
May 20, 2015 

 

Dr. Ross Woods 

Editor 

Hydrology and Earth System Sciences 

 

Dear Dr. Woods, 

 

We have revised our Hydrology and Earth System Sciences manuscript “Exploring the impact of 

forcing error characteristics on physically based snow simulations within a global sensitivity 

analysis framework” (hess-2014-461) and are resubmitting it at this time.  We believe that the 

thorough review has greatly benefited the manuscript and we hope that we have sufficiently 

addressed all concerns raised. 

 

In the pages below, we include our point-by-point response to each of the six reviewers and a 

marked-up version of the manuscript to show the relevant modifications.  We would like to draw 

your attention to the most substantial changes, which we summarize in the list below: 

 Added a fifth error scenario that considers gauge undercatch levels of precipitation 

uncertainty (called NB_gauge). 

 Corrected issue in NB+RE that occurred due to random errors with non-zero mean. 

 Replaced the scatterplots with bar charts, and consolidated figures (only 9 figures now). 

 Restructured and expanded both the results and discussions sections. 

 Added a new figure that shows sensitivity indices for daily SWE and helps to illustrate 

key differences between error scenarios (Figure 8). 

 Included a direct comparison to prior work on model structural uncertainty (Figure 9). 

 Included more discussion on climate dependencies and how this might be better 

addressed in future work. 

 Discussion and justification of the precipitation adjustments prior to the sensitivity 

analysis. 

 Provided more justification and description of methodological choices made in the 

experimental setup (e.g., error ranges, specification of error distributions, etc.). 

 

We appreciate your time and the reviewers’ time in the review process and look forward to 

hearing your decision.  Thank you for considering our manuscript for publication. 

 

Sincerely, 

 
Mark S. Raleigh, PhD 

Email: raleigh@ucar.edu 

Phone: +1 (303) 497-8381 

 

mailto:raleigh@ucar.edu


Response to Interactive comment by F. Pianosi (Referee) 

 

Note: reviewer comments are in italics and the authors’ responses and manuscript revisions are 

in normal face. 

 

Comment: This paper investigates how errors in meteorological observations affect the 

simulations of a physically based one-dimensional snow model (the Utah Energy Balance). 

Global sensitivity analysis (GSA) is used to quantify the relative contribution of different error 

characteristics (bias, magnitude, presence of random errors, error distribution) to the 

uncertainty in four snow variables (SWE, ablation rates, snow disappearance and sublimation). 

GSA results are presented for four study sites in distinct snow climate. 

 

Detailed studies focusing on forcing uncertainty are relatively few, and they are needed 

particularly in snow-affected watersheds where meteorological measurements are scarce and 

forcing uncertainty can significantly impact model simulation. This work provides useful insights 

on the topic and establish a methodology that could be extended to other physically based 

models or error types. 

 

I think the analysis here described is interesting and solid, the paper is clear and well structured, 

and its contribution is well placed in the literature. I have some concerns about the reliability 

and interpretation of some of the GSA results, and a number of specific comments that the 

authors may consider in revising their manuscript. I think the paper should be considered for 

publication on HESS after such revisions. 

 

Response: Thank you for your encouraging and careful review. 

 

 

Comment:  1) Some of the results in Figure 6 and 7 are a bit surprising and need clarification. 

For instance, in the cases of Fig. 5.a and 5.e, bias in P is the only influential parameter. 

However, when including random errors (Fig. 6.a and 6.e), all parameters become (almost 

equally) influential. In the text, this is explained as being due to interactions between 

parameters. I agree in principle but I think a more detailed analysis is needed. For instance, do 

bias parameters θB;i become influential through interactions with parameter θRE;i of the same 

meteorological variable? Or does this happen through interactions with θRE;i of different 

forcings (for instance, bias θB;i of Tair interacting with random error magnitude θRE;i of P)? I 

guess the physical interpretation of the result and its implications would be very different in the 

two cases. For instance, if the interactions occur within the same forcing error equation, it 

would mean that the bias in the observations is not influential per se, but it becomes influential if 

there are also random errors. Does this make sense from the physical point of view? Or is it a 

result of some inadequacy in the error structure of Eq. (4)?  

 

Response:  Thank you for making this excellent comment.  After double-checking our code, it 

appears that there are some inadequacies in our implementation of the error structures (eq 4) in 

scenario NB+RE.  Specifically, we discovered that the random number generator (randn.m in 

Matlab) used to create the “noise” (i.e. random errors) did not always have a mean of 0 (though it 

was a value close to 0).  This is because it is a discrete array with samples drawn from a 



population of mean 0; hence the sample mean is not guaranteed to be 0.  Because of a non-zero 

mean in the noise, the “random error” term also introduced additional systematic errors that were 

not accounted for in the bias terms. 

 

While our results support the role of random errors in introducing error interactions (pg. 13763, 

line 16), our focus on the total sensitivity indices (for a more focused analysis) prevented us from 

exploring specific interactions in the original manuscript.  A more quantitative link would be 

interesting to pursue and would require examination of the second-order sensitivity indices to 

illuminate the relationship between biases in a specific forcing (e.g., Tair) and random errors in 

another (e.g., P).  Calculation of these second-order terms would require nearly double the 

number of simulations (compare n(2k+2) vs. n(k+2) in the current analysis) (Saltelli, 2002), and 

hence we have not pursued this extended analysis due to the additional computational expenses 

required. 

 

Manuscript Revisions: We have corrected this coding issue, reran NB+RE and have found that 

this minimized the problem you have found.  The figures and text have been updated to reflect 

these corrections.  We find two improvements with this fix: (1) there is now better discrimination 

between the bias and random error factors, and (2) the “nugget” effect (i.e., a minimum level of 

sensitivity across all factors) is substantially reduced across all scenarios, except for ablation 

rates at IC.  We think that there exists a physical explanation for this one exception, namely that 

the short ablation season at IC accentuates the sensitivity of ablation rates to a variety of error 

types. 

 

 

Comment:  Also, in all sites and for all outputs, the sensitivity indices of θRE;i are almost the 

same for all i. This is strange. Does it make sense that errors in all meteorological variables 

have the same importance, or is there a purely numerical explanation for this? 

 

Response:  This partially relates to the numerical implementation problem described in our 

previous response.  As we indicated above, we have fixed the issue with non-zero mean for the 

random error assignment and found improved discrimination between sensitivity indices.  In 

general, we think it is realistic to have similar sensitivity indices for random errors in different 

forcings because the nature of random errors is that they tend to cancel out (due to the 

requirement for bias=0).  Additionally, in the revised results for NB+RE, most sensitivity indices 

for RE are close to zero, and in this case it is reasonable for them to all have the same level of 

non-importance. 

 

Manuscript Revisions: See previous comment. 

 

 

Comment: 2) I am not sure that Figure 9, 10, 11 are the most effective way to compare GSA 

results. The main conclusion drawn in the text is that overall GSA results are similar across 

scenarios NB, NB+RE and UB. Scatter plot visually confirm this. However, they do not facilitate 

one-to-one comparison of sensitivity indices (bar plots with two coloured bars would be better), 

which in my opinion would provide more interesting information. For instance, comparing Fig. 

5.o with 7.o I can see a big increase in the influence of U bias when moving from scenario NB to 



UB; comparing Fig. 5.e with 7.e shows that in the NB scenario only P bias is important, while in 

the UB scenario the bias of other meteorological variables also matter. Can you explain these 

behaviours? Maybe an interpretation effort of these results might lead to learning important 

aspects of the model behaviour. 

 

Response:  We have considered your comment here and have produced new figures with dual 

color bars instead of scatterplots (see Fig. 5-7 in the revised manuscript).  We agree with you that 

this is a more effective way to show the data and thank you for the suggestion. 

 

The example you have highlighted (Fig 5e vs 7e, ablation rates at IC) is a bit of an outlier in 

terms of the sites and outputs considered.  Figure 6 (revised manuscript) illustrates that while the 

values of the total-order indices change somewhat between NB and UB, the relative importance 

of the forcing errors does not usually change.  The case you highlighted is the only one where 

there is a drastic shift in total-order indices between NB and UB.  Nevertheless, we hypothesize 

in section 4.1 that the ablation rates at IC is a different case because the melt season is so short 

relative to the other sites, and thus the site may be comparatively less stable in terms of what 

types of errors dominate the melt rates.  Additionally, under the UB scenario, the wind (U) bias 

is an important factor to ablation rates, and this might have a physical basis in that this site is the 

most exposed site and has the highest wind speeds.  In UB, the uniform distribution makes 

extreme wind biases more common, and these considerably reduce or enhance the sensible heat 

contribution toward the ablation rates at IC. 

 

 

Manuscript Revisions: All scatterplots have been changed to bar plots and text has been 

updated to reflect these new figures. 

 

 

Comment:  3) Motivation of the study (in both the abstract and the introduction). I would add 

some comments on how the authors think that GSA results (which error characteristic matter 

most) could be used in practice. What are the implications of these results? How would you 

expect to use this piece of information? I think one way to use GSA results is to spot unexpected 

behaviours and thus have directions for further investigation of simulation results. However, I 

feel that this is somehow missing in the paper (see also my previous comment). 

 

Response:  This is a reasonable observation and we thank you for making this suggestion.  We 

now elaborate how we expect knowledge of specific error characteristics might be beneficial to 

practical applications. 

 

Manuscript Revisions: We now state in the introduction, “In our view, it is important to clarify 

the relative impact of specific error characteristics on modeling applications, so as to prioritize 

future research directions, improve understanding of model sensitivity, and to address questions 

related to network design.  For example, given budget constraints, is it better to invest in a 

heating apparatus for a radiometer (to minimize bias due to frost formation on the radiometer 

dome) or in a higher quality radiometer (to minimize random errors associated with 

measurement precision)?  Additionally, it is important to contextualize different meteorological 



data errors, as these errors are usually studied independently of each other (Flerchinger et al., 

2009; Huwald et al., 2009), and it is unclear how they compare in terms of model sensitivity.” 

 

 

SPECIFIC COMMENTS 

Comment: page 13755: "The goal of sensitivity analysis is to quantify how variance in specific 

input factors (...) influences variance in specific outputs". This sentence is inaccurate. First, the 

use of output variance as a proxy of output uncertainty is a specific assumption of variance-

based SA (Sobol’) and it is not a general assumption of GSA. Many other GSA methods are 

available that do not rely on this assumption, either because they simply do not look at output 

distribution (e.g. the Morris method) or because they consider other properties of the output 

distribution (e.g. density-based methods, see for instance Peeters et al. 2014). Second, also 

within the variance-based approach, the output variance is related to generic variability of input 

factors (reproduced by random sampling or Sobol’ sampling) and not their variance only. 

 

Response:  Thank you for catching this inaccurate statement.  You are correct that this statement 

only applies to variance-based SA methods and excludes other SA methods.   

 

Manuscript Revisions: We have now modified the sentence (based on Matott et al., 2009) to be 

more broadly encompassing: “The goal of sensitivity analysis is to determine which input factors 

are most important to specific outputs.” 

 

 

Comment: One assumption of the Sobol’ method (at least in the implementation used in this 

work) is that input factors are uncorrelated. In this case, this means that: in the NB+NR 

scenario, bias and magnitude of random errors are independent; and in all scenarios, bias (and 

random errors) of different meteorological observations are independent. Are these reasonable 

assumptions? 

 

Response:  For the error types, we argue that these are reasonable assumptions because by 

definition, bias and random errors are independent.  Random errors introduce noise/variance 

without changing the mean value (i.e., the bias), whereas bias describes the systematic errors.  As 

we note in section 3.2.1, there are no widely used metrics to report random errors separately 

from bias, as root mean square error and mean absolute error encapsulate both systematic and 

random errors.  Hence, the random errors specified in our study are hypothetical in nature, and 

do not exactly conform to these widely used metrics. 

 

For the same type of error but for different variables, it is possible that there will be error-

linkages in real-world conditions.  As one example with measured forcings in a sunny 

environment, an air temperature sensor (no mechanical ventilation) may be subject to a positive 

bias, which then can induce a negative bias in the RH data.  As an example with estimated 

forcings, a positive bias in the maximum daily air temperature will bias the diurnal temperature 

range, which in turn would bias estimates of atmospheric transmissivity and hence bias the 

calculated shortwave and longwave radiation. 

 



Manuscript Revisions:  We now note in section 3.3.2, “A key assumption to the Sobol’ 

approach is that the factors are independent; hence, our analysis does not consider cases of 

correlated errors (e.g., a positive measurement bias in Tair that causes a negative RH bias).” 

 

 

Comment: Page 13755: “by creating k new parameters (θ1, θ2,..., θk) that specify forcing 

uncertainty characteristics”. This is a bit confusing, mainly because up to this point the symbol θ 

was used to refer to model parameters in contrast to forcing inputs F. The same confusion may 

arise in the following section, when the symbol θ and the term “parameters” may be interpreted 

as referring to model parameters (and Eq. (1) reinforce this misinterpretation). I would suggest 

to use a different symbol for the model parameters in Eq. (1) (for instance, p), and maybe insert 

a second equation like  

 

),,( pM FY   

 

as a companion to Eq. (1) to clarify the point (and also to link to the error model of Eq. (4)). 

 

Response:  We can see how this convention would be confusing, and thank you for pointing this 

out. 

 

Manuscript Revisions: We followed your recommendation and introduced a new symbol (phi, 

ϕ) for the new forcing error parameters (section 3.3.1) for better discrimination from the native 

model parameters (theta, θ).  We added a new equation after equation 1 to help clarify, and 

changed all other references from theta to phi. 

 

 

Comment: Page 13759: “The number of rejected samples varied with site and scenario...”. I 

think the step of screening out meaningless simulations before estimating sensitivity indices is a 

very good practice, unfortunately not always applied in SA applications - the authors may want 

to stress the relevance, also referencing other works where this was done (for instance the 

already cited Pappenberger 2008). Also, it would be interesting to know if this screening 

provided further insights about the model response surface. For instance, did you find that 

discarded simulations where generated by input samples falling in a specific range or were they 

scattered across the input space? In the former case, can you give a physical interpretation to 

this result? Also, it is reported that the UB scenario at SASP had a very high number of 

meaningless simulations: can you give an interpretation for this? Does this relate to any specific 

property of the SASP site? 

 

Response:  We have examined the characteristics of the discarded simulations and are able to 

provide a physical interpretation.  We found that simulations were more often rejected because 

too much snow was simulated (and hence the snow never fully disappeared) instead of too little.  

SASP had the most rejected simulations in UB because it had the highest peak SWE and hence 

was more prone to have too much snow simulated.  The boxplot below (Figure R1-1) 

summarizes the characteristics of the passed and failed simulations for SASP in the UB scenario.  

The most distinct characteristics of the failed simulations was a high precipitation bias, which 

lead to high peak SWE and no snow disappearance.  This is not surprising given how the error 



ranges were assigned to precipitation (with a larger range on the positive bias end to mimic snow 

drift errors).  Other contributing characteristics were cases with a negative bias in Qsi, Qli, and 

Tair (all of which lead to slower melt and reduce the chance of snow disappearing). 

 

 
Figure R1-1 Categorical boxplots summarizing the relationship between imposed forcing biases 

and screening test results for the six forcings at SASP in scenario UB. 

 

 

Manuscript Revisions:  We now stress the relevance of screening out meaningless simulations 

and cite the Pappenberger paper as an example where this was also done (section 3.3.5).  We also 

generalize the characteristics of the rejected simulations (at the end of “Step 6” in section 3.3.5). 

 

 

Comment: Page 13762: “This was surprising given that bias magnitudes are lower for Qli than 

for Qsi.” Misleading. It seems to suggest that the input with the larger variability range is 

expected to have the larger influence on the model output, which is not true unless the model is 

linear (and which motivates the use of complex SA methods to obtain input ranking). 

 

Response:  You are correct that the non-linear nature of the model does not guarantee this is 

true.  However, we note that albedo also plays a role in minimizing the effect of errors in 

shortwave radiation. 

 

Manuscript Revisions: We have rephrased this sentence (section 4.2.3) to provide a more 

physically based explanation of what is happening here: “However, the albedo of snow 

minimizes the amount of energy transmitted to the snowpack from Qsi, thereby rendering Qsi 



errors less important that Qli errors.  Additionally, the non-linear nature of the model may 

enhance the role of Qli through interactions with other factors.” 

 

 

Comment: Page 13766: “1 520 000 simulations for examining only a single year at four sites 

across four error scenarios.” Misleading: the number of simulated years influences the 

computing time of each simulation but not the number of simulations. See also next comment on 

the issue of number of simulations vs computing time. 

 

Response:  We understand your argument and agree. 

 

Manuscript Revisions: We have removed the reference to the number of years and rephrased 

this to say “1 840 000 simulations across four sites and five error scenarios”.  Note that we have 

now include a fifth scenario to address concerns raised by another reviewer about precipitation 

uncertainty, and this brings the total number of simulations to 1 840 000. 

 

 

Comment: Page 13767: “will be more feasible in the future with better computing resources and 

advances in sensitivity analysis methods”. The computing issue here is not completely clear. 

Over one million model evaluations is a big number but what is the actual computing time? 

Given that the model is one-dimensional I would expect every model evaluation to be rather fast, 

and therefore even 1 million evaluations to be a reasonable target. Also, before Rakovec et al. 

(2014), there exist other well established GSA methods (for instance Morris method or FAST) 

requiring much less model evaluations than Sobol’. This is not a criticism of the choice of using 

Sobol’, just a comment about the fact that computational complexity in this case is also due to 

the fact that you chose the GSA method that requires by far the highest number of model 

evaluations. 

 

Response:  This is a valid point and we thank you for pointing this out. 

 

Manuscript Revisions:  We now note at the end of the discussion section: “For context, the 

typical time required for a single simulation was 1.4 seconds, resulting in a total computational 

expense of 720 hours (30 days) across all scenarios….  Ongoing research is developing new 

sensitivity analysis methods that compare well to Sobol’ but with reduced computational 

demands (e.g., FAST, Cukier, 1973; method of Morris, 1991; DELSA, Rakovec et al., 2014).” 

 

 

REFERENCES 

Peeters et al., 2014, Robust global sensitivity analysis of a river management model to assess 

nonlinear and interaction effects, HESS 

 



Response to Interactive comment by J. Li (Referee) 

 

Note: reviewer comments are in italics and the authors’ responses and manuscript revisions are 

in normal face. 

 

Comment: This study applied Sobol’ global sensitivity analysis for testing model sensitivity to 

coexisting errors in all forcings. Sensitivity analysis can reveal which forcing error 

characteristics matter most for hydrologic modelling. As there are fewer detailed studies 

focusing on forcing uncertainty, this work provides insights on the topic and provide a method 

that could be extended to more complex physically based models such as land surface models 

and climate models. It is a very interesting work, and the paper is clear and well structured. I 

think the paper should be considered for publication on HESS. Here, I have only some concerns 

about the Sobol’ SA method used in this paper. 

 

Response:  We thank you for your time in reviewing the paper. 

 

 

Comment: (1) This study is too computational expensive. 1520000 Monte Carlo samples used 

here is too much, making that it will be inpractical to be extended to other complex models. As I 

know, Sobol’ method will cost a lot to estimate the interaction, such as second-order effect. But it 

can be less expensive to get the first-order effect and total effect. Did the study consider the SA 

results from fewer samples? In fact, I suggest either RS-HDMR or response surface based Sobol’ 

can be used here to get similar results. 

 

Response:  Computational expense is an important consideration of any SA study.  We should 

note that while we evaluated the model over 1.8 million simulations, this was somewhat 

excessive because convergence was reached before all simulations were completed.  

Additionally, this number includes multiple error scenarios (5) and multiple sites (4), so it seems 

higher than in reality.  Figure R2-1 (below) shows the time history of the total sensitivity indices 

(as a function of sample size) for Scenario NB (other scenarios exhibited similar levels of 

convergence).  Examining this figure, it is evident that the same conclusions for the study (at 

least qualitatively) could have been drawn with fewer simulations.  A dynamic system of 

calculating sensitivity indices as model completes simulations would optimize the analysis by 

stopping the process once convergence has been reached, but such a system was not 

implemented here.  Such approaches might be needed when extended the error analysis 

framework to more complex model, such as land surface models.  While we do not expect that 

this framework (and number of simulations) can be extended to all modeling endeavors, we note 

in our discussion the availability of more efficient sensitivity analysis methods and the need for 

improved efficiency. 

 



 
Figure R2-1 Convergence history of total-order sensitivity indices in scenario NB for the four 

model outputs at the four sites, as a function of sample size. 

 

 

Manuscript Revisions:  We now provide more context for the computational expenses at the 

end of the discussion section: “Finally, while the Sobol’ method is often considered the 

“baseline” method in global sensitivity analysis, we note that it comes at a relatively high 

computation cost (1 840 000 simulations across four sites and five error scenarios) and may be 

prohibitive for many modeling applications (e.g., for models of higher complexity and 

dimensionality).  For context, the typical time required for a single simulation was 1.4 seconds, 

resulting in a total computational expense of 720 hours (30 days) across all scenarios.  

Examination of the convergence rates indicated that most sensitivity indices stabilized after one-



third of the simulations completed, and hence the same results could have been found using 

significantly fewer simulations (no figures shown).  Ongoing research is developing new 

sensitivity analysis methods that compare well to Sobol’ but with reduced computational 

demands (e.g., FAST, Cukier, 1973; method of Morris, 1991; DELSA, Rakovec et al., 2014), 

and is comparing how different methods classify sensitive factors differently (Pappenberger et 

al., 2008; Tang et al., 2007).  We expect that detailed sensitivity analyses that concurrently 

consider uncertainty in forcings, parameters, and structure in a hydrologic model will be more 

feasible in the future with better computing resources and advances in sensitivity analysis 

methods.”  Note that we have now include a fifth scenario to address concerns raised by another 

reviewer about precipitation uncertainty, and this brings the total number of simulations to 1 840 

000. 
 

Comment: (2) This study used the total effect to quantify the sensitivity of different error type, 

different error distributions and error magnitudes. As the sum of total effect of each factor will 

be above 1, in order to quantify the contribution of each factor, I suggest to use the index 

STi/sum(ST), which is the total effect of one factor divided by the sum of total effect of all the 

factors. 

Response:  While we thank the reviewer for this logical suggestion, we declined to make this 

change because we do not find a strong precedent for this practice in the sensitivity analysis 

literature.  We prefer to report the total sensitivity indices according to common practice. 

 

Manuscript Revisions: No changes made regarding this point. 

 



Response to Interactive comment by Anonymous Referee #3 

 

Note: reviewer comments are in italics and the authors’ responses and manuscript revisions are 

in normal face. 

 

Comment: Overview This manuscript explores the relative effects of bias and error distributions 

on the Utah Energy Balance model’s sensitivity across Peak SWE, Ablation Rates, Snow 

Disappearance, and Sublimation predictions. The work exploits detailed forcing observations at 

4 seasonally snow covered sites: (1) the tundra Imnavait Creek in the Brooks Range in Alaska, 

(2) the Col de Porte site in the Chartreuse Range in France, (3) Reynolds Mountain in Idaho, 

and the Swamp Angle Study Plot in the San Juan mountains of Colorado. The core contention of 

the work is that forcing bias and errors could dominate structural and parametric uncertainties 

for snow-affected regions with strong observation limitations. Overall I found this hypothesis 

somewhat self-evident, although the overall study does highlight the importance of observation 

errors and uncertainties. I believe this manuscript requires revision to reach its full potential. 

 

Response:  We thank you for your careful review of the manuscript. 

 

 

Major Comments 

Comment: 1. Limited Analysis: The core results in Figures 5-11 are discussed with extreme 

brevity and little analysis. The authors have made the chose to provide a more detailed 

exposition in their Discussion but at present the Results do not even orient the reader very well 

across individual plots. Figures 5-8 are summarized in text that mixes results across figures and 

severely limited in its value. The question that emerges when reading this is that either the 

authors could compress their results into fewer and better designed figures or they could tease 

more model related insights in their analysis text. 

 

Response:  This is a reasonable comment.  Given the number of dimensions that we are 

examining (4 sites, 6-12 error parameters, 4 model outputs, and now 5 scenarios), we have opted 

to focus on providing more context and explanation of the results in the text.  However, we were 

able to compress Figures 5-11 into three figures and thank you for the suggestion. 

 

Manuscript Revisions: We now provide expanded description of the core results and 

compressed the figures, but reserve discussion of the results in section 5. 

 

 

Comment: 2. Discussion Disconnected from Results: The most interesting portions of the 

discussion relate to the contention of the relative importance of structural uncertainty to forcing 

errors. Unfortunately, this text references other published work strongly and does a very poor 

job connecting to directly to the Results/Figures of this paper. Transitioning from Section 4 to 

Section 5 almost feels like your reading a different paper. Overall the structure and writing of 

the work varies significantly from the well written Introduction, the detailed Methods, and more 

detailed Discussion versus the extremely cursory Results. 

 



Response:  We can understand how this is problematic and agree that the exposition of these 

sections can be improved. 

 

Manuscript Revisions: We have rewritten and reorganized some parts of the discussion to 

provide better correspondence with the results and better connection to other published works.  

As an example of the latter, we have acquired the model results of Essery et al. (2013), which is 

referenced heavily in the early part of the discussion and now create a new figure (see Figure 9 in 

the revised manuscript) that directly compares our results (due to forcing uncertainty) and 

Essery’s results (due to structural uncertainty). 

 

 

Comment: 3. It is unclear how generalizable the results are beyond this study: Many of the 

results are not very insightful and seem to convey a very place-based specificity for deviating 

cases. The reporting of sensitivities in the Results are not well articulated in terms of their 

dependency on site location, the nuances of the Utah Energy Balance model, and scenarios. In 

its present form, I am not convinced that manuscript provides insights and it may be conflating 

several factors that could influence the differences in sensitivity (model choice, site selection, 

scenarios). Explanation of the stronger results, such as distribution choice minimally impacts 

computed sensitivities, is limited and not compelling. The core of the Discussion section is the 

best overall text of the paper. It would have been far better to lead with your core hypotheses in 

the Results section and test them explicitly through the analysis of your results. The Discussion 

would then emphasize key caveats, insights, and implications. 

 

Response:  While recognizing the importance of generalizing the results, we are hesitant to 

generalize relationships between site geo-characteristics/climate and sensitivities indices because 

of the relatively low number of sites represented (n=4 sites, 1 year each) and the confounding 

number of differences between our sites (e.g., snow climate, latitude, elevation, wind 

exposure/sheltering, etc.).  We would require a much larger population of snow measurement 

sites in order to more robustly test relationships between sensitivity indices and site 

characteristics such as elevation and latitude.  A successful example of relating climate 

characteristics to sensitivity can be found in van Werkhoven et al. (2008), which had 12 sites and 

39 years each, making it possible to explore inter-site and inter-annual variations in climate and 

linkages to model sensitivity.   

 

Manuscript Revisions:  We now emphasize in Section 2 that we selected the four sites to check 

for climate dependencies, but are unable to generalize the results due to the low sample size.  We 

note in the discussion however, that there are common results that emerge across all sites, such 

as the dominance of precipitation bias on SWE, ablation rates and snow disappearance (NB 

scenario) and longwave bias on all four outputs (NB_lab scenario).  This suggests that there may 

be common features in model sensitivity to forcing errors across distinct climates. 

 

 

 

Minor Comments 

Comment: 1. It would have been interesting to explore 2nd order and 1st order differences from 

the total indices in the results. 



Response:  While we agree this would be interesting, we argue that this could make the study 

less focused and therefore elect to present only the total sensitivity indices.  The total sensitivity 

indices provide a summative measure of both first-order and interaction effects and therefore 

convey the overall importance in a straightforward manner.  Calculation of the second-order 

terms would require nearly double the number of simulations (compare n(2k+2) vs. n(k+2) in the 

current analysis) (Saltelli, 2002), and hence we have not pursued this extended analysis due to 

the additional computational expenses required. 

 

While we do not present them in the manuscript, we can calculate the first-order indices with the 

existing model simulations.  The comparison of the first- and total-order indices provides 

insights into how much of the variance is due to direct effects vs. interactions, and broad 

justification for only reporting one type of sensitivity indices.  Figures R3-1 and R3-2 (below) 

show the first- (Si) and total-order (STi) indices for the NB and NB+RE scenarios.  From these 

figures, it is evident that in many cases, the sensitivity is dominated by first-order effects, as 

suggested by the close alignment of Si and STi values.  There are cases however when the 

interactions have greater importance (e.g., factors of secondary importance for the ablation 

rates).  The general correspondence between the first- and total-order indices suggests to us that 

most of the story is captured with just a single index; hence, we focus on just total-order 

sensitivity indices for simplicity/clarity.  

 

 
Figure R3-1 First order (Si) and total-order (STi) sensitivity indices for bias factors in the NB 

scenario. 



 
Figure R3-2 First order (Si) and total-order (STi) sensitivity indices for bias factors in the 

NB+RE scenario. 

 

 

Manuscript Revisions:  We have made no changes to the analysis, but we now comment in 

section 3.3.2, “First-order and higher-order sensitivities can be resolved; here, only the total-

order sensitivities are examined (see below) for clarity and because the first-order sensitivity 

indices were typically comparable to the total-order sensitivity indices.” 

 

 

Comment: 2. A better explanation of the scales assumed in the measures used to report 

sensitivities and caveats as to what cannot capture would be helpful.  

 

Response:  We assume you are referring to numerical scales in this comment, and can comment 

on this in the text. 

 

Manuscript Revisions: In section 3.3.3, we explain that interpretation of the total sensitivity 

indices is straightforward because they represent the fraction of output variance due to a specific 

factor, and state that these indices scale from 0 to 1.  We now include a caveat that the Sobol’ 

total sensitivity indices cannot account for the case of correlated errors (section 3.3.2), which 

may occur in the real-world. 

 



Comment: 3. Very little treatment is provided for the convergence rates of the total order indices 

and their associated bootstrap intervals as a function of your sampling. 

 

Response:  The reviewer is correct that we did not provide much information on convergence 

rates.  Figure R3-3 (below) shows the time history and convergence of the total sensitivity 

indices (as a function of sample size) for Scenario NB (other scenarios exhibited similar levels of 

convergence).  Examining the figure, it is evident that the same conclusions for the study (at least 

qualitatively) could have been drawn with fewer simulations.  A dynamic system of calculating 

sensitivity indices as model completes simulations would optimize the analysis by stopping the 

process once convergence has been reached, but such a system was not implemented here.   

 

 
Figure R3-3 Convergence of total-order sensitivity indices in scenario NB for the four model 

outputs at the four sites, as a function of sample size. 



 

 

We can quantitatively assess the level of convergence by examining the ratio of the 95% 

confidence interval (from the bootstrapping procedure) to the mean STi values.  Figure R3-4 

(below) shows this ratio (as a percentage) for the error parameter with the highest STi for each 

model output, scenario, and site.  If we assume convergence has been reached when the ratio is 

less than 10% (based on Herman et al., 2013), then we can see that the majority cases in our 

study reached convergence, and only three out of 64 cases had a ratio greater than 15%.  Even 

for these three cases, it is evident that the general order of importance of errors is established.  

For example, ablation rates at RME in Scenario NB had a CI that was 16% of the mean, but 

Figure R3-3 shows that the relative hierarchy of importance in biases is established in this case. 

 

 

 
Figure R3-4 Ratio of 95% confidence intervals to the bootstrapped mean total-order sensitivity 

indices (%) for the most important factor for each scenario, site, and model output. 

 

 

 



Manuscript Revisions:  We now provide some description of the convergence rates and on the 

bootstrap confidence intervals (sections 4.2 and 5), but do not provide any additional figures in 

the manuscript. 

 

 

Comment: 4. How stable and/or separable are the factor prioritization rankings? What results 

have higher confidence? 

 

Response:  The 95% confidence intervals (from the bootstrapping procedure) are presented in 

Figures 5-7 in the revised manuscript, and these provide a measure of our confidence in the 

rankings.  The difference between the bootstrap mean and the final mean STi values also provides 

a measure of stability. 

 

Manuscript Revisions:  We note in section 3.3.4: “For all cases, final STi values were close to 

the mean bootstrapped values (i.e., 99% had a difference less than 0.001 and no difference was 

greater than 0.003), suggesting convergence.” 

 

 

Comment: 5. It would improve the manuscript to better understand the justification of the ranges 

tested in the Sobol analysis. Would a slight change in your a priori ranges change factor 

rankings? 

 

Response:  The original manuscript outlines the justification for the ranges, but we now provide 

more information in the methods section.  While we did not test for “slight changes” in the a 

priori ranges, we know that more substantial changes in these ranges can change the hierarchy of 

factors.  Our original results already suggest that a change in the error ranges will change the 

rankings of factors (compare NB to NB_lab, where the only difference is field vs. laboratory 

levels of uncertainty).  We also now include the new scenario (identical to NB but with lower 

precipitation error ranges to reflect gauge undercatch), and find again that the factor ranges do 

change with the a priori ranges in the forcing uncertainty. 

 

Manuscript Revisions:  We now expand on our justification of the error ranges (section 3.2.3).  

Additional treatment of this topic is included in the discussion. 
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Response to Interactive comment by R.L.H. Essery (Referee) 

 

Note: reviewer comments are in italics and the authors’ responses and manuscript revisions are 

in normal face. 

 

Comment: Raleigh et al. present an interesting attempt to systematically determine how 

uncertainty in forcing data influences uncertainty in snow simulations. Some of their conclusions 

seem quite obvious (biases are more significant than random errors, and uncertainty in 

measured precipitation is the most important factor), but a large effort is often required to 

demonstrate things that appear obvious with hindsight in hydrological modelling. The increased 

sensitivity to biases when random errors are introduced is a striking result, however, and there 

should be more exploration of how this arises. 

 

Response:  Thank you for your interest and your review of the manuscript.  We have revisited 

the striking result of enhanced sensitivity to biases when random errors are introduced, and 

found this to actually be related to a deficiency in the introduction of random errors into the 

system (eq. 4).  Specifically, we discovered that the random number generator (randn.m in 

Matlab) used to create the “noise” (i.e. random errors) did not always have a mean of 0 (though it 

was a value close to 0).  This is because it is a discrete array with samples drawn from a 

population of mean 0; hence the sample mean is not guaranteed to be 0.  Because of a non-zero 

mean in the noise, the “random error” term also introduced additional systematic errors that were 

not accounted for in the bias terms.   

 

Manuscript Revisions:  We have corrected this coding issue, reran NB+RE and have found that 

this minimized the problem you have found.  We find that the sensitivity to biases (after 

introducing random errors) is less pronounced in this case for most outputs/sites considered.  The 

most obvious outlier is for ablation rates at IC, where there is heightened sensitivity to biases 

after random errors are introduced.  In this case, the total-sensitivity indices are amplified 

because of more interactions in the system (e.g., first-order sensitivities were small compared to 

the total-order indices).  We surmise that the relatively short ablation season at IC (on order of 

10-20 days) is a critical reason why there is enhanced sensitivity across all error types; errors in a 

variety of factors can yield large impacts on ablation rates during the brief melt period.  

 

 

Comment: I am slightly concerned about how the error distributions have been assigned. It is 

variances in model outputs that are examined but ranges in model inputs that are specified. The 

variance of a uniform distribution is larger than a normal distribution over the same range, so 

these scenarios are not really comparable.  

 

Response:  These concerns are reasonable, and it is true that the variance of a uniform 

distribution is larger than the variance of a normal distribution over the same range.  That is part 

of the purpose of this particular experiment, namely, to examine how the assumed probability 

distribution of errors influences model sensitivity.  It is by design that the ranges are made the 

same for the uniform and normal distributions for a given forcing; this allows us to test in a 

controlled fashion whether/how more frequently occurring extreme errors (in the uniform 

distribution) change model sensitivity.  If we had not matched the ranges in the two distributions, 



then there would be two confounding reasons why the distributions were different (probability 

distribution shape and range), and we wished to isolate the differences due to shape only. 

 

You are correct that we could have alternatively constructed the experiment such that we 

specified variance (or standard deviation) instead of the range.  However, we constructed the 

experiment with range instead of variance because it was more straightforward and provided a 

more direct approach to encompass all magnitudes of errors found in our literature review for 

different forcing observation/estimation approaches.  We also note that most sensitivity analyses 

use uniform distributions (e.g., Nossent et al., 2011; Peeters et al., 2014), which are specified by 

the range and not the variance.  In considering normal distributions, we are extending these 

methods to other types of distributions. 

 

Regardless of whether we base our distributions on range or variance, we note that there is 

“uncertainty in uncertainty.”  In other words, we are not always certain about what the spread of 

uncertainty should be.  Our understanding of the spread of uncertainty is poor due to the 

relatively low sample size of papers that report error statistics for different forcings.  It can be 

shown experimentally (with a Monte Carlo sampling experiment) that for low sample sizes 

(n<150), we have higher confidence in the range of a given normal distribution than in the 

variance.  Figure R4-1 (below) shows the relative uncertainty in range and variance derived from 

such a Monte Carlo experiment.  Given that there are few papers that systematically assess 

forcing errors in mountainous areas, we argue that it is not necessarily a bad idea to work in 

terms of range because we have comparatively higher confidence in the range than in the 

variance.  For example, if we only have 10 papers that specify the mean bias of shortwave 

radiation, the confidence interval (CI) for our variance estimate (of the probability distribution) is 

about 80% greater (in a relative sense) than the CI for the range of the distribution (see figure 

below). 

 
Figure R4-1 Confidence in the variance and range of a normal distribution determined with 

Monte-Carlo  sampling  (n=1000)  with  a  random  dataset  (106  samples,  mean=0,  

variance=1)  as  a function of sample size. 



 

 

Manuscript Revisions:  We clarify in section 3 why we prescribed the probability distributions 

in this manner. 

 

 

Comment: It is not clear, in any case, how the ranges given in Table 3 determine the means and 

variances that would characterize the normal and lognormal distributions. Can this be clarified?  

 

Response:  Thank you for pointing this out.  Yes, this can be clarified. 

 

Manuscript Revisions:  We now clarify in detail in section 3.3.5 how the normal and lognormal 

distributions are constructed based on specified characteristics. 

 

 

Comment: Uncertainty in measurements of snowfall is certainly a major concern, but the upper 

bound chosen for precipitation biases in the model forcing (+300%) is enormous – much bigger 

than the stated error of less than 20% of peak SWE for most SNOTEL sites. The reason given for 

choosing this large uncertainty is to represent areas with drifting snow, but I would argue that 

the neglect of drifting snow is a missing process in the model, not an uncertainty in its forcing. 

 

Response:  We partially agree with you on this point.  We think that the model scale and the 

process scale are important considerations in how we categorize the uncertainty due to drifting 

snow.  For the case when the 1-d model is applied at a model element resolution that is greater 

than the process scale, we would classify the wind drift uncertainty as structural uncertainty in 

terms of sub-grid variability accounting.  However, when the model element resolution is less 

than the process scale of drifting snow, it is impossible to account for snowdrift processes within 

the structural uncertainty because the model is applied independently of neighboring locations 

(i.e., no lateral snow mass transfer, by definition of a 1-d model).  In this case, we argue that the 

drift uncertainty is somewhat ambiguous for the 1-d UEB model but still must be accounted for 

in either the parametric or the forcing uncertainty.  We argue that drift uncertainty is analogous 

to the precipitation undercatch uncertainty (both are cases of wind-affecting precipitation), and 

therefore we treat the drift uncertainty as a source of forcing uncertainty for our 1-d model. 

 

For models of higher dimensionality (e.g., 3-d), then we agree with your point.  A 3-d snow 

model should account for lateral mass transfer via snow drifting.  In this case, it is clear that large 

uncertainties in snow accumulation arise due to omission of the snowdrift processes in the 

model, and this is a case where the uncertainty is attributed to structural (and parametric) 

uncertainty. 

 

While we make this point, we share your interest in how the study would have been different if 

we had “standard SNOTEL precipitation errors” as the upper limit of uncertainty in precipitation.  

To that end, we introduced a new scenario (NB_gauge) that repeated Scenario NB with all 

factors the same except we changed the ranges of precipitation bias of [-10% to +10%].  When 

we consider this lower range in precipitation uncertainty, we find that precipitation bias is never 

a major factor for these four outputs at the four sites, and other dominant factors emerge.  At IC, 



longwave bias emerges as the most important factor for ablation rates and snow disappearance 

while humidity bias matters most for peak SWE and sublimation.  At the other sites, biases in 

shortwave and longwave radiation and air temperature are most important for peak SWE, 

ablation rates, and snow disappearance.  Humidity bias is an important factor for sublimation at 

IC, CDP, and RME, while wind bias is important to sublimation at SASP. 

 

Manuscript Revisions:  We now introduce the new error scenario “NB_gauge” in the analysis 

and have updated the manuscript text to introduce this scenario and report/discuss the results. 

 

 

 

Specific comments: 

Comment: page 13749, line 25 SWE is measured at Col de Porte using a cosmic ray detector, 

not a snow pillow. 

 

Response:  Thank you for catching this mistake.   

 

Manuscript Revisions:  We have corrected the sentence. 

 

 

Comment: 13750, 5 How was reasonable representation of observed SWE judged? 

 

Manuscript Revisions:  We now state in section 2, “We considered adjustment multipliers 

ranging from 0.5 to 2.5 (increments of 0.05) and selected the multiplier that yielded the lowest 

root mean squared error between observed and modeled SWE.” 

 

 

Comment: 13751, 18 It could be made clear at this stage that normal distributions are used for 

additive errors and lognormal distribution for multiplicative errors. 

 

Manuscript Revisions:  Done.   

 

 

Comment: 13752, 3 In contrast, data assimilation techniques often address random errors that 

are assumed to be unbiased. 

 

Manuscript Revisions:  Thank you for pointing this out – we now note this in the sentence.  

 

 

Comment: 13755, 1 Overview of what? 

 

Manuscript Revisions:  We now change the title of this subsection to “Overview: model 

conceptualization and sensitivity”. 

 

 

Comment: 13756, 12 “due to bias in forcing” 



 

Manuscript Revisions:  Done. 

 

 

Comment: 13757, 15 “For all cases, final STi values were generally close ...” sounds a little 

contradictory; were they all close, or generally close? 

 

Manuscript Revisions:  We now rephrase this sentence to be more quantitative: “For all cases, 

final STi values were generally close to the mean bootstrapped values (i.e., 99% had a difference 

less than 0.001 and no difference was greater than 0.003), suggesting convergence.” 

 

 

Comment: 13758, 20 Non-physical values would be less common if multiplicative perturbations 

were applied to all forcing variables that cannot be negative, not just precipitation. 

 

Response:  This is a valid point, but we are attempting to follow typical error reporting 

conventions and to provide easy interpretation of errors.  For example, it is often the case that 

radiation errors are reported in the literature in an additive context (e.g., +35 W m
-2

) and not in a 

multiplicative context (e.g., +10%).  In the case of radiation, a multiplicative error (e.g., +/-10%) 

is not straightforward to interpret because the magnitude of the error will change with seasonality 

(e.g., 10% error in winter shortwave radiation is much less than 10% error in summer 

shortwave).  Additionally, some errors only make sense in an additive context (e.g., temperature 

errors).  Our treatment of errors reflects common practices in the literature to make it more easily 

understood by the community.  

 

Manuscript Revisions:  We clarify in section 3.3.5 why we prescribed multiplicative vs. 

additive errors. 

 

 

Comment: 13761, 8 Can differences in which variables are of secondary importance be linked to 

differences in climate at the sites? 

 

Response:  The links with climate in these secondary variables are not always clear to us.  At the 

warm maritime CDP site in scenario NB, it makes sense that Tair bias is important to peak SWE, 

as it helps control the partitioning of rain and snow.  In contrast, it is not clear why Qsi and Qli 

biases are of secondary importance for sublimation at IC and CDP but not at RME and SASP 

(where Tair bias is the second most importance factor). 

 

While there may be interesting climate linkages, we note that we are hesitant to generalize 

relationships between site geo-characteristics/climates and sensitivities indices because of the 

relatively low number of sites represented (n=4 sites, 1 year each) and the confounding number 

of differences between our sites (e.g., snow climate, latitude, elevation, wind 

exposure/sheltering, etc.).  We would require a much larger population of snow measurement 

sites in order to more robustly test relationships between sensitivity indices and site 

characteristics such as elevation and latitude.  A successful example of relating climate 

characteristics to sensitivity can be found in van Werkhoven et al. (2008), which had 12 sites and 



39 years each, making it possible to explore inter-site and inter-annual variations in climate and 

linkages to model sensitivity.  We now emphasize in Section 2 that we selected the four sites to 

check for climate dependencies, but are unable to generalize the results due to the low sample 

size. 

 

Manuscript Revisions:  We now emphasize in Section 2 that we selected the four sites to check 

for climate dependencies, but are unable to generalize the results due to the low sample size.  We 

note in the discussion however, that there are common results that emerge across all sites, such 

as the dominance of precipitation bias on SWE, ablation rates and snow disappearance (NB 

scenario) and longwave bias on all four outputs (NB_lab scenario).  This suggests that there may 

be common features in model sensitivity to forcing errors across distinct climates. 

 

 

Comment: 13762, 3 It is not so surprising that Qli biases are more important than Qsi biases 

because of the high albedo of snow. 

 

Response:  We agree with you here.  We also note that given how the literature often 

emphasizes the importance of net shortwave over all other terms for snowmelt (e.g., Bales et al., 

2006), this could be considered a surprising result. 

 

Manuscript Revisions: We have rephrased this sentence (section 4.2) to provide a more 

physically based explanation of what is happening here: “However, the albedo of snow 

minimizes the amount of energy transmitted to the snowpack from Qsi, thereby rendering Qsi 

errors less important that Qli errors.  Additionally, the non-linear nature of the model may 

enhance the role of Qli through interactions with other factors.” 

 

 

Comment: 13765, 11 Please consider doi:10.1029/2010EO450004 

 

Response:  Thank you for making us aware of this article and for helping us to see the problem 

with using parentheses to indicate the opposite meaning.   

 

Manuscript Revisions:  We have reworded the sentence to avoid this issue and have ensured 

that there are no other instances of this convention in the manuscript. 

 

 

 

Comment: 13766, 2 Note that “constraining P uncertainty in snow-affected catchments” is the 

aim of WMO-SPICE http://www.rap.ucar.edu/projects/SPICE/ 

 

Manuscript Revisions:  We now state: “Progress is being achieved with advanced pathways for 

quantifying snowfall precipitation, such as NWP models (Rasmussen et al., 2011, 2014) and 

through systematic intercomparisons of precipitation and snow gauges (e.g., Solid Precipitation 

Intercomparison Experiment, http://www.rap.ucar.edu/projects/SPICE/).” 

 

 

http://www.rap.ucar.edu/projects/SPICE/


Comment: 13766, 10 Probabilistic forcing is a common and long-standing approach in data 

assimilation 

 

Manuscript Revisions:  We now note: “We suggest that probabilistic model forcings (e.g., 

Clark and Slater, 2006), which have a legacy in data assimilation methods (e.g., precipitation 

uncertainty, Durand and Margulis, 2007), present one potential path forward where measures of 

forcing uncertainty can be explicitly included in the forcing datasets.” 

 

 

Comment: The forcing error scenarios are described in Figure 1, Table 3 and section 3.2. Is the 

figure really necessary? 

 

Response:  We considered removing Figure 1, but other reviewers thought this figure was 

helpful in summarizing the scenarios, and so we have left it in the manuscript.  We have also 

expanded Figure 1 to include the new NB_gauge scenario, which was added to address your 

concerns about the level of precipitation uncertainty. 

 

Manuscript Revisions: None taken here. 
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Response to Interactive comment by RR Rosolem (Referee) 

 

Note: reviewer comments are in italics and the authors’ responses and manuscript revisions are 

in normal face. 

 

Comment: The work presented by Raleigh et al. investigates the impact of uncertainty in 

individual meteorological forcing variables on simulation of snow processes at selected sites 

using the Utah Energy Balance (UEB) model. The manuscript investigates how different error 

distributions and magnitudes can impact quality of simulations of key snow variables by using 

the Sobol’ sensitivity analysis methodology. The number of model simulations needed for 

individual sites/experiments varies approximately between 70,000 and 130,000. The authors 

found that model outputs were generally more sensitive to systematic biases in forcing in 

comparison to random error. In addition, simulations indicated that model was more sensitive to 

the magnitude of forcing rather than the distribution of errors. 

 

I particularly like the manuscript and I think it should be accepted for publication after minor 

revisions (see my comments below). This is a good example of model diagnostics employed in a 

relevant context (understanding impacts of forcing uncertainty). We usually focus on uncertainty 

in parameters, but forcing can play a significant role (especially with such models where both 

local in-situ and global gridded forcing data are commonly available). The large number of 

model simulation does not concern me because (1) evaluating the total number of simulations 

without actual simulation time is somewhat meaningless (how long does it take to run a single 

year simulation in this model?), and (2) the authors are clearly using such approach to diagnose 

model uncertainty in detail and recognize that there are more simple approaches that can be 

used but the emphasis here is on the benefits of using Sobol’. Finally, the manuscript is well 

written, it explains the strategy very well and includes very good tables and figures. 

 

Response:  We thank you for your positive and constructive feedback. 

 

 

General Comments: 

Comment: [1] Section 2: If the goal was to understand impact of forcing uncertainty on 

simulations, I do not understand why precipitation adjustments (due to wind conditions) were 

employed prior to the simulation? It would have been interesting to see the overall results 

related to precipitation. I suspect that would increase uncertainty even more. 

 

Response:  The underlying assumption made here is that the original precipitation data had an 

unresolved bias prior to the simulations.  We wished to begin the sensitivity analysis with 

reasonably realistic simulations of the observed snowpack, and hence made these precipitation 

adjustments.  We argue that this is not problematic because we do not compare the sensitivity 

analysis SWE simulations to the observed SWE. 

 

 

Comment: [2] Section 3.1: Very good explanation of why such metrics were used. Other studies 

should follow this example when listing metrics used in their experiments. 

 



Response:  Thank you. 

 

 

Comment: [3] Section 3.3.2: The Sobol’ method assumes factors are independent from each 

other. Can you safely assume that for each forcing data analyzed (e.g., Tair and RH)? 

 

Response:  Thank you for making this excellent point.  You are correct that in reality a bias in 

Tair will induce a bias (of the opposite sign) in RH.  To avoid this issue, we could have 

constructed the analysis such that we considered errors in Tair and the vapor pressure, but did not 

do this for simplicity and for general applicability (given that many datasets report RH and not 

vapor pressure). 

 

Manuscript Revisions:  We now state in section 3.3.2: “A key assumption to the Sobol’ 

approach is that the factors are independent; hence, our analysis does not consider the case of 

when specific error types are correlated (e.g., a positive measurement bias in Tair that propagates 

a negative bias to RH).” 

 

 

Comment: [4] Section 4.2: Could the fact that Qli bias was found to be the most important 

factor (given its low error magnitudes compared to Qsi) indicate some structural limitation in 

radiation partitioning parameterization in the model (longwave versus shortwave radiation)? 

 

Response:  We think that the relative importance of Qsi errors is less than that of Qli errors 

because the high albedo of snow minimizes how much energy Qsi transfers to the snowpack.   

 

Manuscript Revisions:  We now note this in Section 4.2: “In one sense, this was surprising, 

given that the bias magnitudes were lower for Qli than for Qsi (Table 3).  However, the albedo of 

snow minimizes the amount of energy transmitted to the snowpack from Qsi, thereby rendering 

Qsi errors less important than Qli errors.  Additionally, the non-linear nature of the model may 

enhance the role of Qli through interactions with other factors.” 

 

 

Comment: [5] Section 5: I particularly like the discussion on limitation of the analyses 

described by the authors. 

 

Response:  We appreciate that you liked this discussion. 

 

 

Comment: [6] Table 2: What is the limitation of fixed ground heat flux? Isn’t it calculated in the 

model? In addition, I imagine that setting it to zero all the time could potentially be problematic. 

 

Response:  The snow model provides an option for turning off the ground heat flux.  Because 

ground heat flux typically has a small contribution to the energy balance, it is assumed negligible 

in some snow modeling applications (e.g., Essery, 1997; Jepsen et al., 2012; Letsinger and 

Olyphant, 2007), and we chose to mimic those approaches.  This indeed would be problematic 

for calculating the energy balance during snow-free periods and in areas with intermittent 



snowpacks, however, the focus of the study was on the snow-covered periods (minimum 

continuous duration of 15 days, as stated in section 3.3.5). 

 

 

Comment: [7] Figures 1 and 2: Excellent figures explaining/summarizing the methodology 

employed in the study. 

 

Response:  Thank you. 

 

 

Comment: [8] Figure 5: Have the authors looked at relationships between certain site 

characteristics and the magnitude of sensitivity from each factor. For instance, Figures 5 and 7 

show an interesting relationship between site elevation/latitude with precipitation forcing for 

snow disappearance (third column in both figures). Given the site arrangements in the figure, 

both cases show an increase in sensitivity with elevation (and consequently decrease with 

latitude). With respect to precipitation and elevation, this can show the difficulties of measuring 

precipitation according to elevation (especially given the fact that most continuous weather 

monitoring networks are placed in low/mid-elevation locations). I wonder if there could be other 

relationships the authors can investigate to see more of those relationships. I see this as a good 

additional exercise to understand forcing uncertainty and model diagnostics. 

 

Response:  We had not considered this relationship before and thank you for making this 

suggestion.  While this is worthy of further attention, we are hesitant to generalize relationships 

between site geo-characteristics and sensitivities indices because of the relatively low number of 

sites represented (n=4 sites, 1 year each) and the confounding number of differences between our 

sites (e.g., snow climate, latitude, elevation, wind exposure/sheltering, etc.).  We would require a 

much larger population of snow measurement sites in order to more robustly test relationships 

between sensitivity indices and site characteristics such as elevation and latitude.  A successful 

example of relating climate characteristics to sensitivity can be found in van Werkhoven et al. 

(2008), which had 12 sites and 39 years each, making it possible to explore inter-site and inter-

annual variations in climate and linkages to model sensitivity.  We now emphasize in Section 2 

that we selected the four sites to check for climate dependencies, but are unable to generalize the 

results due to the low sample size. 

 

Manuscript Revisions:  We now emphasize in Section 2 that we selected the four sites to check 

for climate dependencies, but are unable to generalize the results due to the low sample size.  We 

note in the discussion however, that there are common results that emerge across all sites, such 

as the dominance of precipitation bias on SWE, ablation rates and snow disappearance (NB 

scenario) and longwave bias on all four outputs (NB_lab scenario).  This suggests that there may 

be common features in model sensitivity to forcing errors across distinct climates. 
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Response to Interactive comment by A Winstral (Referee) 

 

Note: reviewer comments are in italics and the authors’ responses and manuscript revisions are 

in normal face. 

 

Comment: In this open discussion forum/review, the other reviewers have amply summarized the 

contents of this manuscript, so I don’t find the need to restate the contents of this work. The other 

reviewers have also made some excellent suggestions. The paper is well-written and provides a 

potentially-extensive analysis of errors that haven’t been previously assessed.  

 

Response:  Thank you. 

 

 

Comment: My major concerns are largely in line with the three major comments provided by 

Referee #3. Once addressed this work would move from a cursory analysis to an extensive one. 

As you can tell already, I would also like to see a better discussion of the results. Particularly, a 

more extensive analysis of how some of the site-specific results may/may not relate to site-

specific climatology. This type of analysis could be initiated by providing a summary of 

conditions at each site during the years of analysis. Meteorological summary statistics with a 

brief description in the Study Site section should be included. This would give the readers (and 

the authors) guidance as to how the snow regimes differ at each site and how that might be 

influencing findings/results. These observed differences might be correlated with the modeling 

results providing greater context and transferability of the presented findings.  

 

Response:  This is a reasonable point, and we now include more in-depth reporting of the 

results.  While there may be interesting linkages between climate and model sensitivity, we note 

that we are hesitant to generalize relationships between site geo-characteristics and sensitivities 

indices because of the relatively low number of sites represented (n=4 sites, 1 year each) and the 

confounding number of differences between our sites (e.g., snow climate, latitude, elevation, 

wind exposure/sheltering, etc.).  We would require a much larger population of snow 

measurement sites in order to more robustly test relationships between sensitivity indices and site 

characteristics such as elevation and latitude.  A successful example of relating climate 

characteristics to sensitivity can be found in van Werkhoven et al. (2008), which had 12 sites and 

39 years each, making it possible to explore inter-site and inter-annual variations in climate and 

linkages to model sensitivity.  We now emphasize in Section 2 that we selected the four sites to 

check for climate dependencies, but are unable to generalize the results due to the low sample 

size. 

 

Manuscript Revisions:  We have reorganized and expanded the results and discussion sections 

to include more in-depth analysis of the site-specific sensitivities and our views on the 

generalizability of the results, and we now expand Table 1 to include summary statistics of site 

meteorology for context.   

 

We now emphasize in Section 2 that we selected the four sites to check for climate 

dependencies, but are unable to generalize the results due to the low sample size.  We note in the 

discussion however, that there are common results that emerge across all sites, such as the 



dominance of precipitation bias on SWE, ablation rates and snow disappearance (NB scenario) 

and longwave bias on all four outputs (NB_lab scenario).  This suggests that there may be 

common features in model sensitivity to forcing errors across distinct climates. 

 

Further suggestions follow: 

 

Comment: Study Sites: as mentioned above, please summarize the observations at each site. This 

should be included in Table 1. 

 

Manuscript Revisions:  We have expanded Table 1 to include summary statistics of the 

meteorology at each site (temperature, precipitation, and wind only). 

 

 

Comment: Lines 98-100 (the precipitation corrections): Nowhere in this paragraph is the term 

“undercatch” referenced. All prior works on these types of adjustments have been based on the 

theory of wind-induced undercatch. Schmucki et al. is certainly not the only work that should be 

referenced here. Given that I think the authors are trying to adjust for this process, a 60% 

adjustment at IC is a very large number (Schmucki et al. applied increases of 5-17% to account 

for undercatch)! Is there something else going on at this site (e.g. the SWE measurement is 

located in an enhanced deposition zone, wind speeds are extreme, etc.). Something needs to be 

stated to justify this large an adjustment. 

 

Manuscript Revisions:  We now include the term “undercatch” in this paragraph and provide 

more references.  The 60% correction at IC is consistent with analyses of undercatch errors at 

Wyoming-type gauges in wind-blown areas in the Alaska tundra (Yang et al., 2000), and we now 

make a note of this. 

 

 

Comment: On the other side of the coin however, the question of why was there a need to 

decrease the precipitation measurements at CDP and RME begs for an explanation. Perhaps this 

is reflective of a modeling deficiency or errors in other observations? A large amount of prior 

modeling has been conducted at these two sites. I am particularly familiar with the work done at 

RME where in order to properly model snow evolution at that site it was necessary to adjust the 

shielded-gauge precipitation catch for undercatch. The “corrected” published data, which 

generally increased solid precipitation by 10-12%, reflects the undercatch correction which has 

been applied in every study I know of that has been conducted at this site. This includes the 25-

year analysis presented in Reba et al. (2011), which had a Nash-Sutcliffe efficiency coefficient of 

0.90 for modeled SWE over the entire period. So I ask, why the need to decrease the data in 

order to properly model SWE in the current work? As the authors note, accurate precipitation 

data is vitally important to simulating SWE evolution. A more detailed explanation is needed to 

explain these eye-catching adjustments that were necessary to properly model SWE. 

 

Response:  This is an excellent point; we can understand how this is eye-catching, as the 

pervasiveness of undercatch errors makes it a rare necessity to decrease precipitation data.  As 

we initiated our analysis, we found that running an “off-the-shelf model” (i.e., no parameter 

adjustments) with “off-the-shelf forcing datasets” (most with precipitation undercatch 



adjustments already made) rarely resulted in close agreement (i.e., within 10%) of modeled and 

observed SWE.  We can point to multiple sources of uncertainty here, including: (1) model 

forcing, (2) model parameters, (3) model structure, and (4) model evaluation (e.g., SWE) data.  

Because you are most familiar with RME, we will focus on that site (WY 2007) as an example to 

explain why adjusting the initial precipitation data was the most straightforward approach to 

arrive at reasonable SWE simulations (relative to the observations).  

 

In Figure R6-1 (below), we compare SWE and accumulated precipitation and snowfall datasets 

at RME, and contrast uncertainties due to evaluation data, and model structure (rain-snow 

partitioning as an example), parameters, and forcings.  We make the following observations: 

 Evaluation data uncertainty: Snow pillow SWE generally agrees with snow course 

SWE, though the pillow SWE ablates more rapidly than snow course SWE in April 

(Figure R6-1a, below).  The consistency between these datasets does not provide 

evidence that the evaluation uncertainty is causing the discrepancy between modeled and 

observed SWE. 

 Structural uncertainty (rain-vs-snow): Using four different methods for delineating 

snowfall results in a range of about 180 mm of accumulated snowfall by season’s end 

(Figure R6-1a, below).  Snowfall delineated with dewpoint temperature (from Reba et al. 

2011) underestimates SWE whereas snowfall delineated with a linear temperature 

threshold (UEB) overestimates SWE (Figure R6-1a, below).  Because we are looking at 

accumulated snowfall and not SWE, this does not take into account the three distinct 

mid-winter melt events, so the simulations with the dewpoint-based approach will have 

more SWE underestimation than what is suggested in Figure R6-1a (below). 

 Parameters (rain-vs-snow): Perturbation of the UEB rain-snow threshold temperatures 

results in a range of about 70 mm of accumulated snowfall by season’s end (Figure R6-

1b, below).  For the selected parameter values, this range is smaller than the range 

encompassed by the four methods of delineating rain and snow (Figure R6-1a, below). 

 Forcing (precipitation): Assuming there is still a bias due to under- or over-correction in 

the original data, we examine snow accumulation under the case of -30% to +30% biases 

(Figure R6-1c, below).  A range in snowfall accumulation of 125 mm exists when 

considering +/-10% bias and 250 mm when considering +/-20% bias. 

 



 
Figure R6-1 SWE, accumulated precipitation and snowfall at RME (WY 2007) as a function of 

uncertainties in rain-snow (a) structure and (b) parameters, and (c) precipitation.  (d) Modeled 

SWE with adjusted P. 

 

 

Based on the ranges in snowfall accumulation in these comparisons (and neglecting other 

processes such as snowmelt), it appears that the most likely cause of the mismatch between 

modeled and observed SWE is either (1) structural uncertainty (selected rain-snow delineation 

parameterization) or (2) precipitation bias (on the order of 10-15%).  Addressing (1) would 

require modifying the source code of UEB to incorporate a different parameterization, but this 

might be somewhat arbitrary because no independent dataset exists (to our knowledge) that can 

provide clues which rain-snow delineation method is most realistic at each site and should be 



selected.  Therefore, we concluded that the more straightforward approach would be to address 

(2) by making some adjustments to the precipitation data.   

 

We note that when forced with the precipitation data (no new adjustments), UEB consistently 

overestimates SWE throughout most of the season.  In contrast, decreasing the precipitation by 

10% yields closer agreement with the snow pillow SWE.  The UEB simulations of SWE without 

new precipitation adjustments exhibit a Nash-Sutcliffe (NS) of 0.88 and RMSE of 40 mm, 

relative to snow pillow SWE.  When the 10% decrease in precipitation is applied, UEB yields a 

Nash-Sutcliffe (NS) of 0.95 and RMSE of 25 mm SWE.  These NS values are in fact comparable 

to the performance of Isnobal that you have referenced (from Reba et al., 2011). 

 

Finally, we note that calibration of model parameters is a step that usually occurs after the 

sensitivity analysis has determined the most sensitive factors, and this is a reason why we did not 

calibrate the model prior to the analysis.  However, if we consider the interplay between optimal 

rain-snow threshold parameters in UEB and a potential precipitation adjustment, we find that it is 

essential to adjust the precipitation in order to find an optimal parameter set (Figure R6-2, 

below).  Leaving the precipitation unchanged would require potentially unrealistic snow and rain 

threshold temperatures (-4 C and 0 C, respectively) to arrive at the most optimal SWE 

simulations (figure below), and these parameters are at the edge of the parameter space 

(suggesting they are not really the optimal parameters).  By decreasing the precipitation by 10%, 

it becomes possible to find a parameter set that is both optimal and realistic.  While we are 

neglecting other processes, this brief analysis provides support for adjusting the precipitation 

data. 

 

 
Figure R6-2 RMSE in modeled SWE at RME (WY2007), as a function of rain-snow thresholds 

and precipitation multipliers of (a) 0.9, (b) 1.0, and (c) 1.1.  The black circle are the default UEB 

rain-snow parameters. 

 

 

Manuscript Revisions: We briefly expand our discussion at the end of section 2 of why we 

adjusted the precipitation data. 

 

 

Comment: Lines 236-238. I think this sentence would sound better if it was re-written in a 

manner that stated you provide a “brief (or other adjective)” description while further 



analysis/details/information can be found in Saltelli and Amnomi. (Just a personal opinion 

there). 

 

Manuscript Revisions: We have changed the sentence to say “Below, we provide a brief 

summary of the Sobol’ sensitivity analysis methodology but note that further details can be 

found in Saltelli et al. (2010).” 

 

 

Comment: Section 3.3.3. As mentioned in F. Pianosi’s comment, the transition from θ 

(parameterizations) in (1) to θ (forcings) in (2 and 4) should be cleared up. 

 

Manuscript Revisions: We have clarified this point by introducing a distinct variable (phi, ϕ) 

for the forcing errors. 

 

 

Comment: Lines 415-420. Could you please provide some direct quotes of the structural 

uncertainties found in Essery et al. (2013) so that the readers of this manuscript can directly see 

these comparisons rather than having to dig up the Essery work? 

 

Response:  There are no direct quotations in the Essery et al. work that are relevant to our 

discussion.  In order to provide a more direct comparison, we have obtained the modeled SWE 

ensemble from Richard Essery and have created a new figure comparing the forcing uncertainty 

to structural uncertainty (see Figure 9 in revised manuscript).  This illustrates our point that 

structural uncertainty is only marginally larger than uncertainty due to measurement precision for 

peak SWE and snow disappearance, and that field uncertainties (due to wind drift and gauge 

undercatch) are larger than the structural uncertainty.  The uncertainty due to structure for 

ablation rates however is notably higher than the gauge and lab levels of uncertainty. 

 

Manuscript Revisions:  We now include the figure comparing the forcing uncertainty to the 

Essery et al. (2013) structural uncertainty and focus the discussion around that figure. 

 

 

Comment: Lines 446-448. The Zuzel and Cox findings are being presented out of context. Zuzel 

and Cox assessed the most important factors for snowmelt for a given snowpack; precipitation 

(or accumulation amounts) was never a consideration in their analysis. The current findings are 

really not so "surprising" as the entire winter is analyzed including both accumulation and 

ablation phases. Great care should be taken when comparing the current findings to research 

findings solely focused on the ablation phase. If you choose to continue to use this reference, 

please review the work fully and put it in it’s proper context. 

 

Response:  Thank you for catching this problematic comparison. 

 

Manuscript Revisions:  We have rephrased this to say: “Prior investigations into the relative 

importance of forcings to ablation were typically framed for a snowpack at the end of winter, 

such that P uncertainty was not considered (e.g., Zuzel and Cox, 1975).” 
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Abstract 9 

Physically based models provide insights into key hydrologic processes, but are associated with 10 

uncertainties due to deficiencies in forcing data, model parameters, and model structure.  Forcing 11 

uncertainty is enhanced in snow-affected catchments, where weather stations are scarce and 12 

prone to measurement errors, and meteorological variables exhibit high variability.  Hence, there 13 

is limited understanding of how forcing error characteristics affect simulations of cold region 14 

hydrology and which error characteristics are most important.  Here we employ global sensitivity 15 

analysis to explore how (1) different error types (i.e., bias, random errors), (2) different error 16 

probability distributions, and (3) different error magnitudes influence physically based 17 

simulations of four snow variables (snow water equivalent, ablation rates, snow disappearance, 18 

and sublimation).  We use Sobol’ global sensitivity analysis, which is typically used for model 19 

parameters, but adapted here for testing model sensitivity to co-existing errors in all forcings.  20 

We quantify the Utah Energy Balance model’s sensitivity to forcing errors with 1 840 000 Monte 21 

Carlo simulations across four sites and five different scenarios.  Model outputs were (1) 22 

consistently more sensitive to forcing biases than random errors, (2) generally less sensitive to 23 

forcing error distributions, and (3) critically sensitive to different forcings depending on the 24 

relative magnitude of errors.  For typical error magnitudes found in areas with drifting snow, 25 

precipitation bias was the most important factor for snow water equivalent, ablation rates, and 26 

snow disappearance timing, but other forcings had a more dominant impact when precipitation 27 

uncertainty was due solely to gauge undercatch.  Additionally, the relative importance of forcing 28 

errors depended on the model output of interest.  Sensitivity analysis can reveal which forcing 29 

error characteristics matter most for hydrologic modeling. 30 
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 31 

1. Introduction 32 

Physically based models allow researchers to test hypotheses about the role of specific processes 33 

in hydrologic systems and how changes in environment (e.g., climate, land cover) may impact 34 

key hydrologic fluxes and states (Barnett et al., 2008; Clark et al., 2011b; Deems et al., 2013; 35 

Leavesley, 1994).  Due to the complexity of processes represented, these models usually require 36 

numerous meteorological forcing inputs and model parameters.  Most inputs are not measured at 37 

the locations of interest and require estimation; hence, large uncertainties may propagate from 38 

hydrologic model inputs to outputs.  Despite ongoing efforts to quantify forcing uncertainties 39 

(e.g., Bohn et al., 2013; Clark and Slater, 2006; Flerchinger et al., 2009) and to develop 40 

methodologies for incorporating uncertainty into modeling efforts (e.g., He et al., 2011b; 41 

Kavetski et al., 2006a; Kuczera et al., 2010; Slater and Clark, 2006), many analyses continue to 42 

ignore uncertainty.  These often assume either that all forcings, parameters, and structure are 43 

correct (Pappenberger and Beven, 2006) or that only parametric uncertainty is important (Vrugt 44 

et al., 2008b).  Neglecting uncertainty in hydrologic modeling reduces confidence in hypothesis 45 

tests (Clark et al., 2011b), thereby limiting the usefulness of physically based models. 46 

 47 

There are fewer detailed studies focusing on forcing uncertainty relative to the number of 48 

parametric and structural uncertainty studies (Bastola et al., 2011; Benke et al., 2008; Beven and 49 

Binley, 1992; Butts et al., 2004; Clark et al., 2008, 2011b, 2015a, 2015b; Essery et al., 2013; 50 

Georgakakos et al., 2004; Jackson et al., 2003; Kuczera and Parent, 1998; Liu and Gupta, 2007; 51 

Refsgaard et al., 2006; Slater et al., 2001; Smith et al., 2008; Vrugt et al., 2003a, 2003b, 2005; 52 

Yilmaz et al., 2008).  Di Baldassarre and Montanari (2009) suggest that forcing uncertainty has 53 

attracted less attention because it is “often considered negligible” relative to parametric and 54 

structural uncertainties.  Nevertheless, forcing uncertainty merits more attention in some cases, 55 

such as in snow-affected watersheds where meteorological and energy balance measurements are 56 

scarce (Bales et al., 2006; Raleigh, 2013; Schmucki et al., 2014) and prone to errors due to 57 

environmental or instrumental factors (Huwald et al., 2009; Lundquist et al., 2015; Rasmussen et 58 

al., 2012).  Forcing uncertainty is enhanced in complex terrain where meteorological variables 59 

exhibit high spatial variability (Feld et al., 2013; Flint and Childs, 1987; Herrero and Polo, 2012; 60 
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Lundquist and Cayan, 2007).  As a result, the choice of forcing data can yield substantial 61 

differences in calibrated model parameters (Elsner et al., 2014) and in modeled hydrologic 62 

processes, such as snowmelt and evapotranspiration (Mizukami et al., 2014; Wayand et al., 63 

2013).  Thus, forcing uncertainty demands more attention in snow-affected watersheds. 64 

 65 

Previous work on forcing uncertainty in snow-affected regions has yielded basic insights into 66 

how forcing errors propagate to model outputs and which forcings introduce the most uncertainty 67 

in specific outputs.  However, these studies have typically been limited to: (1) 68 

empirical/conceptual models (He et al., 2011a, 2011b; Raleigh and Lundquist, 2012; Shamir and 69 

Georgakakos, 2006; Slater and Clark, 2006), (2) errors for a subset of forcings (e.g., precipitation 70 

or temperature only) (Burles and Boon, 2011; Dadic et al., 2013; Durand and Margulis, 2008; 71 

Lapo et al., 2015; Xia et al., 2005), (3) model sensitivity to choice of forcing parameterization 72 

(e.g., longwave) without considering uncertainty in parameterization inputs (e.g., temperature 73 

and humidity) (Guan et al., 2013), and (4) simple representations of forcing errors (e.g., Kavetski 74 

et al., 2006a, 2006b).  The last is evident in studies that only consider single types of forcing 75 

errors (e.g., bias) and single distributions (e.g., uniform), and examines errors separately (Burles 76 

and Boon, 2011; Koivusalo and Heikinheimo, 1999; Raleigh and Lundquist, 2012; Xia et al., 77 

2005).  Lapo et al. (2015) show that biases have a greater impact than random errors on modeled 78 

snow water equivalent and surface temperature, but this analysis only considers longwave and 79 

shortwave forcings and considers errors separately.  Examining uncertainty in one factor at a 80 

time remains popular but fails to explore the uncertainty space adequately, ignoring potential 81 

interactions between forcing errors (Saltelli and Annoni, 2010; Saltelli, 1999).  In contrast, 82 

global sensitivity analysis explores the uncertainty space more comprehensively by considering 83 

uncertainty in multiple factors at the same time. 84 

 85 

The purpose of this paper is to use global sensitivity analysis to assess how specific forcing error 86 

characteristics influence outputs of a physically based snow model.  To our knowledge, no 87 

previously published study has investigated this topic in snow-affected regions.  It is unclear how 88 

(1) different error types (bias vs. random errors), (2) different error distributions, and (3) 89 

different error magnitudes across all forcings affect model output.  The impact of forcing errors 90 
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on models can be tested by corrupting forcings with specified characteristics (e.g., artificial 91 

biases and random errors) and quantifying the impact on model outputs (e.g., Oudin et al., 2006; 92 

Spank et al., 2013), but we are unaware of any detailed studies that have done this type of 93 

experiment for all meteorological forcings commonly required for physically based snow 94 

models.  We hypothesize that (1) model outputs are more sensitive to biases than random errors 95 

in forcing variables, (2) the assumed probability distribution for biases will alter the relative 96 

ranking of importance in forcing errors, and (3) the magnitude of forcing biases will have a 97 

strong influence on which forcing errors are most important.   98 

 99 

In our view, it is important to clarify the relative impact of specific error characteristics on 100 

modeling applications, so as to prioritize future research directions, improve understanding of 101 

model sensitivity, and to address questions related to network design.  For example, given budget 102 

constraints, is it better to invest in a heating apparatus for a radiometer (to minimize bias due to 103 

frost formation on the radiometer dome) or in a higher quality radiometer (to minimize random 104 

errors associated with measurement precision)?  Additionally, it is important to contextualize 105 

different meteorological data errors, as these errors are usually studied independently of each 106 

other (e.g., longwave radiation, Flerchinger et al., 2009; air temperature, Huwald et al., 2009), 107 

and it is unclear how they compare in terms of model sensitivity.   108 

 109 

The overarching research question is “how do assumptions regarding forcing error characteristics 110 

impact our understanding of uncertainty in physically based model output?”  Using the Sobol′ 111 

(1990) global sensitivity analysis framework, we investigate how artificial errors introduced into 112 

high-quality observed forcings (temperature, precipitation, wind speed, humidity, shortwave 113 

radiation, and longwave radiation) at four sites in contrasting snow climates propagate to four 114 

snow model outputs (peak snow water equivalent, ablation rates, snow disappearance timing, and 115 

sublimation) that are important to cold region hydrology.  We select a single model structure and 116 

set of parameters to clarify the impact of forcing uncertainty on model outputs.  Specifically, we 117 

use the physically based Utah Energy Balance (UEB) snow model (Mahat and Tarboton, 2012; 118 

Tarboton and Luce, 1996) because it is computationally efficient.  The presented framework 119 

could be extended to other models. 120 
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 121 

2. Study sites and data 122 

We selected four seasonally snow covered study sites (Table 1) in distinct snow climates (Sturm 123 

et al., 1995; Trujillo and Molotch, 2014).  The sites included (1) the tundra Imnavait Creek (IC, 124 

930 m) site (Euskirchen et al., 2012; Kane et al., 1991; Sturm and Wagner, 2010), located north 125 

of the Brooks Range in Alaska, USA, (2) the maritime Col de Porte (CDP, 1330 m) site (Morin 126 

et al., 2012) in the Chartreuse Range in the Rhône-Alpes of France, (3) the intermountain 127 

Reynolds Mountain East (RME, 2060 m) sheltered site (Reba et al., 2011) in the Owyhee Range 128 

in Idaho, USA, and (4) the continental Swamp Angel Study Plot (SASP, 3370 m) site (Landry et 129 

al., 2014) in the San Juan Mountains of Colorado, USA.  We selected these sites because of the 130 

quality and completeness of the forcing data, and because they spanned contrasting climates 131 

(Table 1), allowing us to check for potential climate-dependencies in sensitivity to forcing errors.  132 

Generalization of the results with climate was not possible due to the low sample size of sites. 133 

 134 

The sites had high-quality observations of model forcings at hourly time steps.  Serially complete 135 

published datasets are available at CDP, RME, and SASP (see citations above).  At IC, data were 136 

available from multiple co-located stations (Bret-Harte et al., 2010a, 2010b, 2011a, 2011b, 137 

2011c; Griffin et al., 2010; Sturm and Wagner, 2010).  These data were quality controlled, and 138 

gaps in the data were filled as described in Raleigh (2013).   139 

 140 

We considered only one year for analysis at each site (Table 1) due to the high computational 141 

costs of the experiment.  Measured evaluation data (e.g., snow water equivalent, SWE) at daily 142 

resolution were used only for qualitative assessment of model output.  SWE was observed at 143 

snow pillows at IC and RME.  At CDP, a cosmic ray detector collected SWE data.  At SASP, 144 

acoustic snow depth data were converted to daily SWE using density inferred from nearby 145 

SNOw TELemetry (SNOTEL) (Serreze et al., 1999) sites and local snow pit measurements 146 

(Raleigh, 2013). 147 

 148 
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We adjusted the available precipitation data at each site with a multiplicative factor to correct for 149 

potential undercatch errors (e.g., Goodison et al., 1998; Rasmussen et al., 2012; Yang et al., 150 

2000) and to ensure the base model simulation with all observed forcings reasonably represented 151 

observed SWE before conducting the sensitivity analysis.  Several studies have demonstrated the 152 

necessity of precipitation adjustments for realistic SWE simulations, even at well-instrumented 153 

sites (e.g., Hiemstra et al., 2006; Reba et al., 2011; Schmucki et al., 2014).  Precipitation 154 

adjustments were most necessary at IC, where windy conditions preclude effective 155 

measurements (Yang et al., 2000).  In contrast, only modest adjustments were necessary at the 156 

other three sites because they were located in sheltered clearings and because the data already 157 

had some corrections applied in the published data.  We considered adjustment multipliers 158 

ranging from 0.5 to 2.5 (increments of 0.05) and selected the multiplier that yielded the lowest 159 

root mean squared error between observed and modeled SWE.  Precipitation multipliers were 1.6 160 

at IC and 1.15 at SASP, and 0.9 at CDP and RME.  The undercatch errors at IC were consistent 161 

with the 61-68% undercatch errors found by Yang et al. (2000) for Wyoming-type gauges in 162 

wind-blown regions.   163 

 164 

The initial discrepancies between modeled and observed SWE (prior to applying the above 165 

precipitation multipliers) may have resulted from deficiencies in the measured forcings, model 166 

parameters, model structure, and measured verification data, and justification of our decision to 167 

apply precipitation multipliers was warranted.  Manual observations of SWE (e.g., snow surveys, 168 

snow pits) generally supported the automatically collected SWE observations (no figures 169 

shown), and thus differences between observed and modeled SWE did not likely stem from 170 

issues in the verification data.  Sites where we decreased the precipitation data (CDP and RME) 171 

were also the warmer sites and experienced more mixed rain-snow events in the winter.  Hence, 172 

we considered multiple hypotheses to explain the SWE differences at these sites: (1) the choice 173 

of rain-snow parameterization, (2) the choice of parameters (e.g., threshold temperatures) for the 174 

rain-snow parameterization, and (3) the quality of the forcing data (e.g., precipitation).  For these 175 

warmer sites, an exploratory analysis revealed that either (1) or (3) could explain the SWE 176 

differences, but auxiliary data (e.g., precipitation phase data) were not available to discriminate 177 

these hypotheses.  Choosing a different rain-snow parameterization might minimize the SWE 178 

differences at the warmer sites but would not rectify the SWE differences at the colder sites (IC 179 
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and SASP) where most winter precipitation falls as snow.  Therefore, the most straightforward 180 

and consistent approach was to adjust the precipitation data and to leave the native UEB 181 

parameterizations intact.  It was beyond the scope of this study to optimize model parameters and 182 

unravel the relative contributions of uncertainty for factors other than the meteorological 183 

forcings.  Nevertheless, we suggest these precipitation adjustments minimally affected the 184 

sensitivity analysis, as we did not quantitatively compare the model outputs to the observed 185 

response variables (e.g., SWE). 186 

 187 

3. Methods 188 

3.1. Model and output metrics 189 

The Utah Energy Balance (UEB) is a physically based, one-dimensional snow model (Mahat and 190 

Tarboton, 2012; Tarboton and Luce, 1996; You et al., 2013).  UEB represents processes such as 191 

snow accumulation, snowmelt, albedo decay, surface temperature variation, liquid water 192 

retention and refreezing, and sublimation.  Due to the one-dimensional structure of the model, 193 

UEB does not account for lateral mass transfer of snow (e.g., wind-induced snow drifting), and 194 

therefore these processes must be represented in other model components (e.g., precipitation 195 

uncertainty, see Sec. 3.2.3).  UEB has a single bulk snow layer and an infinitesimally thin 196 

surface layer for energy balance computations at the snow-atmosphere interface.  UEB tracks 197 

state variables for snowpack energy content, SWE, and a dimensionless snow surface age (for 198 

albedo computations).  We ran UEB at hourly time steps with six forcings: air temperature (Tair), 199 

precipitation (P), wind speed (U), relative humidity (RH), incoming shortwave radiation (Qsi), 200 

and incoming longwave radiation (Qli).  We used fixed parameters across all scenarios (Table 2).  201 

We initialized UEB during the snow-free period; thus, model spin-up was unnecessary. 202 

 203 

With each UEB simulation, we calculated four summary output metrics: (1) peak (i.e., 204 

maximum) SWE, (2) mean ablation rate, (3) snow disappearance date, and (4) total annual snow 205 

sublimation.  The first three metrics are important for the timing and magnitude of water 206 

availability and identification of snowpack regime (Trujillo and Molotch, 2014), while the fourth 207 

impacts the partitioning of annual P into runoff and evapotranspiration.  We calculated the snow 208 
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disappearance date as the first date when 90% of peak SWE had ablated, similar to other studies 209 

that use a minimum SWE threshold for defining snow disappearance (e.g., Schmucki et al., 210 

2014).  The mean ablation rate was calculated in the period between peak SWE and snow 211 

disappearance, and was taken as the absolute value of the mean of all SWE decreases. 212 

 213 

3.2. Forcing error scenarios 214 

To test how error characteristics in forcings affect model outputs, we examined five scenarios 215 

(Fig. 1 and Table 3) with different assumptions regarding error types, distributions, and 216 

magnitudes (i.e., error ranges).  In the first scenario, only bias (normally distributed for additive 217 

errors or lognormally distributed for multiplicative precipitation errors) was introduced into all 218 

forcings at a level of high uncertainty (based on values observed in the field, see Sec. 3.2.3 219 

below).  This scenario was named “NB,” where N denotes normal (or lognormal) error 220 

distributions and B denotes bias only.  The remaining scenarios were identical to NB except one 221 

aspect was changed: scenario NB+RE considered both bias and random errors (RE) in all 222 

forcings, scenario UB considered uniformly distributed biases in all forcings, scenario NB_gauge 223 

considered precipitation error magnitudes associated with gauge undercatch, and scenario 224 

NB_lab considered error magnitudes for all forcings at minimal values (i.e., specified instrument 225 

accuracy as found in a laboratory).  Constructed in this way (Fig. 1), we could test model 226 

sensitivity to (1) bias vs. random errors by comparing NB and NB+RE, (2) error distributions by 227 

comparing NB and UB, and (3) error magnitudes by comparing NB (high forcing uncertainty) to 228 

both NB_gauge (moderate uncertainty in precipitation but high uncertainty for all other forcings) 229 

and NB_lab (low forcing uncertainty). 230 

 231 

3.2.1. Error types 232 

Forcing data inevitably have some (unknown) combination of bias and random errors.  However, 233 

hydrologic sensitivity analyses have tended to focus more on bias with little or no attention to 234 

random errors (Raleigh and Lundquist, 2012), whereas data assimilation methods often focus on 235 

random errors but assume bias does not exist (e.g., Dee, 2005).  Rarely is there any consideration 236 

of interactions between these error types.  As a recent example, Lapo et al. (2015) tested biases 237 
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and random errors in Qsi and Qli forcings, finding that biases generally introduced more variance 238 

in modeled SWE than random errors.  Their experiment considered biases and random errors 239 

separately (i.e., no error interactions allowed), and examined only a subset of the required 240 

forcings (i.e., radiation).  Here, we examined co-existing biases in all forcings in NB, UB, 241 

NB_gauge, and NB_lab, and co-existing biases and random errors in all forcings in NB+RE. 242 

 243 

Table 3 shows the assignment of error types for the five scenarios.  We relied on studies that 244 

assess errors in measurements or estimated forcings to identify typical characteristics of biases 245 

and random errors.  Published bias values were more straightforward to interpret than random 246 

errors because common metrics, such as root mean squared error (RMSE) and mean absolute 247 

error (MAE), encapsulate both systematic and random errors.  Hence, when defining random 248 

errors, published RMSE and MAE served as qualitative guidelines. 249 

 250 

3.2.2. Error distributions 251 

In their recent review of global sensitivity analysis applications in hydrological modeling, Song 252 

et al. (2015) identified the selection of probability distributions (this section) and ranges (Sec. 253 

3.2.3) as among the most important considerations.  While it is common practice in sensitivity 254 

analysis to assume a uniform distribution when sampling model parameters (e.g., Campolongo et 255 

al., 2011; Rosero et al., 2010), this may fail to represent the real distribution of errors in 256 

meteorological forcing data, as the uniform distribution implies that extreme and small biases are 257 

equally probable.  It is more likely that real error distributions more closely resemble non-258 

uniform distributions, with higher probability of smaller biases and lower probability of more 259 

extreme biases (e.g., normal distributions).  Investigators in other fields (e.g., Foscarini et al., 260 

2010; Touhami et al., 2013) have tested how distribution assumptions (uniform vs. normal) 261 

change their computed measures of model sensitivity.  These studies broadly suggest that the 262 

grouping of most important factors may be similar under different distribution assumptions, 263 

particularly in cases when interactions are minimal, but the relative ranking of factors within 264 

those groups may vary depending on the distribution.  Here we test how the assumed probability 265 

distribution influences the sensitivity of a snow model to forcing errors. 266 
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 267 

We designed the UB scenario with the naive hypothesis that the probability distribution of biases 268 

was uniform for all six meteorological variables.  In contrast, error distributions (Table 3) were 269 

assumed non-uniform (described below) in scenarios NB, NB+RE, NB_gauge, and NB_lab.  270 

Unfortunately, error distributions are reported less frequently than error statistics (e.g., bias, 271 

RMSE) in the literature.  We assumed that Tair and RH errors follow normal distributions 272 

(Mardikis et al., 2005; Phillips and Marks, 1996), as do Qsi and Qli errors.  Conflicting reports 273 

over the distribution of U indicated that errors may be approximated with a normal (Phillips and 274 

Marks, 1996), a lognormal (Mardikis et al., 2005), or a Weibull distribution (Jiménez et al., 275 

2011).  For simplicity, we assumed that U errors were normally distributed.  Finally, we assumed 276 

P errors followed a lognormal distribution to account for snow redistribution due to wind 277 

drift/scour (Liston, 2004) or to account for precipitation gauge undercatch (Durand and Margulis, 278 

2007).  Error distributions were truncated in cases when the introduced errors violated physical 279 

limits (e.g., negative U; see Sec. 3.3.5). 280 

 281 

3.2.3. Error magnitudes 282 

We considered three magnitudes of forcing uncertainty (Table 3): levels of uncertainty found (1) 283 

in the field for all forcings (i.e., NB), (2) in the field for all forcings except precipitation (which 284 

has uncertainty due to precipitation gauge undercatch, i.e., NB_gauge), and (3) in a controlled 285 

laboratory setting (i.e., NB_lab).  These cases were considered because they sampled realistic 286 

errors (NB and NB_gauge) and minimum errors (NB_lab).  We expected that the error ranges 287 

exerted a major control on model uncertainty and sensitivity, as demonstrated in several prior 288 

sensitivity analyses (see review of Song et al., 2015). 289 

 290 

Consideration of error magnitudes was achieved in each scenario by assigning a range to each 291 

error probability distribution (see Sec. 3.2.2 and Table 3).  While non-uniform distributions (e.g., 292 

normal) are typically described by measures other than the range (e.g., mean and variance), we 293 

scaled these distributions (see Sec. 3.3.5 for details) such that they were bounded within a 294 

specified range.  This convention was necessary to ensure that differences between scenarios NB 295 
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and UB were due solely to the shape of the error probability distributions, and not due to 296 

differences in both distribution shape and the domain.  Additionally, this followed the typical 297 

practice of sensitivity analysis where the range specifies the domain of the distribution.  298 

 299 

We considered field uncertainties in all forcings in NB, NB+RE, and UB, and in all forcings 300 

except precipitation in NB_gauge.  Field uncertainties depend on the source of forcing data and 301 

on local conditions (e.g., Flerchinger et al., 2009; Lundquist et al., 2015).  To generalize the 302 

analysis, we chose error ranges for the field uncertainty that enveloped the reported uncertainty 303 

of different methods for acquiring forcing data.  Tair error ranges spanned errors in measurements 304 

(Huwald et al., 2009) and commonly used models, such as lapse rates and statistical methods, 305 

(Bolstad et al., 1998; Chuanyan et al., 2005; Fridley, 2009; Hasenauer et al., 2003; Phillips and 306 

Marks, 1996).  U error ranges spanned errors in topographic drift models (Liston and Elder, 307 

2006; Winstral et al., 2009) and numerical weather prediction (NWP) models (Cheng and 308 

Georgakakos, 2011).  RH error ranges spanned errors in observations (Déry and Stieglitz, 2002) 309 

and empirical methods (e.g., Bohn et al., 2013; Feld et al., 2013).  Qsi error ranges spanned errors 310 

in empirical methods (Bohn et al., 2013), radiative transfer models (Jing and Cess, 1998), 311 

satellite-derived products (Jepsen et al., 2012), and NWP models (Niemelä et al., 2001b).  Qli 312 

error ranges spanned errors in empirical methods (Bohn et al., 2013; Flerchinger et al., 2009; 313 

Herrero and Polo, 2012) and NWP models (Niemelä et al., 2001a). 314 

 315 

P error ranges spanned both undercatch (e.g., Rasmussen et al., 2012) and wind drift/scour errors 316 

in NB, NB+RE, and UB, but only undercatch errors in NB_gauge.  We assumed that P biases 317 

due to gauge undercatch in NB_gauge ranged from -10% to +10% because Meyer et al. (2012) 318 

found 95% of SNOTEL sites (often in forest clearings) had observations of accumulated P 319 

within 20% of peak SWE.  Results of NB, NB+RE, and UB were thus most relevant to areas 320 

with prominent snow redistribution (e.g., alpine zone), whereas NB_gauge results were more 321 

relevant to areas with minimal wind drift errors.  It could be argued that uncertainty due to snow 322 

drift processes is a structural issue and not a source of forcing error; however, this distinction 323 

depends strongly on what type of model is considered.  This process is clearly a structural 324 

component for snow models with explicit (e.g., three dimensional models with dynamic wind 325 
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transport, Lehning et al., 2006) or implicit (one dimensional models with probabilistic subgrid 326 

snow variability routines, e.g., Clark et al., 2011a) treatment of snow redistribution.  However, 327 

when a one dimensional snow model is applied at length scales shorter than drift process length 328 

scales (as assumed here with UEB), then it is not possible to account for snow drift in a structural 329 

sense.  Therefore, we treat drifting snow as a form of precipitation error in NB, NB+RE, and UB.  330 

Because UEB lacks dynamic wind redistribution, accumulation uncertainty was not linked to U 331 

errors but instead to P errors (e.g., drift factor, Luce et al., 1998). 332 

 333 

In contrast, scenario NB_lab assumed laboratory levels of uncertainty (i.e., measurement 334 

accuracy) for each forcing.  Skiles et al. (2012) considered a similar scenario in their sensitivity 335 

analysis of the SNOBAL model (Marks and Dozier, 1992; Marks et al., 1992) to instrument 336 

accuracy at SASP, finding a 5 day range in uncertainty in modeled snow disappearance, with 337 

longwave uncertainty having the greatest impact.  An emerging sensitivity analysis (Sauter and 338 

Obleitner, 2015) with the CROCUS model (Brun et al., 1992) applied on the Kongsvegen 339 

Glacier (Svalbard) indicates that longwave measurement uncertainty has an approximately 340 

comparable effect on modeled snow depth as ±25% precipitation uncertainty, but is the most 341 

dominant influence on the modeled energy balance and turbulent heat flux (relative to the 342 

measurement uncertainty of other forcings).  Here we build on these efforts to examine how 343 

instrument accuracy impacts modeled snow variables in a variety of seasonal snow climates.  In 344 

general, laboratory uncertainty levels vary with the type and quality of sensors, as well as related 345 

accessories (e.g., radiation shield for the temperature sensor), which we did not explicitly 346 

consider.  Because the actual sensors available varied between sites (Table 1) and we needed 347 

consistent errors across sites within scenario NB_lab, we assumed that the manufacturers’ 348 

specified accuracy of meteorological sensors at a typical SNOTEL site were representative of 349 

minimum uncertainties in forcings because of the widespread use of SNOTEL data in snow 350 

studies.  While we used the specified accuracy for idealized P measurements in NB_lab, we note 351 

that the instrument uncertainty of ±3% was likely unrepresentative of errors likely to be 352 

encountered.  For example, corrections applied to the P data (see Sec. 2) exceeded this 353 

uncertainty by factors of 3 to 20. 354 

 355 
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3.3. Sensitivity analysis 356 

Numerous approaches that explore uncertainty in numerical models have been developed in the 357 

literature of statistics (Christopher Frey and Patil, 2002), environmental modeling (Matott et al., 358 

2009), and optimization/calibration of hydrology and earth systems models (Beven and Binley, 359 

1992; Duan et al., 1992; Kavetski et al., 2002, 2006a, 2006b; Kuczera et al., 2010; Razavi and 360 

Gupta, 2015; Song et al., 2015; Vrugt et al., 2008a, 2008b).  Among these, global sensitivity 361 

analysis is an elegant platform for testing the impact of input uncertainty on model outputs and 362 

for ranking the relative importance of inputs while considering co-existing sources of 363 

uncertainty.  Global methods are ideal for non-linear models (e.g., snow models).  The Sobol′ 364 

(1990, hereafter Sobol') method is a robust global method based on the decomposition of 365 

variance (see below).  We investigate Sobol’, as it is often the baseline for testing sensitivity 366 

analysis methods (Herman et al., 2013; Li et al., 2013; Rakovec et al., 2014; Tang et al., 2007). 367 

 368 

3.3.1. Overview: model conceptualization and sensitivity 369 

One can visualize any hydrology or snow model (e.g., UEB) as: 370 

),M( θFY   (1) 371 

where Y is a matrix of model outputs (e.g., SWE), M( ) is the model operator, F is a matrix of 372 

forcings (e.g., Tair, P, U, etc.), and θ is an array of model parameters (e.g., Table 2).  The goal of 373 

sensitivity analysis is to determine which input factors (F and θ) are most important to specific 374 

outputs (Y) (Matott et al., 2009).  Sensitivity analyses tend to focus more on the model parameter 375 

array (θ) than on the forcing matrix (Foglia et al., 2009; Herman et al., 2013; Li et al., 2013; 376 

Nossent et al., 2011; Rakovec et al., 2014; Rosero et al., 2010; Rosolem et al., 2012; Tang et al., 377 

2007; van Werkhoven et al., 2008).  Here, we extend the sensitivity analysis framework to 378 

forcing uncertainty by creating k new parameters (ϕ1, ϕ2, … ϕk) that specify forcing uncertainty 379 

characteristics (Vrugt et al., 2008b) and reformulate equation 1 as: 380 

 ,,θFY M  (2) 381 
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By fixing the original model parameters (Table 2), we focus solely on the influence of forcing 382 

errors on model output (Y).  Note it is possible to consider uncertainty in both forcings and 383 

parameters in this framework. 384 

 385 

3.3.2. Sobol’ sensitivity analysis 386 

Sobol’ sensitivity analysis uses variance decomposition to attribute output variance to input 387 

variance.  First-order and higher-order sensitivities can be resolved; here, only the total-order 388 

sensitivities were examined (see below) for clarity and because the resulting first-order 389 

sensitivity indices were typically comparable to the total-order sensitivity indices (e.g., 83% of 390 

all cases had total-order and first-order indices within 10% of each other), suggesting minimal 391 

error interactions.  The Sobol’ method is advantageous in that it is model independent, can 392 

handle non-linear systems, and is among the most robust sensitivity methods (Saltelli and 393 

Annoni, 2010; Saltelli, 1999).  The primary limitation of Sobol’ is that it is computationally 394 

intensive, requiring a large number of samples to account for variance across the full parameter 395 

space.  A key assumption to the Sobol’ approach is that the factors are independent; hence, our 396 

analysis does not consider cases of correlated errors (e.g., a positive measurement bias in Tair that 397 

causes a negative RH bias).  Below, we provide a brief summary of the Sobol’ sensitivity 398 

analysis methodology but note that further details can be found in Saltelli et al. (2010). 399 

 400 

3.3.3. Sensitivity indices and sampling 401 

Within the Sobol’ global sensitivity analysis framework, the total-order sensitivity index (STi) 402 

describes the variance in model outputs (Y) due to a specific forcing error (ϕi), including both 403 

unique (i.e., first-order) effects and all interactions with all other parameters: 404 

V(Y)

)]|V[(E(Y

V(Y)

|E[V(Y
S ii

Ti
~~ 1

)] 
  (3) 405 

where E is the expectation (i.e., average) operator, V is the variance operator, and ϕ~i signifies all 406 

parameters except ϕi.  The latter expression defines STi as the variance remaining in Y after 407 

accounting for variance due to all other parameters (ϕ~i).  STi values have a range of [0, 1].  408 

Interpretation of STi values was straightforward because they explicitly quantified the variance 409 
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introduced to model output by each parameter (i.e., forcing errors).  As an example, an STi value 410 

of 0.7 for bias parameter ϕi on output Yj indicates 70% of the output variance was due to bias in 411 

forcing i (including unique effects and interactions). 412 

 413 

A number of numerical methods are available for evaluating sensitivity indices, and most adopt a 414 

Monte-Carlo approach (Saltelli et al., 2010).  Evaluation of Eq. (3) requires two sampling 415 

matrices, which we refer to as matrices A and B (Fig. 2a).  To construct A and B, we first 416 

specified the number of samples (N) in the parameter space and the number of parameters (k), 417 

depending on the error scenario (Table 3).  Selecting sampling points for these two matrices was 418 

achieved using the quasi-random Sobol’ sequence (Saltelli and Annoni, 2010).  The sequence 419 

can be approximated as a uniform distribution in the range [0, 1].  Figure 2a shows an example 420 

Sobol’ sequence in two dimensions.  For each scenario and site, we generated a (N x 2k) Sobol’ 421 

sequence matrix with quasi-random numbers in the [0, 1] range, and then divided it in two parts 422 

such that matrices A and B were each distinct (N x k) matrices.  Calculation of STi required 423 

perturbing factors; therefore, a third Sobol’ matrix (AB) was constructed from A and B.  In matrix 424 

AB, all columns were from A, except the ith column, which was from the ith column of B, 425 

resulting in a (kN x k) matrix (Fig. 2a).  Sec. 3.3.5 provides specific examples of this 426 

implementation.  From Eq. (3), we compute STi as (Jansen, 1999; Saltelli et al., 2010): 427 
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where f(A) is the model output evaluated on the A matrix, f(A
(i)

B) is the model output evaluated 429 

on the AB matrix where the ith column is from the B matrix, and i designates the parameter of 430 

interest.  Evaluation of STi required N(k+2) simulations at each site and scenario. 431 

 432 

3.3.4. Bootstrapping of sensitivity indices 433 

To test the reliability of STi, we used bootstrapping with replacement across the N(k+2) outputs, 434 

similar to Nossent et al. (2011).  The mean and 95% confidence interval were calculated using 435 

the Archer et al. (1997) percentile method and 10 000 samples.  For all cases, final STi values 436 

were close to the mean bootstrapped values (i.e., 99% had a difference less than 0.001 and no 437 
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difference was greater than 0.003), suggesting convergence.  Thus, we report only the mean and 438 

95% confidence intervals of the bootstrapped STi values. 439 

 440 

3.3.5. Workflow and error introduction 441 

Figure 2 shows the workflow for creating the Sobol’ A, B, and AB matrices, mapping Sobol’ 442 

values to errors, applying errors to the original forcing data, executing the model and saving 443 

outputs, and calculating STi values.  The workflow was repeated at all sites and scenarios.  Each 444 

step is described in more detail below: 445 

 446 

Step 1) Generate an initial (N x 2k) Sobol’ matrix (with N and k values for each scenario, Table 447 

3), separate into A and B, and construct AB (Fig. 2a).  NB+RE had k=12 (six bias and six random 448 

error parameters).  All other scenarios had k=6 (all bias parameters). 449 

 450 

Step 2) In each simulation, map the Sobol’ value of each forcing error parameter (ϕ) to the 451 

specified error distribution and range (Fig. 2b, Table 3).  Here we treat the Sobol’ values as 452 

quantiles, which allows us to map the Sobol’ values to errors via different probability 453 

distributions.  For a uniform distribution, the quantile value scales linearly between the specified 454 

lower and upper error ranges (Fig. 2b).  This linear scaling is not possible for normal (or 455 

lognormal) distributions (due to differences in distribution shape) and we therefore map the 456 

quantile values to normal (or lognormal) distributions scaled within the specified range.  We 457 

begin by generating a probability distribution of random numbers with specified mean=0 and 458 

standard deviation of 1 for the case of a normal distribution, and with specified mean=20 and 459 

standard deviation of 0.5 for the case of a lognormal distribution.  The random numbers of the 460 

distribution are normalized in the [0, 1] range by subtracting the minimum value and dividing by 461 

the maximum value, and then quantiles of these normalized values are computed.  The final step 462 

of the mapping is to multiply the normalized quantile by the specified range of uncertainty and 463 

adding the lower bound value.  For example, a Qsi bias parameter of ϕ=0.75 (quantile value) in 464 

the [-100 W m
-2

, +100 W m
-2

] range would map to a Qsi bias of +50 W m
-2 

when assuming a 465 

uniform probability distribution but only +14 W m
-2

 when assuming a normal distribution.  For 466 
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context, a bias parameter of +50 W m
-2

 or higher has about a 25% probability of occurring in the 467 

uniform distribution but only 2% in the normal distribution. 468 

 469 

Step 3) In each simulation, perturb (i.e., introduce artificial errors) the observed time series of the 470 

ith forcing (Fi) with bias (all scenarios), or both bias and random errors (NB+RE only) (Fig. 2c): 471 

    iiREiiBiiiBii RcbFbFF ,,, 1'    (5) 472 

where F’i is the perturbed forcing time series, ϕB,i is the bias parameter for forcing i, bi is a binary 473 

switch indicating multiplicative bias (bi=1) or additive bias (bi=0), ϕRE,i is the random error 474 

parameter for forcing i, R is a time series of randomly distributed noise (normal distribution, 475 

mean=0) scaled in the [-1, 1] range, and ci is a binary switch indicating whether random errors 476 

are introduced (ci=1 in scenario NB+RE and ci=0 in all other scenarios).  For Tair, U, RH, Qsi, and 477 

Qli, bi=0; for P, bi=1.  The decision to treat biases as multiplicative for P but additive for all 478 

other forcings was made based on practical considerations (e.g., multiplicative bias in Tair are 479 

difficult to interpret) and on convention of past studies that report forcing errors.  However, we 480 

note this is somewhat subjective, as errors in some forcings (e.g. radiation) have been reported in 481 

both conventions.  For P, U, and Qsi, we restricted random errors to periods with positive values.  482 

We checked F’i for non-physical values (e.g., negative Qsi) and set these to physical limits.  This 483 

was most common when perturbing U, RH, and Qsi; negative values of perturbed P only 484 

occurred when random errors were considered (Eq. 5).  Due to this resetting of non-physical 485 

errors, the error distribution was truncated (i.e., it was not always possible to impose extreme 486 

errors).  Additional tests (not shown) suggested that distribution truncation changed sensitivity 487 

indices minimally (i.e., <5%), and thus we assumed this truncation did not alter the relative 488 

ranking of forcing errors. 489 

 490 

Step 4) Input the N(k+2) perturbed forcing datasets into UEB (Fig. 2d).  At each site, NB+RE 491 

required 140 000 simulations, whereas the other four scenarios each required 80 000 simulations, 492 

for a total of 1 840 000 simulations in the analysis.  The doubling of k in NB+RE did not result 493 

in twice as many simulations because the number of simulations scaled as N(k+2). 494 

 495 
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Step 5) Save the model outputs for each simulation (Fig. 2e).  The outputs included daily time 496 

series of SWE, and four summary outputs including peak SWE, mean ablation rate, snow 497 

disappearance date, and total snow sublimation.   498 

 499 

Step 6) Calculate STi for each forcing error parameter and model output (Fig. 2f) based on Sect. 500 

3.3.3-3.3.4.  Prior to calculating STi, we screened the model outputs for cases where UEB 501 

simulated too little or too much snow (which can occur with perturbed forcings); this was an 502 

essential step to ensure meaningful results.  Other studies (e.g., Pappenberger et al., 2008) have 503 

also applied screening methods to model output prior to calculating sensitivity indices.  For a 504 

valid simulation, we required a minimum peak SWE of 50 mm, a minimum continuous snow 505 

duration of 15 days, and identifiable snow disappearance.  We rejected samples that did not meet 506 

these criteria to avoid meaningless or undefined metrics (e.g., peak SWE in ephemeral snow or 507 

snow disappearance for a simulation that did not melt out).  The number of rejected samples 508 

varied with site and scenario (Table 4).  On average, 94% passed the requirements.  All cases had 509 

at least 86% satisfactory samples, except in UB at SASP, where only ~34% met the 510 

requirements.  In this case, the most common reason for rejecting a simulation was that too much 511 

snow was simulated, such that it never disappeared by the end of the model run.  The rejected 512 

runs were characterized by high (positive) precipitation biases and low (negative) biases in Tair, 513 

Qsi, and Qli.  Despite this attrition, STi values still converged in all cases. 514 

 515 

4. Results 516 

4.1. Propagation of forcing uncertainty to model outputs 517 

Figure 3 shows density plots of daily SWE from UEB at the four sites and five forcing error 518 

scenarios (Fig. 1, Table 3), while Fig. 4 summarizes the model outputs.  As a reminder, NB 519 

assumed normal (or lognormal) biases at field level uncertainty.  The other scenarios were the 520 

same as NB, except NB+RE considered both biases and random errors, UB considered uniform 521 

distributions, NB_gauge considered gauge undercatch biases in precipitation, and NB_lab 522 

considered lower error magnitudes in all forcings (i.e., laboratory level uncertainty). 523 

 524 
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Large uncertainties in SWE were evident, particularly in NB, NB+RE, and UB (Fig 3.a-l).  The 525 

large range in modeled SWE within these three scenarios often translated to large ranges in mean 526 

ablation rates (Fig 4.e-h), snow disappearance dates (Fig 4.i-l) and total sublimation (Fig 4.m-p).  527 

In contrast, SWE and output uncertainties in NB_gauge and NB_lab were comparatively small 528 

(Fig. 3m-t and Fig. 4).  Model output ranges were generally larger in NB_gauge than NB_lab.  529 

The envelope of SWE simulations in NB_lab more tightly encompassed observed SWE at all 530 

sites, except during early winter at IC (Fig. 3m), which was possibly due to initial P data quality 531 

and redistribution of snow to the snow pillow site. 532 

 533 

NB and NB+RE generally yielded similar SWE density plots (Fig. 3a-h), but NB+RE yielded a 534 

slightly higher frequency of extreme SWE simulations.  NB and NB+RE also had very similar 535 

(but not equivalent) mean outputs values and ensemble spreads at all sites except IC (Fig. 4).  536 

This initial observation suggested that random errors in the forcings had minimal impact on 537 

model behavior at CDP, RME, and SASP.  NB+RE and NB model outputs were slightly 538 

different at IC (particularly for the ablation rates), indicating that random errors had some 539 

influence there, and this was possibly due to the low snow accumulation (~200 mm peak SWE 540 

observed) at that site and brief snowmelt season (less than 10 days in the observations). 541 

 542 

NB and UB yielded generally very different model outputs (Fig. 3 and Fig. 4).  The only 543 

difference in these two scenarios was the assumption regarding error distribution (Table 3).  544 

Uniformly distributed forcing biases (scenario UB) yielded a relatively uniform ensemble of 545 

SWE simulations (Fig. 3i-l), larger mean values of peak SWE and ablation rates, and later snow 546 

disappearance, as well as larger uncertainty ranges in all outputs.  At some sites, UB also had a 547 

higher frequency of simulations where seasonal sublimation was negative (i.e., condensation). 548 

 549 

Contrasting NB and NB_gauge, NB_gauge had a lower uncertainty range in SWE and slightly 550 

higher mean peak SWE at all sites (Fig. 3 and Fig. 4).  With the exception of RME, the ranges in 551 

ablation rates in NB_gauge were at least 50% smaller than in NB (Fig. 4 e-h).  Snow 552 
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disappearance ranges were marginally smaller in NB_gauge relative to NB (Fig. 4i-l).  Finally, 553 

sublimation ranges were very similar between NB and NB_gauge (Fig. 4m-p). 554 

 555 

Relative to NB, NB_lab had smaller uncertainty ranges in all model outputs (Fig. 3 and Fig. 4), 556 

an expected result given the lower magnitudes in forcing errors in NB_lab (Table 3).  Likewise, 557 

NB_lab SWE simulations were generally less biased than NB, relative to observations (Fig. 3).  558 

NB_lab generally had higher mean peak SWE and ablation rates, and later mean snow 559 

disappearance timing than NB (Fig 4). 560 

 561 

4.2. Model sensitivity to forcing error characteristics 562 

Total-order sensitivity indices (STi) were calculated for four summary variables of model output 563 

(peak SWE, mean ablation rates, snow disappearance dates, and total sublimation) and for daily 564 

SWE output at all sites and error scenarios.  Examination of the total-order indices with sample 565 

size indicated that most indices stabilized after evaluating the model at 3 000 to 5 000 samples 566 

(no figures shown).  Below we sequentially compare sensitivity indices from different scenarios 567 

to scenario NB to test the impact of differences in error characteristics (type, probability 568 

distribution, and magnitudes). 569 

 570 

4.2.1. Impact of error types 571 

We first focus on sensitivity to forcing bias, as this error type was common to scenarios NB and 572 

NB+RE.  Figure 5 shows the computed total-order sensitivity indices from the two scenarios 573 

(with sensitivities to biases and random errors shown separately in NB+RE).  Both NB and 574 

NB+RE showed that UEB peak SWE was most sensitive to P bias at all sites (Fig.5a-d).  In both 575 

scenarios, P bias was also the most important factor for ablation rates and snow disappearance at 576 

all sites (Fig. 5e-l).  For ablation rates in NB, Tair bias was the next most important factor (after P 577 

bias) at CDP, while biases in Qsi and Qli were secondarily important at RME (Fig.5f-g).  For 578 

ablation rates at IC in NB+RE, most types of errors had some baseline influence (i.e., STi≥0.5) on 579 

model sensitivity (Fig. 5e).  In both NB and NB+RE, biases in the radiation terms were of 580 

secondary importance to snow disappearance timing (Fig. 5i-k).  In contrast to the other three 581 
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model outputs, sublimation in NB and NB+RE was insensitive to P bias and the most important 582 

factors varied somewhat between sites and scenarios (Fig. 5m-p).  In both scenarios, sublimation 583 

was most sensitive to RH bias at IC and U bias at SASP.  At CDP and RME, sublimation was 584 

most sensitive to RH bias in NB; however, in NB+RE, sublimation was most sensitive to Qli bias 585 

at CDP and to Tair bias at RME (Fig. 5n-o).  In both scenarios, biases in Tair, Qsi, or Qli were 586 

generally of secondary importance for sublimation. 587 

 588 

We hypothesized that the snow model outputs would have higher sensitivity to biases than to 589 

random errors in the forcings.  The results of our analysis generally supported this hypothesis.  590 

Across all outputs and sites, STi values for random errors were always less than or comparable to 591 

the smallest STi bias values, and the most important factor was always a bias term (Figure 5).  592 

Furthermore, there was typically high correspondence between NB and NB+RE (bias terms 593 

only) in terms of identifying the most important forcing error (e.g., P bias in peak SWE and 594 

ablation rates at all sites, Fig. 5a-h).  The main exceptions were snow disappearance at IC (Fig. 595 

5i), and sublimation at CDP and RME (Fig. 5n-o), where the two scenarios identified different 596 

errors as the most important factor.  However, even in these exceptional cases, the two scenarios 597 

yielded similar groupings of more important vs. least important errors.  For example, biases in 598 

Tair and RH were important to sublimation at RME in both scenarios (Fig. 5o), though they 599 

distinguished these sensitivities differently (i.e., NB found RH bias was more important whereas 600 

NB+RE found Tair bias was more important).   601 

 602 

While there was general correspondence between NB and NB+RE (bias terms), sensitivity 603 

indices were not identical across cases, due to interactions between biases and random errors in 604 

NB+RE.  Random errors changed model sensitivity to biases, and the change in sensitivity was 605 

more notable (i.e., absolute change exceeding 0.10) for ablation rates and snow disappearance at 606 

IC (Fig. 5e,i) and sublimation at all sites (Fig. 5m-p).  Random errors amplified model sensitivity 607 

to biases in some cases (e.g., U bias in all sublimation scenarios) but diminished model 608 

sensitivity to biases in other cases (e.g., RH bias in all sublimation scenarios).  Because 609 

consideration of second-order sensitivity indices was beyond the scope of the study, we were 610 
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unable to determine which specific interactions were important in terms of error types, and leave 611 

this topic for future work. 612 

 613 

4.2.2. Impact of probability distribution of errors 614 

We hypothesized that the assumed probability distribution of errors would alter the relative 615 

hierarchy of forcing biases.  However, the results did not consistently support this hypothesis 616 

(Fig. 6).  In all cases, scenarios NB and UB identified the same factor as the most important and 617 

similar factors as the least important at all sites.  Specifically, P bias was most important for peak 618 

SWE, ablation rates, and snow disappearance at all sites in both scenarios (Fig. 6a-l).  The only 619 

exception was in scenario UB at IC, where ablation rates had similar sensitivity to P bias and U 620 

bias.  In both scenarios, Tair bias was the second most important factor for peak SWE and 621 

ablation rates at the warmest site, CDP.  Both scenarios showed that RH bias was the least 622 

important factor to snow disappearance at all four sites (Fig. 6i-l).  Finally, both NB and UB 623 

showed that P bias was least important for sublimation (in contrast to the other model outputs) 624 

and that RH and U biases were among the most sensitive factors for sublimation (Fig. 6m-p).  625 

More specifically, sublimation was most sensitive to RH bias at IC, CDP, and RME, and U bias 626 

as SASP (Fig. 6m-p).   627 

 628 

For a few specific forcings and outputs, the selected probability distribution played a role in 629 

model sensitivity to that type of forcing bias.  For example, assumption of a uniform probability 630 

distribution (UB) for forcing errors enhanced the sensitivity of sublimation to U and RH biases 631 

but reduced sublimation sensitivity to Qsi and Qli biases at all sites (Fig. 6m-p).  In contrast, 632 

assuming a normal distribution (NB) of biases yielded the opposite results.  Additionally, 633 

modeled ablation rates at IC were notably more sensitive to forcing biases (precipitation 634 

excluded) in scenario UB than in NB. 635 

 636 

4.2.3. Impact of error magnitude 637 

We hypothesized that the relative magnitude of forcing errors would exert a strong control on 638 

model sensitivity.  Comparing NB to NB_gauge and to NB_lab generally supported this 639 
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hypothesis (Fig. 7).  The contrast in STi values between scenarios NB, NB_gauge, and NB_lab 640 

implied that the specified ranges of forcing errors was a critical determinant of model sensitivity. 641 

 642 

While P bias was the most important factor at all sites in NB for peak SWE, ablation rates, and 643 

snow disappearance, P bias was never the most important factor for these model outputs in 644 

NB_gauge, and in many cases was among the least important errors (Fig. 7a-l).  In NB_gauge, 645 

peak SWE was most sensitive to RH bias at IC, Tair bias at CDP and RME, and Qli bias at SASP 646 

(Fig. 7a-d).  Ablation rates in NB_gauge were most sensitive to Tair bias at CDP and to Qli bias at 647 

IC, RME, and SASP (Fig. 7e-h).  Snow disappearance was also most sensitive to Qli bias at all 648 

four sites in NB_gauge (Fig. 7i-l).  However, for sublimation at all sites, NB and NB_gauge 649 

yielded very similar sensitivities to forcing biases (Fig. 7m-p).  Specifically, in both NB and 650 

NB_gauge, modeled sublimation was most sensitive to RH bias at IC, CDP, and RME and to U 651 

bias at SASP (Fig. 7m-p).  The similarity in sublimation sensitivity indices between NB and 652 

NB_gauge emerged because these scenarios only differed in terms of P uncertainty (Table 3) and 653 

because P bias was not important to modeled sublimation.  The contrast between sensitivity 654 

indices in these two scenarios and for these four outputs illustrated that model sensitivity may 655 

depend on both the magnitudes of uncertainty for specific forcings and on the output of interest. 656 

 657 

Whereas NB_gauge demonstrated that reducing the magnitude of forcing uncertainty in one 658 

factor (i.e., precipitation) was sufficient to change which factors were most and least important, 659 

NB_lab showed that changing the magnitude of forcing uncertainty in all terms could yield a 660 

substantially different pattern of model sensitivity (Fig. 7).  As a primary example, scenarios NB 661 

and NB_lab did not agree whether P bias or Qli bias was the most important factor for peak 662 

SWE, ablation rates, and snow disappearance dates at all four sites (Fig. 7a-l).  For sublimation, 663 

NB_lab sensitivity indices indicated that Qli bias was most important, whereas RH bias (IC, 664 

CDP, and RME) and U bias (SASP) were most important in NB (Fig. 7m-p).  Across all sites 665 

and outputs in NB_lab, Qli bias was consistently the most important factor (Fig. 7).  In one sense, 666 

this was surprising, given that the bias magnitudes were lower for Qli than for Qsi (Table 3).  667 

However, the albedo of snow minimizes the amount of energy transmitted to the snowpack from 668 

Qsi, thereby rendering Qsi errors less important than Qli errors.  Additionally, the non-linear 669 
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nature of the model may enhance the role of Qli through interactions with other factors.  The 670 

general lack of importance in P bias in NB_lab (main exception was peak SWE at IC, Fig. 7a) 671 

was due to the discrepancy between the laboratory specified accuracy for P gauges and typical 672 

errors encountered in the field. 673 

 674 

4.2.4. Relative controls of forcing error characteristics on SWE sensitivity 675 

The above results sequentially compared sensitivity indices from different error scenarios to NB 676 

in order to ascertain how different assumptions regarding error types, distributions, and 677 

magnitudes translated to changes in model sensitivity.  To summarize the relative controls of 678 

these three forcing error characteristics on model sensitivity, we calculated daily sensitivity 679 

indices of modeled SWE to forcing biases at each site and scenario (Fig. 8).  We also examined 680 

the correspondence between changes in STi values and the timing within the snow season. 681 

 682 

Comparing the broad patterns in the time varying STi values across the five scenarios, it was 683 

evident that error magnitudes were the greatest determinant in model sensitivity to forcing errors 684 

through the snow season (compare Fig. 8a-l with Fig. 8m-t).  NB, NB+RE, and UB exhibited 685 

similar patterns, with high STi in P bias throughout the year and with the other forcing biases 686 

yielding low STi values in the winter and increasing STi values in the spring and early summer for 687 

some forcings (Fig. 8a-l).  In contrast, NB_gauge and NB_lab (Fig. 8m-t) had lower STi values 688 

for P bias, and more coherent changes in STi values that were more synchronized with the 689 

specific part of the snow season. 690 

 691 

After error magnitudes, the next most important determinant to model sensitivity was the 692 

probabilistic distribution of forcing errors (compare Fig. 8a-d and Fig. 8i-l).  Relative to NB, UB 693 

tended to yield lower STi values for P bias.  UB also had higher STi values for biases in Tair, Qli, 694 

and Qsi as time progressed at IC, CDP, and RME (Fig. 8i-k).  Finally, the addition of random 695 

errors was least important to model sensitivity, as the evolution of STi bias values was very 696 

similar between NB and NB+RE at most sites (compare Fig. 8a-d and Fig. 8e-h).  Random errors 697 
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mattered the most to modeled SWE at IC, but random errors only changed STi values (on 698 

average) by less than 10%. 699 

 700 

5. Discussion 701 

Here we examined the sensitivity of physically-based snow simulations to forcing error 702 

characteristics (i.e., types, probability distributions, and magnitudes) using Sobol’ global 703 

sensitivity analysis.  A key result is that among these three characteristics, the magnitude of 704 

biases had the most significant impact on UEB simulations (Figs. 3-4) and on model sensitivity 705 

(Figs. 7-8).  The assumed probability distribution of biases was important in that it increased the 706 

range of model outputs (compare NB and UB in Fig. 4), but surprisingly, this usually translated 707 

to only modest changes in model sensitivity to forcing errors (Figs. 6 and 8).  Random errors 708 

were usually less important than biases.  Although random errors changed model sensitivity to 709 

biases through error interactions, this effect was only large in specific conditions (e.g., ablation 710 

rates at IC, Fig. 5e), and the snow model was never more sensitive to random errors than to 711 

biases (Fig. 5).  Below we discuss these three error characteristics (in order of importance, as 712 

suggested by the results), place forcing errors in the context of structural uncertainty, and 713 

identify limitations of the analysis and future research directions. 714 

 715 

5.1. Ranges of error magnitudes 716 

The results supported our hypothesis that the magnitude of biases strongly influences the relative 717 

importance of forcing errors.  The three magnitudes of uncertainty considered (NB, NB_gauge, 718 

and NB_lab) all resulted in different patterns in model sensitivity to forcing biases, and these 719 

patterns also varied with the output of interest (Fig. 7).  Modeled peak SWE, ablation rates, and 720 

snow disappearance were consistently sensitive to P bias in scenario NB and to Qli bias in 721 

scenario NB_lab, but there was less consistency in the dominant forcing errors across these three 722 

outputs in scenario NB_gauge.  While peak SWE, ablation rates, and snow disappearance dates 723 

had similar sensitivities to forcing errors (particularly to P biases), sublimation exhibited notably 724 

different sensitivity to forcing errors.  P bias was frequently the least important factor for 725 

sublimation, in contrast to the other model outputs.  Biases in RH, U, and Tair were often the 726 
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major controls on modeled sublimation in NB, NB+RE, UB, and NB_gauge, while Qli bias 727 

controlled modeled sublimation in NB_lab.  These field results partially agree with the 728 

sensitivity analysis of Lapp et al. (2005), who showed the most important forcings for 729 

sublimation in the Canadian Rockies were U and Qsi.  However, they did not consider Qli in their 730 

sensitivity analysis and so the experiments are not exactly comparable.  These results suggest 731 

that no single forcing is important across all modeled variables, and model sensitivity strongly 732 

depends on the output of interest. 733 

 734 

The dominant effect of P bias on modeled peak SWE, ablation rates, and snow disappearance in 735 

the field scenarios (e.g., NB) confirmed previous reports that P uncertainty is a major control on 736 

snowpack dynamics (Durand and Margulis, 2008; He et al., 2011b; Schmucki et al., 2014).  It 737 

was surprising that P bias was often the most critical forcing error for ablation rates in these 738 

scenarios (Fig. 5-6).  Prior investigations into the relative importance of forcings to ablation were 739 

typically framed for a snowpack at the end of winter, such that P uncertainty was not considered 740 

(e.g., Zuzel and Cox, 1975).  The results here showed that ablation rates were highly sensitive to 741 

P bias and this is likely because it controlled the timing and length of the ablation season.  742 

Positive P bias extends the fraction of the ablation season in the warmest summer months when 743 

ablation rates and radiative energy approach maximum values, whereas negative P bias truncates 744 

the fraction of ablation in the warm season.  Trujillo and Molotch (2014) reported a similar result 745 

based on SNOTEL observations. 746 

 747 

The contrast between scenarios NB, NB_gauge, and NB_lab highlights that selection of the error 748 

ranges is a critical step in sensitivity analysis.  However, we recognize that there is some 749 

subjectivity in the specification of these ranges.  Quantification of errors in forcing estimation 750 

methods is best achieved through comparisons with surface observations (e.g., Bohn et al., 2013; 751 

Flerchinger et al., 2009), but it remains challenging to specify error ranges with confidence 752 

(Song et al., 2015).  Key considerations controlling the ranges and impacts of forcing errors 753 

include the representativeness of the forcing data (e.g., reanalysis, numerical weather model 754 

output, extrapolated surface measurements, etc.) in the study area, the length scale of dominant 755 

processes (e.g., snow drifting), and the configuration of the snow model (e.g., spatial scale, 756 
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complexity).  Here we selected ranges in the field scenarios to encompass errors encountered 757 

across a variety of possible forcing data sources (Table 3), but ultimately the appropriate ranges 758 

must be tailored to the specific application.  This supports the need for continual evaluation of 759 

forcing datasets across a variety of climates and environmental conditions. 760 

 761 

5.2. Probability distribution of errors 762 

The results did not universally support our hypothesis that the assumed probability distribution 763 

of biases was important to the relative ranking of forcing errors.  The relative consistency in the 764 

dominant forcing errors between NB and UB may have emerged because the probability 765 

distributions of all six forcing biases varied together between these two scenarios (i.e., all forcing 766 

biases were uniform in UB and either normal or lognormal in NB).  While we did not conduct 767 

additional tests, we suspect that changing the probability distribution of just a single forcing error 768 

(e.g., Tair bias) from normal to uniform would have uniquely enhanced model sensitivity to that 769 

particular forcing error (Touhami et al., 2013). 770 

 771 

The similarity of results between scenarios NB and UB conform to findings in previous studies 772 

(e.g., Foscarini et al., 2010; Touhami et al., 2013) where uniform and normal distributions 773 

identified similar factors as the most important.  These previous studies imply that greater 774 

differences in sensitivity indices (as a function of distribution) will emerge when factor 775 

interactions are more prominent.  The case with the strongest error interactions here (i.e., 776 

ablation rates at IC) also yielded the largest differences in sensitivity indices between scenarios 777 

NB and UB, which is consistent with the prevailing logic. 778 

 779 

5.3. Error types 780 

The results were consistent with our hypothesis that the snow model is more sensitive to biases 781 

than to random errors in the forcings.  While previous investigations supported this idea for 782 

shortwave and longwave forcings in physically based snow models (i.e., Lapo et al., 2015), the 783 

current study showed that biases are more important than random errors for all commonly 784 

required meteorological forcings (and not just irradiances).  The model was more sensitive to 785 
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biases and less sensitive to random errors due to the systematic nature of biases.  In contrast, the 786 

effect of random errors tended to cancel out when integrating model outputs over long periods.   787 

Our selected model outputs were generally a function of several months of mass and energy 788 

exchange in the snowpack, thereby ensuring minimization of effects from random errors.  789 

Random errors only had a greater impact on ablation rates at IC (Fig. 5e), and this was because 790 

the relatively brief snowmelt period presented an opportunity for the random errors to not cancel 791 

out.  Hence, the model may have greater sensitivity to random errors for other model outputs not 792 

considered here that integrate over relatively short time scales (e.g., snowmelt over a single day). 793 

 794 

5.4. Contextualizing forcing and structural uncertainties 795 

Our central argument at the onset was that forcing uncertainty may be comparable to parametric 796 

and structural uncertainty in snow-affected catchments.  To support our argument and to place 797 

our results in context, we compare our results at CDP in 2005-2006 to Essery et al. (2013), who 798 

assessed the impact of structural uncertainty in a suite of local snowpack processes (i.e., snow 799 

compaction, fresh snow density, snow albedo evolution, surface heat and moisture fluxes, snow 800 

cover fraction, snow hydrology, and thermal conductivity) on SWE simulations from 1701 801 

physically based snow models at the same site/year.  Figure 9 compares the 95% uncertainty 802 

ranges in peak SWE, ablation rates, and snow disappearance in NB, NB_gauge, and NB_lab to 803 

the ranges found across the 1701 snow models of Essery et al. (2013).  From the comparisons at 804 

this site, it is clear that the uncertainty associated with drifting snow (i.e., scenario NB) 805 

overwhelms the structural uncertainty in local snowpack processes for all three model outputs.  806 

As discussed previously, it could be argued that the uncertainty due to drifting snow is a 807 

structural issue (not a forcing issue) and that this does not represent the uncertainty of sheltered 808 

areas where drifting snow less important.  Hence, NB_gauge may be a better determinant of the 809 

level of uncertainty that can be attributed unambiguously to errors in forcing data.  In that case, 810 

the output uncertainty range due to model forcing is still larger than that due to the structural 811 

uncertainty (as considered by Essery et al., 2013) in the cases of peak SWE and snow 812 

disappearance but is smaller for ablation rates (Fig. 9).  As expected, the case of forcing 813 

uncertainty in NB_lab yields the lowest range in model outputs at CDP (Fig. 9), though it is 814 

interesting to note that the uncertainty in peak SWE due to structural uncertainty (90 mm) is only 815 
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marginally larger than that due to the specified instrument accuracy (60 mm).  These 816 

comparisons illustrate that forcing uncertainty cannot be discounted, and the magnitude of 817 

forcing uncertainty is a critical factor in how forcing uncertainty compares to other sources of 818 

uncertainty (e.g., structural).  This resonates with the recent work of Magnusson et al. (2015) 819 

who found that uncertainty in the P forcing was a greater determinant of model performance than 820 

structural considerations.  821 

 822 

5.5. Caveats and future research 823 

Limitations of the analysis are that the impact of forcing error characteristics on model behavior 824 

is evaluated through the lens of a single sensitivity analysis method and a single snow model.  It 825 

is possible that alternative sensitivity analysis methods might yield different results than the 826 

Sobol’ method, as suggested in previous studies (e.g., Pappenberger et al., 2008).  Likewise, we 827 

recognize it is possible that different snow models may yield different sensitivities to forcing 828 

uncertainty.  As one example, both Koivusalo and Heikinheimo (1999) and Lapo et al. (2015) 829 

found UEB (Tarboton and Luce, 1996) and the SNTHERM model (Jordan, 1991) exhibited 830 

significant differences in radiative and turbulent heat exchange.  As another example, the role of 831 

U bias on snowpack formation may vary strongly depending on the snow model configuration.  832 

Because of the lack of wind transport in UEB, we lumped snow drift uncertainty into P 833 

uncertainty via a “drift factor” formulation (Luce et al., 1998) and this could not account for the 834 

role of wind in snow drift/scour processes (Mott and Lehning, 2010; Winstral et al., 2013).  This 835 

convention would be unnecessary for a model that explicitly models this process (e.g., the 836 

SNOWPACK model, Lehning et al., 2006), and for this type of model we would expect the role 837 

of U bias to be enhanced (relative to UEB) for outputs such as peak SWE and snow 838 

disappearance timing.  While sensitivity may vary with model selection in these examples, there 839 

is also evidence suggesting that similar results may emerge when using different snow models 840 

for a similar type of error scenario.  Despite using different models, a somewhat different suite of 841 

forcing variables, and slightly different error ranges, our NB_lab experiment corroborated 842 

independent reports that Qli measurement uncertainty was most important to both modeled snow 843 

disappearance (Skiles et al., 2012) and sublimation/latent heat exchange (Sauter and Obleitner, 844 

2015).  Our analysis demonstrated this result was consistent across four snow climates and this 845 
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result was apparent in four different model outputs (Fig. 7).  The implication here is that more 846 

work is needed to better understand how different snow models respond to forcing uncertainty. 847 

 848 

Generalizing the relationship between model sensitivity and site climate is a research topic of 849 

high interest.  Although we found similarities in model sensitivity to specific forcing errors 850 

across sites (e.g., high sensitivity to P bias in peak SWE, ablation rates, and snow disappearance 851 

in NB, NB+RE, and UB, Fig. 8a-l), we note that the sites exhibited some differences in 852 

sensitivity when P uncertainty was reduced to gauge levels (Fig. 8m-p).  Additionally, the sites 853 

exhibited differences in the relative importance of secondary forcing errors (Fig. 6-7).  There 854 

may be interesting linkages between climate and model sensitivity, but we were unable to 855 

generalize relationships between site geo-characteristics and sensitivity indices because of the 856 

relatively low number of sites represented here (n=4 sites, 1 year each) and the confounding 857 

number of differences between sites.  A much larger population of snow measurement sites is 858 

required in order to test relationships between sensitivity indices and site characteristics, and this 859 

is an important avenue of future research.  A successful example of relating climate 860 

characteristics to sensitivity indices when many study sites and years are available can be found 861 

in van Werkhoven et al. (2008). 862 

 863 

While the Sobol’ method is often considered the “baseline” method in global sensitivity analysis, 864 

we note the limitation is that it comes at a relatively high computation cost (1 840 000 865 

simulations across four sites and five error scenarios) and it may be prohibitive for many 866 

modeling applications (e.g., for models of higher complexity and dimensionality).  For context, 867 

the typical time required for a single simulation was 1.4 seconds, resulting in a total 868 

computational expense of 720 hours (30 days) across all scenarios.  Examination of the 869 

convergence rates indicated that most sensitivity indices stabilized after one-third of the 870 

simulations completed, and hence the same results could have been found using significantly 871 

fewer simulations (no figures shown).  Ongoing research is developing new sensitivity analysis 872 

methods that compare well to Sobol’ but with reduced computational demands (e.g., FAST, 873 

Cukier, 1973; method of Morris, 1991; DELSA, Rakovec et al., 2014), and is comparing how 874 

different methods classify sensitive factors differently (Pappenberger et al., 2008; Tang et al., 875 
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2007).  We expect that detailed sensitivity analyses that concurrently consider uncertainty in 876 

forcings, parameters, and structure in a hydrologic model will be more feasible in the future with 877 

better computing resources and advances in sensitivity analysis methods. 878 

 879 

The question remains: “what can be done about forcing errors in hydrologic modeling?”  First, 880 

the results suggest model-based hypothesis testing must account for uncertainties in forcing data.  881 

The results also highlight the need for continued research in constraining P uncertainty in snow-882 

affected catchments.  Progress is being achieved with advanced pathways for quantifying 883 

snowfall precipitation, such as NWP models (Rasmussen et al., 2011, 2014) and through 884 

systematic intercomparisons of precipitation and snow gauges (e.g., Solid Precipitation 885 

Intercomparison Experiment, http://www.rap.ucar.edu/projects/SPICE/).  However, in a broader 886 

sense, the hydrologic community should also consider whether deterministic forcings (i.e., single 887 

time series for each forcing) are a reasonable practice for physically-based models, given the 888 

large uncertainties in both future (e.g., climate change) and historical data (especially in poorly 889 

monitored catchments) and the complexities of hydrologic systems (Gupta et al., 2008).  We 890 

suggest that probabilistic model forcings (e.g., Clark and Slater, 2006), which have a legacy in 891 

data assimilation methods (e.g., precipitation uncertainty, Durand and Margulis, 2007), present 892 

one potential path forward where measures of forcing uncertainty can be explicitly included in 893 

the forcing datasets.  The challenges are (1) to ensure statistical reliability in our understanding 894 

of forcing errors and (2) to assess how best to input probabilistic forcings into current model 895 

architectures. 896 

 897 

6. Conclusions 898 

Application of the Sobol’ sensitivity analysis framework across sites in contrasting snow 899 

climates reveals that forcing uncertainty can significantly impact model behavior in snow-900 

affected catchments.  Model output uncertainty due to forcings can be comparable to or larger 901 

than model uncertainty due to model structure.  Furthermore, this work demonstrates that 902 

sensitivity analysis can be applied to understand the role of specific error characteristics in model 903 

behavior.  Key considerations in model sensitivity to forcing errors are the magnitudes of forcing 904 

errors and the outputs of interest.  For the physically-based snow model tested, random errors in 905 

http://www.rap.ucar.edu/projects/SPICE/
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forcings are generally less important than biases, and the probability distribution of biases is 906 

relatively less important to model sensitivity than the magnitude of biases. 907 

 908 

The analysis shows how forcing uncertainty might be included in a formal sensitivity analysis 909 

framework through the introduction of new parameters that specify the characteristics of forcing 910 

uncertainty.  The framework could be extended to other physically based models and sensitivity 911 

analysis methodologies, and could be used to quantify how uncertainties in model forcings and 912 

parameters interact.  Based on this framework, it would be interesting to assess the interplay 913 

between co-existing uncertainties in forcing errors, model parameters, and model structure, and 914 

to test how model sensitivity changes relative to all three sources of uncertainty. 915 
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7. Tables 1384 

Table 1 Basic characteristics of the snow study sites, ordered from left-to-right by increasing elevation. 1385 

Site Name Imnavait Creek Col de Porte Reynolds Mountain East 

(sheltered site) 

Swamp Angel Study Plot 

Site ID IC CDP RME SASP 

Location Alaska, USA Rhône-Alpes, France Idaho, USA Colorado, USA 

Latitude (N) 68.62 45.30 43.07 37.91 

Longitude (E) -149.30 5.77 -116.75 -107.71 

Elevation (m) 930 1330 2060 3370 

Study Period (WY) 2011 2006 2007 2008 

Snow Climate Tundra Mountain  

(maritime) 

Mountain (intermountain) Mountain (continental) 

Sensors Tair: Vaisala HMP45C 

P: Campbell Scientific TE 525 

U: Met One 014A 

RH: Vaisala HMP45C 

Qsi: Kipp & Zonen CMA 6 

Qli: none (taken as residual 

from measurements of all other 

radiation components
A
) 

Tair: PT 100/4 wires 

P: PG2000, GEONOR 

U: Chauvin Arnoux Tavid 87 – 

non-heated 

RH: Vaisala HMP 45D 

Qsi: Kipp & Zonen CM14 

Qli: Eppley PIR 

Tair: Vaisala HMP 45 

P: Belfort Universal Gages 

U: Met One 013/023 

RH: Vaisala HMP 45 

Qsi: Eppley Precision Spectral 

Pyranometer 

Qli: Eppley PIR 

Tair: Vaisala CS500 

P: ETI Noah II 

U: RM Young Wind Monitor 

05103-5 

RH: Vaisala CS500 

Qsi: Kipp & Zonen CM21 

Qli: Kipp & Zonen CG-4 

Operators NRCS, CRREL, Ameriflux Météo-France Northwest Watershed Research 

Center, Agricultural Research 

Service 

Center for Snow and 

Avalanche Studies 

Oct-Dec Tair (°C) -16.1 2.0 0.2 -3.7 

Jan-Mar Tair (°C) -14.7 -1.6 -2.0 -8.7 

Apr-Jun Tair (°C) -1.4 8.9 8.4 2.7 

Oct-Mar P
B
 (mm) 200 690 480 1000 

Mean annual U (m s
-1

) 2.2 1.0 1.6 1.1 

A
 At IC, Qli was taken as Qli = Qnet – (Qsi – Qso) + (5.67 x 10

-8
) Tsurf

4
, where Qnet is measured net radiation (W m

-2
), Qsi is measured incoming shortwave radiation 1386 

(W m
-2

), Qso is measured reflected shortwave radiation (W m
-2

), and Tsurf is measured snow surface temperature (°C). 1387 

B
 Note that precipitation data were adjusted with a multiplier (see Section 2) prior to conducting the sensitivity analysis. 1388 

 1389 
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Table 2 UEB model parameters used across all simulations and sites 1390 

Description of parameter Units Value 

Rain threshold temperature °C +3.0 

Snow threshold temperature °C -1.0 

Snow emissivity -- 0.99 

Bulk snow density kg m
-3

 300 

Liquid water holding capacity fraction 0.05 

Snow saturated hydraulic conductivity m hr
-1

 20 

Visual new snow albedo -- 0.85 

Near infrared new snow albedo -- 0.65 

New snow threshold depth to reset albedo m 0.01 

Snow surface roughness m 0.005 

Forest canopy fraction fraction 0 

Ground heat flux W m
-2

 0 
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Table 3 Details of error types, distributions, and uncertainty ranges for the five scenarios.  Bold 1391 

face in the error type, distribution, and uncertainty range indicates defining characteristics, 1392 

relative to scenario NB. 1393 
Forcing Error 

TypeA 

DistributionB Range Units Citations and Notes 

Scenario NB (k=6, N=10000) 

Tair B Normal [-3.0, +3.0] °C Bolstad et al. (1998); Chuanyan et al. (2005); Fridley (2009); 

Hasenauer et al. (2003) 

P B Lognormal [-75, +300]C % Goodison et al. (1998); Luce et al. (1998); Rasmussen et al. 

(2012); Winstral and Marks (2002) 

U B Normal [-3.0, +3.0]  m s-1 Winstral et al. (2009) 

 

RH B Normal [-25, +25] % Bohn et al. (2013); Déry and Stieglitz (2002); Feld et al. 

(2013) 

Qsi B Normal [-100, +100]  W m-2 Bohn et al. (2013); Jepsen et al. (2012); Jing and Cess (1998); 

Niemelä et al. (2001b) 

Qli B Normal [-25, +25] W m-2 Bohn et al. (2013); Flerchinger et al. (2009); Herrero and Polo 

(2012); Niemelä et al. (2001a) 

 

Scenario NB+RE (k=12, N=10000) 

This scenario has six bias parameters (identical to NB above), plus the following six random error parameters 

Tair RE Normal |[0.0, 7.5]| °C Chuanyan et al. (2005); Fridley (2009); Hasenauer et al. 

(2003); Huwald et al. (2009); Phillips and Marks (1996) 

P RE Lognormal |[0.0, 25]| % Guan et al. (2005); Hasenauer et al. (2003); Hutchinson et al. 

(2009) 

U RE Normal |[0.0, 5]| m s-1 Cheng and Georgakakos (2011); Liston and Elder (2006); Luo 

et al. (2008); Winstral et al. (2009) 

RH RE Normal |[0.0, 15]| % Bohn et al. (2013); Liston and Elder (2006); Phillips and 

Marks (1996) 

Qsi RE Normal |[0.0, 160]| W m-2 Hasenauer et al. (2003); Jepsen et al. (2012); Liston and Elder 

(2006); Thornton et al. (2000) 

Qli RE Normal |[0.0, 80]| W m-2 Bohn et al. (2013); Flerchinger et al. (2009); Liston and Elder 

(2006) 

 

Scenario UB (k=6, N=10000) 

Identical to NB, except all probability distributions are uniform 

 

Scenario NB_gauge (k=6, N=10000) 

Identical to NB, except P uncertainty mimics documented differences between P and SWE at SNOTEL sites 

P B Lognormal [-10, +10] % Meyer et al. (2012) 

 

Scenario NB_labD (k=6, N=10000) 

Tair B Normal [-0.30, +0.30] °C Vaisala HMP45 specified accuracy 

P B Lognormal [-3.0, +3.0]E % RM Young 52202 specified accuracy 

U B Normal [-0.30, +0.30]  m s-1 RM Young 05103 specified accuracy 

RH B Normal [-3.0, +3.0] % Vaisala HMP45 specified accuracy 

Qsi B Normal [-25, +25]  W m-2 Li-Cor 200X specified accuracy of ~5% 

Qli B Normal [-15, +15] W m-2 Assumed ~5% of mean intersite values 
A
 B=bias, RE=random errors. Biases are additive (bi=0, Eq. 5) for all forcings except P, which has multiplicative 1394 

bias (bi=1). 1395 
B
 Probability distributions were truncated in instances when introduction of errors caused non-physical forcing 1396 

values (see Sec. 3.3.5). 1397 
C 

The high upper P bias (300%) mimics cases where snowfall data collected in an area of drift deposition are 1398 
assumed (incorrectly) to represent other basin locations. 1399 
D
 Uncertainty ranges in this scenario are based primarily on manufacturer’s specified accuracy for typical sensors 1400 

deployed at SNOTEL sites (NRCS Staff, personal communication, 2013).  We assume the P storage gauge has the 1401 
same accuracy as a typical tipping bucket gauge. 1402 
E
 We neglect P undercatch errors in the lab uncertainty scenario.1403 
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Table 4 Number of samples (model simulations) meeting the requirements for minimum peak 1404 

SWE and snow duration and valid snow disappearance dates at each site in each scenario. 1405 

 Scenario NB Scenario NB+RE Scenario UB Scenario NB_gauge Scenario NB_lab 

IC 9898 

(79 184) 

10 000 

(140 000) 

8608 

(68 864) 

10 000 

(80 000) 

10 000 

(80 000) 

CDP 9792 

(78 336) 

9869 

(138 166) 

8925 

(71 400) 

9999 

(79 992) 

10 000 

(80 000) 

RME 8799 

(70 392) 

9233 

(129 262) 

9102 

(72 816) 

10 000 

(80 000) 

10 000 

(80 000) 

SASP 9984 

(79 872) 

9984 

(139 776) 

3399 

(27 192) 

10 000 

(80 000) 

10 000 

(80 000) 
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7.8.Figures 1406 

 1407 

Figure 1 Scenarios of interest and the type, distribution, and magnitude of errors considered in 1408 

each.  NB considers normally (or lognormally) distributed biases with error magnitudes found in 1409 

the field.  NB+RE is the same as NB but also considers random errors.  UB is the same as NB 1410 

but considers uniformly distributed errors instead.  NB_gauge is the same as NB but with 1411 

reduced precipitation uncertainty (typical difference between precipitation gauge and snow 1412 

pillow).  NB_lab is the same as NB but considers laboratory error magnitudes.1413 
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 1414 

Figure 2 Conceptual diagram showing methodology for imposing errors on the forcings with 1415 

error parameters (ϕ) within the Sobol’ sensitivity analysis framework, and workflow for model 1416 

execution and calculation of sensitivity indices on model outputs (Y).1417 
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 1418 

Figure 3 Observed (black line) and modeled SWE (color density plot) at the four sites across the 1419 

five uncertainty scenarios (see Figure 1 and Table 3).  The number of model simulations in the 1420 

density plots varies with the site and scenario (see Table 4).  The density plots were constructed 1421 

using 100 bins in the SWE dimension with relative frequency tabulated in each bin each day.  1422 

Note the frequency colorbar is on a logarithmic scale.  Sites are arranged from top to bottom in 1423 

order of increasing elevation and decreasing latitude.  Scenarios are defined as normally 1424 

distributed bias (NB), normally distributed bias and random errors (NB+RE), uniformly 1425 

distributed bias (UB), normally distributed bias with precipitation gauge uncertainty NB_gauge), 1426 

and normally distributed bias at laboratory error magnitudes (NB_lab).1427 
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 1428 

Figure 4 Distributions of model outputs (rows) at the four study sites (columns) arranged by 1429 

scenario.  For each scenario, the circle is the mean and the whiskers show the range 1430 

encompassing 95% of the simulations (see Table 4 for number of simulations for each site and 1431 

scenario).  The dashed lines in (a-d) and (i-l) are the observed values.  Axes are matched between 1432 

sites for a given model output; note that the range in scenario UB in (d) is truncated by the axes 1433 

limits (upper value = 3030 mm).  Scenarios are defined as normally distributed bias (NB), 1434 

normally distributed bias and random errors (NB+RE), uniformly distributed bias (UB), 1435 

normally distributed bias with precipitation gauge uncertainty NB_gauge), and normally 1436 

distributed bias at laboratory error magnitudes (NB_lab).1437 
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 1438 

Figure 5 Model sensitivity as a function of forcing error type.  Shown are the total-order 1439 

sensitivity indices (STi) of four model response variables (columns) at the four sites (rows) from 1440 

scenarios NB and NB+RE.  In NB+RE, bias and random error parameters are shown separately.  1441 

NB+RE considers normally distributed bias and random errors, while NB considers normally 1442 

distributed bias only.  The bar indicates the mean (bootstrapped) sensitivity indices and 1443 

associated 95% confidence intervals.1444 
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 1445 

Figure 6 Same as Fig. 5, but comparing STi values from scenarios NB and UB to test model 1446 

sensitivity as a function of error distribution.  UB considers uniformly distributed bias, while NB 1447 

considers normally distributed bias.1448 
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 1449 

Figure 7 Same as Fig. 5, but comparing STi values from scenarios NB, NB_gauge, and NB_lab 1450 

to test model sensitivity as a function of error magnitudes.  NB considers normally distributed 1451 

bias at error magnitudes found in the field.  NB_gauge has lower precipitation uncertainty (gauge 1452 

undercatch) than NB but is otherwise identical.  NB_lab considers normally distributed bias at 1453 

error magnitudes found in the laboratory. 1454 



Raleigh et al: Physical model sensitivity to forcing error characteristics page 58 of 59 

 

 1455 

Figure 8 Variation of daily SWE sensitivity to forcing bias based on site (columns) and error 1456 

scenario (rows).  The normalized range (where 1 = maximum SWE) in modeled SWE is shown 1457 

(gray area) for context.  Sensitivity indices in the early and late part of the snow season were 1458 

screened out, as a high number of simulations with SWE=0 yielded invalid sensitivity indices. 1459 
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 1460 

Figure 9 Uncertainty ranges (95% intervals) in (a) peak SWE, (b) ablation rates, and (c) snow 1461 

disappearances date at CDP in WY2006 for three forcing uncertainty scenarios and the Essery et 1462 

al. (2013) structural uncertainty. 1463 


