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Abstract

Physically based models provide insights into key hydrologic processes, but are as-
sociated with uncertainties due to deficiencies in forcing data, model parameters, and
model structure. Forcing uncertainty is enhanced in snow-affected catchments, where
weather stations are scarce and prone to measurement errors, and meteorological5

variables exhibit high variability. Hence, there is limited understanding of how forc-
ing error characteristics affect simulations of cold region hydrology. Here we employ
global sensitivity analysis to explore how different error types (i.e., bias, random er-
rors), different error distributions, and different error magnitudes influence physically
based simulations of four snow variables (snow water equivalent, ablation rates, snow10

disappearance, and sublimation). We use Sobol’ global sensitivity analysis, which is
typically used for model parameters, but adapted here for testing model sensitivity to
co-existing errors in all forcings. We quantify the Utah Energy Balance model’s sensi-
tivity to forcing errors with 1 520 000 Monte Carlo simulations across four sites and four
different scenarios. Model outputs were generally (1) more sensitive to forcing biases15

than random errors, (2) less sensitive to forcing error distributions, and (3) sensitive to
different forcings depending on the relative magnitude of errors. For typical error mag-
nitudes, precipitation bias was the most important factor for snow water equivalent,
ablation rates, and snow disappearance timing, but other forcings had a significant im-
pact depending on forcing error magnitudes. Additionally, the relative importance of20

forcing errors depended on the model output of interest. Sensitivity analysis can reveal
which forcing error characteristics matter most for hydrologic modeling.

1 Introduction

Physically based models allow researchers to test hypotheses about the role of specific
processes in hydrologic systems and how changes in environment (e.g., climate, land25

cover) may impact key hydrologic fluxes and states (Barnett et al., 2008; Deems et al.,
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2013; Leavesley, 1994). Due to the complexity of processes represented, these models
usually require numerous inputs consisting of (1) meteorological forcing variables and
(2) model parameters. Most inputs are not measured at the locations of interest and
require estimation; hence, large uncertainties may propagate from hydrologic model
inputs to outputs. Despite ongoing efforts to quantify forcing uncertainties (e.g., Bohn5

et al., 2013; Flerchinger et al., 2009) and to develop methodologies for incorporating
uncertainty into modeling efforts (e.g., Clark and Slater, 2006; He et al., 2011a; Kavet-
ski et al., 2006a; Kuczera et al., 2010), many analyses continue to ignore uncertainty.
These often assume either that all forcings, parameters, and structure are correct (Pap-
penberger and Beven, 2006) or that only parametric uncertainty is important (Vrugt10

et al., 2008b). Neglecting uncertainty in hydrologic modeling reduces confidence in hy-
pothesis tests (Clark et al., 2011), thereby limiting the usefulness of physically based
models.

There are fewer detailed studies focusing on forcing uncertainty relative to the num-
ber of parametric and structural uncertainty studies (Bastola et al., 2011; Benke et al.,15

2008; Beven and Binley, 1992; Butts et al., 2004; Clark et al., 2008, 2011; Essery
et al., 2013; Georgakakos et al., 2004; Jackson et al., 2003; Kuczera and Parent,
1998; Liu and Gupta, 2007; Refsgaard et al., 2006; Slater et al., 2001; Smith et al.,
2008; Vrugt et al., 2003a, b, 2005; Yilmaz et al., 2008). Di Baldassarre and Montanari
(2009) suggest that forcing uncertainty has attracted less attention because it is “often20

considered negligible” relative to parametric and structural uncertainties. Nevertheless,
forcing uncertainty merits more attention in some cases, such as in snow-affected wa-
tersheds where meteorological and energy balance measurements are scarce (Bales
et al., 2006; Raleigh, 2013; Schmucki et al., 2014) and prone to errors (Huwald et al.,
2009; Rasmussen et al., 2012). Forcing uncertainty is enhanced in complex terrain25

where meteorological variables exhibit high spatial variability (Feld et al., 2013; Flint
and Childs, 1987; Herrero and Polo, 2012; Lundquist and Cayan, 2007). As a result,
the choice of forcing data can yield substantial differences in calibrated model parame-
ters (Elsner et al., 2014) and in modeled hydrologic processes, such as snowmelt and
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evapotranspiration (Mizukami et al., 2014; Wayand et al., 2013). Thus, forcing uncer-
tainty demands more attention in snow-affected watersheds.

Previous work on forcing uncertainty in snow-affected regions has yielded basic in-
sights into how forcing errors propagate to model outputs and which forcings introduce
the most uncertainty in specific outputs. However, these studies have typically been5

limited to: (1) empirical/conceptual models (He et al., 2011a, b; Raleigh and Lundquist,
2012; Shamir and Georgakakos, 2006; Slater and Clark, 2006), (2) errors for a sub-
set of forcings (e.g., precipitation or temperature only) (Burles and Boon, 2011; Dadic
et al., 2013; Durand and Margulis, 2008; Xia et al., 2005), (3) model sensitivity to
choice of forcing parameterization (e.g., longwave) without considering uncertainty in10

parameterization inputs (e.g., temperature and humidity) (Guan et al., 2013), and (4)
simple representations of forcing errors (e.g., Kavetski et al., 2006a, b). The last is ev-
ident in studies that only consider single types of forcing errors (e.g., bias) and single
distributions (e.g., uniform), and examines errors separately (Burles and Boon, 2011;
Koivusalo and Heikinheimo, 1999; Raleigh and Lundquist, 2012; Xia et al., 2005). Ex-15

amining uncertainty in one factor at a time remains popular but fails to explore the
uncertainty space adequately, ignoring potential interactions between forcing errors
(Saltelli and Annoni, 2010; Saltelli, 1999). Global sensitivity analysis explores the un-
certainty space more comprehensively by considering uncertainty in multiple factors at
the same time.20

The purpose of this paper is to assess how specific forcing error characteristics influ-
ence outputs of a physically based snow model. To our knowledge, no previous study
has investigated this topic in snow-affected regions. It is unclear how (1) different error
types (bias vs. random errors), (2) different error distributions, and (3) different error
magnitudes across all forcings affect model output. The motivating research question25

is “how do assumptions regarding forcing error characteristics impact our understand-
ing of uncertainty in physically based model output?” Using the (Sobol, 1990) global
sensitivity analysis framework, we investigate how artificial errors introduced into high-
quality observed forcings (temperature, precipitation, wind speed, humidity, shortwave
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radiation, and longwave radiation) at four sites in contrasting snow climates propagate
to four snow model outputs (peak snow water equivalent, ablation rates, snow disap-
pearance timing, and sublimation) that are important to cold regions hydrology. We
select a single model structure and set of parameters to clarify the impact of forcing
uncertainty on model outputs. Specifically, we use the physically based Utah Energy5

Balance (UEB) snow model (Mahat and Tarboton, 2012; Tarboton and Luce, 1996) be-
cause it is computationally efficient. The presented framework could be extended to
other models.

2 Study sites and data

We selected four seasonally snow covered study sites (Table 1) in distinct snow cli-10

mates (Sturm et al., 1995; Trujillo and Molotch, 2014). The sites included (1) the tundra
Imnavait Creek (IC, 930 m) site (Euskirchen et al., 2012; Kane et al., 1991; Sturm and
Wagner, 2010), located north of the Brooks Range in Alaska, USA, (2) the maritime
Col de Porte (CDP, 1330 m) site (Morin et al., 2012) in the Chartreuse Range in the
Rhône-Alpes of France, (3) the intermountain Reynolds Mountain East (RME, 2060 m)15

sheltered site (Reba et al., 2011) in the Owyhee Range in Idaho, USA, and (4) the
continental Swamp Angel Study Plot (SASP, 3370 m) site (Landry et al., 2014) in the
San Juan Mountains of Colorado, USA.

The sites had high-quality observations of the model forcings at hourly time steps.
Serially complete published datasets are available at CDP, RME, and SASP (see cita-20

tions above). At IC, data were available from multiple co-located stations (Griffin et al.,
2010; Bret-Harte et al., 2010a, b, 2011a, b, c; Sturm and Wagner, 2010); these data
were quality controlled, and gaps in the data were filled as described in Raleigh (2013).
We considered only one year for analysis at each site (Table 1) due to the high compu-
tational costs of the modeling experiment. Measured evaluation data (e.g., snow water25

equivalent, SWE) at daily resolution were used for qualitative assessment of model
output. SWE was observed at snow pillows at IC, CDP, and RME. At SASP, acoustic
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snow depth data were converted to daily SWE using density from nearby sites and
local snow pit measurements (Raleigh, 2013).

We adjusted the available precipitation data at each site with a multiplicative fac-
tor to ensure the base model simulation with all observed forcings reasonably rep-
resented observed SWE before conducting the sensitivity analysis. Schmucki et al.5

(2014) demonstrated that precipitation adjustments are necessary for realistic SWE
simulations even at well-instrumented sites. Precipitation adjustments were most nec-
essary at IC, where windy conditions preclude effective measurements (Yang et al.,
2000). In contrast, only modest adjustments were necessary at the other three sites
because they were located in sheltered clearings and because the data already had10

some corrections applied in the published data. Precipitation data were increased by
60 % at IC and 15 % at SASP, and decreased by 10 % at CDP and RME. The initial dis-
crepancies between modeled and observed SWE may have resulted from deficiencies
in the measured forcings, model parameters, model structure, and measured verifi-
cation data. It was beyond the scope of this study to optimize model parameters and15

unravel the relative contributions of uncertainty for factors other than the meteorological
forcings.

3 Methods

3.1 Model and output metrics

The Utah Energy Balance (UEB) is a physically based, one-dimensional snow model20

(Mahat and Tarboton, 2012; Tarboton and Luce, 1996; You et al., 2013). UEB repre-
sents processes such as snow accumulation, snowmelt, albedo decay, surface tem-
perature variation, liquid water retention, and sublimation. UEB has a single bulk snow
layer and an infinitesimally thin surface layer for energy balance computations at the
snow-atmosphere interface. UEB tracks state variables for snowpack energy content,25

SWE, and a dimensionless snow surface age (for albedo computations). We ran UEB at
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hourly time steps with six forcings: air temperature (Tair), precipitation (P ), wind speed
(U), relative humidity (RH), incoming shortwave radiation (Qsi), and incoming longwave
radiation (Qli). We used fixed parameters across all scenarios (Table 2). We initialized
UEB during the snow-free period; thus, model spin-up was unnecessary.

With each UEB simulation, we calculated four summary output metrics: (1) peak5

(i.e., maximum) SWE, (2) mean ablation rate, (3) snow disappearance date, and (4)
total annual snow sublimation/frost. The first three metrics are important for the tim-
ing and magnitude of water availability and identification of snowpack regime (Trujillo
and Molotch, 2014), while the fourth impacts the partitioning of annual P into runoff
and evapotranspiration. We calculated the snow disappearance date as the first date10

when 90 % of peak SWE had ablated, similar to other studies that use a minimum SWE
threshold for defining snow disappearance (e.g., Schmucki et al., 2014). The mean ab-
lation rate was calculated in the period between peak SWE and snow disappearance,
and was taken as the absolute value of the mean of all SWE decreases.

3.2 Forcing error scenarios15

To test how error characteristics in forcings affect model outputs, we created four sce-
narios (Fig. 1 and Table 3) with different assumptions regarding error types, distribu-
tions, and magnitudes (i.e., error ranges). In the first scenario, only bias (normally or
lognormally distributed) was introduced into all forcings at a level of high uncertainty
(based on values observed in the field, see Sect. 3.2.3 below). This scenario was20

named “NB,” where N denotes normal (or lognormal) error distributions and B denotes
bias only. The remaining three scenarios were identical to NB except one aspect was
changed: scenario NB+RE considered both bias and random errors (RE), scenario UB
considered uniformly distributed biases, and scenario NB_lab considered error magni-
tudes at minimal values (i.e., specified instrument accuracy as found in a laboratory).25

Constructed in this way (Fig. 1), we could test model sensitivity to (1) bias vs. random
errors by comparing NB and NB+RE, (2) error distributions by comparing NB and UB,
and (3) error magnitudes by comparing NB and NB_lab.

13751

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/13745/2014/hessd-11-13745-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/13745/2014/hessd-11-13745-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 13745–13795, 2014

Physical model
sensitivity to forcing
error characteristics

M. S. Raleigh et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

3.2.1 Error types

Forcing data inevitably have some (unknown) combination of bias and random errors.
However, hydrologic sensitivity analyses have tended to focus more on bias with little or
no attention to random errors (Raleigh and Lundquist, 2012), and rarely any consider-
ation of interactions between error types. Lapo et al. (2014) tested biases and random5

errors in Qsi and Qli forcings, finding that biases generally introduced more variance in
modeled SWE than random errors. Their experiment considered biases and random
errors separately (i.e., no error interactions allowed), and examined only a subset of
the required forcings (i.e., radiation). Here, we examined co-existing biases in all forc-
ings in NB, UB, and NB_Lab, and co-existing biases and random errors in all forcings10

in NB+RE.
Table 3 shows the assignment of error types for the four scenarios. We relied on

studies that assess errors in measurements or estimated forcings to identify typical
characteristics of biases and random errors. Published bias values were more straight-
forward to interpret than random errors because common metrics, such as root mean15

squared error (RMSE) and mean absolute error (MAE), encapsulate both systematic
and random errors. Hence, when defining random errors, published RMSE and MAE
served as qualitative guidelines.

3.2.2 Error distributions

Error distributions (Table 3) were the same across scenarios NB, NB+RE, and NB_lab.20

The UB scenario adopted a naive hypothesis that the probability distribution of biases
was uniform, a common assumption in sensitivity analyses. However, a uniform dis-
tribution implies that extreme and small biases are equally probable. It is likely that
error distributions more closely resemble non-uniform distributions (e.g., normal distri-
butions) in reality.25

Unfortunately, error distributions are reported less frequently than error statistics
(e.g., bias, RMSE) in the literature. Tair and RH errors likely follow normal distributions
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(Mardikis et al., 2005; Phillips and Marks, 1996), as do Qsi and Qli errors (T. Bohn,
personal communication, 2014). Conflicting reports over the distribution of U indicated
that errors may be approximated with a normal (Phillips and Marks, 1996), a lognormal
(Mardikis et al., 2005), or a Weibull distribution (Jiménez et al., 2011). For simplicity,
we assumed that U errors were normally distributed. Finally, we assumed P errors fol-5

lowed a lognormal distribution to account for snow redistribution due to wind drift/scour
(Liston, 2004). Error distributions were truncated in cases when the introduced errors
violated physical limits (e.g., negative U ; see Sect. 3.3.5).

3.2.3 Error magnitudes

We considered two magnitudes of forcing uncertainty: levels of uncertainty found in the10

(1) field vs. (2) a controlled laboratory setting (Table 3). Field and laboratory cases were
considered because they sampled realistic errors and minimum errors, respectively.
We expected that the error ranges exerted a major control on model uncertainty and
sensitivity.

NB, NB+RE, and UB considered field uncertainties. Field uncertainties depend on15

the source of forcing data and on local conditions (e.g., Flerchinger et al., 2009). To
generalize the analysis, we chose error ranges that enveloped the reported uncertainty
of different methods for acquiring forcing data. Tair error ranges spanned errors in mea-
surements (Huwald et al., 2009) and commonly used models, such as lapse rates and
statistical methods, (Bolstad et al., 1998; Chuanyan et al., 2005; Fridley, 2009; Hase-20

nauer et al., 2003; Phillips and Marks, 1996). P error ranges spanned undercatch (e.g.,
Rasmussen et al., 2012) and drift/scour errors. Because UEB lacks dynamic wind re-
distribution, accumulation uncertainty was not linked to U but instead to P errors (e.g.,
drift factor, Luce et al., 1998). Results were thus most relevant to areas with prominent
snow redistribution (e.g., alpine zone). U error ranges spanned errors in topographic25

drift models (Liston and Elder, 2006; Winstral et al., 2009) and numerical weather pre-
diction (NWP) models (Cheng and Georgakakos, 2011). RH error ranges spanned er-
rors in observations (Déry and Stieglitz, 2002) and empirical methods (e.g., Bohn et al.,
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2013; Feld et al., 2013). Qsi error ranges spanned errors in empirical methods (Bohn
et al., 2013), radiative transfer models (Jing and Cess, 1998), satellite-derived prod-
ucts (Jepsen et al., 2012), and NWP models (Niemelä et al., 2001b). Qli error ranges
spanned errors in empirical methods (Bohn et al., 2013; Flerchinger et al., 2009; Her-
rero and Polo, 2012) and NWP models (Niemelä et al., 2001a).5

In contrast, scenario NB_lab assumed laboratory levels of uncertainty for each forc-
ing. These uncertainty levels vary with the type and quality of sensors, as well as re-
lated accessories (e.g., wind shield for a P gauge), which we did not explicitly consider.
We assumed that the manufacturers’ specified accuracy of meteorological sensors at
a typical SNOw TELemetry (SNOTEL) (Serreze et al., 1999) site in the western USA10

were representative of minimum uncertainties in forcings because of the widespread
use of SNOTEL data in snow studies. While we used the specified accuracy for P
measurements in NB_lab, we note that the instrument uncertainty of ±3 % was likely
unrepresentative of errors likely to be encountered. For example, corrections applied
to the P data (see Sect. 2) exceeded this uncertainty by factors of 3 to 20.15

3.3 Sensitivity analysis

Numerous approaches that explore uncertainty in numerical models have been de-
veloped in the literature of statistics (Christopher Frey and Patil, 2002), environmental
modeling (Matott et al., 2009), and hydrology model optimization/calibration (Beven
and Binley, 1992; Duan et al., 1992; Kavetski et al., 2002, 2006a, b; Kuczera et al.,20

2010; Vrugt et al., 2008a, b). Among these, global sensitivity analysis is an elegant
platform for testing the impact of input uncertainty on model outputs and for ranking
the relative importance of inputs while considering co-existing sources of uncertainty.
Global methods are ideal for non-linear models (e.g., snow models). The Sobol (1990)
(hereafter Sobol’) method is a robust global method based on the decomposition of25

variance (see below). We investigate Sobol’, as it is often the baseline for testing sen-
sitivity analysis methods (Herman et al., 2013; Li et al., 2013; Rakovec et al., 2014;
Tang et al., 2007).
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3.3.1 Overview

One can visualize any hydrology or snow model as:

Y =M(F,θ) (1)

where Y is a matrix of model outputs (e.g., SWE),M( ) is the model operator, F is a ma-
trix of forcings (e.g., Tair, P , U , etc.), and θ is an array of model parameters (e.g., snow5

surface roughness). The goal of sensitivity analysis is to quantify how variance (i.e.,
uncertainty) in specific input factors (F and θ) influences variance in specific outputs
(Y). Sensitivity analyses tend to focus more on the model parameter array (θ) than
on the forcing matrix (Foglia et al., 2009; Herman et al., 2013; Li et al., 2013; Nossent
et al., 2011; Rakovec et al., 2014; Rosero et al., 2010; Rosolem et al., 2012; Tang et al.,10

2007; van Werkhoven et al., 2008). Here, we extend the sensitivity analysis framework
to forcing uncertainty by creating k new parameters (θ1,θ2, . . .θk) that specify forcing
uncertainty characteristics (Vrugt et al., 2008b). By fixing the original model parameters
(Table 2), we focus solely on the influence of forcing errors on model output (Y). Note it
is possible to consider uncertainty in both forcings and parameters in this framework.15

3.3.2 Sobol’ sensitivity analysis

Sobol’ sensitivity analysis uses variance decomposition to attribute output variance to
input variance. First-order and higher-order sensitivities can be resolved; here, only the
total-order sensitivity is examined (see below). The Sobol’ method is advantageous in
that it is model independent, can handle non-linear systems, and is among the most20

robust sensitivity methods (Saltelli and Annoni, 2010; Saltelli, 1999). The primary limi-
tation of Sobol is that it is computationally intensive, requiring a large number of sam-
ples to account for variance across the full parameter space. Below, we describe the
methodology but note Saltelli and Annoni (2010) provide an excellent overview for de-
signing a Sobol’ sensitivity analysis.25
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3.3.3 Sensitivity indices and sampling

Within the Sobol’ global sensitivity analysis framework, the total-order sensitivity in-
dex (STi ) describes the variance in model outputs (Y) due to a specific parameter (θi ),
including both unique (i.e., first-order) effects and all interactions with all other param-
eters:5

STi =
E [V (Y|θ∼i )]

V (Y)
= 1−

V [E (Y|θ∼i )]
V (Y)

(2)

where E is the expectation (i.e., average) operator, V is the variance operator, and θ∼i
signifies all parameters except θi . The latter expression defines STi as the variance
remaining in Y after accounting for variance due to all other parameters (θ∼i ). STi
values have a range of [0, 1]. Interpretation of STi values was straightforward because10

they explicitly quantified the variance introduced to model output by each parameter
(i.e., forcing errors). As an example, an STi value of 0.7 for bias parameter θi on output
Yj indicates 70 % of the output variance was due bias in forcing i (including unique
effects and interactions).

Selecting points in the k-dimensional space for calculating STi was achieved us-15

ing the quasi-random Sobol’ sequence (Saltelli and Annoni, 2010). The sequence has
a uniform distribution in the range [0, 1]. Figure 2a shows an example Sobol’ sequence
in two dimensions.

Evaluation of Eq. (2) requires two sampling matrices, which we built with the Sobol’
sequence and refer to as matrices A and B (Fig. 2a). To construct A and B, we first20

specified the number of samples (N) in the parameter space and the number of pa-
rameters (k), depending on the error scenario (Table 3). For each scenario and site,
we generated a (N×2k) Sobol’ sequence matrix with quasi-random numbers in the [0,
1] range, and then divided it in two parts such that matrices A and B were each distinct
(N x k) matrices. Calculation of STi required perturbing parameters; therefore, a third25

Sobol’ matrix (AB) was constructed from A and B. In matrix AB, all columns were from
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A, except the i th column, which was from the i th column of B, resulting in a (kN x k)
matrix (Fig. 2a). Section 3.3.5 provides specific examples of this implementation.

A number of numerical methods are available for evaluating sensitivity indices
(Saltelli and Annoni, 2010). From Eq. (2), we compute STi as (Jansen, 1999; Saltelli
and Annoni, 2010):5

STi =

1
2N

∑N
j=1

[
f (A)j − f

(
AB

(i )
)
j

]2

V (Y)
(3)

where f (A) is the model output evaluated on the A matrix, f (AB
(i )) is the model output

evaluated on the AB matrix where the i th column is from the B matrix, and i designates
the parameter of interest. Evaluation of STi required N(k +2) simulations at each site
and scenario.10

3.3.4 Bootstrapping of sensitivity indices

To test the reliability of STi , we used bootstrapping with replacement across the N(k +
2) outputs, similar to Nossent et al. (2011). The mean and 95 % confidence interval
were calculated using the Archer et al. (1997) percentile method and 10 000 samples.
For all cases, final STi values were generally close to the mean bootstrapped values,15

suggesting convergence. Thus, we report only the mean and 95 % confidence intervals
of the bootstrapped STi values.

3.3.5 Workflow and error introduction

Figure 2 shows the workflow for creating the Sobol’ A, B, and AB matrices, converting
Sobol’ values to errors, applying errors to the original forcing data, executing the model20

and saving outputs, and calculating STi values. The workflow was repeated at all sites
and scenarios. Each step is described in more detail below:
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Step 1) Generate an initial (N ×2k) Sobol’ matrix (with N and k values for each
scenario, Table 3), separate into A and B, and construct AB (Fig. 2a). NB+RE had
k = 12 (six bias and six random error parameters). All other scenarios had k = 6 (all
bias parameters).

Step 2) In each simulation, map the Sobol’ value of each forcing error parameter5

(θ) to the specified error distribution and range (Fig. 2b, Table 3). For example, θ =
0.75 would map to a Qsi bias of +50 Wm−2 for a uniform distribution in the range
[−100 Wm−2, +100 Wm−2].

Step 3) In each simulation, perturb (i.e., introduce artificial errors) the observed time
series of the i th forcing (Fi ) with bias (all scenarios), or both bias and random errors10

(NB+RE only) (Fig. 2c):

F ′i = FiθB,ibi + (Fi +θB,i )(1−bi )+θRE,iRci (4)

where F ′i is the perturbed forcing time series, θB,i is the bias parameter for forcing i , bi
is a binary switch indicating multiplicative bias (bi = 1) or additive bias (bi = 0), θRE,i
is the random error parameter for forcing i , R is a time series of randomly distributed15

noise (normal distribution, mean=0) scaled in the [−1, 1] range, and ci is a binary
switch indicating whether random errors are introduced (ci = 1 in scenario NB+RE
and ci = 0 in all other scenarios). For Tair, U , RH, Qsi, and Qli, bi = 0; for P , bi = 1. For
P , U , and Qsi, we restricted random errors to periods with positive values. We checked
F ′i for non-physical values (e.g., negative Qsi) and set these to physical limits. This was20

most common when perturbing U , RH, and Qsi; negative values of perturbed P only
occurred when random errors were considered (Eq. 4). Due to this resetting of non-
physical errors, the error distribution was truncated (i.e., it was not always possible to
impose extreme errors). Additional tests (not shown) suggested that distribution trun-
cation changed sensitivity indices minimally (i.e., < 5 %) and did not alter the relative25

ranking of forcing errors.
Step 4) Input the N(k +2) perturbed forcing datasets into UEB (Fig. 2d). At each

site, NB+RE required 140 000 simulations, whereas the other scenarios each required
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80 000 simulations, for a total of 1 520 000 simulations in the analysis. The doubling
of k in NB+RE did not result in twice as many simulations because the number of
simulations scaled as N(k +2).

Step 5) Save the model outputs for each simulation (Fig. 2e).
Step 6) Calculate STi for each forcing error parameter and model output (Fig. 2f)5

based on Sects. 3.3.3–3.3.4. Prior to calculating STi , we screened the model outputs
for cases where UEB simulated too little or too much snow (which can occur with per-
turbed forcings). For a valid simulation, we required a minimum peak SWE of 50 mm,
a minimum continuous snow duration of 15 d, and identifiable snow disappearance. We
rejected samples that did not meet these criteria to avoid meaningless or undefined10

metrics (e.g., peak SWE in ephemeral snow or snow disappearance for a simulation
that did not melt out). The number of rejected samples varied with site and scenario
(Table 4). On average, 92 % passed the requirements. All cases had at least 86 %
satisfactory samples, except in UB at SASP, where only 34 % met the requirements.
Despite this attrition, STi values still converged in all cases.15

4 Results

4.1 Uncertainty propagation to model outputs

Figure 3 shows density plots of daily SWE from UEB at the four sites and four forcing
error scenarios (Fig. 1, Table 3), while Fig. 4 summarizes the model outputs. As a re-
minder, NB assumed normal (or lognormal) biases at field level uncertainty. The other20

scenarios were the same as NB, except NB+RE considered both biases and random
errors, UB considered uniform distributions, and NB_lab considered lower error mag-
nitudes (i.e., laboratory level uncertainty).

Large uncertainties in SWE were evident, particularly in NB, NB+RE, and UB
(Fig. 3a–l). The large range in modeled SWE within these three scenarios often trans-25

lated to large ranges in mean ablation rates (Fig. 4e–h), snow disappearance dates
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(Fig. 4i–l) and total sublimation (Fig. 4m–p). In contrast, SWE and output uncertainty
in NB_lab was comparatively small (Figs. 3m–p and 4). The envelope of SWE simula-
tions in NB_lab generally encompassed observed SWE at all sites, except during early
winter at IC (Fig. 3m), which was possibly due to initial P data quality and redistribu-
tion of snow to the snow pillow site. NB_lab simulations were expected to encompass5

observed SWE due to the adjustments made to the original P data (see Sect. 2).
NB and NB+RE generally yielded similar SWE density plots (Fig. 3a–h), but

NB+RE yielded a higher frequency of extreme SWE simulations. NB and NB+RE
also had very similar (but not equivalent) mean outputs values and ensemble spreads
at all sites except IC (Fig. 4). This initial observation suggested that forcing biases con-10

tributed more to model uncertainty than random errors at CDP, RME, and SASP. IC
may have had higher sensitivity to random errors due to the low snow accumulation at
that site and brief snowmelt season (less than 10 d).

NB and UB yielded generally very different model outputs (Figs. 3 and 4). The only
difference in these two scenarios was the assumption regarding error distribution (Ta-15

ble 3). Uniformly distributed forcing biases (scenario UB) yielded a more uniform en-
semble of SWE simulations (Fig. 3i–l), larger mean values of peak SWE and ablation
rates, and later snow disappearance, as well as larger uncertainty ranges in all out-
puts. At some sites, UB also had a higher frequency of simulations where seasonal
sublimation was negative.20

Relative to NB, NB_lab had smaller uncertainty ranges in all model outputs (Figs. 3
and 4), an expected result given the lower magnitudes in forcing errors in NB_lab (Ta-
ble 3). Likewise, NB_lab SWE simulations were generally less biased than NB, relative
to observations (Fig. 3). NB_lab generally had higher mean peak SWE and ablation
rates, and later mean snow disappearance timing than NB (Fig. 4).25
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4.2 Model sensitivity to forcing error characteristics

Total-order (STi ) sensitivity indices from the Sobol’ sensitivity analysis are shown in
Figs. 5–8 for the four scenarios. In these figures, “B” signifies bias and “RE” signifies
random errors. Results from each scenario are described below.

Scenario NB showed that UEB peak SWE was most sensitive to P bias at all sites,5

with STi values ranging from 0.90 to 1.00 (Fig. 5a–d). P bias was also the most im-
portant factor for ablation rates and snow disappearance at all sites in scenario NB
(Fig. 5e–l). After P bias, Tair bias was the next most important factor at CDP while
biases in Qsi and Qli were secondarily important at RME (Fig. 5f and g). In NB, subli-
mation was most sensitive to RH bias at IC, CDP, and RME, while at SASP sublimation10

was most sensitive to U bias (Fig. 5m–p). Qsi and Qli biases were secondarily important
to sublimation at IC and CDP, while Tair bias had secondary importance at RME and
SASP.

At all sites in NB+RE, peak SWE was most sensitive to P bias, with STi ranging from
0.95 to 1.00 (Fig. 6a–d). At CDP, RME, and SASP in NB+RE, ablation rates and snow15

disappearance were also most sensitive to P bias, with STi ranging from 0.94 to 1.00
(ablation rates) and 0.74 to 0.93 (snow disappearance). At IC, no single error emerged
as a dominant control on ablation rates, while snow disappearance was most sensitive
to Qli bias (STi = 0.75). Sublimation in NB+RE was most sensitive to different errors at
each site, where the dominant factors were RH bias at IC, Qli bias at CDP, Tair bias at20

RME, and U bias at SASP (Fig. 6m–p).
At all sites in UB, P bias was most important for peak SWE, ablation rates, and

snow disappearance (Fig. 7a–l). The only exception was at IC, where ablation rates
had similar sensitivity to P bias and U bias. Sublimation was most sensitive to RH bias
at IC, CDP, and RME, and U bias as SASP (Fig. 7m–p). For sublimation in UB, Qli bias25

was secondarily important at CDP, and U bias was secondarily important at IC and
RME.
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Relative to the other scenarios, NB_lab portrayed different model sensitivities to forc-
ing errors (Fig. 8). Across all sites and outputs, Qli bias was consistently the most im-
portant factor. This was surprising, given that the bias magnitudes were lower for Qli
than for Qsi (Table 3). Whereas P bias was often important for peak SWE, ablation
rates, and snow disappearance in the other scenarios, P bias was seldom important5

in NB_lab (main exception was peak SWE at IC, Fig. 8a). This was due to the discrep-
ancy between the specified accuracy for P gauges and typical errors encountered in
the field (Rasmussen et al., 2012; Sieck et al., 2007).

4.3 Impact of error types

Figure 9 compares the mean STi values (above) from NB and NB+RE to test how10

forcing error type affects model sensitivity. In this test, only the six bias parameters
from NB+RE were compared, as these were found in both scenarios. Across sites and
model outputs, STi values were higher in NB+RE than NB. This suggested that random
errors interact with bias, thereby increasing model sensitivity to bias. However, while
the STi values differed between these two scenarios, the overall importance ranking of15

forcing biases was generally not altered, and NB offered the same general conclusions
regarding the relative impacts of biases in the forcings.

4.4 Impact of error distributions

Figure 10 compares mean STi values from NB and UB to test how the distribution
of bias influences model outputs. STi values from the two scenarios generally plotted20

close to the 1:1 line, suggesting good correspondence in the sensitivity of UEB under
different bias distributions. In other words, the error distribution had little impact on
model sensitivity to forcing errors. With a few exceptions where sensitivities of less
important terms were clustered (e.g., Fig. 10e), the hierarchy of forcing biases was
similar between these two scenarios.25
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4.5 Impact of error magnitude

Figure 11 compares mean STi values from NB and NB_lab to test the importance of
forcing error magnitudes to model output. The results showed that the total sensitiv-
ity of model outputs to forcing biases depended substantially on the levels of forcing
uncertainty considered. As a primary example, the scenarios did not agree whether P5

bias or Qli bias was the most important factor for peak SWE, ablation rates, and snow
disappearance dates at all four sites (Fig. 11a–l). At IC and SASP, peak SWE sensi-
tivity to the secondary forcings (i.e., forcings most important after the most important
factor) was greater in NB_lab than NB. In contrast, sublimation was more sensitive to
the secondary forcings in NB than NB_lab.10

5 Discussion

Here we have examined the sensitivity of physically based snow simulations to forcing
error characteristics (i.e., types, distributions, and magnitudes) using Sobol’ global sen-
sitivity analysis. Among these characteristics, the magnitude of biases had the most
significant impact on UEB simulations (Figs. 3–4) and on model sensitivity (Fig. 11).15

Random errors were important in that they introduced more interactions in the uncer-
tainty space, as evident in the higher STi values in scenario NB+RE vs. NB (Fig. 9),
but they were rarely among the most important factors for the model outputs at the
sites (Fig. 6). The assumed distribution of biases was important in that it increased the
range of model outputs (compare NB and UB in Fig. 4), but this did not often translate20

to different model sensitivity to forcing errors (Fig. 10).
Our central argument at the onset was that forcing uncertainty may be comparable

to parametric and structural uncertainty in snow-affected catchments. To support our
argument, we compare our results at CDP in 2005–2006 to Essery et al. (2013), who
assessed the impact of structural uncertainty on SWE simulations from 1701 physically25

based snow models at the same site/year. Comparing our SWE ensemble (Fig. 3b, f,
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j, n) to the corresponding ensemble in Fig. 10 of Essery et al. (2013), it is clear that
the forcing uncertainty considered in most scenarios here overwhelms the structural
uncertainty at this site. Whereas the 1701 models in Essery et al. (2013) generally have
peak SWE between 325–450 mm, the 95 % interval due to forcing uncertainty spans
100–565 mm in NB, 110–580 mm in NB+RE, 125–1880 mm in UB, and 370–430 mm5

in NB_lab (Fig. 4b). Spread in snow disappearance due to structural uncertainty spans
mid-April to early-May in Essery et al. (2013), but the range of snow disappearance
due to forcing uncertainty spans late-March to early-May in NB and NB+RE, late-
March to early July in UB, and mid-April to early-May in NB_lab (Fig. 4j). Structural
uncertainty is less impactful on model outputs at this site than the forcing uncertainty10

of NB, NB+RE, and UB, and is only marginally more impactful than the minimal forcing
uncertainty tested in NB_lab. Thus, forcing uncertainty cannot always be discounted,
and the magnitude of forcing uncertainty is a critical factor in how forcing uncertainty
compares to parametric and structural uncertainty.

It could be argued that forcing uncertainty only appears greater than structural un-15

certainty in the CDP example because of the large P error magnitudes (Table 3), which
are representative of barren areas with drifting snow (e.g., alpine areas, cold prairies)
but perhaps not representative of sheltered areas (e.g., forest clearings). To check this,
we conducted a separate test (no figures shown) replicating scenario NB with smaller
P biases ranging from −10 to +10 %. This P uncertainty range was selected because20

Meyer et al. (2012) found 95 % of SNOTEL sites (often in forest clearings) had ob-
servations of accumulated P within 20 % of peak SWE. This test resulted in a 95 %
peak SWE interval of 228–426 mm and a 95 % snow disappearance interval spanning
early-April to early-May. These ranges were still larger than the ranges due to struc-
tural uncertainty (Essery et al., 2013), further demonstrating the importance of forcing25

uncertainty in snow-affected areas.
One resounding result in the field uncertainty scenarios was the dominant effect of P

bias on modeled peak SWE, ablation rates, and snow disappearance. This confirmed
previous reports that P uncertainty is a dominant control on snowpack dynamics (Du-
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rand and Margulis, 2008; He et al., 2011a; Schmucki et al., 2014). However, we note
wind uncertainty in snow-affected areas can also be important to snowpack dynamics
through drift/scour processes (Mott and Lehning, 2010; Winstral et al., 2013), and our
“drift factor” formulation (Luce et al., 1998) did not account for the role of wind in P un-
certainty. Thus, U is likely more important than the results suggest. Future work could5

account for this by assigning P errors that are correlated with U .
It was surprising that P bias was often the most critical forcing error for ablation rates

(Figs. 5–7). This is contrary to other studies that have suggested the most important
factors for snowmelt are radiation, wind, humidity, and temperature (e.g., Zuzel and
Cox, 1975). Ablation rates were highly sensitive to P bias because it controlled the10

timing and length of the ablation season. Positive (negative) P bias extends (truncates)
the fraction of the ablation season in the warmest summer months when ablation rates
and radiative energy approach maximum values. Trujillo and Molotch (2014) reported
a similar result based on SNOTEL observations.

While peak SWE, ablation rates, and snow disappearance dates had similar sensitiv-15

ities to forcing errors (particularly to P biases), sublimation exhibited notably different
sensitivity to forcing errors. P bias was frequently the least important factor for sub-
limation, in contrast to the other model outputs. In only a few cases (e.g., all sites in
NB+RE), P errors explained more than 5 % of uncertainty in modeled sublimation, and
these cases were likely tied to the control of P on snowpack duration (when sublimation20

is possible). Biases in RH, U , and Tair were often the major controls on modeled sub-
limation in the field uncertainty scenarios (i.e., NB, NB+RE, and UB), while Qli bias
controlled modeled sublimation in the lab uncertainty scenario (i.e., NB_lab). These
results partially agree with the sensitivity analysis of Lapp et al. (2005), who showed
the most important forcings for sublimation in the Canadian Rockies were U and Qsi.25

These results suggest that no single forcing is important across all modeled variables,
and model sensitivity strongly depends on the output of interest.

The question remains: “what can be done about forcing errors in hydrologic model-
ing?” First, the results suggest model-based hypothesis testing must account for un-
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certainties in forcing data. The results also identify the need for continued research in
constraining P uncertainty in snow-affected catchments. This may be achieved using
advanced pathways for quantifying snowfall precipitation, such as NWP models (Ras-
mussen et al., 2011, 2014). However, in a broader sense, the hydrologic community
should consider whether deterministic forcings (i.e., single time series for each forcing)5

are a reasonable practice for physically based models, given the large uncertainties
in both future (e.g., climate change) and historical data (especially in poorly moni-
tored catchments) and the complexities of hydrologic systems (Gupta et al., 2008). We
suggest that probabilistic model forcings (e.g., Clark and Slater, 2006) present one po-
tential path forward where measures of forcing uncertainty can be explicitly included in10

the forcing datasets. The challenges are (1) to ensure statistical reliability in our under-
standing of forcing errors and (2) to assess how best to input probabilistic forcings into
current model architectures.

Limitations of the analysis are (1) we do not consider parametric and structural un-
certainty and (2) we only consider a single model and sensitivity analysis method. We15

expect different snow models may yield different sensitivities to forcing uncertainty. For
example, both Koivusalo and Heikinheimo (1999) and Lapo et al. (2014) found UEB
(Tarboton and Luce, 1996) and the SNTHERM model (Jordan, 1991) exhibited signifi-
cant differences in radiative and turbulent heat exchange. In other models, we expect P
biases would still dominate peak SWE, ablation rates, and snow disappearance timing,20

but we might expect different sensitivities to other forcing errors. Likewise, it is possible
that different sensitivity analysis methods might yield different results than the Sobol’
method (Pappenberger et al., 2008).

Finally, while the Sobol’ method is often considered the “baseline” method in global
sensitivity analysis, we note that it comes at a relatively high computation cost25

(1 520 000 simulations for examining only a single year at four sites across four error
scenarios) and may be prohibitive for many modeling applications. Ongoing research
is developing new sensitivity analysis methods that compare well to Sobol’ but with
reduced computational demands (e.g., Rakovec et al., 2014). We expect that detailed
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sensitivity analyses that concurrently consider uncertainty in forcings, parameters, and
structure in a hydrologic model will be more feasible in the future with better computing
resources and advances in sensitivity analysis methods.

6 Conclusions

Application of the Sobol’ sensitivity analysis framework across sites in contrasting snow5

climates reveals that forcing uncertainty can significantly impact model behavior in
snow-affected catchments. Model output uncertainty due to forcings can be compa-
rable to or larger than model uncertainty due to model structure. Key considerations in
model sensitivity to forcing errors are the magnitudes of forcing errors and the outputs
of interest. For the sensitivity of the model tested, random errors in forcings are gener-10

ally less important than biases, and the distribution of biases is relatively less important
than the magnitude of biases.

The analysis shows how forcing uncertainty might be included in a formal sensitivity
analysis framework through the introduction of new parameters that specify the char-
acteristics of forcing uncertainty. The framework could be extended to other physically15

based models and sensitivity analysis methodologies, and could be used to quantify
how uncertainties in model forcings and parameters interact. In future work, it would be
interesting to assess the interplay between co-existing uncertainties in forcing errors,
model parameters, and model structure, and to test how model sensitivity changes
relative to all three sources of uncertainty.20
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Table 1. Basic characteristics of the snow study sites, ordered by increasing elevation.

Site Elevation Study Period
Site Name ID Location (m) (Water Year) Snow Climate Sensors

Imnavait IC N 68.62 930 2011 Tundra Tair: Vaisala HMP45C
Creek W 149.30 P : Campbell Scientific TE 525

Alaska, USA U : Met One 014A
RH: Vaisala HMP45C
Qsi: Kipp & Zonen CMA 6
Qli: n/a∗

Col de Porte CDP N 45.30 1330 2006 Mountain Tair: PT 100/4 wires
E 5.77 (maritime) P : PG2000, GEONOR
Rhône-Alpes, FR U : Chauvin Arnoux Tavid 87

RH: Vaisala HMP 45D
Qsi: Kipp & Zonen CM14
Qli: Eppley PIR

Reynolds RME N 43.07 2060 2007 Mountain Tair: Vaisala HMP 45
Mountain East W116.75 (intermountain) P : Belfort Universal Gages
(sheltered site) Idaho, USA U : Met One 013/023

RH: Vaisala HMP 45
Qsi: Eppley Precision Pyranometer
Qli: Eppley PIR

Swamp Angel SASP N 37.91 3370 2008 Mountain Tair: Vaisala CS500
Study Plot W 107.71 (continental) P : ETI Noah II

Colorado, USA U : RM Young Wind Monitor 05103-5
RH: Vaisala CS500
Qsi: Kipp & Zonen CM21
Qli: Kipp & Zonen CG-4

∗ At IC, Qli was taken as Qli =Qnet − (Qsi −Qso)+ (5.67×10−8) Tsurf
4, where Qnet is measured net radiation (Wm−2),

Qsi is measured incoming shortwave radiation (Wm−2), Qso is measured reflected shortwave radiation (Wm−2),
and Tsurf is measured snow surface temperature (K).
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Table 2. UEB model parameters used in all simulations and sites.

Description of parameter Units Value

Rain threshold temperature ◦C 3
Snow threshold temperature ◦C −1
Snow emissivity – 0.99
Bulk snow density kg m−3 300
Liquid water holding capacity fraction 0.05
Snow saturated hydraulic conductivity m hr−1 20
Visual new snow albedo – 0.85
Near infrared new snow albedo – 0.65
New snow threshold depth to reset albedo m 0.01
Snow surface roughness m 0.005
Forest canopy fraction fraction 0
Ground heat flux Wm−2 0
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Table 3. Details of error types, distributions, and uncertainty ranges for the four scenarios. Bold
face in the error type, distribution, and uncertainty range indicates defining characteristics,
relative to scenario NB.

Forcing Error Typea Distributionb Range Units Citations and Notes

Scenario NB (k=6, N=10 000)
Tair B Normal [−3.0,+3.0] ◦C Bolstad et al. (1998); Chuanyan et al. (2005)

Fridley (2009); Hasenauer et al. (2003)
P B Lognormal [−75,+300] % Goodison et al. (1998); Luce et al. (1998)

Rasmussen et al. (2012); Winstral and Marks (2002)
U B Normal [−3.0,+3.0] m s−1 Winstral et al. (2009)

RH B Normal [−25,+25] % Bohn et al. (2013); Déry and Stieglitz (2002)
Feld et al. (2013)

Qsi B Normal [−100,+100] Wm−2 Bohn et al. (2013); Jepsen et al. (2012)
Jing and Cess (1998); Niemelä et al. (2001b)

Qli B Normal [−25,+25] Wm−2 Bohn et al. (2013); Flerchinger et al. (2009)
Herrero and Polo (2012); Niemelä et al. (2001a)

Scenario NB+RE (k=12, N=10 000)
This scenario has six bias parameters (identical to NB above), plus the following six random error parameters

Tair RE Normal |[0.0,7.5]| ◦C Chuanyan et al. (2005); Fridley (2009)
Hasenauer et al. (2003); Huwald et al. (2009)
Phillips and Marks (1996)

P RE Lognormal |[0.0,25]| % Guan et al. (2005); Hasenauer et al. (2003)
Hutchinson et al. (2009)

U RE Normal |[0.0,5]| m s−1 Cheng and Georgakakos (2011); Liston and Elder
(2006); Luo et al. (2008); Winstral et al. (2009)

RH RE Normal |[0.0,15]| % Bohn et al. (2013); Liston and Elder (2006)
Phillips and Marks (1996)

Qsi RE Normal |[0.0,160]| Wm−2 Hasenauer et al. (2003); Jepsen et al. (2012)
Liston and Elder (2006); Thornton et al. (2000)

Qli RE Normal |[0.0,80]| Wm−2 Bohn et al. (2013); Flerchinger et al. (2009)
Liston and Elder (2006)

Scenario UB (k=6, N=10 000)
This scenario is identical to NB, except all probability distributions are uniform

Scenario NB_labc (k=6, N=10 000)
Tair B Normal [−0.30,+0.30] ◦C Vaisala HMP45 specified accuracy
P B Lognormal [−3.0,+3.0] d % RM Young 52202 specified accuracy
U B Normal [−0.30,+0.30] m s−1 RM Young 05103 specified accuracy
RH B Normal [−3.0,+3.0] % Vaisala HMP45 specified accuracy
Qsi B Normal [−25,+25] Wm−2 Li-Cor 200X specified accuracy of 5 %
Qli B Normal [−15,+15] Wm−2 Assumed 5 % of mean intersite values

a B=bias, RE= random errors. Biases are additive (bi = 0, Eq. 4) for all forcings except P , which has multiplicative bias (bi = 1).
b Probability distributions were truncated in instances when introduction of errors caused non-physical forcing values (see Sect. 3.3.5).
c Uncertainty ranges in this scenario are based primarily on manufacturer’s specified accuracy for typical sensors deployed at SNOTEL sites
(NRCS Staff, personal communication, 2013). We assume the P storage gauge has the same accuracy as a typical tipping bucket gauge.
d We neglect P undercatch errors in the lab uncertainty scenario.
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Table 4. Number of samples (model simulations) meeting the requirements for minimum peak
SWE and snow duration and valid snow disappearance dates at each site in each scenario.

IC CDP RME SASP

NB 9898 9792 8799 9984
(79 184) (78 336) (70 392) (79 872)

NB+RE 9943 9734 8648 9985
(139 202) (136 276) (121 072) (139 790)

UB 8608 8925 9102 3399
(68 864) (71 400) (72 816) (27 192)

NB_lab 10 000 10 000 10 000 10 000
(80 000) (80 000) (80 000) (80 000)
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Figure 1. Scenarios of interest and the type, distribution, and magnitude of errors considered
in each. NB considers normally (or lognormally) distributed biases with error magnitudes found
in the field. NB+RE is the same as NB but also considers random errors. UB is the same as
NB but considers uniformly distributed errors instead. NB_lab is the same as NB but considers
laboratory error magnitudes.
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Figure 2. Conceptual diagram showing methodology for imposing errors on the forcings with
error parameters (θ) within the Sobol’ sensitivity analysis framework, and workflow for model
execution and calculation of sensitivity indices on model outputs (Y ).
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Figure 3. Observed (black line) and modeled SWE (color density plot) at the four sites across
the four uncertainty scenarios (see Fig. 1 and Table 3). The number of model simulations in the
density plots varies with the site and scenario (see Table 4). The density plots were constructed
using 100 bins in the SWE dimension with relative frequency tabulated in each bin each day.
Note the frequency colorbar is on a logarithmic scale. Sites are arranged from top to bottom in
order of increasing elevation and decreasing latitude. Scenarios are defined as normally dis-
tributed bias (NB), normally distributed bias and random errors (NB+RE), uniformly distributed
bias (UB), and normally distributed bias at laboratory error magnitudes (NB_lab).
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Figure 4. Distributions of model outputs (rows) at the four study sites (columns) arranged by
scenario. For each scenario, the circle is the mean and the whiskers show the range encom-
passing 95 % of the simulations (see Table 4 for number of simulations for each site and sce-
nario). The dashed lines in (a–d) and (i–l) are the observed values. Axes are matched between
sites for a given model output; note that the range in scenario UB in (d) is truncated by the
axes limits (upper value= 3030 mm). Scenarios are defined as normally distributed bias (NB),
normally distributed bias and random errors (NB+RE), uniformly distributed bias (UB), and
normally distributed bias at laboratory error magnitudes (NB_lab).
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Figure 5. Total-order sensitivity indices (STi ) of four model response variables at the four sites
in the NB scenario. Shown are the mean (bootstrapped) sensitivity indices and associated 95 %
confidence intervals. The “B” after the forcing indicates bias.
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Figure 6. Same as Fig. 5, except in the NB+RE scenario. “B” indicates bias and “RE” indi-
cates random error in the forcing. The horizontal line separates the biases (above the line) and
random errors (below the line).
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Figure 7. Same as Fig. 5, except in the UB scenario.
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Figure 8. Same as Fig. 5, except in the NB_lab scenario.
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Figure 9. Test of model sensitivity as a function of forcing error type. Shown are the mean
STi values from scenario NB+RE (from Fig. 6) vs. scenario NB (from Fig. 5) for four model
outputs at the four sites. Only bias parameters are shown (NB+RE yields different sensitivity
due to interactions between bias and random errors). Forcing abbreviations are defined in the
text. Note the plots are on log-log scale. STi values less than 0.001 were set to 0.001 to display
on the log-log plot. NB+RE considers normally distributed bias and random errors, while NB
considers normally distributed bias only.
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Figure 10. Same as Fig. 9, but comparing STi values from scenarios UB (from Fig. 7) and NB
(from Fig. 5) to test model sensitivity as a function of error distribution. UB considers uniformly
distributed bias, while NB considers normally distributed bias.
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Figure 11. Same as Fig. 9, but comparing STi values from scenarios NB_lab (from Fig. 8) and
NB (from Fig. 5) to test model sensitivity as a function of error magnitudes. NB_lab consid-
ers normally distributed bias at error magnitudes found in the laboratory, while NB considers
normally distributed bias at error magnitudes found in the field.
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