (Haddeland et al., 21 

2011) and have some limitations, esp. in runoff routing and with regard to human alterations 22 

of the water cycle (even though there are exceptions, e.g. Pokhrel et al. (2012)). GHMs are 23 

explicitly designed to assess the state of freshwater resources and to address water-related 24 

problems like floods and droughts (Corzo Perez et al., 2011; Prudhomme et al., 2011) and 25 

human impacts on freshwater resources. In the last 20 years, a number of GHMs have been 26 

developed using different conceptual approaches, e.g. VIC (Nijssen et al., 2001), WBM 27 

(Vörösmarty et al., 1998), Mac-PDM (Gosling and Arnell, 2011), WASMOD-M (Widén-28 

Nilsson et al., 2007), H08 (Hanasaki et al., 2008), Water – Global Assessment and Prognosis 29 

(WaterGAP) (Alcamo et al., 2003; Döll et al., 2003) and PCR-GLOBWB (Sperna Weiland et 30 

al., 2010).  31 
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Results of LSMs and GHMs are highly uncertain. Epistemic uncertainty due to a lack of 1 

knowledge and understanding is of particular importance at the global scale (e.g. see 2 

discussion in Beven and Cloke (2012) and Wood et al. (2011, 2012)). Generally, three sources 3 

of uncertainty can be distinguished: spatially distributed input data (e.g. climate forcing, water 4 

use, land cover), model structure (or modeling approach) and model parameters.  5 

Uncertainties due to the choice of climate forcing were focus of few studies. For example, 6 

Guo et al. (2006) showed the large sensitivity of soil moisture simulated by 11 LSMs to 7 

different climate forcing data sets (esp. to precipitation and radiation), and concluded that this 8 

uncertainty on land surface hydrology is as large as the variations among the LSMs. Biemans 9 

et al. (2009) evaluated seven global precipitation products for 294 river basins worldwide and 10 

quantified an average uncertainty of 30% per basin. They studied the dynamic global 11 

vegetation and hydrology model LPJmL with these precipitation forcings and concluded with 12 

an average uncertainty in discharge of about 90%. Even though climate forcing is of such 13 

importance, only few studies are available reflecting this uncertainty in a global hydrological 14 

model setup. 15 

Uncertainties in terms of model structure are related to the design of the model, i.e. the 16 

(number of) processes considered and their representation by conceptual approaches. To 17 

consider this kind of uncertainty, Butts et al. (2004); Clark et al. (2008); Refsgaard et al. 18 

(2006) and Song et al. (2011) developed approaches to diagnose different structures of 19 

hydrological models and its uncertainties. Model intercomparison efforts in which identical 20 

climate forcing is used to drive all investigated models (e.g. WATCH WaterMIP, ISI-MIP) 21 

have shown the effects of different model structures (Gudmundsson et al., 2012a, 2012b; 22 

Haddeland et al., 2011; Hagemann et al., 2013; Van Loon et al., 2012; Prudhomme et al., 23 

2014; Schewe et al., 2014) even though this was not explored systematically. For example, 24 

values for global annual evapotranspiration between 60 000 and 85 000 km3 yr-1 were 25 

reported in the WATCH WaterMIP study (Haddeland et al., 2011). In such multi-model 26 

studies, many completely different models are participating, which makes it very difficult to 27 

identify the reasons for different model behavior. A sensitivity study using basically the same 28 

model but with a refined model structure can therefore be of benefit (e.g. Thompson et al., 29 

2013). 30 

Model parameters are used to represent system dynamics in solvable equations, in particular 31 

when the hydrological process cannot be described physically. These parameters are generally 32 
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not measurable and, hence, are a source of uncertainty that can influence model results to 1 

varying degrees. Within the GCM community, the perturbed physics ensemble approach  2 

assessed this kind of uncertainty in a structured way (Collins et al., 2006; Rowlands et al., 3 

2012). Global scale hydrology applications also assess parameter uncertainty. For example, 4 

Gosling and Arnell (2011) used seven sets of parameter perturbations for two model 5 

parameters of the GHM Mac-PDF.09. For the GHM WaterGAP, Kaspar (2003) investigated 6 

the impact of uncertainty of 38 model parameters on simulated river discharge by conducting 7 

various model runs with a sampling of parameter values within specific ranges. He found that 8 

major uncertainties are related to evapotranspiration parameters and land cover specific 9 

attributes. Schumacher et al. (2014) confirmed the sensitivity of model output (here: monthly 10 

total water storage) to radiation calculation and related parameters in WaterGAP which, 11 

together with a river roughness coefficient and precipitation, dominate uncertainty in many of 12 

the 33 investigated river basins. Groundwater-related parameters and soil parameters were 13 

found to be important for the timing and variation of total water storages in WaterGAP 14 

(Werth and Güntner, 2010).  15 

Model parameters can be adjusted by calibration, such that model output matches an observed 16 

set of data. Whereas basin-scale hydrological models are routinely calibrated against observed 17 

river discharge (e.g. Beven, 2001), this is only seldom the case for GHMs. Widén-Nilsson et 18 

al. (2007) used different model parameter sets within WASMOD-M to define optimal 19 

parameter values on river basin scale. WaterGAP is calibrated against observed river 20 

discharge in a basin-specific manner by varying one soil parameter (and up to two correction 21 

factors) (Döll et al., 2003; Hunger and Döll, 2008). 22 

The goal of this study is to analyze the impact of the uncertainty of 1) spatially distributed 23 

input data and 2) model structure and modeling approach on water fluxes and storages at the 24 

global scale, using the most recent version of the GHM WaterGAP 2.2. As previous studies 25 

(Kaspar, 2003; Schumacher et al., 2014; Werth and Güntner, 2010) have already investigated 26 

both parameter sensitivity and uncertainty for WaterGAP, and due to length issues, this is not 27 

focus of this study. The study was motivated by newly available climate forcing and land 28 

cover input data as well as the significant modifications of the WaterGAP model structure 29 

during the last decade.  30 

In particular, we will answer the following research questions: 31 
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i) How sensitive are freshwater fluxes and water storages to spatially distributed input 1 

data (climate forcing, land cover)? 2 

ii) What are the benefits of WaterGAP model structure refinements implemented during 3 

the last decade? 4 

iii) How does the modeling approach (calibration procedure, consideration of human 5 

water use) affect freshwater fluxes and water storages? 6 

iv) Which type of uncertainty is dominant for specific fluxes and variations of total water 7 

storage? 8 

After an initial description of WaterGAP 2.2 (for details see the Appendix), the experimental 9 

setup is explained (Sect. 2). In Sect. 3, the results are described; focusing on the effect of the 10 

different model variants on global freshwater fluxes and water storages as well as spatial 11 

patterns. In Sect. 4, we discuss the results with regard to the research questions. The paper 12 

ends with a summary and conclusions (Sect. 5). 13 

 14 

2 Methods and study setup 15 

2.1 Description of WaterGAP 2.2 16 

The global hydrology and water use model WaterGAP (Fig. 1) consists of two major parts, 17 

the water use models for five different sectors (Appendix C) and the WaterGAP Global 18 

Hydrology Model (WGHM, Fig. A1). The submodel GroundWater-Surface-Water-USE 19 

(GWSWUSE) (Appendix D) is used to distinguish water use from groundwater and surface 20 

water sources and computes net abstractions from both sources which are an input to WGHM 21 

(Fig. 1). Using a number of water storage equations (change of storage over time equals to 22 

inflow minus outflows, Appendix A), WGHM calculates daily water flows and storages with 23 

a spatial resolution of 0.5° by 0.5° (55 km by 55 km at the equator) for the whole land area of 24 

the Earth except Antarctica (66896 cells). WaterGAP 2.2 is calibrated against mean annual 25 

river discharge at 1319 gauging stations, and the adjusted calibration factor is regionalized to 26 

grid cells outside the calibration basin (Appendix B). 27 

Since the initial publication of WaterGAP 2.1d (Döll et al., 2003), major changes were made 28 

to keep the model up-to-date. For example, algorithms of reservoir operation were included 29 

(Döll et al., 2009), groundwater recharge was optimized by distinguishing semi-arid / arid 30 
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regions from humid regions (Döll and Fiedler, 2008), a variable flow velocity algorithm was 1 

included (Verzano et al., 2012) and the source of abstracted water was considered (Döll et al., 2 

2012).  3 

2.2 Study setup 4 

Six WaterGAP model variants (Table 1) were designed as follows. The standard version of 5 

WaterGAP 2.2 (STANDARD) was modified regarding only one aspect, including either 6 

alternative climate forcing (CLIMATE), land cover input (LANDCOVER) or model structure 7 

(STRUCTURE). Each model variant was independently calibrated. Variant NoCal is an 8 

uncalibrated simulation with the standard version of WaterGAP 2.2 to study the impact of the 9 

calibration approach. Variant NoUse reflects naturalized water flows and storages without the 10 

impact of human water use, and thus also renewable water resources.  11 

In addition, for assessing the effect of uncertainties on renewable water resources, variants 12 

CLIMATE, LANDCOVER, STRUCTURE and NoCal are also run without considering any 13 

water abstractions. The modeled time span is from 1901 to 2009. In this paper, model results 14 

for 1971-2000 are evaluated. 15 

2.2.1 Climate input 16 

Climate forcing data for global scale hydrological models are a major source of uncertainty 17 

for two main reasons: (1) they are subject to measurement errors which were not corrected in 18 

the original input data and (2) they are subject to interpolation errors due to low spatial and 19 

temporal monitoring network density and/or because (temporal) data gaps have to be filled. 20 

To analyze the sensitivity of different climate forcing datasets on calibration and subsequently 21 

on freshwater fluxes, two climate forcings were used to force both the WGHM and the Global 22 

Irrigation Model GIM (Döll and Siebert, 2002) (Appendix C).  23 

In variant STANDARD, the daily WATCH Forcing Data methodology applied to ERA-40 24 

data (WFD) (Weedon et al., 2011) for the years 1901 to 1978 (the years 1901 to 1957 are 25 

based on reordered reanalysis data) and the WATCH Forcing Data methodology applied to 26 

ERA-Interim data (WFDEI) (Dee et al., 2011; Weedon et al., 2010, 2011) for the years 1979 27 

to 2009 was chosen. Switching the climate input dataset in 1979 leads to inconsistencies in 28 

terms of AET (much higher in WFDEI) and therefore affects the storages until a new 29 

equilibrium is reached (see Sect. 3.1). WFD and WFDEI monthly sums/means are bias-30 
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corrected with other data sources (temperature bias correction, shortwave radiation adjustment 1 

using cloud cover and adjustment of number of wet days to CRU TS2.1 for WFD and to CRU 2 

TS 3.1 for WFDEI as well as adjustment of monthly precipitation sum to GPCC v4 (WFD) 3 

and GPCC v5 (WFDEI) and snowfall undercatch corrected after Adam and Lettenmaier 4 

(2003)). To calculate net shortwave radiation, the incoming shortwave radiation is reflected 5 

by literature based land cover specific albedo values (see Table A2). Literature based 6 

emissivity values for all land cover classes (Wilber et al., 1999) and the Stefan-Boltzmann-7 

equation are used to calculate outgoing longwave radiation. The difference to incoming 8 

longwave radiation represents net longwave radiation. Net radiation is the sum of both 9 

components. 10 

In variant CLIMATE, the monthly dataset CRU TS 3.2 (Harris et al., 2014) was used but 11 

monthly precipitation totals were replaced by the latest GPCC v6 precipitation monitoring 12 

product (Schneider et al., 2014) because it includes more observation stations. Monthly means 13 

are disaggregated to daily values within WaterGAP (Döll et al., 2003). Neither CRU nor 14 

GPCC precipitation is corrected for observational errors, e.g. wind induced precipitation 15 

undercatch. Thus, Döll and Fiedler (2008) included the catch ratios of Adam and Lettenmaier 16 

(2003) and used the empirical function of Legates (1987) to correct especially snow 17 

undercatch by dividing snow and liquid precipitation using a temperature based approach. 18 

The correction of precipitation measurement bias leads to an average increase of 8.7% 19 

compared to the original product. On 37.5% of the land area (except Greenland and 20 

Antarctica), the increase of precipitation is larger than 10%. Differences of mean values from 21 

both datasets (CRU/GPCC and WFD/WFDEI) occur due to the slightly different precipitation 22 

correction approach and the GPCC version used for scaling monthly sums. Monthly 23 

precipitation is equally distributed to the number of wet days provided by the CRU 3.2 24 

dataset; the distribution of wet days within a month is modeled as a two-state, first-order 25 

Markov chain (Döll et al., 2003). Cloudiness fraction was used to calculate incoming short 26 

wave radiation as well as outgoing long wave radiation after Shuttleworth (1993), see also 27 

Döll et al. (2003). 28 

2.2.2 Land cover input data 29 

The distribution of land cover classes and associated attributes are affecting simulated fluxes 30 

in terms of radiation energy balance (albedo and emissivity), snow dynamics (degree-day 31 

factor FD ), available soil water capacity (rooting depth) and interception capacity ( L ) (for 32 
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details see Appendix A). To estimate the effect of different, homogeneous-source land cover 1 

data, two input maps were used (Fig. 2). Attributes and model parameters associated to land 2 

cover classes were derived from literature or previous model versions (Table A2) and left 3 

equal in both variants. 4 

In variant STANDARD we used the gridded MODIS (Moderate-resolution Imaging 5 

Spectroradiometer) land cover product (MOD12Q1) for the year 2004. The product 6 

MOD12Q1 (1 km resolution, global coverage up to 80° N) was used with land cover type 1 7 

according to the International Geosphere-Biosphere Programme (IGBP) classification. After 8 

resampling to 0.5° spatial resolution, the dataset was reclassified to fit to the WaterGAP land 9 

cover classification system (Table A2). As water bodies (from the global lakes and wetlands 10 

database, GLWD (Lehner and Döll, 2004)) and percentage of urban area (from previous 11 

model versions) are obtained by additional input files, the second land cover class was 12 

appointed in case of “water” or “urban and built-up” as primary land cover. For coastal grid 13 

cells which are not fully covered by MODIS and north of 80° N, a combination of Global 14 

Land Cover Characteristics database GLCC (USGS, 2008) + CORINE land cover information 15 

was used. 16 

In variant LANDCOVER, a combination of  the GLCC based on the years 1992/1993 and, for 17 

Europe, CORINE Land Cover based on the year 2000 (European Environment Agency, 2004) 18 

was used as land cover information, as also in a previous WaterGAP version (Haddeland et 19 

al., 2011). The idea was to use an IGBP based classification scheme and a remote sensing 20 

based land cover distribution instead of IMAGE (Alcamo et al., 1998) model outputs (as in 21 

previous model versions). Both input datasets have a resolution of 1 by 1 km and were 22 

aggregated to the 0.5° model resolution by assigning the majority land cover type. 23 

2.2.3 Structural model changes 24 

During the last 10 years, the WaterGAP model was subject to several revisions and 25 

improvements in terms of hydrologic process representation, resulting in an overall more 26 

complex model structure. To assess the sensitivity of simulated freshwater fluxes to model 27 

complexity, one model variant with a simplified structure comparable to Döll et al. (2003) 28 

(variant STRUCTURE) was set up which was run with the same input data as all other model 29 

variants. Differences of variant STRUCTURE as compared to the other variants are as 30 

follows. 31 
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• Flow velocity is globally set to 1 m s-1 and the meandering ratio is set to 1, instead of 1 

the variable flow velocity algorithm of Verzano et al., (2012) in the other variants. 2 

• Reservoirs are treated as global lakes, i.e. the reservoir operation algorithm of Döll et 3 

al. (2009) is not used, which should result in a more dynamic discharge downstream of 4 

reservoirs.  5 

• Water for human water use is abstracted only from surface water bodies, i.e. there are 6 

no groundwater abstractions as introduced by Döll et al. (2012). 7 

• Evaporation from lakes/wetlands is not adjusted by reduction factors (Hunger and 8 

Döll, 2008) resulting in evaporation at potential rate even at low storage.  9 

• Snow accumulation and melt are modeled on 0.5° (instead of the 3 arc minute sub-grid 10 

(Schulze and Döll, 2004)) which should lead to less snow dynamics.  11 

• Finally, there is no distinction in groundwater recharge for semi-arid / arid and humid 12 

regions (in contrast to Döll and Fiedler (2008) all regions are treated like humid 13 

regions) resulting in higher groundwater recharge in semi-arid / arid regions. 14 

2.2.4 Human water use 15 

In many areas of the globe, human water use significantly affects water flows and storage. In 16 

this study, all model variants except NoUse and STRUCTURE are taking into account water 17 

use from surface water and groundwater resources. In variant NoUse it is assumed that there 18 

are no water abstractions at all, while in STRUCTURE, water is only abstracted from surface 19 

water (as formerly no information on the source of water abstractions was available). 20 

2.2.5 Calibration 21 

As described in Appendix B, WGHM is calibrated in a basin-specific manner, against mean 22 

annual discharge by adjusting, in all grid cells within each of the 1319 calibration basins, a 23 

runoff coefficient that affects the outflow from the soil compartment, and – if necessary to 24 

simulate mean annual discharge within 1% of the observed value – two additional correction 25 

factors. All other parameters are globally uniform (or land cover class dependent), based on 26 

literature or experiences from past studies, i.e. there is no basin or region specific 27 

modification. All model variants except NoCal are independently calibrated to the same 28 

observational data. In variant NoCal, the runoff coefficient and both corrections factors are set 29 
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to 1 in all grid cells. The comparison of NoCal to e.g. STANDARD allows for a direct 1 

quantification of the effect of calibration on simulated water fluxes and storages. 2 

3 Results 3 

3.1 Global water balance 4 

Table 2 lists global values for various components of the global water balance and changes in 5 

total water storages (TWS) (calculated excluding Antarctica, Greenland and inland sinks) as 6 

estimated by the different model variants. Global values vary mainly due to calibration and 7 

selected climate forcing. For interpreting Table 2 and Figure 3 it is important to know that 8 

actual evapotranspiration (AET) does not include additional evapotranspiration caused by 9 

irrigation and other human water use. This part of evapotranspiration is called actual water 10 

consumption (WCa). For computing global values of AET and renewable water resources 11 

(RWR), the values were adjusted in calibration basins using the station correction factor CFS 12 

such that a closed global water balance is achieved (for calibration details see Appendix B). 13 

Grid cell values of AET and RWR (Figs. 3 and 4), however, do not reflect CFS to avoid 14 

physically implausible values that likely result from inconsistencies between precipitation 15 

data and observed river discharge. Global precipitation P is about 1900 km3 yr-1 (or 1.7%) 16 

higher when using the CLIMATE model variant which results in an equal increase of 17 

discharge compared to STANDARD. Except for NoCal, global AET (calculated as sum of 18 

cE , snE , sE  and wE , see Appendix A) does not vary considerably among the variants. In 19 

general, discharge to oceans and inland sinks is lower by the amount of change in AET. WCa 20 

(row 4 in Table 2) varies due to the demand of surface water abstractions and groundwater 21 

abstractions (which differs in CLIMATE due to the forcing of GIM (Appendix C) and in 22 

STRUCTURE where water demand is entirely extracted from surface water resources) and 23 

due to the different water availability for abstractions. In all cases, a large share of the total 24 

water demand could be satisfied (between 90% in STRUCTURE and 96% in CLIMATE). 25 

When human water use is not taken into account (NoUse), AET increases by 131 km3 yr-1 26 

because evaporation from open water bodies increases as they are not depleted by water uses 27 

and additional evapotranspiration of irrigated crops is not included in AET (but quantified 28 

within WCa, row 4 in Table 2). As expected, river discharge is higher (by 758 km3 yr-1) in 29 

NoUse. Changes in total water storages (142 km3 yr-1 less storage decrease) are also visible, 30 

especially due to no groundwater withdrawals in this variant (Table 3). The sum of these 31 
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differences between STANDARD and NoUse is 1031 km3 yr-1 which equals to WCa (row 4 1 

for STANDARD in Table 2).  2 

The calibration has a strong effect on freshwater fluxes. Global discharge to oceans and inland 3 

sinks (Q) in NoCal is about 6400 km3 yr-1 (or 15.7%) higher than in STANDARD, meaning 4 

that the main effect of calibration is lowering discharge. In many river basins, the calibration 5 

parameter γ  is higher than the value 1.0 globally used in NoCal which reduces the share of 6 

effective precipitation actually contributing to runoff. Consequently, AET is lower by nearly 7 

the same amount.  8 

When comparing CLIMATE to STANDARD, P and Q are both increased by around 1900 9 

km3 yr-1 whereas global AET sums are nearly equal. When partitioning the increased Q into 10 

calibrated and uncalibrated grid cells, most additional Q (1546 of overall 1906 km3 yr-1) is 11 

generated in non-calibrated grid cells mostly because of an increased P (which explains 1200 12 

of the additional 1546 km3 yr-1) and a reduced AET (which explains 282 of the additional 13 

1546 km3 yr-1) in these grid cells.  14 

RWR equal long term averaged discharge to oceans and inland sinks (Q in Table 2) but 15 

without considering human water withdrawals. For the STANDARD model variant, RWR are 16 

1.9% higher than with WCa (row 3 in Table 2, col NoUse and STANDARD). Q of the other 17 

model variants and hence RWR increase about a similar value (NoCal 2.0%, LANDCOVER 18 

and STRUCTURE 1.9%, CLIMATE 1.6%; values not shown in Table 2). 19 

The decreasing trends of total water storage are mainly caused by groundwater depletion, 20 

except in variants NoUse and STRUCTURE where no groundwater abstraction is modeled. 21 

Interestingly, NoCal shows a smaller decrease in groundwater storage than STRUCTURE. 22 

This is also due to the calibration parameter γ  which is on average lower in case of NoCal. 23 

The lower γ , the more water leaves the soil and can subsequently contribute to groundwater 24 

recharge. Note that water abstractions from groundwater are taken directly from the 25 

groundwater storage and also return flows are added directly to groundwater storage (without 26 

passing the soil compartment). Hence, there is no difference in soil water storage between 27 

STANDARD and NoUse (Table 3). 28 

Except for groundwater and snow, CLIMATE shows less storage depletion than all other 29 

variants that are forced by WFD/WFDEI (Table 3). The strong decrease in case of 30 

WFD/WFDEI is an artifact caused by combining WFD before 1979 with WFDEI after 1979. 31 
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With WFDEI that is based on ERA-Interim, AET is around 70 000 km3 yr-1, compared to 65 1 

000 km3 yr-1 in case of WFD. This is caused by differences in the shortwave downward 2 

radiation (much higher in WFDEI) which impacts the net radiation as main input for 3 

calculating potential evapotranspiration after Priestley and Taylor (1972). As all model runs 4 

are started in 1901, the storages are more or less in equilibrium until 1978. AET is increased 5 

in the following 22 years by ca. 10% which leads to a higher water loss and therefore to a 6 

reduction of all storage compartments. For all storages except snow, reservoirs and 7 

groundwater, a new equilibrium is achieved a few (around five) years after 1979 on a lower 8 

level (STANDARD variant). Whereas snow storage is not influenced at all, groundwater 9 

storage is affected by groundwater depletion and reservoirs by water use and obvious 10 

limitations of the reservoir algorithm. Thus, an equilibrium is not reached in global average of 11 

the latter two storages but decreasing since 1901. 12 

3.2 Actual evapotranspiration 13 

Mean AET shows the highest values around the equator consistent with available energy, 14 

except for the Pacific Rim of South America (Fig. 3a). 15 

Among the variants, the largest differences to STANDARD occur in case of the uncalibrated 16 

version NoCal (Fig. 3f). As the calibration approach also affects grid cells outside of the 1319 17 

calibration basins due to the regionalization (Appendix B3), all grid cells are affected. In most 18 

regions, calibration leads to higher AET, but in the upstream Amazon, the Congo, Arctic river 19 

basins and some other basins, the opposite is true. The global sum of AET of NoCal is 9.2% 20 

lower than estimated with STANDARD (Table 2). Notable differences in AET also occur 21 

when using an alternative climate input (Fig. 3b). AET increases in CLIMATE on 42.6% of 22 

the land surface by more than 10 mm yr-1 and decreases by more than 10 mm yr-1 on 30.5% of 23 

the land surface. It increases (decreases) by more than 100 mm yr-1 on 5.4% (5.6%) of the 24 

land surface. When summed globally, only minor changes in AET occur in case of CLIMATE 25 

(increase of 0.06% or 39 km3 yr-1, Table 2). In contrast, AET differences of the STRUCTURE 26 

variant are higher for the global sum (increase of 0.6% or 414 km3 yr-1) but occur on an 27 

overall smaller area (increase by more than 10 mm yr-1 on 11.9% of the land surface, decrease 28 

on 14.2%). The effect of STRUCTURE is visible in areas with surface water bodies and in 29 

snow-dominated areas. On the one hand, an increase in net radiation in snowy regions leads to 30 

a slight increase of AET but in small absolute numbers as total AET is comparatively low. On 31 

the other hand, effects due to the evaporation reduction factor for surface water bodies are 32 
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visible. In all variants except STRUCTURE, evaporation is limited when the surface water 1 

body storage is reduced to mimic the shrinking of surface area. Hence, in regions with a high 2 

percentage / volume of surface water bodies, AET is increased. In addition, more complex 3 

effects occur. The Great Lakes, for example, evaporate with potential evapotranspiration PET 4 

in STRUCTURE, even when the lake storage is relatively low. This results in a relatively low 5 

modeled discharge which fits well to the observed ones. Hence, no correction factor (neither 6 

CFA nor CFS) is required in the Great Lakes basin. However, in STANDARD, the reduction 7 

factor reduces evaporation by up to ¾ of PET. The resulting higher modeled discharge has to 8 

be reduced by an increased AET in STANDARD (and in the other model variants) on the land 9 

around the lakes as compared to STRUCTURE (red areas around Great Lakes in Fig. 3). 10 

Differences between NoCal and STANDARD are resulting due to the calibration parameter γ  11 

which differs from 1.0 (NoCal) in most cases in STANDARD (and the other model variants). 12 

For example, there are blue patterns in China and South America. In both regions, γ  is less 13 

than 1.0 in STANDARD which results in higher runoff and less modeled AET. In many other 14 

regions (red areas), γ  is greater than 1.0 in STANDARD. 15 

AET differences between LANDCOVER and STANDARD (Fig. 3c) are caused by changes 16 

in net radiation in energy-limited areas (not shown) as well as changes in rooting depth. In 17 

general, minor differences occur (except in some basins, see explanation below). In some 18 

regions, an increasing net radiation results in an increasing AET, e.g. in parts of Angola. In 19 

water-limited areas (e.g. north eastern Brazil), insignificant changes of AET occur even if net 20 

radiation strongly increases. In northern Australia, AET increases even when net radiation is 21 

reduced. Here, large parts are defined in STANDARD as open shrubland (rooting depth of 0.5 22 

m) and in LANDCOVER as savanna (rooting depth of 1.5 m). As soil storage capacity is a 23 

function of rooting depth, even with more energy available for evapotranspiration, only half 24 

of the soil water can be evapotranspirated due to the limited rooting depth. Neglecting human 25 

water abstraction in variant NoUse would lead to an overestimation of AET in regions where 26 

water abstraction for irrigation leads to reduction of wetlands areas (Fig. 3e), and a global 27 

AET overestimation by less than 0.2% (Table 2). 28 

In WaterGAP 2.2, AET can become negative in some (mostly snow dominated) regions, 29 

where precipitation input is too low to reproduce observed discharge (grey colors in Fig. 3a). 30 

The total water balance of each large water body is calculated in the outflow cell, hence AET 31 
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can become very large as the value in mm is calculated by dividing AET over the whole lake 1 

by grid cell area. 2 

3.3 Renewable water resources 3 

RWR (mean annual runoff of the grid cell to the river without consideration of human water 4 

use) are dominantly influenced by the calibration (NoCal) and subsequently by input data and 5 

model structure (Fig. 4).  6 

As RWR are approximately the difference between precipitation and AET, the difference 7 

maps (Fig. 4b-e) represent more or less the inverted difference maps of Fig. 3 of the previous 8 

section. Compared to STANDARD, largest differences occur in model variant NoCal. In 9 

contrast to AET, calibration leads in many cases to lower RWR. The global sum of RWR of 10 

NoCal is 15.8% higher than with STANDARD (Table 2). The global sum of RWR from 11 

CLIMATE is 4.7% higher but with large spatial spread. RWR decreases in CLIMATE on 12 

21.4% of land surface by more than 10 mm yr-1 and increase by more than 10 mm yr-1 on 13 

29.9% of the land surface. RWR decreases (increases) by more than 100 mm yr-1 on 4.7% 14 

(9.0%) of the land surface. The differences in LANDCOVER mainly follow differences in net 15 

radiation (not shown). In snow-dominated regions, RWR are lower in STRUCTURE because 16 

snow cover dynamics are less intense than in STANDARD. In grid cells with (large) surface 17 

water bodies, RWR are lower in STRUCTURE (as AET is unlimited here even if storages are 18 

nearly empty). 19 

3.4 River discharge 20 

3.4.1 River discharge seasonality 21 

River discharge is the integral result of runoff generation, water losses by evaporation from 22 

surface water bodies, positive or negative net abstractions from surface water bodies and 23 

groundwater, and routing processes. It is one of the most important diagnostic variables in 24 

water resources. In many regions, river discharges have been observed for decades, providing 25 

an important data source for model evaluation. A good representation of modeled seasonality 26 

in comparison to the observed one is therefore a criterion for model evaluation. We compared 27 

observed and modeled discharge seasonality at the outflow of 12 large river basins, covering 28 

different climatic zones and levels of anthropogenic influence (Fig. 5). Climate input and 29 

model structure influence modeled discharge seasonality more than land cover changes for the 30 
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selected river basins. Where seasonality of climate is high, like in the monsoon-dominated 1 

Mekong basin, only marginal differences occur due to land cover and model structure. 2 

Structural model refinements have also important effects on discharge seasonality. For 3 

example, the constant flow velocity of STRUCTURE (in contrast to variable flow velocity in 4 

the other variants) leads to a higher peak in the Lena. Here, the variable flow velocity 5 

algorithm underestimates flow velocity in the lower reaches where bed slopes are very small. 6 

This leads to a strong underestimation of peak flow (which explains the improved seasonality 7 

of STRUCTURE compared to observed discharge in the Lena). The reservoir algorithm 8 

which is not enabled in STRUCTURE has impacts at the Yangtze, Rio Parana, Mississippi 9 

and the Volga in terms of smoothing the discharge. For the Rio Parana, this is the main 10 

influence in the STRUCTURE variant. The representation of snow in STANDARD leads to a 11 

more heterogeneous snow coverage as compared to the STRUCTURE variant. The strongest 12 

impact occurs for the Rhine, where the snow algorithm is the dominant reason for the 13 

differences to STRUCTURE. In STRUCTURE, the snow water storage of the Rhine 14 

headwater (Alps) is generally lower. In particular between May and October (the Alps are 15 

modeled as snow-free between June and September), this leads to a decrease of discharge as 16 

snowmelt cannot contribute any longer as it does e.g. in STANDARD. The importance of the 17 

climate forcing can be seen in the Mississippi and the Rhine where CLIMATE results in 18 

overestimated peak seasonal discharge. In the Danube, WFD/WFDEI climate input (in 19 

STANDARD) is particularly beneficial, as the fit to observed seasonality is much better than 20 

with CRU TS 3.2 / GPCC v6 climate (in CLIMATE).  21 

For the Mackenzie River, all model variants are close to each other but far away from 22 

observations. Here, freezing and thawing of the river are not reproduced as none of the model 23 

variants represents these processes. Interestingly, the Lena river basin is also frozen during 24 

winter time but here, low flows are simulated quite well. In the Amazon, the model variants 25 

underestimate the delay of peak discharge which might be explained by the lack of modeling 26 

dynamic floodplain inundation. 27 

The impact of alternative land cover is only slightly influencing discharge seasonality. Most 28 

effects occur at the Rhine, where CORINE-based land cover (variant LANDCOVER) consists 29 

dominantly of cropland. Many grid cells in the other model variants consists of mixed forest 30 

or cropland / natural vegetation mosaic which both have a lower albedo, resulting in more 31 

evaporation and less discharge especial in the summer months. Additional effects occur due to 32 
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deeper roots at mixed forest class. Only for the Mackenzie, Lena and Yangtze, mean monthly 1 

river discharges of NoCal within the range of all other variants in some months. The NoCal 2 

values for the Orange river are so high that throughout the year, they are higher than the 3 

highest observed value (and the values of the other variants) (Fig. 5). This supports the use of 4 

a calibrated model for discharge analyses. 5 

3.4.2 Monthly time series 6 

Nash-Sutcliffe efficiencies NSE  (Eq. 1, Nash and Sutcliffe, 1970) were calculated for time 7 

series of monthly river discharges at 1319 gauging stations used for calibration.  8 
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with iO is observed discharge, iS  is simulated discharge and O is mean observed discharge 10 

(all units in km3 month-1). 11 

By adjusting the mean annual river discharge as done in our calibration approach, NSE  of 12 

monthly discharge increases in all calibrated model variants as compared to the NoCal 13 

variant, as NSE  is sensitive to both mean and variances (Fig. 6). Among all calibrated 14 

variants, STANDARD and NoUse achieve the highest mean NSE  values, while variant 15 

STRUCTURE shows a distinctly lower model performance (Fig. 6). This is further confirmed 16 

by the NSE  distribution per Köppen-Geiger region (Table 4, column “sum”), where in case of 17 

STANDARD and NoUse, NSE  is larger than 0.5 in 53.5% of the basins. Comparing 18 

STANDARD and STRUCTURE, model development clearly improved simulation results in 19 

A, C and D climates. The CLIMATE variant performs better in cold areas but overall 20 

performs worse than STANDARD, in particular in temperate climate. No significant 21 

differences occur when using an alternative land cover input (LANDCOVER). Performance 22 

of all variants is very poor in arid (B) climate.  23 

3.5 Variations of total water storages 24 

Simulated temporal variations of TWS, i.e. the total amount of water in all continental water 25 

storage compartments (Fig. A1), are used widely in the context of analyzing information 26 
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derived from the Gravity Recovery and Climate Experiment (GRACE). The dominant 1 

seasonal changes of TWS can be characterized by the difference between the minimum and 2 

the maximum value of mean monthly TWS (1971-2000). The spatial distribution of seasonal 3 

TWS variations (Fig. 7a) is similar to that derived with an earlier version of WaterGAP (see 4 

Fig. 4 in Güntner et al. (2007)). Seasonal TWS variations are affected most strongly by the 5 

climate forcing (Fig. 7b). For example, in Europe and eastern US, they are more than 25 mm 6 

higher in case of CRU/GPCC climate forcing. This finding is consistent with the impact of 7 

climate forcing on river discharge, e.g. of the Danube (Fig. 5). The calibration approach leads 8 

to a decrease of TWS variation in areas where runoff is overestimated (Fig. 7f). Where land 9 

cover attributes vary significantly due to different land cover classes in LANDCOVER, 10 

effects on TWS variations are strong (e.g. in Southern Congo or in Southern Amazon). 11 

Neglecting groundwater abstractions (as done in NoUse, which neglects any human water 12 

use, and in STRUCTURE, where water is only abstracted from surface water sources) leads to 13 

lower seasonal TWS variations in areas of groundwater abstractions (if in case of 14 

STRUCTURE, surface water is not able to satisfy water uses) and groundwater depletion (e.g. 15 

High Plains Aquifer in central USA, Iran and Northwestern India) (Fig. 7d and e). In these 16 

two variants, seasonal groundwater storage variations are solely driven by seasonal variations 17 

of groundwater recharge. Without simulating water use, some areas with large surface water 18 

irrigation have higher seasonal variations than with water use because large return flows 19 

during the dry (irrigation) season smooth natural groundwater storage variations. 20 

In addition, seasonal TWS variations in STRUCTURE differ from STANDARD particularly 21 

along large rivers (Fig. 7d), mostly with a smaller range in STRUCTURE. There, the flow 22 

velocity (variable in STANDARD) is lower than the constant 1 m s-1 in STRUCTURE, 23 

resulting in increased river storage. In many cold areas, the simpler snow algorithm in 24 

STRUCTURE leads to increased TWS seasonality. 25 

4 Discussion 26 

4.1 Comparison of simulated freshwater fluxes to other estimates 27 

The modeled AET and discharge to the oceans and inland sinks for all model variants are 28 

within the range of published values except the NoCal variant, which has very low AET and 29 

high discharge values (Tables 2 and 5). Difficulties with such comparisons can occur if 30 

different time spans are used. In addition, different land area is used, e.g. Mu et al. (2011) is 31 
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based on remote sensing data and neglects bare land surfaces (their area: 109.03×106 km2) 1 

whereas Mueller et al. (2013) covers 130.92×106 km2 (which is also a reason for a larger 2 

AET).  3 

Discharge estimates differ due to the applied estimation method and precipitation data set. 4 

Mueller et al. (2013) do not consider precipitation undercatch correction and assume a global 5 

precipitation of ~99 000 km3 yr-1 which is low compared to recent estimates of Schneider et 6 

al. (2014) (117.000 km3 yr-1) or the values used in this study (Table 2). Regarding WaterGAP, 7 

estimated of global discharge, model refinements have led to an increase of discharge. The 8 

value of STANDARD is approx. 450 km3 yr-1 higher than for STRUCTURE (Table 2), and 9 

previous estimates (Döll et al., 2003) are even lower as precipitation undercatch was not taken 10 

into account.  11 

4.2 Advantages and limitations of the calibration approach 12 

The applied calibration approach is clearly beneficial as it leads to a better fit of simulated to 13 

observed monthly river discharge time series (Fig. 6 and Table 4). Consequently, the basin-14 

specific adjustment of 1-3 parameters (γ , CFA and CFS, see Appendix B1) based on 15 

observed mean annual discharge has been part of the WaterGAP modeling approach since the 16 

beginning. Calibration allows to a certain degree compensating errors in input data and 17 

effective model parameters. Also, structural problems of the model, e.g. due to the simplified 18 

representation of hydrological processes at a half-degree grid cell, may be balanced out. The 19 

effect of calibration on modeled renewable water resources (Fig. 4e) dominates all other 20 

modifications within this study setup.  21 

However, the correction of total cell runoff using CFA and CFS that is required to force 22 

simulated mean annual river discharge values to be equal to observed values is not ideal and 23 

has undesirable effects on estimated AET and RWR. AET is largely reduced in one half of the 24 

basin (and vice versa) at the river basin Yenisey at station Igarka (western Siberian Plain) 25 

when using alternative climate forcing. Transferring the correction factor CFS (which is, if 26 

necessary, calculated at the outflow grid cell of the basin) to the upstream grid cells can lead 27 

to unrealistic high positive and negative values for AET if precipitation is too low in these 28 

parts of the basin to simulate observed discharge or the AET of surface water bodies has to be 29 

reduced by CFA. This is the reason for some artificial patterns in Fig. 3 and consequently in 30 

Fig. 4. These kinds of consistency errors can be found in some more basins where cumulative 31 
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AET is low and parts of the basins are covered with surface water bodies. Nevertheless, the 1 

approach ensures a closed water balance for the whole basin. 2 

Obviously, one parameter is not sufficient to calibrate the model. In many basins the γ  3 

parameter is not sensitive to input data and model structure in the current calibration approach 4 

as the range of γ  through all four variants (NoCal is not considered, NoUse has the same 5 

value as STANDARD) is rather small. 59% of the basins in Fig. 8 are colored dark blue 6 

which means that the calibration parameter γ  has the same value in all model variants. Here, 7 

γ  is at its artificial boundaries minimum (0.1) or maximum (5.0) value and the influence of 8 

input data and model structure, which were modified in this study, is insignificant. On the 9 

other hand, in 21% of the basins, γ  is differing by > 1 (green, yellow and red colors). In these 10 

basins, the calibration parameter is sensitive to input data and model structure. Anyhow, 11 

within future model development, one task is to restructure the calibration approach with the 12 

aim to avoid correction factors or rather to introduce and test alternative calibration 13 

objectives. This could be achieved by either including more parameters (multi-parameter 14 

calibration) and/or by integrating additional reference data, e.g. GRACE based data as was 15 

shown by Werth and Güntner (2010) (multi-objective calibration). In addition, remote sensing 16 

based input data with global coverage have been available for a decade. Especially for land 17 

cover characteristics (e.g. land cover type, L , albedo, see Appendix A), a more realistic 18 

representation of dynamics (integration of time series as input data instead of static input 19 

maps) can reduce the input data and model parameter uncertainty. 20 

4.3 How sensitive are freshwater fluxes and water storages to spatially 21 

distributed input data (climate forcing, land cover)? 22 

In general, more differences occur due to the alternative climate input than due to the 23 

alternative land cover data. The major freshwater fluxes (AET, Fig. 3 and RWR, Fig. 4) as 24 

well as river discharge (Fig. 5) show in many cases that land cover input has much less impact 25 

(except for some areas where the attributes of a changed land cover type differ significantly). 26 

The effect of different land cover input would probably increase when the belonging 27 

attributes were also modified. Forced with CRU 3.2 and GPCC v6 instead of WFD/WFDEI 28 

input, AET is increased by at least 10 mm yr-1 in large parts in the world (light blue colors in 29 

Fig. 3b). In those regions with similar precipitation amounts but different radiation, RWR 30 

decreases by the same amount as AET increased (e.g. South East Asia, Australia, Saudi 31 
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Arabia). In other regions, no clear effect on RWR is detectable (e.g. North America). In some 1 

parts of Europe, RWR increases by at least 10 mm yr-1 even if AET increases. Here, besides 2 

radiation (affecting AET), the amount of precipitation is of great importance (affecting 3 

RWR). 4 

In regions where the climate forcing datasets differ significantly (e.g. Danube River Basin), 5 

the impact on discharge is large (Fig. 5 bottom center). Here, differences in temperature and 6 

precipitation amounts lead to a poor fit compared to observed discharge when using the 7 

CLIMATE variant which is also reflected in the NSE  criterion (Fig. 9b). Also, the two land 8 

cover input data sets used here result in the same NSE  classes, with only a few exceptions 9 

(Fig. 9c). 10 

4.4 What are the benefits of WaterGAP model structure refinements 11 

implemented during the last decade? 12 

In general, WaterGAP 2.2 STANDARD leads to improved results compared to the reduced 13 

model version STRUCTURE that is comparable to the Döll et al. (2003) model version. For 14 

example, the different elevations of the 100 subgrids used for the improved snow modeling 15 

(Schulze and Döll, 2004) lead to different temperatures (see Appendix A2) and thus to more 16 

differentiated snow melting within one 0.5° grid cell in STANDARD as compared to 17 

STRUCTURE where snow within the whole cell either melted or not on any day. In many 18 

basins in the alpine region in central Europe, NSE  of STRUCTURE ranks behind 19 

STANDARD (Fig. 9d, red colors) reflecting too early snow melt in STRUCTURE. In some 20 

basins, the reservoir algorithm improves NSE  (and discharge seasonality). For example, the 21 

Volga at station Volgograd Power Plant (see also Fig. 5) and basins in Brazil show a much 22 

better NSE  (Fig. 9d) in STANDARD compared to STRUCTURE. However, NSE  of some 23 

basins with NSE  < 0.5 in STANDARD is improved in STRUCTURE. In summary, 24 

integrating more complex and refined process descriptions (see Sect. 2.2.3) in the past decade 25 

has led to improved simulation of monthly time series of river discharge with WaterGAP. 26 

However, discharge before calibration tends to be higher with the implemented structural 27 

changes, e.g. due to the storage-dependent reduction of surface water evaporation. This 28 

together with use of more calibration stations (Hunger and Döll, 2008) and the introduction of 29 

a bias-correction for observed precipitation (Döll and Fiedler, 2008) has had the problematic 30 
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consequence that correction factors to lower simulated river discharge have increasingly been 1 

required to ensure that simulated mean annual river discharges are equal to observed values. 2 

4.5 How does the modeling approach (calibration procedure, consideration of 3 

human water use) affect freshwater fluxes and water storages? 4 

The calibration procedure reduces simulated river discharge and water resources on most of 5 

the land area and increases the AET (Figs. 3 and 4, Table 2). Without calibration, global AET 6 

and discharge would rank at the lower and higher end of the published values, respectively 7 

(Table 5). In addition, the fit to observed monthly river discharge time series as quantified 8 

using the NSE  criterion would worsen almost everywhere (Fig. 9f). The impact of calibration 9 

on freshwater fluxes and water storages is higher than those of alternative climate forcings 10 

and land cover data, and of a more sophisticated model structure. This confirms the strong 11 

benefit of calibration. However, as NSE  is affected by mean discharge as well as discharge 12 

variations, the calibration approach improves this criterion. 13 

Compared to the other variants, the consideration of human water use does not have large 14 

effects on freshwater fluxes and storages at the global scale. In regions with intense water use, 15 

in particular from surface water bodies (e.g. in Pakistan), AET without considering additional 16 

evaporation from WCa (Table 2) is reduced due to human water use (Fig. 3e). This effect 17 

occurs because human water uses decrease surface water storages and thus the reduction 18 

factor (Appendix A5) decreases evaporation from surface water bodies. If the impact of 19 

human water use on river discharge were not considered, van Beek et al. (2011) showed lower 20 

performance in general. Within our study, higher correction factors would be necessary in 21 

basins with large abstractions from surface water bodies or significant decreases of baseflow 22 

due to groundwater abstractions. Still, NSE  of basins with high amounts of human water use is 23 

generally lower than those without human water use (not shown). In some basins mainly in 24 

northeastern Europe, NSE  improves when neglecting human water use (Fig. 9e). This 25 

obviously reflects uncertainties in water use models.  26 

4.6 Which type of uncertainty is dominant for specific fluxes and variations of 27 

total water storage? 28 

The answer to this question depends on the type of fluxes and the spatial aggregation. 29 

Regarding selected global sums of freshwater fluxes (Q and AET) and mean annual total 30 
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water storage trends dTWS, dominant uncertainties can be determined by computing 1 

differences between the values computed with certain model variant and STANDARD. As 2 

already shown above, global values of AET and Q as well as the fit of simulated to observed 3 

river discharge time series ( NSE ) are most sensitive to whether the model is calibrated or not 4 

(Table 6). STRUCTURE and NoUse have the strongest impact on the global TWS trend 5 

(Table 6) as these model variants cannot reflect groundwater depletion. More refined model 6 

algorithms rank second regarding global AET sums and NSE , and alternative climate forcings 7 

rank second regarding river discharge and third regarding median NSE . The alternative land 8 

cover input data sets have the overall lowest impact on computed freshwater fluxes and 9 

storages. 10 

Regarding grid cell-specific differences that are more relevant than global values for most 11 

applications, the ranking of dominant uncertainties is quite different. Patterns of seasonal 12 

TWS variations are affected most strongly by the climate forcing (Fig. 7b), while climate 13 

forcings show the second largest impact on the spatial distribution of AET and RWR, after 14 

calibration (Figs. 3 and 4). The fraction of the global land area that is affected by significant 15 

differences of AET and river discharge between a certain model variant and the STANDARD 16 

variant is largest in case of NoCal, followed by CLIMATE, LANDCOVER, STRUCTURE 17 

and NoUse. Thus, both global and grid cell values are most sensitive to calibration. The larger 18 

sensitivities to climate forcings and land cover input at the grid cell level (Table 7) cancel 19 

when globally averaged. The larger sensitivities of globally aggregated values (Table 6) to 20 

structural changes and the consideration of water use is due to unidirectional changes for all 21 

affected grid cells, but different to alternative climate and land cover data, structural changes 22 

and water use only affect a limited number of grid cells. This discussion on the dominant type 23 

of uncertainty does not take into account parameter uncertainty which is a major additional 24 

source of uncertainty (Kaspar, 2003). 25 

5 Conclusions 26 

We studied the sensitivity of freshwater fluxes and storages as computed by the GHM 27 

WaterGAP 2.2 to spatially distributed input data (climate forcing and land cover input) as 28 

well as model structure (model refinements during the last decade), consideration of human 29 

water use and calibration (or no calibration). For the modeling experiment, we designed five 30 

model variants in addition to the standard variant. In each model variant, one component or 31 
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feature was modified with respect to the standard variant. Sensitivity of different freshwater 1 

fluxes and water storage variations to the five types of uncertainty were analyzed and ranked 2 

considering both global sums and grid cell values, taking into account also the capability of 3 

the model variants to simulate time series of observed river discharge. Basin-specific 4 

calibration to mean annual river discharge was found to have the strongest impact on fluxes 5 

and storage variation and is the dominant reason for an improved simulation of observed 6 

monthly river discharge time series (as characterized by the Nash-Sutcliffe criterion). 7 

Uncertainty due to alternative climate forcing, and to a lesser extent, land cover input, leads to 8 

significant variations of grid cell fluxes (actual evapotranspiration, renewable water resources 9 

and river discharge) and storages (seasonal range of total water storage) even if the model 10 

variants are individually calibrated. However, these uncertainties largely cancel at the global 11 

scale while the more refined model structure, and to a lesser extent water use, are more 12 

important for global sums of river discharge and actual evapotranspiration but also for an 13 

improved fit to observed monthly time series of river discharge. 14 

The STANDARD variant of WaterGAP 2.2 leads to the best fit to observed river discharge 15 

(monthly time series, Fig. 6 and Table 4, and seasonality, Fig. 5). We conclude that the daily 16 

WFD/WFDEI data set as climate forcing is preferable to using a combination of the monthly 17 

CRU 3.2 and GPCC v6 data sets as done for model variant CLIMATE. However, we found 18 

that it is problematic to combine the WFD climate data set (covering 1901-2001) with the 19 

only seemingly consistent WFDEI data set (covering 1979-2009) due to a radiation bias (short 20 

wave downward radiation component) between the two data sets. This results in a steep 21 

increase of actual evapotranspiration in 1979, and a water storage decrease between 1971 and 22 

2000 that is an artifact of the combination of the two climate data sets (comp. section 3.1). It 23 

would be very beneficial for an improved estimation of global freshwater fluxes and storages 24 

to have a consistent daily climate forcing that covers the whole 20th and the early 21st century. 25 

The calibration approach of WaterGAP is necessary to compensate uncertainties of spatially 26 

distributed input data, parameters and model structure. However, a calibration of only one 27 

parameter related to soil water balance is not sufficient and correction factors have to be 28 

applied in a number of basins. Therefore, a redesign of the calibration approach, with 29 

additional observations (e.g. including TWS variations as derived from GRACE gravity 30 

fields), other calibration objectives and adjustment of more model parameters (without 31 

correction factors) is planned. 32 
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The improved representation of hydrological processes of WaterGAP within the last decade 1 

led to a more complex model structure. In most cases, those modifications resulted in a better 2 

fit to observed river discharge. However, in some parts of the world, model performance is 3 

still not satisfactory due to an inappropriate modeling of certain processes such that further 4 

changes of the model structure are required. For example, the modeled discharge seasonality 5 

in the Amazon basin is shifted compared to the observed on, which is suspected to be caused 6 

by inappropriate modeling of the temporal variations of inundations and the neglect of 7 

backwater effects. The reservoir operation algorithm does not yet take into account the 8 

construction year of the dam. Moreover, model results in semi-arid and arid regions are poor, 9 

and improved modeling of evaporation from ephemeral ponds is planned. 10 
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Appendix 1 

Appendix A describes the WaterGAP Global Hydrology Model (WGHM) in its current 2 

version 2.2. In the order of processing, the single storage compartments and belonging in- and 3 

outflows are explained. Appendix B provides information on the calibration and 4 

regionalization approach WaterGAP is based on. Appendix C gives a brief introduction of the 5 

water use sub-models, and the GWSWUSE module is described in Appendix D. 6 

Appendix A: Description of the WaterGAP Global Hydrology Model (WGHM) 7 

A1 Canopy 8 

The change of canopy storage cS [mm] over time t  [-1] is calculated as 9 

ct
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where precipitation P  [mm d-1] is the inflow and the amount of throughfall tP  [mm d-1] and 11 

canopy evaporation cE  [mm d-1] are the outflows. 12 

Throughfall tP  is calculated as 13 
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Following Deardorff (1978), canopy evaporation cE  is calculated as 15 
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where pE is potential evapotranspiration [mm d-1]. 17 

pE  is calculated according to the Priestley-Taylor model (Priestley and Taylor, 1972), 18 

differentiating atmospheric water demand between humid (α = 1.26) and semi-arid / arid (α = 19 

1.74) areas. Grid cells were defined as semi-arid / arid if long term average (1971-2000) 20 

precipitation is less than 0.5× pE  (UNEP, 1992). 21 

cS is limited between 0 and maximum canopy storage max,cS , which is calculated as  22 
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LmS cc =max,             (A4) 1 

where cm is 0.3 [mm] and L  is the leaf area index [-]. L  is calculated based on a modified 2 

growth model described in Kaspar (2003) and is limited to minimum and maximum values. 3 

Maximum L  values per land cover class (Table A1) are based on literature (Schulze et al., 4 

1994; Scurlock et al., 2001). Minimum L  values per land cover class are calculated as: 5 

( ) max,,,min 11.0 LcffL lcelcdlcd −+=         (A5) 6 

where lcdf , is the fraction of deciduous plants [-] and lcec , is the reduction factor for evergreen 7 

plants [-] (Table A1). Development of L  is simulated as a function of daily temperature and 8 

precipitation. The growing season starts when the daily temperature is above 8 °C for a land 9 

cover specific number of days (Table A1) and cumulative precipitation is at least 40 mm. 10 

During the growing season, L  increases linearly until it reaches maxL  after 30 days. In semi-11 

arid and arid regions, it is necessary that at least 0.5 mm daily precipitation occurs to keep the 12 

growing season ongoing. If the condition for growing season is not fulfilled anymore, the 13 

senescence phase is initiated, i.e. L is degraded to minL  linear within 30 days. 14 

A2 Snow 15 

The change of snow water storage snS  [mm] over time t  [-1] is calculated as 16 

snsn
t

sn EMP
d

dS
−−=           (A6) 17 

where snP  is precipitation, falling as snow at temperatures below 0 °C [mm d-1], M  is snow 18 

melt [mm d-1] and snE  is sublimation [mm d-1]. 19 

Snow accumulation and melt are modeled on a 3 arc minute sub-grid (100 sub-grid cells per 20 

0.5°) using a degree day algorithm (Schulze and Döll, 2004). Mean sub-grid elevation was 21 

derived from GTOPO30 (U.S. Geological Survey, 2003). The daily temperature for each sub-22 

grid cell is calculated from the temperature of the 0.5° cell, applying an adiabatic lapse rate of 23 

0.6 °C per 100 m. To avoid excessive snow accumulation, temperature does not decrease if a 24 

snow water equivalent of 1000 mm is reached in one sub-grid. 25 

At temperatures below 0 °C, all precipitation is assumed to fall and accumulate as snow. At 26 

sub-grid temperatures T  [°C] above melting temperature mT  (0 °C) and if snow storage is 27 
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present, snow melts with land cover specific degree-day factor FD  [mm d-1 °C-1] (Table A2) 1 

as: 2 

( )


 >>−

=
other

STTTTD
M snmmF

0
0,

       (A7) 3 

Instead of using one specific albedo for snow as in previous versions (α = 0.4), land cover 4 

specific snow albedo values are used to account for differences in reflective properties 5 

between the land use classes under snow-covered conditions (Table A2). The albedo value 6 

switches to snow albedo if snow water equivalent of the grid cell exceeds 3 mm, i.e. a closed 7 

snow cover is assumed. Sublimation snE  is modeled like potential evaporation rate but 8 

applying a latent heat of 2.835 [MJ kg-1] for temperatures below 0 °C and 2.501 – 0.002361 × 9 

T  [MJ kg-1] above 0 °C. 10 

A3 Soil 11 

Like snow and canopy, the change of soil water storage sS  [mm] over time t  [-1] is calculated 12 

as one layer as: 13 

sleff
s ERP

dt
dS

−−=           (A8) 14 

with effective precipitation effP  [mm d-1] as inflow and runoff from land lR [mm d-1] and 15 

actual evapotranspiration sE  [mm d-1] as outflows. 16 

MPPP snteff +−=           (A9) 17 

with tP  is through fall [mm d-1], (see Sect A1), snP  is precipitation falling as snow [mm d-1] 18 

and M is snow melt [mm d-1]. 19 

Actual evapotranspiration from the soil sE  [mm d-1] is a function of potential 20 

evapotranspiration from the soil pE  [mm d-1] minus the already evaporated water from the 21 

canopy cE  [mm d-1], actual soil water content in the effective root zone sS  [mm] and total 22 

available soil water capacity max,sS  [mm] as 23 
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where max,pE  is 20 mm d-1 in semi-arid and arid regions whereas 10 mm d-1 in grid cells 1 

classified as humid, max,sS  is the product of total available water capacity in the upper meter 2 

of the soil (Batjes, 1996) and the land cover specific rooting depth (Table A2).  3 

Runoff from land lR  [mm d-1] is calculated after Bergström (1995) as 4 

γ











=

max,s

s
effl S

SPR           (A11) 5 

Dependent on the soil water storage sS , a part of effective precipitation effP becomes runoff. 6 

If the soil water storage is empty, 0=lR . If the soil is completely saturated (at max,sS ), runoff 7 

equals effective precipitation. Between these points, the runoff coefficient γ  determines the 8 

amount of precipitation that converts to runoff. This parameter is used for calibration (see 9 

Sect. B1). In urban areas (defined as separate input map from IMAGE 2.2), 50% of effP  is 10 

directly passed to the river. 11 

A4 Groundwater 12 

Inflow to groundwater storage gS  [mm] is groundwater recharge gR  [mm d-1], whereas 13 

outflows are baseflow gQ  [mm d-1] and net abstractions from groundwater gNA  [mm d-1] 14 

(Section C), which can also act as inflow (e.g. as additional groundwater recharge due to 15 

irrigation with surface water). 16 

gNA−−= gg
g QR

dt
dS

         (A12) 17 

Groundwater recharge gR  [mm d-1] is calculated as a fraction of runoff from land: 18 

( )lggg RfRR ,min max,=  19 

where max,gR  is soil texture specific maximum groundwater recharge [mm d-1] (with values of 20 

7/4.5/2.5 for sandy/loamy/clayey soils) and gf is the groundwater recharge factor (ranging 21 

between 0 and 1) related to relief, soil texture, aquifer type and the existence of permafrost or 22 

glaciers. For a detailed description see Döll and Fiedler (2008). If a grid cell is defined as arid 23 

and has coarse (sandy) soil, groundwater recharge will only occur if precipitation exceeds a 24 
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critical value of 12.5 mm d-1. Both values, max,gR and the precipitation threshold, are adapted 1 

to the climate forcing used (WFD) aiming to reach comparable groundwater recharge patterns 2 

of (Döll and Fiedler, 2008) as that groundwater recharge estimation is confirmed with experts 3 

within the  WHYMAP (http://www.whymap.org) efforts. Within CLIMATE, the original 4 

values 5/3/1.5 for max,gR  and 10 mm d-1 as precipitation threshold were used. 5 

The outflow is modeled with gk  = 0.01 d-1 as 6 

ggg SkQ =            (A13) 7 

The runoff from land lR , which is not groundwater recharge gR , represents the fast surface 8 

runoff sR  and is routed, together with gQ , through a series of different storages representing 9 

wetlands, lakes and reservoirs until reaching the river segment (Fig. A1).  10 

A5 Surface water bodies 11 

Surface water bodies (inland freshwater such as wetlands, lakes and reservoirs) play an 12 

important role in the hydrologic cycle e.g. for evaporation and the lateral transport. In general, 13 

surface water body storages S  [m3] increase by inflow I  [m3 d-1] from other storages or from 14 

upstream (see Fig. A1), and are reduced by the outflow Q  [m3 d-1]. Additionally, the water 15 

balance of the water body itself B  [m3 d-1] is calculated as wEPB −= , where P  is 16 

precipitation [m3 d-1] and wE  is potential evaporation of open water surfaces [m3 d-1] applying 17 

an albedo of 0.08. Finally, net abstractions of surface water sNA  [m3 d-1] are considered, 18 

resulting in the storage equation: 19 

sNA−+−= BQI
dt
dS          (A14) 20 

Outflow is in principle modeled like groundwater outflow (Sect. A4) for “local” lakes and 21 

wetlands, whereas “global” lakes and wetlands are linear storages whose equations are solved 22 

analytically. 23 

WaterGAP 2.2 does not consider variable land/water fractions as would be expected when a 24 

lake is shrinking due to evaporation and land surface increases; thus Hunger and Döll (2008) 25 

introduced a reduction parameter which reduces the evaporation when lake / wetland storage 26 

is low. In WaterGAP 2.2, for all surface water bodies the reduction factor r [-] is calculated as 27 

http://www.whymap.org/�
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where S  is actual water body storage [m3], maxS  is maximum water body storage [m3] and p  2 

is the reduction exponent [-]. As no truly global dataset on lake volumes is available, the 3 

maximum storage capacity is determined by multiplying the surface area with an “active” 4 

depth (set to 5 m and 2 m for lakes and wetlands, respectively). Values for p  are 3.32 for 5 

lakes and wetlands which means a reduction of evaporation by 10% if storage is halved and 6 

2.81 for reservoirs, which means a reduction of 15% if storage is half of the maximum storage 7 

capacity (and a reduction of 50% if storage is reduced to 20% of storage capacity). 8 

The distribution of wetlands is derived from GLWD (Lehner and Döll, 2004) as percentage of 9 

cell coverage. Locations and attributes of lakes and reservoirs are based on a combination of 10 

GLWD and a preliminary version of the GRanD database (Döll et al., 2009; Lehner et al., 11 

2011). In total, 6553 reservoirs, 52 regulated lakes (lakes whose outflow is regulated by a 12 

dam) (from GRanD) and 242 798 unregulated lakes (from GLWD) were considered. Out of 13 

these, 1386 large lakes (area ≥ 100 km2), 1110 large reservoirs (storage capacity ≥ 0.5 km 2) 14 

and 52 regulated lakes (area ≥ 100 km 2 or storage capacity ≥ 0.5 km 2) were classified as 15 

“global”, i.e. they receive inflow not only from the grid cell itself but also from upstream 16 

(“global” wetlands are defined in the same way, see Fig. A1). All other surface water bodies 17 

were classified as “local”. If “global” lakes or reservoirs cover more than one grid cell, the 18 

water balance of the whole surface water body is calculated at the outflow cell.  19 

A6 Lateral routing 20 

The global drainage direction map DDM30 (Döll and Lehner, 2002) is used to route the 21 

discharge through the stream network until it reaches the ocean or an inland sink. Fast runoff 22 

gls RRR −=  is routed to the surface storages without any delay, whereas baseflow gQ  is a 23 

function of groundwater storage (Fig. A1, Appendix A4). Due to limited information on 24 

groundwater flow between grid cells, the groundwater recharge can only contribute to 25 

groundwater runoff of the same grid cell. 26 

Verzano et al. (2012) improved the routing by introducing a variable flow velocity approach 27 

based on the Manning-Strickler equation. The roughness coefficient is calculated after Cowan 28 

(1956) by using different physiographic parameters and information about rural and urban 29 



 32 

areas. The hydraulic radius is calculated using actual discharge of the cell and empirical 1 

relationships of river width and depth at bankfull flow conditions. Bankfull conditions are 2 

assumed to correspond to the 1.5 year maximum series annual flow (Schneider et al., 2011) 3 

and were accordingly calculated from daily discharge time series for the global land surface. 4 

River bed slopes were calculated based on the HydroSHEDS drainage direction map (Lehner 5 

et al., 2008) and a meandering ratio (method is described in Verzano et al. (2012)). 6 

The reservoir algorithm of Hanasaki et al. (2006), distinguishing irrigation and non-irrigation 7 

reservoirs and considering 1109 reservoirs was implemented and improved by Döll et al. 8 

(2009) and slightly adapted in WaterGAP 2.2: If reservoir storage falls below 10% of storage 9 

capacity, the release coefficient is set to 0.1 instead of 0.0 in Döll et al. (2009), assuring that 10 

at least some water is released e.g. for downstream ecosystem demands.  11 

Appendix B: Calibration and regionalization 12 

B1 Calibration approach 13 

WGHM is calibrated against mean annual discharge by adjusting the runoff coefficient γ  14 

(Eq. A11) for all grid cells of each calibration basin and – if necessary – two additional 15 

correction factors. The calibration procedure of WGHM is described in Döll et al. (2003) and 16 

Hunger and Döll (2008). As WaterGAP was developed to quantify water resources and water 17 

stress, calibration forces simulated discharge to be, during the calibration period, between 99 18 

and 101% of observed river discharge. It is implicitly assumed that the model should be 19 

robust enough to reproduce intra- and interannual variability. Main reasons for calibration are 20 

the uncertainty of input data, parameters and model structure as well as the scale of the model 21 

and grid cell heterogeneity. To overcome overparameterization and to keep the calibration as 22 

simple as possible, calibration is performed by adjusting the one free parameter γ  (Eq. A11) 23 

within the limits 0.1 and 5.0. With lowγ , runoff is high even if the soil is at low saturation, 24 

and with a high value, runoff is small even with nearly saturated soils. However, in many 25 

basins, adjustment of the soil water balance alone does not lead to a fit of simulated discharge 26 

to observed discharge for various reasons. These include uncertainty of climate forcing, 27 

underestimation of evaporation losses in dry areas caused by neglecting formation of 28 

ephemeral ponds and neglecting of streambed losses. In these cases, the area correction factor 29 

(CFA) is computed, which adjusts net cell runoff of each cell in the sub-basins. With limits 30 
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between 0.5 and 1.5, cells with positive (precipitation > evapotranspiration) and negative 1 

(water body evapotranspiration > precipitation, e.g. global lakes which are fed by upstream 2 

inflow) are multiplied with a value symmetric around 1.0 (Hunger and Döll, 2008). In some 3 

basins, however, the adaptation of both γ  and CFA is not sufficient for a successful 4 

calibration, i.e. the deviation between simulated and observed long term average discharge 5 

remains larger than 1%. Possible reasons are discussed in Hunger and Döll (2008). To avoid 6 

error propagation to next the downstream basin, the modeled discharge is corrected to the 7 

measured discharge in the grid cell where the discharge station is located by multiplying with 8 

the station correction factor CFS (Hunger and Döll, 2008). 9 

B2 Discharge stations used 10 

Observed discharge time series were provided by the Global Runoff Data Center (GRDC). 11 

Following Hunger and Döll (2008), gauging stations listed in the GRDC catalogue 12 

(http://grdc.bafg.de/, download date: 28.09.2012) were included in the calibration setup if 13 

they fulfilled three main criteria: (1) an upstream area of at least 9000 km², (2) a time series of 14 

at least four (complete) years, and (3) an inter-station catchment area of at least 30 000 km². 15 

All in all, a number of 1319 stations, covering 53.6% of the global land area except Antarctica 16 

and Greenland, was used for calibration (Fig. B1). If available, the 30-year period 1971 to 17 

2000 was chosen as calibration years. 18 

B3 Regionalization 19 

In order to transfer the calibrated γ  values to ungauged basins, the parameter is regionalized 20 

using a multiple linear regression approach relating the natural logarithm of the calibrated γ  21 

values to the following basin descriptors: mean annual temperature, mean available soil water 22 

capacity, fraction of open water bodies, mean basin land surface slope, fraction of permanent 23 

snow and ice, and the aquifer-related groundwater recharge factor. Like in calibration basins, 24 

the regionalized parameter values are constrained to the range 0.1 to 5.0. CFA and CFS are 25 

not regionalized but are set to 1.0 in uncalibrated basins. 26 

http://grdc.bafg.de/�
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Appendix C 1 

Description of water use models 2 

In pre-processing steps to the WGHM, the global water use sub-models (left side of Fig. 1) 3 

provide water withdrawal and water consumption (the part of withdrawn water that is not 4 

returned to the system but evaporated or incorporated in products) for five sectors: irrigation, 5 

livestock farming, domestic use (households and small businesses), manufacturing industries 6 

and thermal power plant cooling. 7 

Irrigation water consumption is calculated on daily time steps for each grid cell by the Global 8 

Irrigation Model (GIM) on the basis of gridded area equipped for irrigation (Siebert et al., 9 

2005, 2007) and climate as full irrigation (the difference between potential evapotranspiration 10 

and effective precipitation) of paddy rice and non-rice crops, based on modelled cropping 11 

patterns (Döll and Siebert, 2002). Consumptive livestock water use is calculated as a function 12 

of animal numbers per grid cell and water requirements per capita for ten different livestock 13 

types, while national values of domestic and manufacturing water use are downscaled to the 14 

grid cells using population density (Flörke et al., 2013). Cooling water use per grid cell 15 

accounts for the location of more than 60 000 power plants, their cooling and combustion 16 

type, and their electricity production (Flörke et al., 2013; Vassolo and Döll, 2005). Temporal 17 

development of domestic, manufacturing, and cooling water use is calculated as water use 18 

intensity per capita or unit industrial output (considering structural and technological change 19 

over time), multiplied by the driving force of water use, either population (for domestic use), 20 

national manufacturing output (as Gross Value Added, which is a share of Gross Domestic 21 

Product), or national thermal electricity production (Flörke et al., 2013). While WGHM uses 22 

aggregated monthly time series of irrigation consumptive use, the other sectoral water uses 23 

are distributed equally throughout the year. 24 

Appendix D 25 

Description of GWSWUSE 26 

In the water use models, the source of the abstracted water is not distinguished. This is done 27 

in the WaterGAP submodel GWSWUSE (Döll et al., 2012). Based on the results of the water 28 

use models, GWSWUSE computes net abstractions (abstractions minus return flows) from 29 
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groundwater and net abstraction from surface water bodies that serve as input to WGHM (Fig. 1 

1). As a first step within GWSWUSE, the time series of consumptive water use in irrigation, 2 

which is computed by GIM for temporally constant irrigation areas but changing climate 3 

variables, is scaled by using an annual time series of irrigated area by country uses 4 

information (Döll et al., 2012). Then,  groundwater use fractions for irrigation (Siebert et al., 5 

2010), domestic and manufacturing water use are applied, and irrigation water abstractions 6 

are determined by dividing consumptive use by irrigation water use efficiencies. In contrast to 7 

Döll et al. (2012), irrigation water use efficiencies differ between surface water and 8 

groundwater use in WaterGAP 2.2. While for surface water irrigation, country-specific values 9 

are still used, irrigation water use efficiency was set to 0.7 worldwide in case of groundwater 10 

irrigation (Döll et al., 2014). Return flows from irrigation to either groundwater or surface 11 

water are computed as a function of cell-specific artificial drainage fraction (Döll et al., 2012). 12 

In WaterGAP 2.2., the fraction of irrigation return flows that recharge groundwater was 13 

increased as compared to Döll et al. (2012) and is computed as 0.95-0.75 times the cell-14 

specific artificial drainage fraction. Due to return flows, net abstractions can be positive 15 

(water is abstracted from storage) or negative (water is added to storage) (see Fig. 1 of Döll et 16 

al., 2014). 17 

18 
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Table 1. Overview of the model variants. 1 

Name Characteristic Description 

STANDARD 

 

standard WaterGAP 2.2 

model version 

MODIS land cover for the year 2004. 

WATCH Forcing Data as daily climate input. 

For 1901-1978 WFD is used, for 1979-2009 

WFDEI. Calibration against mean annual river 

discharge, including regionalization of 

calibration parameter to grid cells outside 

calibration basins. Consideration of human 

water use. 

CLIMATE 

 

alternative climate 

forcing 

Similar to STANDARD but CRU TS 3.2 and 

GPCC v6 for precipitation as monthly climate 

input. 

LANDCOVER 

 

alternative land cover 

data 

Similar to STANDARD but a combination of 

GLCC and CORINE (for Europe) was used as 

land cover input. 

STRUCTURE alternative model 

structure 

Similar to STANDARD but less refined 

process representation (comparable to Döll et 

al. (2003)). 

NoUse no water use Similar to STANDARD but without 

considering water use. 

NoCal no calibration Similar to STANDARD but without 

calibration to mean annual river discharge. 

Calibration parameter and correction factors 

are globally set to 1.0 (for details see 

Appendix B) 

 2 

3 
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Table 2. Long-term average (1971-2000) freshwater fluxes from global land area (except 1 

Antarctica and Greenland) of WaterGAP 2.2 in km3 yr-1. Cells representing inland sinks were 2 

excluded but discharge into inland sinks was included. 3 

nr component STANDARD NoUseh CLIMATE LANDCOVER STRUCTURE NoCal 

1 precipitation Pa 111 070 111 070 112 969 111 070 111 070 111 070 

2 
actual evapotranspiration 

AETb 
69 803 69 934 69 842 70 012 70 217 63 344 

3 
discharge into oceans and 

inland sinks Qc 
40 458 41 216 42 364 40 250 40 002 46 822 

4 
water consumption (actual) 

(rows 5 + 7) WCa 
1031 0 927 1029 983 1054 

5 
net abstraction from surface 

water (actual)d 1102 0 960 1102 983 1126 

6 
net abstraction from surface 

water (demand) NAs
e 

1154 0 1000 1154 1082 1154 

7 
net abstraction from 

groundwater NAg
f 

-72 0 -33 -72 0 -72 

8 
change of total water storage 

dS/dtg 
-215 -73 -156 -214 -44 -143 

9 

long term averaged yearly 

volume balance error  

(P – AET – Q – WCa – dS/dt) 

deviation to P 

-7 

 

-0.006% 

-7 

 

-0.006% 

-8 

 

-0.007% 

-7 

 

-0.006% 

-88 

 

-0.08% 

-7 

 

-0.006% 

a mean annual P (1979-2001) is 110.309 km3 yr-1 in WFD and 110.812 km3 yr-1 in WFDEI, b 4 

AET does not include evapotranspiration caused by human water use, i.e. actual water 5 

consumption WCa, c including anthropogenic water use (except NoUse), d if not enough water 6 

is available, demand is not completely satisfied, e demand that needs to be satisfied (water use 7 

model output), f negative values indicate that return flows from irrigation with surface water 8 

exceed groundwater abstractions, g total water storage (TWS) of 31. December 2000 minus 9 
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TWS of 31. December 1970 divided by 30 years, h STANDARD but no subtraction of water 1 

use; discharge into oceans and inland sinks equals renewable water resources. 2 

3 
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Table 3. Mean change in water storage in different compartments between December 31, 1 

1970, and December 31, 2000, in km3 yr-1 (global sum except Antarctica and Greenland). 2 

Cells representing inland sinks were excluded. 3 

compartment STANDARD NoUsea CLIMATE LANDCOVER STRUCTURE NoCal 

total water storage -214.8 -73.7 -156.4 -214.8 -44.5 -143.0 

canopy -0.05 -0.05 0.002 -0.05 -0.05 -0.05 

snow -3.0 -3.0 -6.3 -3.3 -1.3 -3.0 

soil -21.6 -21.6 -0.9 -20.6 -20.9 -20.0 

groundwater -124.9 8.6 -126.9 -125.4 9.7 -82.7 

local lake -1.9 -1.5 -0.3 -1.9 -2.1 -1.1 

local wetland -4.9 -4.3 1.9 -5.1 -8.4 -2.2 

global lake -3.5 -3.4 -1.1 -3.4 -8.2 -3.8 

reservoirs -43.1 -37.5 -23.2 -43.1    * -21.4 

global wetlands -4.9 -4.3 1.9 -5.1 -8.4 -2.2 

river -6.7 -6.0 2.7 -6.7 -4.6 -4.3 

a In WaterGAP, increase of soil water storage by irrigation is not taken into account such that 4 

storage values for STANDARD and NoUse variants are the same. 5 

* not applicable as reservoirs are treated as global lakes 6 

7 
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Table 4. Number of calibration basins per NSE  category and Köppen-Geiger climate zonea.  1 

Variant class NSE  A B C D E sum 

STANDARD 

1 > 0.7 75 19 117 129 29 369 

2 0.5 - 0.7 100 17 68 134 18 337 

3 < 0.5 110 91 83 282 47 613 

CLIMATE 

1 > 0.7 67 8 77 145 30 327 

2 0.5 - 0.7 116 31 68 107 26 348 

3 < 0.5 104 79 127 293 41 644 

LANDCOVER 

1 > 0.7 77 20 117 128 32 374 

2 0.5 - 0.7 94 16 68 132 15 325 

3 < 0.5 114 91 83 285 47 620 

STRUCTURE 

1 > 0.7 63 20 85 99 27 294 

2 0.5 - 0.7 101 16 84 132 22 355 

3 < 0.5 121 91 99 314 45 670 

 1 > 0.7 77 15 109 138 30 369 

NoUse 2 0.5 - 0.7 97 26 68 130 17 338 

 3 < 0.5 111 86 91 277 47 612 

 1 > 0.7 17 5 39 61 12 134 

NoCal 2 0.5 - 0.7 28 4 32 80 11 155 

 3 < 0.5 240 118 197 404 71 1030 
a Calculated by WaterGAP after (Kottek et al., 2006); A: equatorial climate, B: arid climate, 2 

C: warm temperate climate, D: snow climate and E: polar climates. Note that the number of 3 

basins per climate zone differs for CLIMATE as here, the basis for Köppen-Geiger climate 4 

calculation is CRU TS 3.2 and GPCC v6 instead of WFD/WFDEI climate input for all other 5 

variants. 6 

7 
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Table 5. Comparison of diverse estimates of global actual evapotranspiration and discharge in 1 

km3 yr-1. 2 

actual evapotranspiration discharge 

62 800 Mu et al. (2011) 34 406 Mueller et al. (2013) 

64 512a Mueller et al. (2013) 36 200 Wada et al. (2010) 

65 000 Jung et al. (2010) 36 687 Döll et al. (2003) 

65 500 Oki and Kanae (2006) 37 288 Dai and Trenberth (2002) 

66 000 Sterling et al. (2012) 38 587 Baumgartner and Reichel (1975) 

71 000 Baumgartner and Reichel (1975) 38 605 Widén-Nilsson et al. (2007) 

72 000 Korzun (1978) 39 307 Fekete et al. (2002) 

75 981b Mueller et al. (2011) 39 414 Döll and Fiedler (2008) 

60 000–

85 000 

Haddeland et al. (2011) 44 560 Korzun (1978) 

45 500 Oki and Kanae (2006) 

  42 000-

66 000 

Haddeland et al. (2011) 

70576 c STANDARD 40458 c STANDARD 

a 1.35 mm d-1 based on a land area of 130.922 × 106 km2 3 

b 1.59 mm d-1 based on a land area of 130.922 × 106 km2 (value taken from Mueller et al. 4 

(2013) as no area is given in Mueller et al. (2011)) 5 
c sum of AET and WCa 6 

7 
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Table 6. The three model variants with the largest differences to STANDARD variant (dSTA) 1 

regarding global freshwater fluxes (Q and AET) and total water storages trends (dTWS/dt) 2 

(from Table 2, values in km3 yr-1) as well as median NSE  for monthly time series of river 3 

discharge at the 1319 calibration basins. 4 

Variable STANDAR

D 

rank 1 dSTA rank 2 dSTA rank 3 dSTA 

Q 40 458 NoCal 6364 CLIMATE 1906 NoUse 758 

AET 69 803 NoCal -6459 STRUCTURE 414 LANDCOVER 209 

dTWS/dt -214 STRUCTURE 169 NoUse 140 NoCal 71 

median 

NSE  
0.54 NoCal -0.66 STRUCTURE -0.05 CLIMATE -0.03 

 5 

6 
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Table 7. Rank of model variants where global land area (except Greenland and Antarctica) is 1 

affected most based on a threshold which represents the 10th percentile of averaged (1971-2 

2000) global grid cell values for AET and discharge. 3 

rank variant 

% of area affected by changes 

 above 10th percentile 

AET discharge 

1 NoCal 60.5 13.5 

2 CLIMATE 45.5 3.2 

3 LANDCOVER 24.2 1.2 

4 STRUCTURE 13.6 1.1 

5 NoUse 0.9 0.03 

 4 

5 
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Table A1. Parameters of the leaf area index model.  1 

no. land cover type maxL [-] 

fraction of 

deciduous 

plants lcdf ,  

L reduction factor 

for evergreen 

plants lcec ,  

initial days to 

start/end with 

growing season 

[d] 

1 Evergreen needleleaf forest 4.02a 0 1 1 

2 Evergreen broadleaf forest 4.78b 0 0.8 1 

3 Deciduous needleleaf forest 4.63 1 0.8 10 

4 Deciduous broadleaf forest 4.49c 1 0.8 10 

5 Mixed forest 4.34d 0.25 0.8 10 

6 Closed shrubland 2.08 0.5 0.8 10 

7 Open shrubland 1.88 0.5 0.8 10 

8 Woody savanna 2.08 0.5 0.3 10 

9 Savanna 1.71 0.5 0.5 10 

10 Grassland 1.71 0 0.5 10 

11 Permanent wetland 6.34 0 0 10 

12 Cropland 3.62 0 0.1 10 

13 
Cropland/ natural 

vegetation mosaic 
3.62 0.5 0.5 10 

14 Snow and ice 0 0 0 0 

15 Bare ground 1.31 0 1 10 

a
maxL is assumed to be the mean value of land cover classes of Scurlock et al. (2001) TeENL 2 

and BoENL, bonly value for TrEBL and not TeEBL (Scurlock et al., 2001) as in WaterGAP 3 

this class is mainly in the tropics, cmean value from TeDBL and TrDBL (Scurlock et al., 4 

2001), dmean value of all forest classes. Fraction of deciduous plants and L reduction factor 5 

for evergreen plants based on IMAGE (Alcamo et al., 1998), initial days to start/end with 6 

growing season are estimated. 7 
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Table A2. Attributes for IGBP land cover classes used in WaterGAP 2.2 for all model 1 

variants, compiled from various literature sources. Water has an albedo of 0.08, snow 0.6. 2 

no. land cover type 

rooting 

deptha 

[m] 

albedoa  

[-] 

snow 

albedo [-] 

emissivityb 

[-] 

degree-day 

factor FD c 

[mm d-1 °C-1] 

1 Evergreen needleleaf forest 2 0.11 0.278 0.9956 1.5 

2 Evergreen broadleaf forest 4 0.07 0.3 0.9956 3 

3 Deciduous needleleaf forest 2 0.13 0.406 0.99 1.5 

4 Deciduous broadleaf forest 2 0.13 0.558 0.99 3 

5 Mixed forest 2 0.12 0.406 0.9928 2 

6 Closed shrubland 1 0.13 0.7 0.9837 3 

7 Open shrubland 0.5 0.2 0.7 0.9541 4 

8 Woody savanna 1.5 0.2 0.558 0.9932 4 

9 Savanna 1.5 0.3 0.7 0.9932 4 

10 Grassland 1 0.25 0.7 0.9932 5 

11 Permanent wetland 1 0.15 0.2 0.992 4 

12 Cropland 1 0.23 0.376 0.9813 4 

13 
Cropland/ natural 

vegetation mosaic 
1 0.18 0.3 0.983 4 

14 Snow and ice 1 0.6 0.7 0.9999 6 

15 Bare ground 0.1 0.35 0.7 0.9412 6 

aadapted from the IMAGE model (Alcamo et al., 1998) 3 

b(Wilber et al., 1999)  4 

c(Maniak, 1997; WMO, 1994) 5 

6 
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 1 

Figure 1. Schematic of WaterGAP 2.2. The output of five water use models is translated into 2 

net abstractions from groundwater NAg and surface water NAs by the submodel GWSWUSE, 3 

which allows computing the impact of human water use on water flows and storages by 4 

WGHM. For details see Döll et al. (2012). 5 

6 
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 1 

Figure 2. Land cover maps with a spatial resolution of 0.5° used as WaterGAP input based on 2 

MODIS observations for the year 2004 (variant STANDARD) (a), land cover derived from 3 

USGS GLCC but CORINE for Europe reflecting land cover distribution around the year 2000 4 

(variant LANDCOVER) (b), and identification of grid cells where land cover class has 5 

changed due to different input data (c). 6 

7 
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 1 

Figure 3. Actual evapotranspiration AET for STANDARD (mean value 1971-2000, in mm yr-2 
1) (a) and differences between the model variants and STANDARD in mm yr-1 (b-f). 3 

4 
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 1 

Figure 4. Renewable water resources (mean annual runoff from each cell if water use is 2 

neglected) calculated by WaterGAP 2.2 NoUse variant (a) and differences to other variants 3 

(variants here run without considering water use) (b-e). 4 

5 
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 1 

Figure 5. Discharge seasonality for selected basins and the calibrated model variants. Values 2 

for NoCal are only visible if they are in the range of calibrated model variants. 3 

4 



 61 

 1 

Figure 6. Nash-Sutcliffe efficiencies NSE  (excluding outliers) of monthly observed and 2 

simulated discharge at 1319 stations used for calibration. 3 

4 
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 1 

Figure 7. Seasonal variation of total water storage (TWS) for STANDARD (a) and as 2 

difference maps [mm] to all other model variants (b-f). 3 

4 
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 1 

Figure 8. Range of calibration parameter γ  through all four calibrated model variants 2 

(calculated as minmax γγ − ) showing the general sensitivity to input data and model structure. 3 

White colors indicate uncalibrated regions. 4 

5 
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 1 

Figure 9. Spatial distribution of Nash-Sutcliffe efficiency NSE  classes (from Table 4, 1: NSE  2 

> 0.7, 2: 0.5 < NSE  < 0.7, 3: NSE  < 0.5) for STANDARD (a), and differences of model 3 

variants (calculated as STANDARD NSE  class minus that of the model variant) (b-f). Red 4 

colors indicate a decrease, green an increasing NSE  when using the model variant compared 5 

to STANDARD. 6 

7 
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 1 

Figure A1. Schematic structure of the water fluxes and storages as computed by WaterGAP 2 

Global Hydrology Model (WGHM) within each 0.5° grid cell. Boxes represent water storage 3 

compartments, arrows water fluxes (inflows, outflows). Numbers at net abstraction from 4 

surface waters (NAs) are the order from which storage water is abstracted until demand is 5 

satisfied. 6 

7 
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 1 

Figure B1. Calibration basins of WaterGAP 2.2 with number of years with discharge 2 

observations used for calibration. 3 

 4 
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