
 1

From runoff to rainfall: inverse rainfall-runoff modelling in a 1 

high temporal resolution 2 

M. Herrnegger1, H.P. Nachtnebel1 and K. Schulz1  3 

[1] {Institute of Water Management, Hydrology and Hydraulic Engineering, University of 4 

Natural Resources and Life Sciences, Vienna, Austria} 5 

Correspondence to: Mathew Herrnegger (mathew.herrnegger@boku.ac.at) 6 

 7 

Abstract 8 

This paper presents a novel technique to calculate mean areal rainfall in a high temporal 9 

resolution of 60-min on the basis of an inverse conceptual rainfall-runoff model and runoff 10 

observations. 11 

Rainfall exhibits a large spatio-temporal variability, especially in complex alpine terrain. 12 

Additionally, the density of the monitoring network in mountainous regions is low and 13 

measurements are subjected to major errors, which lead to significant uncertainties in areal 14 

rainfall estimates. The most reliable hydrological information available refers to runoff, which in 15 

the presented work is used as input for an inverted rainfall-runoff model. Thereby a conceptual, 16 

HBV-type model is embedded in a root finding algorithm. For every time step a rainfall value is 17 

determined, which results in a simulated runoff value that corresponds to the observation. The 18 

inverse model, also evaluating different model parameter sets, is applied to the Schliefau and 19 

Krems catchments, situated in the northern Austrian Alpine foothills. Generally, no substantial 20 

differences between the catchments are found. Compared to station observations in the proximity 21 

of the catchments, the inverse rainfall sums and time series have a similar goodness of fit, as the 22 

independent INCA rainfall analysis of Austrian Central Institute for Meteorology and 23 

Geodynamics (ZAMG). The application of the inverse model is a promising approach to obtain 24 

improved estimates of mean areal rainfall. These can be used to enhance interpolated rainfall 25 

fields, e.g. for the estimation of rainfall correction factors, the parameterisation of elevation 26 

dependency or the application in real-time flood forecasting systems. The application is limited to 27 

(smaller) catchments, which can be represented with a lumped model setup and to the estimation 28 

of liquid rainfall.  29 

30 
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1 Introduction 31 

The motivation for the concept presented in this paper comes from practical hydrological 32 

problems. Some years back we set up rainfall-runoff models for different alpine rivers (e.g. 33 

Stanzel et al., 2008; Nachtnebel et al., 2009a, 2009b, 2010a or 2010b). In the course of these 34 

projects, we were confronted with massive errors in the precipitation input fields. This is a 35 

known problem, especially in alpine environments. Although the temporal dynamics in the 36 

runoff simulations were captured quite well, significant mass balance errors between observed 37 

and simulated runoff were found. It could be excluded, that erroneous evapotranspiration 38 

calculations were biasing the results (Herrnegger et al., 2012). In the HYDROCAST project 39 

(Bica et al., 2011) we tested different precipitation interpolation and parameterisation schemes 40 

by using the ensemble of generated inputs for driving a rainfall-runoff model and comparing 41 

the simulated runoff time series with observations. In essence, the results showed, that no 42 

significant improvements could be made in the runoff simulations and that the information on 43 

the precipitation fields is strongly determined and limited by the available station time series. 44 

The only additional information available concerning the precipitation of a catchment is the 45 

runoff observation. The main aim is therefore to present a proof-of-concept for the inversion 46 

of a conceptual rainfall runoff model. That is to show, that it is possible to use a widely 47 

applied model concept to calculate mean areal rainfall from runoff observations. 48 

Areal or catchment rainfall estimates are fundamental, as they represent an essential input for 49 

modelling hydrological systems. They are however subject to manifold uncertainties, since it 50 

is not possible to observe the mean catchment rainfall itself (Sugawara, 1992; Valéry et al., 51 

2009). Catchment rainfall values are therefore generally estimated by interpolation of point 52 

measurements, sometimes incorporating information on the spatial rainfall structure from 53 

remote sensing, e.g. radar (e.g. Haiden et al., 2011). Measurement, sample and model errors 54 

can be identified as sources of uncertainty. Point observations of rainfall, which are the basis 55 

for the calculation of mean areal rainfall values, are error inflicted (Sevruk, 1981, 1986; 56 

Goodison et al, 1998; Sevruk and Nespor, 1998; Seibert and Moren, 1999; Wood et al., 2000; 57 

Fekete et al., 2004). Occult precipitation forms like fog or dew are frequently ignored. 58 

Although not generally relevant, this precipitation form can be a significant contribution to 59 

the water budget of a catchment (Elias et al., 1993; Jacobs et al., 2006; Klemm and 60 

Wrzesinsky, 2007). The highest systematic measurement errors of over 50 % are found during 61 
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snowfall in strong wind conditions. Other sources of systematic measurement errors and their 62 

magnitudes are listed in Table 1. 63 

 Approximate location of Tab. 1 64 

In complex terrain the rainfall process is characterised by a high temporal and spatial 65 

variability. Especially in these areas the density of the measurement network tends to be low, 66 

not capturing the high variability and leading to sample errors (Wood et al., 2000; Simoni et 67 

al., 2011; de Jong et al., 2002). Further uncertainties arise in the interpolation of catchment 68 

scale rainfall from point observations. Systematic and stochastic model errors of the 69 

regionalisation methods can be identified. Systematic model errors can arise during the 70 

regionalisation of rainfall in alpine areas, when e.g. the elevation dependency is not 71 

considered (Haiden and Pistotnik, 2009). Quantitative areal rainfall estimates from radar 72 

products are, although they contain precious information on the rainfall structure, still 73 

afflicted with significant uncertainties (Krajewski et al., 2010; Krajewski and Smith, 2002). A 74 

general magnitude of overall uncertainty, which arises during the generation of areal rainfall 75 

fields, is difficult to assess, as different factors, e.g. topography, network density or 76 

regionalisation method, play a role. 77 

Errors in runoff measurements are far from negligible (Di Baldassarre and Montanari, 2009; 78 

McMillan et al., 2010; Pappenberger et al., 2006; Pelletier, 1987). When applying the rating-79 

curve method for estimation of river discharge the uncertainties are a function of the quality 80 

of the rating curve and the water level measurements. The quality of the rating curve depends 81 

on (i) the quality and stability of the measured cross-section over time, (ii) the 82 

representativeness of the velocity measurements and (iii) the influence of steady and unsteady 83 

flow conditions. According to literature the overall uncertainty, at the 95 % confidence level, 84 

can vary in the range of 5% - 20% (Di Baldassarre and Montanari, 2009; Pelletier, 1987). 85 

Although it can be expected, that the measurement error will certainly be large during flood 86 

events due to its dynamic features, the errors are considerable lower compared to rainfall 87 

measurements and to the uncertainties introduced, when calculating mean areal rainfall. It 88 

must however be assumed, that transboundary flows and groundwater flows around the 89 

gauging station are negligible.  90 

A classical application of hydrology, the problem of reproducing observed runoff with 91 

meteorological forcings as input through a formalised representation of reality, is a forward or 92 
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direct problem. Two inverse problems can be identified with the forward problem (Groetsch, 93 

1993): 94 

1. Causation problem: Determination of input I (=cause), with given output O (=effect) 95 

and given model K, including model parameters θ (=process) 96 

2. Model identification problem: Determination of model K, given input I and output O 97 

The model identification problem can be divided into (i) the problem of identifying the model 98 

structure itself and (ii) the determination of model parameters that characterise the system 99 

(Tarantola, 2005). The focus in this contribution lies in solving the causation problem, i.e. in 100 

the determination of rainfall input from runoff, with a given model structure and parameters. 101 

In the following, the model, which calculates mean catchment rainfall values from runoff, will 102 

be called inverse model. The conventional model, which uses rainfall and potential 103 

evapotranspiration as input to calculate runoff, will be called forward model. 104 

Runoff from a closed catchment is the integral of rainfall over a certain period, considering 105 

evapotranspiration losses and water storage characteristics within the catchment. Therefore, 106 

runoff observations can be used to derive information on rainfall. This has been done in 107 

several studies, e.g. Bica et al., 2011; Valéry et al., 2009, 2010; Ahrens et al., 2003; Jasper 108 

and Kaufmann, 2003; Kunstmann and Stadler, 2005 or Jasper et al., 2002. The common basis 109 

of these studies was to indirectly gain information on catchment rainfall by comparing 110 

simulated runoff results with observations. Hino and Hasabe (1981) fitted an AR 111 

(autoregressive) model to daily runoff data, while assuming rainfall to be white noise. By 112 

inverting the AR model they directly generated time series of rainfall from runoff. Vrugt et al. 113 

(2008) and Kuczera et al. (2006) derived rainfall multipliers or correction factors from stream 114 

flow with the DREAM- and BATEA-methods, these methods however being computationally 115 

intensive. In a well-received study, Kirchner (2009) analytically inverted a single-equation 116 

rainfall-runoff model to directly infer time series of catchment rainfall values from runoff. 117 

The Kirchner model (when deriving the storage-discharge relationship directly from runoff 118 

data) only has a single parameter and does not need rainfall as driving input for calibration. 119 

Rainfall data is however needed for the determination of rainless periods for the estimation of 120 

the sensitivity function. Krier et al. (2012) applied the model of Kirchner (2009) to 24 small 121 

and mesoscale catchments in Luxembourg to generate areal rainfall. No systematic 122 

differences in the quality of the rainfall estimates are found between different catchment sizes. 123 

In periods with higher soil moisture the rainfall simulations show a higher performance, 124 
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which is explained by the fact, that wet catchments are more likely to react as simple 125 

dynamical systems. The parsimonious approach of Kirchner (2009) is however limited to 126 

catchments, where discharge is determined by the volume of water in a single storage and 127 

which can be characterized as simple first-order nonlinear dynamical systems. Also due to the 128 

larger number of model parameters describing several linked storages, accounting for a 129 

variety of different runoff components, HBV-type conceptual models offer higher degrees of 130 

freedom and flexibility in the calibration procedure. They can, in consequence, be applied to 131 

catchments with a wider range of runoff characteristics (Bergström, 1995; Kling et al., 2015; 132 

Kling, 2006; Perrin et al., 2001). Therefore, in this study, the conceptual rainfall-runoff model 133 

COSERO (Nachtnebel et al., 1993; Eder et al., 2005; Kling and Nachtnebel, 2009, Herrnegger 134 

et al., 2012; Kling et al., 2015, among others), which in its structure is similar to the HBV-135 

model, is used as a basis for the inverse model. The COSERO model has been frequently 136 

applied in research studies, but also engineering projects (see Kling et al., 2015 for details). 137 

This paper is organized as follows: Following this introduction the methods-section describes 138 

the conventional conceptual rainfall-runoff model (forward model) and the inverse model, 139 

including the preconditions and limitations of its application. The concept of virtual 140 

experiments to test the inverse model and to analyse the existence, uniqueness and stability of 141 

the inverse rainfall simulations are presented. Additionally, the setup of different simulation 142 

experiments, e.g. to evaluate the influence of differing calibration periods or possible runoff 143 

measurement errors on the simulations, are explained. The inverse model is applied to two 144 

headwater catchments in the foothills of the northern Austrian Alps, with differing hydro-145 

climatic and physical conditions. The catchments and the data base, including the calibration 146 

periods for the simulation experiments, is presented. The runoff simulations of the forward 147 

model and the rainfall simulations of the inverse model are described in detail in the results 148 

and discussion section. Finally the paper ends with a summary and conclusions. 149 

2 Methods 150 

2.1 Forward model (Rainfall-runoff model) 151 

In the state space formulated forward model, the unknown runoff Qt is a function f of known 152 

variables rainfall input Rt, potential evapotranspiration ETpt, system states St-1 and a set of 153 

model parameters θi, whereas the index t denotes time: 154 

)|,,(Q i1-tttt SETpRf         (1) 155 
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The rainfall-runoff model is based on the COSERO model (see introduction for references), 156 

but has a simpler model structure. It includes an interception and soil module and three 157 

reservoirs for interflow, base flow and routing. The model structure is shown in Fig. 1, model 158 

parameters are summarized in Table 2 and fluxes and system states in Table 3. 159 

 Approximate location of Fig. 1 160 

 Approximate location of Tab. 2 161 

 Approximate location of Tab. 3 162 

The COSERO-model is formulated in a state space approach, with state transition functions  163 

)|,( it1-tt ISfS            (2) 164 

and output functions  165 

)|,( it1-tt ISfO            (3) 166 

with  167 

It Input, e.g. rainfall 168 

Ot Output, e.g. total runoff 169 

St System states, e.g. water stored in soil module 170 

θi Model parameters. 171 

These functions have a time component, which is indicated by the index “t”. So, the model 172 

state and the output at time t depend only and exclusively on the previous state St-1, the inputs 173 

It and parameters θi. The simplified model formulation can be found in the appendix. 174 

2.2 Inverse model (Runoff-rainfall model) 175 

In the inverse model the unknown rainfall Rt is a function of runoff Qt, potential 176 

evapotranspiration ETpt, system states St-1 and a given set of model parameters θi, where 177 

again the index t denotes time: 178 

)|,,(R i1-ttt
1

t SETpQf           (4) 179 

Given ETpt, St-1 and θi, there is only one single input It, which results in an output Ot (eq. (3))! 180 

To calculate the inverse rainfall rate the forward model is therefore embedded in a search 181 

algorithm, to find, for every time step t, the rainfall rate Rt that best fits the observed runoff: 182 
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  tQOBSSETpRQSIM )|,,()f(R i1-ttttt       (5) 183 

with 184 

maxt,tmint, RRR            (6) 185 

The upper and lower brackets of rainfall (Rt,min and Rt,max) is set to 0 and 50 mm/h. The value 186 

of the upper bound is an arbitrary value, but any reasonable bounds can be applied. QSIMt 187 

and QOBSt is the simulated and observed runoff. ε denotes a small value, which is ideally 188 

zero. 189 

Solving eq. (5), which reflects the objective function used in the search algorithm, is basically 190 

a root finding problem. Different root finding algorithms were tested, with the Van 191 

Wijngaarden–Dekker–Brent Method (Brent, 1973; Press et al., 1992) being the method of 192 

choice, as this method exhibited the fastest results. The Brents method combines root 193 

bracketing, bisection and inverse quadratic interpolation to converge from the neighbourhood 194 

of a zero crossing and will always converge, as long as the function can be evaluated within 195 

the initial defined interval (in our case Rt,min and Rt,max) known to contain a root (Press et al., 196 

1992). The iteration progress for one model time step is illustrated in Fig. 2. The left y-axis 197 

shows the objective function values, the right y-axis (in logarithmic scale) the associated 198 

rainfall values estimated during the iteration procedure. 199 

  Approximate location of Fig. 2 200 

The state space approach of the model is a first order Markov process: The system states St 201 

and outputs Ot of the calculation time step depend only on the preceding states St-1 and some 202 

inputs It and not on the sequences of system states, that preceded it, e.g. St-2, St-3, ..., St-n (see 203 

eq. (2) and eq. (3)). All information of the sequence of the preceding inputs (It-1, It-2, ..., It-n) is 204 

implicitly included in the last relevant system state St-1. No hysteretic effects are considered in 205 

the model and it does not include a parameter, which introduces a lag effect between inputs 206 

and outputs. 207 

Given the model structure, parameters and potential evapotranspiration as input, the inverse 208 

rainfall and resulting runoff are solely a function of the initial cold system states. The 209 

influence of the initial cold system states on the inverse rainfall calculation are analysed in the 210 

results section. 211 
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The determined rainfall value Rt represents the “best” simulated rainfall of the catchment and 212 

is also used as input into the forward model to simulate runoff. Therefore, for every time step 213 

the inverse model simulates a rainfall and corresponding runoff value and also resulting 214 

system states. The simulated runoff value should ideally be identical to the observed value. 215 

This is however not always the case, as will be shown later.  216 

A more elegant method to calculate rainfall from runoff is by analytically inverting the 217 

equations of a given model, i.e. bringing the rainfall term onto the right side of the equation 218 

(Herrnegger, 2013). This is principally possible, but has some disadvantages. The model 219 

structure, which was used in Herrnegger (2013) and which can be inverted analytically, 220 

differs from the model presented here. It does not include interception and routing. 221 

Additionally the inversion is not possible in certain periods, since the discontinuities 222 

introduced by threshold values lead to non-inversibility in the analytical solution (Herrnegger, 223 

2013). For the forward model used here, the differential equations of the linear reservoirs are 224 

solved analytically. An internal time step discretization is included in the model code to 225 

guarantee, that the transition between system states above and below the threshold value are 226 

solved exactly. This is not possible in the analytical solution. 227 

2.2.1 Preconditions and limitations of the application of the inverse model 228 

It must be assumed that runoff from the catchment passes through the measurement cross-229 

section of the gauging station and that subsurface and transboundary flows are negligible. It 230 

does not make sense to apply the inverse model to leaky catchments or catchments, where a 231 

significant part of the runoff is not observed at the gauging site. Even with a given 232 

quantification of the leakage process, the application of a hydrological model would lead to 233 

an additional uncertainty difficult to quantify. This is however not necessarily a limitation of 234 

the inverse model. Also the application of a forward hydrological model, which needs to be 235 

calibrated against runoff observations, will fail or will result in wrong estimates of water 236 

balance components. 237 

The inverse model is based on a lumped model setup and the resulting inverse rainfall value 238 

corresponds to the mean areal rainfall. Applying a spatially distributed model is not possible, 239 

since the origin of outputs of different zones or cells of a distributed model setup cannot be 240 

reproduced by the inverse model in a deterministic way without additional assumptions. The 241 

information of origin gets lost as soon as cell values are summed and routed to a catchment 242 
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runoff value. It is however conceivable to spatially disaggregate the mean areal rainfall from 243 

the inverse model using additional information, e.g. assuming an elevation dependency of 244 

rainfall. 245 

Solid precipitation is accumulated without any direct signal on the hydrograph. It is therefore 246 

impossible to use the inverse model to estimate solid precipitation. The inverse model can 247 

therefore only be used to calculate rainfall in snow-free catchments, or, as in our case, 248 

periods, in which runoff is not influenced by snow melt (i.e. summer months). However, in 249 

rainless periods, where it is clear, that snow melt is dominating runoff (e.g. in spring), the 250 

inverse model can be used to quantify snow melt rates from a catchment. 251 

The applicability of the inverse model is limited to catchments, which are representable with a 252 

lumped model setup and the proposed model structure. If a catchment is too large, one will 253 

generally have problems modelling that system with a lumped model setup. Not necessarily 254 

because of neglecting spatial heterogeneity in the model parameters (although this may also 255 

be an issue) or ignoring a lag between the rainfall and runoff signal, but simply because the 256 

lumped rainfall input used is “wrong” and is not representable for the whole catchment. If it 257 

only rains in the headwaters of large catchment, the lumped input into the forward model for 258 

this time step or rainfall event will be much lower, since it will be spatially aggregated. This 259 

input is simply not applicable to the whole catchment and the simulations will show deficits. 260 

In this case, an inversion will be highly flawed.  261 

It is also clear, that catchments, independent of size, exist, where the application of this 262 

particular model structure will fail (e.g. flatland catchments dominated by groundwater). If 263 

hydro-meteorological conditions of the catchment change or are different from the calibration 264 

period and the forward model (e.g. due to poor parameter estimation, inadequate model 265 

structure, wrong representation of the real world prototype etc.) is not able to capture these 266 

changes, then again the calculation of rainfall from runoff will fail (as they do for the forward 267 

case). 268 

However, being able to fit the forward model to observed runoff data and as long as the 269 

forward model is able to represent the catchment responses to rainfall, an inversion will be 270 

possible. 271 
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2.3 Simulation setups 272 

2.3.1 Virtual experiments 273 

In a first step the inverse model is evaluated and tested with virtual experiments, in which the 274 

preconditions of existence, uniqueness and stability of the inverse rainfall values are 275 

evaluated. Runoff simulations are performed with the forward model driven by observed 276 

rainfall as input. The simulated runoff time series of the forward models are then used as 277 

input into the inverse model, with the aim to reproduce the observed rainfall. Simulated runoff 278 

from the forward model is dependent on the model parameters. Therefore, to test the inversion 279 

procedure for the whole parameter range, synthetic hydrographs are produced with Monte 280 

Carlo simulations. 20 000 different parameter combinations are chosen randomly from the 281 

parameter space, with the same number of model runs to evaluate the inverse model. The 282 

sampled parameters and associated range are shown in Table 2. The schematic setup of the 283 

virtual experiment and the evaluation of the inverse model is shown in Fig. 3. Note, that the 284 

setup and the evaluation is performed for every individual Monte Carlo run, as the simulated 285 

runoff from the forward model varies, depending on selected model parameters. 286 

  Approximate location of Fig. 3 287 

The virtual experiments enable a rigorous evaluation of the inverse calculations, neglecting 288 

uncertainties concerning measurement errors in runoff, model structure or model parameters. 289 

All system states and fluxes of the forward model are perfectly known at every time step. This 290 

information is used to evaluate the inverse models. Only after a successful evaluation of the 291 

inverse model with the virtual experiments, can observations of runoff be used as input into 292 

the inverse models.  293 

2.3.2  Model calibration and simulations experiments with observed data 294 

The application of the inverse model is based on the assumption that the forward model can 295 

represent the catchment responses to rainfall, but needs to be calibrated against runoff 296 

observations. Depending on the calibration setup, different model parameters will be 297 

estimated. The calibration setup and in consequence model parameters (for a given model 298 

structure) can depend on (i) the calibration period and length and (ii) the driving input used. 299 

The inverse rainfall is also a function of the observed runoff, which may also exhibit possible 300 

measurement errors. Finally, the initial conditions of the system states at the beginning of the 301 
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simulations also influence the results of the forward, but also inverse model. To evaluate these 302 

influences, i.e. different model parameters due to different calibration periods and lengths, 303 

different runoff observations, different parameter optimisation data basis and different initial 304 

conditions, several simulation experiments are performed. An overview table of the 305 

simulation experiments can be found in section 3.3 (Table 5) after the presentation of the 306 

available data. 307 

The model structure applied includes 12 parameters, of which 10 have to be calibrated. Two 308 

parameters (INTMAX and ETVEGCOR) are estimated a priori (see Table 2). The simulation 309 

experiments do not allow a systematic analysis of parameter uncertainty or the assessment of 310 

equifinality. This is not the aim of this paper. The simulation experiments however enable a 311 

first assessment of the robustness of the results. That is to show the forward and inverse 312 

model performance, when the conditions are different from the conditions the model has been 313 

calibrated against or if different driving inputs are used. 314 

In a first step 3 different periods are used for calibration of the model parameters. In a further 315 

simulation experiment, the runoff observation is increased by a constant offset of 10% to 316 

evaluate the influence of possible streamflow errors on the simulations and the inverse 317 

rainfall. A fifth experiment is performed, in which a differing rainfall realisation is used as 318 

driving input for model calibration, in order to test the conditioning of the model parameters 319 

and in consequence the simulations to the driving input. Given the model structure, the 320 

inverse rainfall is a function of observed runoff, potential evapotranspiration, system states 321 

and model parameters (eq. (4)). Extending eq. (4) explicitly with all relevant system states 322 

leads to 323 

)|4,3,2,1,,,(R i1-t1-t1-t1-t1-ttt
1

t BWBWBWBWBWIETpQf      (7) 324 

The forward and inverse models are run as a continuous simulation in time. The preceding 325 

system states are therefore an integral part of the simulation and are determined intrinsically 326 

within the simulation. However, the initial system states at the beginning of the simulation 327 

period (cold states) will influence the results of the simulation, but should, after an adequate 328 

spin-up time, not influence the runoff but also inverse rainfall simulations. Therefore, a sixth 329 

experiment was set up, in which 3 different cold start scenarios are defined: 330 

 Reference scenario 331 

 Dry system states scenario 332 
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 Wet system states scenario 333 

For the reference scenario the system states from the continuous simulation were used. For 334 

the cold states in the dry scenario the states from the reference scenario where reduced by the 335 

factor 0.5 and increased by the factor 1.5 for the wet scenario.  336 

Generally only June, July, August and September are used, since it can be guaranteed, that no 337 

snow melt influences runoff in these months (see section 2.2.1). Parameter calibration in the 338 

simulation experiments is performed for the forward model, using the Shuffled Complex 339 

Evolution Algorithm (Duan et al., 1992). As an optimisation criterion the widely used Nash-340 

Sutcliffe-Efficiency (NSE, Nash and Sutcliffe, 1970) was chosen. 341 

3 Materials 342 

3.1 Study areas 343 

The inverse model is applied to two catchments with different size, geology and land use 344 

located at the foothills of the Northern Alps. The Schliefau catchment is located about 110 km 345 

south-west of the Austrian capital of Vienna and covers an area of 17.9 km² with a mean 346 

elevation of 608 m.a.s.l.. About 55% of the area is covered by grassland and meadows, 40% 347 

by coniferous forest and 5% by mixed forest. The underlying geology is dominated by marl 348 

and sandstone. The Krems catchment is located about 170 km south-west of the Austrian 349 

capital of Vienna and covers an area of 38.4 km² with a mean elevation of 598 m.a.s.l.. The 350 

topography is more heterogeneous, with an elevation range of 413 to 1511 m.a.s.l., compared 351 

to 390 to 818 m.a.s.l. in the Schliefau catchment. Approximately 46% of the area is covered 352 

by grassland and meadows, 48 % by mixed forest, 4 % by settlements and 2 % by coniferous 353 

forest. On a long term basis, in both catchments, the highest runoff can be expected during 354 

snow melt in spring, the lowest runoff in summer and autumn until October. Fig. 4 shows a 355 

map of the catchments and Table 4 summarizes important characteristics of the study areas. 356 

 Approximate location of Fig.4 357 

 Approximate location of Tab.4 358 

3.2 Meteorological database 359 

Generally, two different rainfall time series are used. Ground observations of rainfall are 360 

available from the station St. Leonhard im Walde (Schliefau catchment) and Kirchdorf 361 
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(Krems catchment), both located in the proximity of the catchments (Fig. 4). Additionally, 362 

areal rainfall data from the INCA system (Integrated Nowcasting through Comprehensive 363 

Analysis; Haiden et al., 2011) is used. INCA is the operational nowcasting and analysis 364 

application developed and run by the Central Institute for Meteorology and Geodynamics of 365 

Austria (ZAMG), which is also used for the majority of real-time flood forecasting systems in 366 

Austria (Stanzel et al., 2008). For the presented study analysis fields derived from 367 

observations, but no nowcasting fields, are used. Rainfall in INCA is determined by a 368 

nonlinear spatial interpolation of rain-gauge values, in which the radar field is used as a 369 

spatial structure function. In addition an elevation correction is applied (Haiden and Pistotnik, 370 

2009). The stations used for the interpolation of the INCA-rainfall fields are shown as 371 

triangles in Fig. 4. Note, that the stations St. Leonhard im Walde and Kirchdorf are not 372 

included in the INCA analysis, since they are operated by a different institution. The rainfall 373 

fields from the INCA system cover the test basins in a spatial resolution of 1 km². From the 374 

spatial data set mean catchment rainfall values are obtained by calculating area-weighted 375 

means from the intersecting grid cells. 376 

Potential evapotranspiration input is calculated with a temperature and potential radiation 377 

method (Hargreaves and Samani, 1982). 378 

3.3 Simulation periods 379 

Runoff and rainfall data is available for the period 2006 to 2009 in a temporal resolution of 60 380 

minutes, which is also the modelling time step. The virtual experiments are performed for a 381 

period of 4.5 months (15.5.2006 – 30.09.2006) resulting in 3336 time steps being evaluated. 382 

As described in section 2.3.2 different model calibration and simulation experiments are 383 

performed. An overview of these experiments is given in Table 5. 384 

 Approximate location of Tab.5 385 

4 Results and discussions 386 

4.1  Virtual experiments 387 

In the virtual experiments it could be shown, that the precondition of existence, uniqueness 388 

and stability of the inverse model results is given. Using all 20 000 simulated hydrographs 389 

from the Monte Carlo runs, where the parameters were varied stochastically, the observed 390 

rainfall time series could be identically reproduced by the inverse model. Apart from the 391 
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rainfall also all fluxes and system states where identical in the forward and inverse model 392 

runs. The comprehensive results from the virtual experiments are documented in Herrnegger 393 

(2013). Fig. 5 shows as an example of a virtual experiment the identical (i) observed rainfall 394 

and simulated inverse rainfall and (ii) system state of soil water content from the forward and 395 

inverse model. Station data from the Schliefau catchment with model parameters of Exp3 (see 396 

Table 5) were used as driving input in the forward model and the resulting runoff simulation 397 

in succession as input into the inverse model. 398 

 Approximate location of Fig.5 399 

4.2 Forward model: Parameter calibration and validation of the different 400 

simulation experiments 401 

A precondition for the application of the inverse model is that the observed runoff 402 

characteristics of the catchment are reproduced reasonably by the forward model, since these 403 

parameters are also used in the inverse model. The following section therefore presents the 404 

runoff simulations of the forward model, based on the different simulation experiments Exp1 405 

to Exp5.  406 

The model performance for the period 2006 to 2009 of the forward model, expressed by 407 

Nash-Sutcliffe-Efficiency (NSE) and the mean bias between simulated and observed runoff in 408 

percent of observed runoff is shown in Table 6. As mentioned before, only the months June, 409 

July, August and September of the single years are used. 410 

 Approximate location of Tab.6 411 

For Exp1 to Exp3, the NSE-values for the period 2006 to 2009 show, that the overall model 412 

performance is fairly stable and comparable, independent of the calibration length. The NSE-413 

values are larger than 0.82, with the exception of Exp1 in the Krems catchment. Although the 414 

calibration lengths and periods in Exp2 and Exp3 differ, identical model parameters were 415 

found for the Krems catchment in the optimisation for both simulation experiments. As a 416 

consequence the model performance is identical in these two experiments for the period 2006 417 

to 2009. The mean bias does not show a clear pattern and seems to be independent from the 418 

calibration period and length. In the Schliefau catchment observed runoff is overestimated by 419 

7.8 to 0.9 % and underestimated by -1.4 to -4.8% in the Krems catchment for the period 2006-420 

2009, depending on the simulation Exp1 to Exp3. Overall the calculated bias between 421 

observed and simulated runoff is in reasonable bounds.  422 
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In Exp4 the observed runoff is increased by 10%, mainly to evaluate the influence of possible 423 

streamflow errors on the simulations and the inverse rainfall. The same calibration periods 424 

were used as in Exp3, with station observations as driving input into the model. The NSE of 425 

Exp4 is comparable to Exp1, Exp2 and Exp3. The mean bias in Exp4 however becomes 426 

larger. The observed runoff is now also underestimated in the Schliefau catchment, what is 427 

not surprising, since observed runoff was increased. The mean bias in Exp4 for the Krems 428 

catchment is also larger, compared to Exp1 to Exp3. This is also explained by the increased 429 

observed runoff. 430 

In Exp5 INCA rainfall data is used as driving input for the simulations. The main intention of 431 

Exp5 is to evaluate the influence of a different rainfall input on the calibration of the model 432 

parameters and in consequence also on the inverse rainfall. For both catchments, the NSE 433 

values of the forward model are significantly lower, also compared to Exp3, which has the 434 

same calibration and validation periods. Although INCA uses a complex interpolation 435 

scheme, also incorporating radar data (Haiden et al., 2011), it seems that the data set has 436 

deficits representing catchment rainfall compared to the station observations in the proximity 437 

of the catchments. This can be explained by the larger distance of about 10 to 35 km of the 438 

INCA stations from the catchment (see Fig. 4). Note, that the ground observations in the 439 

proximity of the catchments are not used in in the interpolation process for the INCA-rainfall 440 

fields, as they belong to a monitoring network operated by a different institution. 441 

Fig. 6 shows the NSE-values of the forward model for the calibration periods of every 442 

simulation experiment versus single years performance for the 2 study areas. 443 

 Approximate location of Fig.6 444 

For Exp1 a significant larger spread in the model performance within the single years is 445 

evident. In Exp1 only 2006 was used for calibration. As a consequence, especially for the 446 

Krems catchment, the model performance is lower in the years 2007 to 2009, compared to 447 

Exp2 and Exp3. In the short calibration period of 2006 the model parameters are overfitted to 448 

the observations. If the conditions in the catchment are different from the calibration period, 449 

the model performance can be expected to deteriorate, as has been shown before (e.g. Kling, 450 

2015; Seibert, 2003) and explains the findings. For Exp2 to Exp4 the model performance is 451 

however stable for the single years, also for 2009, which was not used for calibration in any 452 

simulation experiment. In contrary to the Krems area, a large spread in the model 453 

performance of the single years for Exp5 is visible in the Schliefau catchment. The reason is 454 
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not clear and may be explained by changing availability of station data for the INCA rainfall 455 

in the single years. We can however not verify this hypothesis, since we do not have access to 456 

the data sets. In the Schliefau catchment low NSE values are calculated for the year 2008 for 457 

all simulation experiments. In the beginning of June a flood was observed (Fig. 7), which is 458 

not simulated in the model runs and explains the lower NSE values in this year. Excluding 459 

this event in the performance calculations would, result in a significantly higher NSE of 0.84 460 

for Exp1 for the year 2008, compared to 0.63 when the flood event is included in the 461 

calculation.  462 

Fig. 7 (Schliefau) and Fig. 8 (Krems) exemplarily show the runoff simulations based on the 463 

results of Exp2. For both catchments, the dynamics and variability of the runoff observations 464 

are mostly reproduced in a satisfactory manner. However, a tendency is visible, that larger 465 

floods are underestimated in the simulations. 466 

 Approximate location of Fig.7 467 

 Approximate location of Fig.8 468 

All simulations are performed with a lumped model setup. Consequently heterogeneity in 469 

geology and land use within the catchment are not considered in the parameter estimation. 470 

Also taking this into consideration, it can be concluded that the general responses of the 471 

catchment to rainfall input are captured appropriately by the forward model. Only for Exp1 472 

with the very short calibration period, a larger spread in the model performance is evident in 473 

independent years. It is therefore justified to calculate areal rainfall from runoff using the 474 

inverted forward model, including the optimised parameters. 475 

4.3 Inverse model 476 

For the evaluation of the simulated rainfall from the inverse model (PInv) we will compare 477 

the calculated values with observed station data (PObs) of St. Leonhard (Schliefau catchment) 478 

and Kirchdorf (Krems catchment) and the rainfall values from the INCA-system (PInca). In 479 

the following cumulative rainfall sums and the correlation and bias between simulated and 480 

observed rainfall are presented. Additionally the rainfall and runoff simulations of a flood 481 

event and the influence of cold system states on the simulations are shown. 482 
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4.3.1 Cumulative rainfall sums 483 

Fig. 9 and 10 show the cumulative curves of the observed rainfall (PObs), INCA rainfall 484 

(PInca) and the inverse rainfall (PInv) of the simulation experiments Exp1 to Exp5 for the 485 

Schliefau and Krems catchment. Additionally the cumulative observed runoff (Qobs) is 486 

shown as a dashed line. Note that for the Krems catchment (Fig. 10) the rainfall curves of 487 

Exp2 and Exp3 are identical, since the model parameters are also identical in these simulation 488 

experiments.  489 

 Approximate location of Fig.9 490 

 Approximate location of Fig.10 491 

The cumulative sums of the inverse rainfall and the observation based rainfall realisations 492 

PObs and PInca mostly show very similar temporal dynamics. Although large deviations are 493 

sometimes evident for both catchments, the deviations of the cumulative curves of PInca and 494 

the different inverse rainfalls (PInv) from the cumulative curves of the ground observation 495 

(PObs) are mostly of similar magnitude.  496 

The inverse rainfall curves of Exp1 to Exp5 of the two catchments do not exhibit substantial 497 

differences, although different calibration periods and setups were used. At the beginning of 498 

June 2008 a flood was observed in the Schliefau catchment, which was underestimated in the 499 

forward simulation, presumably due to inadequate representation of the storm event in the 500 

rainfall observations (see runoff simulation in Fig. 7, lower left). Larger rainfall intensities are 501 

therefore calculated by the inverse for this period, leading to the larger deviations between the 502 

cumulative sums of PObs and PInv of Exp1 to Exp5 as shown in Fig. 9 (lower left). In the 503 

Schliefau catchments larger differences between Exp1 to Exp5 occur in the year 2009 (Fig. 9, 504 

lower right). Here, in the second half of June, a period of strong rainfall is evident, which also 505 

led to a series of floods in the catchment (see also the hydrographs in Fig. 7). The rainfall 506 

sums originating from these high flows were calculated differently in the inverse models, 507 

depending on the simulation experiment. In consequence, the inverse rainfall curves differ 508 

from July onwards. In 2009, which was the wettest summer in both catchments, the highest 509 

inverse rainfall sums are found for Exp4. This is what could be expected, since the observed 510 

runoff was increased by 10% in this simulation experiment. However, in the other years Exp4 511 

does not necessarily show the largest inverse rainfall sums. The optimised model parameters 512 

in Exp4, that control evapotranspiration, were limiting actual evapotranspiration from the 513 
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model to fulfil the water balance, since PObs was not changed. In the second half of June 514 

2009, during the flood events with low evapotranspiration, the higher runoff values used as 515 

input however show a clearer signal in the inverse rainfall sums. 516 

The large difference between cumulative rainfall and runoff curves highlight the importance 517 

of actual evapotranspiration (ETa) in the catchments. For the Schliefau catchment the mean 518 

observed rainfall for the summer months of 2006-2009 is 678 mm. 266 mm are observed in 519 

the mean for runoff. Neglecting storage effects, a mean actual evapotranspiration of 412 mm 520 

can be calculated from the water balance. Over 60 % of rainfall are therefore lost to 521 

evapotranspiration. The mean actual evapotranspiration from the inverse model, depending on 522 

the simulation experiment, range from 352 mm to 362 mm, and are lower compared to the 523 

ETa calculated from the water balance. In the Krems catchment a mean runoff of 334 mm and 524 

rainfall of 600 mm, resulting in an actual evapotranspiration of 266 mm, is calculated. 525 

Although lower compared to Schliefau, nearly 45 % of rainfall are here lost to the 526 

atmosphere. The mean actual evapotranspiration from the inverse model, again depending on 527 

the simulation experiment, range from 276 mm to 310 mm. ETa from the model reflects the 528 

complex interplay and temporal dynamics of the system states of the different parts of the 529 

model. If the model would not capture ETa adequately, the cumulative rainfall curves would 530 

not follow the observations so closely. 531 

On the basis of the different cumulative rainfall sums it can be concluded, that on a longer 532 

temporal basis, the inverse model is capable of simulating the catchment rainfall from runoff 533 

observations. The results from the different simulation experiments do not differ substantially 534 

and show close correspondence to the observed data, except for a single summer in the 535 

Schliefau catchment. 536 

4.3.2 Correlation and bias between simulated and observed rainfall 537 

The performance of the inverse model expressed by the correlation coefficient is used to 538 

measure the models ability to reproduce timing and shape of observed rainfall values. It is 539 

independent of a possible quantitative bias. In the introduction the difficulties involved in the 540 

quantitative measurement of rainfall were discussed. It can however be assumed that a 541 

qualitative measurement, e.g. if it rains or not, will be more reliable. Table 7 shows the 542 

correlation values for 2006 to 2009 between ground observations and the different inverse 543 
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rainfall realisations (PObs – PInv) and ground observations and INCA rainfall (PObs – PInca) 544 

for different temporal aggregation lengths. 545 

  Approximate location of Tab.7 546 

For the 1h-sums, the lowest correlation values between PObs and PInv are found for the 547 

simulation results of Exp1 in both catchments. The highest correlation values are found for 548 

Exp2 in the Schliefau catchment and Exp2 to Exp4 in the Krems catchment. This agrees with 549 

the performance of the forward model presented in section 4.2.. The correlation of the 1h-550 

sums between PObs and PInv is rather weak. However, the correlation between PObs and 551 

PInv is higher for all simulation experiments and 1h-sums compared to the correlation 552 

between PObs and PInca. This is interesting, since PInca is based on station rainfall 553 

observations and PInv is indirectly derived from runoff through simulations. With temporal 554 

aggregation the correlation values generally increase significantly for all combinations. Small 555 

differences or timing errors in the 1h-sums are eliminated with temporal aggregation. This is 556 

also the case in of the INCA data.  557 

For Exp1 to Exp4, the model parameters used for the forward and inverse model were 558 

automatically calibrated using the ground observation PObs as input. It could therefore be 559 

concluded that the model parameters are conditioned by PObs and that in consequence the 560 

fairly good agreement between PObs and PInv originates from this conditioning. Based on 561 

this hypothesis, calibrating the model with INCA data should lead to a better agreement 562 

between the INCA data and the corresponding inverse rainfall and a deterioration of the 563 

correlation between station data and inverse rainfall. For Exp5, the forward model was 564 

therefore calibrated with INCA data and the resulting parameters set was then used to 565 

calculate the inverse rainfall. The correlation between PInca and PInv for Exp5 is however not 566 

higher, compared to the other simulation experiments and Exp3, which had the same 567 

calibration period. This excludes that the parameters are conditioned (at least for the rainfall 568 

simulations) by the input used for calibration. The correlations between PInca and PInv are 569 

generally very weak, with values ranging from 0.25 to 0.29 for the Schliefau and 0.39 to 570 

0.445 for the Krems catchment. This corresponds to the performance of the forward model in 571 

Exp5. Here lower model performance of the forward model is found for the Schliefau 572 

catchment. 573 

The correlation between PObs and PInv for the 1-h sums ranges between 0.48 and 0.55, but is 574 

higher, compared to the correlation between PObs and PInca. In contrast Kirchner (2009) 575 
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shows correlation values between simulated and observed rainfall of 0.81 and 0.88 for his two 576 

sites. The Schliefau and Krems catchments differ substantially in size, hydrological 577 

characteristics, land use or geology. The NSE values of the runoff simulations in Kirchner 578 

(2009) are higher, compared to the values presented here for the forward model. As a 579 

consequence the better performance in the rainfall simulations may be explained with the fact, 580 

that the Kirchner (2009) model better reflects the catchment conditions leading to runoff. 581 

For the 24-h sums we calculate a correlation of 0.87 to 0.92, depending on the catchment and 582 

simulation experiment. Here Kirchner (2009) shows correlation of 0.96 and 0.97. Krier et al. 583 

(2012) present correlations between simulated and observed rainfall of 0.81 to 0.98, with a 584 

mean value of 0.91 for a total of 24 catchments, however only on the basis of data of a single 585 

year. The correlation in our results is therefore in the range of other studies. Unfortunately 586 

Krier et al. (2012) do not present NSE values of the runoff simulations. It is therefore not 587 

possible to check the link between the performance of the forward model and rainfall 588 

simulations in their study. 589 

Fig. 11 shows the correlation between PObs and PInv for the calibration periods of the 590 

simulation experiments Exp1 to Exp5 versus the correlation in single years for the two study 591 

areas. For the Schliefau catchment the largest spread in the correlation values of the single 592 

years is found for Exp1, which also corresponds to the performance of the runoff simulations 593 

of the forward model. For Exp2 to Exp5 a spread is also visible between the single years, but 594 

differences are smaller. For the years 2006, 2008 and 2009 the correlation values in the 595 

Krems catchment do not differ substantially. Here however the correlation for the year 2007 596 

is very low, independent of the simulation experiment. This may be explained by the 597 

comparatively dry summer of 2007. Also in the Schliefau catchment the correlation values are 598 

mostly lower in 2007, compared to the other years. 599 

 Approximate location of Fig.11 600 

Tab. 8 summarizes the mean daily bias in mmd-1 for the summer months in 2006 to 2009 601 

between different rainfall realisations. For the Schliefau catchment, the bias between PInv and 602 

PObs is mostly significantly higher, compared to the bias between PInca and PObs. Only 603 

Exp2, with a mean bias of 0.07 mmd-1, is comparable to the bias between PInca and PObs of 604 

0.02 mmd-1. Exp2 also showed the highest performance in the runoff simulations concerning 605 

the NSE. In contrary, for the Krems catchment, the bias is lower between PInv and PObs for 606 

Exp1 to Exp3, compared to PInca-PObs. For Exp1 to Exp3 a mean bias of 0.14 mmd-1 607 
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(Schliefau) and 0.36 mmd-1 (Krems) is calculated. As a comparison, Krier et al. (2014) 608 

published mean bias values between simulated and observed rainfall of -3.3 to 1.5 mmd-1 609 

(mean -0.35 mmd-1) for 24 catchments on the basis of a single year. From all simulation 610 

experiments, Exp4 shows the largest bias, which is explained by the fact, that runoff was 611 

increased in this experiment. Here the increased runoff clearly shows a signal in the inverse 612 

rainfall, in contrast to the correlation and cumulative sums shown above.  613 

 Approximate location of Tab.8 614 

4.3.3 Rainfall and runoff simulations for a flood event 615 

Fig. 12 exemplarily illustrates the temporal development of the different rainfall realisations 616 

and runoff simulations for the highest flood event in the Krems catchment. Results from Exp3 617 

are shown. Compared to PObs and PInca the inverse rainfall PInv exhibits higher variability 618 

and higher intensities. The higher variability and oscillating nature of the inverse rainfall is 619 

explainable with the reaction of the inverse model to small fluctuations in runoff 620 

observations: In case of rising runoff observations, rainfall will be estimated by the inverse 621 

model. If the observed runoff decreases and the simulated runoff of the inverse model is 622 

larger than observed runoff, no inverse rainfall will be calculated, leading to the visible 623 

oscillations. Fig. 12 (b) shows, that the forward model, driven with PObs as input, 624 

underestimates both flood peaks. The forward model, driven with the inverse rainfall, 625 

simulates the driven periods very well (Inverse QSim). However, especially the falling limb 626 

after the second flood peak on the 07.09.2007 is overestimated by the inverse model. In this 627 

period it is also visible, that in consequence no rainfall is calculated by the inverse model, 628 

since simulated runoff is higher than observed runoff.  629 

 Approximate location of Fig.12 630 

For a given time interval, the inverse model will yield an exact agreement between observed 631 

and simulated runoff, as long as there is a positive rainfall value Rt to solve eq. (5). This will 632 

be the case in periods of rising limbs of observed runoff (driven periods), as a rainfall value 633 

can be estimated, which raises the simulated runoff value to match observation. On the 634 

contrary, in periods of observed falling limbs (non-driven periods) the simulated runoff will 635 

solely be a function of the model structure, its parameters and the antecedent system states, as 636 

negative rainfall values are ruled out beforehand. This explains, why in periods, in which the 637 



 22

simulated runoff is higher than the observed value, no rainfall is calculated by the inverse 638 

model. 639 

4.3.4 Influence of cold system states on the inverse rainfall (Exp6) 640 

To test the influence of cold states on the inverse rainfall simulations the simulation 641 

experiment Exp6 was performed. Three different cold states (Reference, dry and wet system 642 

states) were thereby defined (see section 2.3.2). Fig. 13 exemplarily shows the results of Exp6 643 

for the Krems catchment.  644 

 Approximate location of Fig.13 645 

From the monthly rainfall sums of the different model runs it is evident, that the inverse 646 

rainfall calculations differ significantly at the beginning of the simulation. In the first month 647 

the reference scenario results in a monthly rainfall sum of 30 mm, the dry scenario in 111 mm 648 

and the wet scenario in only 9 mm. Generally the model will always strive towards an 649 

equilibrium in its system states, which are a function of the model structure and parameters. 650 

In the scenario “wet” a lot of water is stored in the states of the model at the beginning, with 651 

the result, that little inverse rainfall is calculated. In the dry scenario on the other hand a 652 

higher amount of rainfall is estimated, since less water is stored in the states at the beginning. 653 

With time, however, the different system states converge. In consequence also the inverse 654 

rainfall values converge and after 9 months no differences are evident. 655 

As in forward models formulated in a state-space approach, it is evident that cold states have 656 

a noteworthy influence on the simulation results. After an adequate spin-up time the system 657 

states however converge, leading to deterministic and unique inverse rainfall estimates. 658 

5 Summary and conclusions 659 

A calibrated rainfall-runoff model (forward model) reflects the catchment processes leading to 660 

runoff generation. Thus, inverting the model, i.e. calculating rainfall from runoff, yields the 661 

temporally disintegrated rainfall. In this paper we applied a conceptual rainfall-runoff model, 662 

which is inverted in an iterative approach, to simulate catchment rainfall from observed 663 

runoff. The estimated inverse rainfall is compared with two different rainfall realisations: 664 

Apart of ground observations, areal rainfall fields of the INCA-system are used. The approach 665 

is applied to two study areas in Austria. Hourly data is available for the years 2006 to 2009. 666 

Only the months of June to September are used, as the inverse model can only be applied in 667 

periods, in which runoff is not influenced by snow melt (i.e. summer months).  668 
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In a first step, the forward model is calibrated against runoff observations. To evaluate the 669 

influences of (i) different model parameters due to different calibration periods and lengths, 670 

(ii) different runoff observations and (iii) different parameter optimisation data basis on the 671 

runoff and rainfall calculations, several simulation experiments are performed. Additionally 672 

the influence of different initial conditions on the rainfall simulations are evaluated. 673 

The forward model mostly shows stable results in both catchments and reproduces the 674 

dynamics and variability of the catchment responses to rainfall in a satisfactory manner. Only 675 

the simulation experiment, in which a single summer was used for parameter calibration, 676 

shows a larger deterioration of the model performance in the independent years. The model 677 

parameters are then used for deriving catchment rainfall from runoff observations.  678 

The cumulative rainfall curves of the rainfall realisations (ground observation (PObs), INCA 679 

(PInca) and inverse rainfall from the different simulation experiments (PInv)) are very 680 

similar, suggesting, that the inverse model is capable of representing the long-term 681 

quantitative rainfall conditions of the catchment. About 60 % (Schliefau) and 45% (Krems) of 682 

rainfall is lost to the atmosphere due to actual evapotranspiration (ETa). If the model would 683 

not capture ETa adequately, the cumulative rainfall curves would not follow the observations 684 

so closely.  685 

The correlation between PInv and PObs, although rather low, is higher or of the same 686 

magnitude compared to the correlation between PObs and PInca, suggesting that the inverse 687 

model also reflects the timing of rainfall in equal quality of INCA. The correlation between 688 

PInv and PObs is mostly stable in the single years, independent of the simulation experiment. 689 

However, again for the simulation experiment with only a single summer for parameter 690 

calibration, a larger spread in the correlation for the single years is visible. An increase in 691 

observed runoff (Exp4) does not show negative effects on the inverse rainfall measured by the 692 

correlation coefficient. A larger bias between observed and modelled rainfall is however 693 

visible in Exp4. Generally, the simulation experiment with the highest performance in the 694 

runoff simulation also shows the highest correlation values in the rainfall simulations. 695 

To test, if the inverse rainfall is conditioned by observed rainfall used as calibration input, 696 

additional model calibration is conducted using the INCA data as driving rainfall input for the 697 

forward model calibration. The simulation of inverse rainfall on the basis of this model 698 

parameters set show similar results as before, suggesting, that the inverse rainfall is not 699 

conditioned to the rainfall input used for model calibration.  700 
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Since the inverse model is formulated in a state-space approach additional simulations are 701 

performed with differing cold states at the beginning of the simulations. Here the results 702 

show, that the resulting inverse rainfall values converge to identical values after an adequate 703 

spin-up time. 704 

Generally, the results do not differ substantially between the two test catchments. It can be 705 

concluded that the application of the inverse model is a feasible approach to estimate mean 706 

areal rainfall values. The mean areal rainfall values can be used to enhance interpolated 707 

rainfall fields, e.g. for the estimation of rainfall correction factors or the parameterisation of 708 

elevation dependency. With the inverse model, it is not possible to calculate solid rainfall. In 709 

rainless periods, where it is clear, that snow melt is dominating runoff (e.g. in spring), the 710 

inverse model can however be used to quantify the snow melt contribution. 711 

The estimation of areal rainfall leading to extreme flood events is afflicted with major 712 

uncertainties. Here the inverse modelling approach can be used as an additional information 713 

source concerning the rainfall conditions during extreme events. In this context, it is 714 

conceivable to use the inverse model in real-time flood forecasting systems. Here two 715 

different applications of the inverse model are conceivable:  716 

1. A frequent problem observed in real-time flood forecasting models with state space 717 

formulations is that the system states in the models are biased in such a way that the simulated 718 

and observed runoff differ systematically. Methods exist to cope with this problem and to 719 

update the system states (e.g. Liu et al, 2012; McLaughlin, 2002). The system states in the 720 

inverse model will, at least during driven periods, always guarantee, that the simulated runoff 721 

is identical to observations. This fact may be used as a basis for updating system states in the 722 

flood forecasting models.  723 

2. At least in Austria, 2 different types of precipitation forecasts are used as input in flood or 724 

runoff forecasting models - nowcasting fields (used for forecasts of t=+1h to t=+6h) and fields 725 

from numerical weather forecasting models (used for t>+6h). The nowcasting fields strongly 726 

depend on the quality of station observations (t=0h), as they are the basis for extrapolation 727 

into the future (Haiden et al., 2011). By assimilating the inverse rainfall into the nowcasting 728 

system, i.e. to gain additional information on rainfall quantities, it is conceivable that the 729 

rainfall estimates of t=0h can be improved. An extrapolation of the improved rainfall fields 730 

could therefore improve the nowcasting fields and in consequence the runoff forecasts.  731 
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There are however several methodological issues to be solved, before an application in this 732 

context is possible. These include the spatial disaggregation of the inverse rainfall and system 733 

states in case the flood forecasting models are set up as distributed models or the limitation of 734 

the inverse model, when used to calculate rainfall, to snow-free periods. Additionally, the 735 

application presented here focused on headwater basins. In this context, the estimation of 736 

rainfall from intermediate catchments is also a future challenge. 737 

In the presented work several different model parameter sets were used as a basis to calculate 738 

inverse rainfall. In further works the influences and uncertainties in the inverse rainfall, which 739 

arise from different model parameters should be analysed systematically. Additionally, a 740 

comparison of inverse rainfall estimates from a different model structure for the two 741 

catchments with our results would be of interest, in order to check the links between the 742 

performance of the forward model and the results obtained by the inversion method.  743 

744 
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Appendix 745 

The forward model is formulated as follows, considering parameters and variables in Table 2 746 

and Table 3: 747 
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TABi / TVSi = recession coefficients. Δt = modelling time step in units of hours. α and β vary 757 

with modelling time step and represent smoothing functions of the linear reservoirs 758 

Eq. A1 to A8 are simplified representations of the model algorithm. Min/max operators, 759 

which, by introducing discontinuities, can lead to non-inversibility. Eq. A4 and A6 do not 760 

include a threshold function in the actual model code. The differential equations of the linear 761 

reservoirs are solved analytically. An internal time step discretization is included in the code, 762 

to guarantee, that the transition between system states above and below the threshold value is 763 



 27

solved exactly. A3, representing the soil layer, does include a min() operator for estimating 764 

the ratio between actual and potential evapotranspiration as a function of soil water content. 765 

This is however not a limiting factor for the inversion, since this factor is a function of the 766 

preceding soil state BW0t-1, which is known. Only 50% of rainfall is used as input into the 767 

interception storage BWI. By assuming that the other 50% are always throughfall, eq. A1 and 768 

A2 also doe not limit the inversion, since a continuous signal through the whole model 769 

cascade is guaranteed. The recession coefficient representing percolation processes in the soil 770 

layer exhibits a nonlinear characteristic and is calculated as a function of actual soil water 771 

content and a as a function of the form parameter PEX2 [-]. This model concept reflects the 772 

fact, that higher soil moisture levels lead to higher soil permeability values. These induce 773 

higher percolation rates which are reflected by lower recession coefficients. 774 

775 
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 938 

Tables 939 

Table 1: Magnitude of different systematic errors in precipitation measurements (Sevruk, 940 

1981, 1986; Goodison et al, 1998; Elias et al., 1993; Jacobs et al., 2006; Klemm and 941 

Wrzesinsky, 2007). 942 

Systematic error Magnitude 

Wind-induced errors 
2 - 10 % (liquid precipitation) 
10 - >50 % (snow) 

Wetting losses 2 - 10 % 
Evaporation losses 0 - 4 % 
Splash-out and splash-
in 

1 - 2 % 

Flog and dew 4 - 10 % 

 943 

Table 2: Model parameters θi. Parameters in italics are calibrated. 944 

Parameter Units Range Description 

INTMAX mm 0.5 - 2.5 Interception storage capacity 

M mm 80 - 250 Soil storage capacity 

FKFAK - 0.5 - 1 Critical soil moisture for actual evapotranspiration 

ETVEGCOR - 0.4 - 1.1 
Vegetation correction factor for actual 
evapotranspiration from soil 

BETA - 0.1 - 10 Exponent for computing fast runoff generation 

KBF h 4000 - 12000 Recession coefficient for percolation from soil module 

PEX2 - 5 - 25 Parameter for non-linear percolation 

TAB2 h 50 - 500 Recession coefficient for interflow 

TVS2 h 50 - 500 
Recession coefficient for percolation from interflow 
reservoir 

H2 mm 0 - 25 Outlet height for interflow 

TAB3 h 1000 - 5000 Recession coefficient for base flow 

TAB4 h 0.05 - 10 Recession coefficient for routing 

 945 

946 
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Table 3: Model fluxes and system states Si. Fluxes represent sums over the time step. 947 

Variable Units Type Description 

R mm Input Rainfall 

ETp mm Input Potential evapotranspiration 

ETI mm Output 
Actual Evapotranspiration from interception 
module 

ETG mm Output Actual Evapotranspiration from soil module 

BWI mm State Water stored in interception module 

BW0 mm State Water stored in soil module 

BW2 mm State Water stored in interflow reservoir 

BW3 mm State Water stored in base flow reservoir 

BW4 mm State Water stored in routing reservoir 

R_Soil mm Internal flux Input into soil module 

Q1 mm Internal flux Fast runoff from soil module 

Q2 mm Internal flux Percolation from soil module 

QAB2 mm Internal flux Interflow 

QVS2 mm Internal flux Percolation from interflow reservoir 

QAB3 mm Internal flux Base flow 

QSIM mm Output Total runoff 

 948 

Table 4: Characteristics of the study catchments (BMLFUW, 2007; BMLFUW, 2009). 949 

 Schliefau Krems 

Basin area [km²] 17.9 38.4 
Mean elevation [m] 608 598 
Elevation range [m] 390 - 818 413 - 1511
Mean annual precipitation [mm] 1390 1345 
Mean annual runoff [m³/s] 0.38 1.12 

 950 

951 
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Table 5: Overview of the model calibration and simulations experiments with observed input 952 

data. PObs and PInca refer to the rainfall from the station observations and the INCA system.  953 

Jun. to Sept. in year Driving input (For-
ward / inverse model) 

Purpose 
 2006 2007 2008 2009 

Exp1 calib. valid. valid. valid. PObs / Q 
Influence of different calibration 
periods on simulations 

Exp2 calib. calib. valid. valid. PObs / Q 
Exp3 calib. calib. calib. valid. PObs / Q 

Exp4 calib. calib. calib. valid. PObs / Q+10% 
Influence of different runoff Q on 
simulations 

Exp5 calib. calib. calib. valid. PInca / Q 
Influence of different rainfall input 
on simulations 

Exp6 
Parameters from Exp3, but 
different initial conditions 

PObs / Q 
Influence of cold states on 
simulations 

 954 

Table 6: Model performance for the different simulation experiments and the two catchments 955 

of the forward model, expressed by Nash-Sutcliffe-Efficiency (NSE) and the mean bias 956 

between simulated and observed runoff in percent of observed runoff for the period 2006 to 957 

2009. Only the months June to September are evaluated. 958 

  
  

  
NSE [-] 

mean 
BIAS [%] 

S
ch

li
ef

au
 Exp1 0.822 7.8 

Exp2 0.832 3.9 
Exp3 0.828 0.9 
Exp4 0.830 -5.9 
Exp5 0.728 -0.6 

K
re

m
s 

Exp1 0.763 -1.4 
Exp2 0.851 -4.8 
Exp3 0.851 -4.8 
Exp4 0.854 -7.9 
Exp5 0.787 1.5 

 959 

 960 
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Table 7: Correlation for 2006 to 2009 between different rainfall realisations and temporal 961 

aggregation lengths. (PObs: Ground observation, PInv: Inverse rainfall from Exp1 to Exp5, 962 

PInca: INCA rainfall). 963 

    CORR: 1h-sums CORR: 6h-sums CORR: 24h-sums 

  
  

PObs - 
PInv 

PInca -
PInv 

PObs - 
PInca 

PObs - 
PInv 

PInca -
PInv 

PObs - 
PInca 

PObs - 
Pinv 

PInca -
PInv 

PObs - 
PInca 

S
ch

lie
fa

u 

Exp1 0.504 0.251 

0.463 

0.800 0.671 

0.849 

0.871 0.802 

0.928 

Exp2 0.549 0.290 0.828 0.703 0.914 0.840 

Exp3 0.534 0.284 0.824 0.699 0.918 0.845 

Exp4 0.530 0.283 0.818 0.695 0.917 0.843 

Exp5 0.524 0.276 0.824 0.697 0.920 0.842 

K
re

m
s 

Exp1 0.478 0.394 

0.469 

0.794 0.771 

0.864 

0.871 0.847 

0.931 

Exp2 0.517 0.445 0.831 0.807 0.909 0.889 

Exp3 0.517 0.445 0.831 0.807 0.909 0.889 

Exp4 0.517 0.445 0.833 0.809 0.909 0.892 

Exp5 0.503 0.445 0.820 0.805 0.901 0.888 

 964 

Table 8: Mean Bias for 2006 to 2009 between different rainfall realisations.  965 

  
  

Mean Bias 
[mm/d] 

  
  

PInv - 
PObs 

PInca - 
PObs 

S
ch

li
ef

au
 

Exp1 0.14 

0.02 

Exp2 0.07 

Exp3 0.22 

Exp4 0.42 

Exp5 0.33 

K
re

m
s 

Exp1 0.28 

0.47 

Exp2 0.40 

Exp3 0.40 

Exp4 0.53 

Exp5 0.49 
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Figures 966 
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Figure 1: Structure, parameters and states of the forward model. 968 
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Figure 2: Illustration of the iteration progress for one model time step. Note that the right y-971 

axis showing the inverse rainfall values (R) is in a logarithmic scale. 972 
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 973 

Figure 3: Setup of the virtual experiments and evaluation of the inverse model. All variables 974 

are calculated for every Monte Carlo run, in which parameters θ are varied. 975 

 976 

 977 

Figure 4: Schliefau and Krems catchment and location of meteorological stations. Note that 978 

ground observation of rainfall is not part of the INCA stations network. 979 



 40

 980 

Figure 5: Virtual experiment with simulated runoff as input into the inverse model (Schliefau 981 

catchment): Identical observed and inverse rainfall (POBS-PInv, left) and soil water content 982 

of forward and inverse model (BW0forw-BW0Inv, right). 983 

 984 

 985 

Figure 6: Nash-Sutcliffe-Efficiency (NSE) of the forward model for the calibration periods 986 

versus single years for the 2 study areas. 987 

988 
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 989 

 990 

Figure 7: Schliefau catchment: Observed (black points) and simulated (red) runoff of Exp2. 991 

 992 

 993 

Figure 8: Krems catchment: Observed (black points) and simulated (red) runoff of Exp2. 994 

995 
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 996 

Figure 9: Schliefau catchment: Cumulative rainfall curves for observed rainfall (PObs), INCA 997 

rainfall (PInca) and the inverse rainfall of Exp1 to Exp5 (PInv). Cumulative sums of observed 998 

runoff are shown as dashed black lines. 999 

 1000 

 1001 

Figure 10: Krems catchment: Cumulative rainfall curves for observed rainfall (PObs), INCA 1002 

rainfall (PInca) and the inverse rainfall of Exp1 to Exp5. Cumulative sums of observed runoff 1003 

are shown as dotted black lines. 1004 



 43

 1005 

Figure 11: Correlation between PObs-PInv for the calibration periods of the simulation 1006 

experiments Exp1 to Exp5 versus single years for the 2 study areas.  1007 
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Figure 12: Krems catchment: Temporal development of the different rainfall realisations (a) 1010 

and runoff (b) for a flood event. Simulations originate from Exp3. 1011 
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Figure 13: Krems catchment: Monthly sums of inverse rainfall simulated in the scenarios 1013 

"reference", "dry" and "wet" from Exp6. 1014 


