

1 **Detecting groundwater discharge dynamics from point to catchment scale in a**
2 **lowland stream: combining hydraulic and tracer methods**

4 **J. R. Poulsen¹, E. Sebok², C. Duque³, D. Tetzlaff⁴, P. K. Engesgaard²**

6 [1] Department of Bioscience, Aarhus University, Silkeborg, Denmark.

7 [2] Department of Geosciences and Natural Resource Management, University of
8 Copenhagen, Copenhagen, Denmark.

9 [3] Department of Geosciences, Section of Geology and Geophysics, University of Oslo,
10 Oslo, Norway.

11 [4] Northern Rivers Institute, School of Geosciences, Aberdeen University, Aberdeen,
12 Scotland, UK.

14 Correspondence to: J. R. Poulsen (jpo@bios.au.dk)

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

1 **Abstract**

2 Detecting, quantifying, and understanding groundwater discharge to streams are crucial for
3 the assessment of water, nutrient and or contaminant exchange at the surface water-
4 groundwater interface. In lowland agricultural catchments with significant groundwater
5 discharge this is of particular importance because of the risk of excess leaching of nutrients
6 to streams. Here we aim to combine hydraulic and tracer methods from point to catchment
7 scale to assess the temporal and spatial variability of groundwater discharge in a lowland,
8 groundwater gaining stream in Denmark. At the point scale groundwater fluxes to the stream
9 were quantified based on Vertical streambed Temperature Profiles (VTP). At the reach scale
10 (0.15 - 2 km) the spatial distribution of zones of focused groundwater discharge was
11 investigated by the use of Distributed Temperature Sensing (DTS). Groundwater discharge
12 to the stream was quantified using differential gauging with an Acoustic Doppler Current
13 Profiler (ADCP). At the catchment scale (26-114 km²) runoff sources during main rain events
14 were investigated by hydrograph separations based on Electrical Conductivity (EC) and
15 stable isotopes ²H/¹H. Clear differences in runoff sources between catchments were
16 detected, ranging from approximately 65% event water for the most responsive sub-
17 catchment to less than 10% event water for the least responsive sub-catchment. This was
18 supported by the groundwater head gradients, where the location of weaker gradients
19 correlated with a stronger response to precipitation events. This shows a large variability in
20 groundwater discharge to the stream, despite the similar lowland characteristics of sub-
21 catchments indicating the usefulness of environmental tracers for obtaining information
22 about integrated catchment functioning during precipitation events. There were also clear
23 spatial patterns of focused groundwater discharge detected by the DTS and ADCP
24 measurements at the reach scale indicating high spatial variability, where a significant part of
25 groundwater discharge was concentrated in few zones indicating the possibility of
26 concentrated nutrient or pollutant transport-zones from nearby agricultural fields. VTP
27 measurements confirmed high groundwater fluxes in discharge areas indicated by DTS and
28 ADCP, and this coupling of ADCP, DTS and VTP proposes a novel field methodology to
29 detect areas of concentrated groundwater discharge with higher resolution.

30

31

32

33

34

35

36

1 **1 Introduction**

2 Groundwater and surface water exchange dynamics are of great importance for a broad
3 range of disciplines within the field of hydrology. For instance, groundwater discharge to
4 streams governs the transfer of solutes and nutrients between sub-surface and surface
5 water environments (Boulton et al., 2010; Dahl et al., 2007; Gooseff, 2010; Kasahara and
6 Hill, 2008; Krause et al., 2008) and is also a key parameter in controlling stream biodiversity
7 (Malcolm et al., 2003; Hayashi and Rosenberry, 2002). Zones of groundwater recharge and
8 discharge are particularly important in lowland groundwater-dominated streams as many
9 lowland areas are intensively used for agriculture, which significantly increases the risk of
10 transport of nutrients and pollutants to streams with the potential of severe consequences for
11 stream ecology (Hoffmann and Baattrup-Pedersen, 2007; Kronvang et al., 2005). This is a
12 pressing issue for instance in relation to lowering nutrient loads to rivers, lakes and seas
13 (Danish Ministry of Environment, 2011; Griffith et al., 2006).

14

15 Controlled by a range of complex temporal and spatial processes governed by topography,
16 catchment geology, hydrology and hydrometeorology (Brunke and Gonser, 1997; Winter,
17 1999), the exchange between groundwater and surface water is often spatially and
18 temporally highly variable. Thus, the detection and quantification of groundwater surface
19 water dynamics present a challenge, particularly in lowland streams. In these streams the
20 diffuse groundwater discharge along the stream channel reduces the sensitivity of thermal
21 methods (Lowry et al., 2007; Krause et al., 2012), as well as tracer methods (Gonzales et
22 al., 2009), and can cause low net increase in stream flow which also limits the available
23 methods for detecting groundwater discharge (Briggs et al., 2011). At the same time due to
24 the presence of focused, significant discharge zones (Lowry et al., 2007, Matheswaran et al.,
25 2012) the spatial variability of groundwater discharge can be large (Krause et al., 2012).
26 Therefore there is a need to improve our understanding of these processes in lowland
27 catchments across spatial scales in order to develop new approaches and simple tools to
28 map and quantify them.

29

30 Different studies applying a range of hydraulic and tracer approaches have been
31 summarised by for instance Kalbus et al. (2006). Groundwater fluxes at specific point
32 locations have been measured in rivers by use of seepage meters, revealing large
33 heterogeneity within meters (Landon et al., 2001; Langhoff et al., 2006; Rosenberry, 2008).
34 This spatial heterogeneity has been confirmed by use of temperature as a natural tracer
35 (Conant, 2004), where punctual vertical groundwater fluxes have been estimated from
36 vertical sediment temperature profiles (VTP) using the steady-state analytical solution to the

1 1D conduction-convection equation (Schmidt et al., 2007; Jensen and Engesgaard, 2011)
2 and streambed temperature time series (Hatch et al., 2006; Keery et al., 2007).

3

4 At the reach scale more integrated measures such as differential flow gauging (McCallum et
5 al., 2012, Briggs et al., 2011) have been applied to quantify net differences in stream
6 discharge caused by groundwater recharge and discharge. The use of this method,
7 however, is limited by the measurement uncertainty which prevents it to be applied for
8 detecting small changes in groundwater discharge (Briggs et al., 2011). However, recent
9 advances of Acoustic Doppler Current Profiler (ADCP) instruments for stream discharge
10 measurements open up new possibilities for a more detailed detection of net groundwater
11 discharge with short measurement periods and with a high precision (Mueller and Wagner,
12 2009). Furthermore, Distributed Temperature Sensing (DTS) has become a widely used
13 method for reach scale detection of groundwater discharge to streams by monitoring
14 temperatures at the sediment-water interface along a fiber optic cable of several km length
15 (Selker et al., 2006a; Tyler et al., 2009). Thereby, groundwater-surface water interactions
16 can be detected over longer stream sections bridging the monitoring gap between point flux
17 estimates and more integrated measures of net differences in stream discharge at the reach
18 scale (Lowry et al., 2007).

19

20 However, most field studies presenting measurements of groundwater-surface water
21 dynamics are carried out in stream sections of a few hundred meters (Conant, 2004; Lowry
22 et al., 2007; Anibas et al., 2011), primarily due to the labour intensive work needed to extend
23 measurements to quantify discharge fluxes beyond the km scale. To obtain information
24 about runoff sources at the catchment scale a common approach is stream hydrograph
25 separations, often conducted by use of stable isotopes and chemical tracers (Sklash and
26 Farvolden, 1979; Uhlenbrook and Hoeg, 2003). However, such hydrograph separations only
27 reveal the integrated catchment response of the point to reach scale groundwater-surface
28 water dynamics, and have rarely been conducted in lowland agricultural catchments. The
29 reason for this is that it can be difficult to clearly identify end members due to the damping of
30 signals by the often constant, strong groundwater influence (Gonzales et al., 2009).

31

32 Since the large heterogeneity in groundwater-surface water interactions can be observed
33 across scales, the necessity of combining the different hydraulic and tracer methods is
34 widely recognized (Bencala et al., 2011; Kalbus et al., 2006; Lischeid, 2008; Scanlon et al.,
35 2002) in order to avoid incorrect inferences regarding exchange processes based on
36 observations at one spatial scale only (Schmadel et al., 2014). Hence, more recently point to
37 reach scale groundwater surface water interactions have been studied by applying multiple

1 methods covering different spatial scales such as groundwater head gradients and DTS
2 (Krause et al., 2012); differential flow gauging, chemical tracers and DTS (Briggs et al.,
3 2011); or chemical tracers and differential flow gauging (Mc Callum et al., 2012). However,
4 either the studies did not detect small scale spatial variability in groundwater discharge
5 (Briggs et al., 2011; McCallum et al., 2012) or did not quantify discharge fluxes at the
6 identified discharge zones (Krause et al., 2012). Furthermore, to our knowledge no study
7 has so far combined point to reach scale DTS, VTP and differential gauging with catchment
8 scale tracer-based hydrograph separations.

9

10 The aim of this study was to combine hydraulic methods (ADCP, groundwater head
11 gradients) and tracer methods (hydrograph separations from EC and $^{2}\text{H}/^{1}\text{H}$, DTS and VTP)
12 across spatial scales to assess the temporal and spatial variability of groundwater discharge
13 in a lowland, groundwater gaining stream in Denmark. The specific objectives were to: (1)
14 assess the spatial variability of groundwater discharge and quantify the fluxes along a 2 km
15 stretch of the stream by combining high precision ADCP differential flow gauging (intervals of
16 150-200 m) with a novel coupling of DTS (spatial resolution of 1 m), and VTPs (point
17 measurements); (2) investigate variability in runoff sources at the catchment scale (42-114
18 km²) by stream tracer hydrograph separation and groundwater head gradients; and (3)
19 assess the capability, limitations and synthesis of methods applied across the different
20 scales in terms of water management practices.

21

22 **2 Study area**

23 The study was carried out in the groundwater gaining lowland Holtum stream, located in the
24 Skjern river catchment in Jutland, Western Denmark (Fig. 1a). This glacial floodplain valley
25 is characterised by thick sediment deposits of sand and silt deposited during the latest
26 Weichsel glacial period (Houmark-Nielsen, 1989), and with podzols being dominating soil
27 layers. The mean annual precipitation in the catchment is 950-1000 mm with an actual
28 evapotranspiration of 460-480 mm yr⁻¹ (Ringgaard et al., 2011). Average annual air
29 temperature in the catchment was 7.5 °C in 2012 with stream temperatures between 1 and
30 16 °C during the year. The average annual discharge at the catchment outlet was 1.2 m³ s⁻¹
31 and the 5th and 95th percentiles were 0.7 and 2.1 m³ s⁻¹ respectively, for the period 1994-
32 2012.

33

34 The study catchment at Holtum stream was divided into four sub catchments, and at each
35 sub catchment outlet a monitoring station was established (Fig. 1b). Three stations were
36 located in the main stream network (stations 1, 2 and 4) and one station (station 3) was
37 located in a tributary (Fig. 1b, c) which confluences with the main stream between stations 2

1 and 4. The point and reach scale measurements were conducted between stations 2 and 4
2 and the catchment scale investigations were carried out at each of the four stations.

3
4 Between stations 1 and 4 the stream flows from east to west with a mean gradient of 1‰
5 receiving four main tributaries (Fig. 1b). Between stations 2 and 4 there is a small inlet from
6 a fishery, constantly carrying a discharge of $0.07 \text{ m}^3 \text{ s}^{-1}$. Beyond a riparian zone of
7 approximately 5 m, station 1 is surrounded by agricultural fields, whereas the near-stream
8 areas at stations 2, 3 and 4 are wetlands. The mean annual discharge, the topographical
9 catchment and land use of sub catchments to each station are summarised in Table 1.
10 Hourly precipitation data was available from Voulund field site, located 6 km from station 4.
11

12 **3 Methods**

13 For the point to reach scale investigations, a one week campaign was carried out between
14 stations 2 and 4 during a low-flow period 9-15 June 2012 where point-scale VTP and reach
15 scale DTS and ADCP measurements were conducted (Fig. 1c). The lowflow period was
16 chosen to minimize the risk of surface discharge to the stream. The catchment scale studies
17 were conducted during three different rain events in 2012, one in spring, one in summer and
18 one in autumn (Fig. 2). The decision of monitoring the three selected rain events were based
19 on weather forecasts of upcoming large rain events, combined with antecedent medium to
20 low stream flow conditions. During the rain events samples of stream water were collected at
21 stations 1-4. Stream discharge at the catchment outlet and precipitation values during the
22 investigation period are shown in Fig. 2. In addition, hydraulic heads were measured several
23 times in piezometers installed in riparian zones/wetlands at stations 1, 2 and 4 (relative
24 position of the screens shown on Fig. 3) to define hydraulic conditions at the stations. The
25 different types of measurements are summarised in Table 2.
26

27 **3.1 Point scale measurements**

28 **3.1.1 Vertical streambed Temperature Profiles (VTP)**

29 Deeper groundwater temperature in Denmark equals to the annual average air temperature
30 of $\sim 8^\circ\text{C}$ while the average stream temperature was 13°C during the campaign. Therefore,
31 potential groundwater discharge sites were expected to show relatively low streambed
32 temperatures during the field campaign. Point scale vertical groundwater fluxes were
33 estimated based on VTPs in low streambed temperature zones, as indicated by the DTS
34 surveys. At these locations streambed temperatures were collected after 10 min equilibration
35 time at 0, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.3, 0.4 and 0.5 m below the streambed by
36 thermocouples with an accuracy of 0.2°C . Due to the long equilibration time needed, VTP

1 measurements were only collected at locations where DTS indicated the most pronounced
2 potential discharge locations.

3 Based on the VTP measurements vertical groundwater fluxes were estimated by fitting the
4 steady-state analytical solution of the one dimensional conduction-convection equation
5 (Bredehoeft and Papadopoulos, 1965) to the measured temperature data as described by
6 Schmidt et al. (2007) and Jensen and Engesgaard (2011):

7

8
$$T(z) = T_s + (T_g - T_s) \frac{\exp\left(\frac{N_{pe}z}{L} - 1\right)}{\exp(N_{pe} - 1)} \quad (1)$$

9

10 where $T(z)$ is the streambed temperature ($^{\circ}\text{C}$) measured at depth z (m), T_s is the stream
11 water temperature ($^{\circ}\text{C}$), T_g is the groundwater temperature ($^{\circ}\text{C}$) at a given depth L (m), and
12 N_{pe} is the Peclet number giving the ratio of convection to conduction:

13

14
$$N_{pe} = \frac{q_z \rho_f c_f L}{\kappa_e} \quad (2)$$

15

16 where q_z (ms^{-1}) is the vertical fluid flux, $\rho_f c_f$ is the volumetric heat capacity of the fluid ($\text{Jm}^{-3}^{\circ}\text{C}^{-1}$), and κ_e is the effective thermal conductivity ($\text{Jm}^{-1}\text{s}^{-1}^{\circ}\text{C}^{-1}$).

18

19 As previous studies (Jensen and Engesgaard, 2011; Karan et al., 2013) in the same area
20 only detected moderate seasonal changes in streambed temperatures, the steady-state
21 conditions were assumed to be valid for the study period in June. For each VTP, T_s was
22 given as the temperature measured by the uppermost sensor, and the constant groundwater
23 temperature of 8°C (T_g) was assumed at a depth of 5 metres (L). A volumetric heat capacity
24 of $4.19 \times 10^{-6} \text{ J m}^{-3}^{\circ}\text{C}^{-1}$ was used for the water, and effective thermal conductivity of $1.8 \text{ W m}^{-1}^{\circ}\text{C}^{-1}$
25 was assumed for the sandy streambed.

26

27 **3.2 Reach scale measurements**

28 **3.2.1 Distributed Temperature Sensing (DTS)**

29 During the June 2012 campaign DTS was used for reach scale investigations of the
30 groundwater discharge dynamics. A BruSteel fiber optic cable connected to a Sensornet
31 Oryx-SR system was deployed along the middle of the stream on the sediment-water
32 interface in three layouts, A, B and C to cover the whole length of the stream section (Fig.
33 1c). To avoid damage of the fiber optic cable, no measurements were made between 1366
34 and 1530 m in the downstream direction from station 2 (Fig. 1c) due to remnants of a weir.

35

1 For each layout streambed temperature data was collected with double-ended
2 measurements of 10 minute integration times and a 1.01 m spatial averaging interval. Each
3 installation was calibrated by running approximately 30 m fiber optic cable through a
4 calibration bath. The precision of the installations is shown in Table 3. In each layout
5 streambed temperature time series of 22-23 hours were collected with different starting
6 times (Table 3), but results are presented by aligning the measurements relative to time of
7 day. Under the temperature conditions of the June campaign, low streambed temperatures
8 could indicate concentrated discharge zones. However, due to different daily air
9 temperatures, the decrease in streambed temperatures at the potential concentrated
10 discharge sites was not directly comparable between the layouts. Hence, in order to
11 compare streambed temperatures measured at different days at different locations, the
12 strength of the groundwater temperature signal for each measurement location was
13 calculated as:

14

$$15 S_i = \frac{\bar{T}_l}{\bar{T}_i} \quad (3)$$

16

17 where S_i is the strength of the groundwater temperature signal at location i , T_l is the mean
18 temperature measured at the corresponding layout l during the measurement period, and T_i
19 is the mean temperature at location i during the measurement period. Thus, S_i values above
20 one represent colder streambed temperatures than the mean of the layout.

21

22 **3.2.2 Differential gauging**

23 In the 2450 m long stream section between stations 2 and 4 (Fig. 1c), differential gauging of
24 stream discharge was carried out during the June 2012 campaign for detection of the reach
25 scale variability of groundwater discharge. Stream discharge was measured with an ADCP
26 Streampro manufactured by Teledyne RD Instruments. The ADCP Streampro has a 4-beam
27 2 MHz transducer and a sampling frequency of 1 Hz and estimates discharge based on
28 measured water velocities and cross sectional area. The ADCP is mounted on a platform
29 and tethered across the stream, perpendicular to the main flow direction.

30

31 Discharge measurements were conducted for each 200 m in layout A and C and for each
32 150 m in layout B (Fig. 1c). The distances of 150 and 200 m between ADCP discharge
33 measurements were chosen, based on a pilot study conducted in early spring 2012. This
34 pilot study showed that at least 150 m between measurements were needed to obtain
35 discharge increases larger than 5%. The ADCP measurement procedure was optimised
36 according to recent recommendations (Mueller and Wagner, 2009; Muste et al., 2004a;

1 Muste et al., 2004b) and a minimum of ten discharge measurements with an average
2 deviation less than or equal to 5% were made at each location in order to minimise the
3 uncertainty of the discharge estimates. A permanent gauging station was installed at the
4 catchment outlet (station 4) for continuous discharge estimation based on the stage-
5 discharge relation, continuous water stage measurements (OTT Thalimedes pressure
6 transducer) and monthly current meter control measurements of discharge (Rantz, 1982;
7 Herschy, 1999).

8

9 **3.3 Catchment scale measurements**

10 **3.3.1 Sampling of stream water and precipitation**

11 Different sources of runoff in the sub catchments were studied based on the analysis of the
12 stream water EC and stable isotope fractions $^2\text{H}/^1\text{H}$ during three monitored rain events.
13 Stream water samples were collected with two Teledyne ISCO 6712 and two Teledyne ISCO
14 3700 portable samplers, with intervals of 3-5 hours. Precipitation was collected in a classical
15 Hellmann Rain Gauge and bulk water samples for isotope analysis were collected manually.
16 The inner cup of the rain gauge was sealed with a thin plastic cover to protect against
17 evapotranspiration.

18

19 The Teledyne samplers were programmed to collect 700 ml for every sampling, and
20 immediately after each sampling round of 24 samples, subsamples of 20 ml were taken and
21 sealed in plastic bottles and stored at a temperature of 4 °C. The precipitation samples were
22 sealed and stored in the same manner. The stream water and precipitation samples were
23 analysed for $\delta^2\text{H}$ on a PICARRO L2120-i Isotopic Water spectrometer with isotope fractions
24 given in per mille relative to Vienna Standard Mean Ocean Water (VSMOW). The precision
25 of the measurements was 0.3‰ for $\delta^2\text{H}$. EC in the precipitation and stream water samples
26 were measured on site with a portable Cond 3310 (WTW, Weilheim) conductivity meter with
27 an accuracy of $\pm 0.5\%$.

28

29 **3.3.2 Hydrograph separation**

30 To estimate the sources of runoff in the four different sub catchments during different events
31 a one-tracer two-component hydrograph separation was conducted (Sklash and Farvolden,
32 1979). The stream water was separated into pre-event and event water fractions on the
33 basis of the measured $\delta^2\text{H}$ signatures. “Pre-event” water refers to water present in the
34 catchment before the event and “event water” refers to the water that enters the catchment
35 during the event (Genereux and Hooper, 1998). The mixing equation used to estimate the
36 pre-event fractions is given by:

37

1
$$f_{pe} = \frac{C_T - C_e}{C_{pe} - C_e} \quad (4)$$

2
3 C_T represents the isotopic signature in the stream water. C_e represents the isotopic signature
4 of the event water (rainfall during the events) and C_{pe} represents the isotopic signature in the
5 pre-event water. The signature in the stream water immediately prior to the events was used
6 as C_{pe} , based on the assumption that the influence from event water at that time is negligible
7 (Pinder and Jones, 1969; Sklash and Farvolden, 1979). For the April and May events sparse
8 precipitation samples were available and C_e was calculated as a weighted mean and a bulk
9 value, respectively. For the September event C_e was calculated as an incremental weighted
10 mean value of the precipitation samples (McDonnell et al., 1990).

11
12 An additional chemical one-tracer two-component hydrograph separation was conducted
13 based on stream water EC. Thereby the fractions of sub-surface and surface water can be
14 estimated, where sub-surface water refers to the water which has passed through the
15 mineral soil, and surface water refers to water which has not infiltrated the mineral soil
16 (Genereux and Hooper, 1998). In the case of an entirely groundwater-dominated stream
17 network, the sub-surface component will be equal to the groundwater component and
18 surface fractions will correspond to the rain component (Rodhe, 1998). Hence, any
19 discrepancies between the pre-event and sub-surface fractions can indicate the likely
20 presence of additional components (Wels et al., 1991). The same mixing equation (Eq. 4) as
21 used for the $\delta^2\text{H}$ signatures was applied, but instead of C_e and C_{pe} the EC values of the
22 surface component C_S (rainfall) and the subsurface component C_G (stream water prior to
23 event), respectively, were used. C_T represents the EC value in the stream water during the
24 event. EC values of the precipitation were calculated as described for the $\delta^2\text{H}$ values.

25
26 Uncertainties in the pre-event water fractions inherent from uncertainties in determination of
27 the signatures used in Eq. 4 were calculated based on the procedure by Genereux (1998).
28 This method is based on an uncertainty propagation technique using Gaussian error
29 estimators, and was calculated at the 0.05 confidence level. Uncertainties in EC and $\delta^2\text{H}$
30 values in stream water prior to events were used to determine the uncertainty in C_{pe} and C_G .
31 Uncertainties in the rainfall and stream water during events were calculated based on the
32 measurement precisions ($\pm 0.3\text{‰}$ for $\delta^2\text{H}$ and 0.5% of measured EC value) since only one
33 sample per time interval was available.

34
35
36

1 **4 Results**

2 **4.1 Spatial variability in groundwater head gradients**

3 In the majority of the piezometers installed at stations 1, 2 and 4, the groundwater table was
4 less than 2 m below ground during all measurements conducted in the period Dec. 2011 to
5 Jun. 2013. Due to the limited fluctuations observed in groundwater levels at stations 1, 2 and
6 4 (<15 cm), it is assumed that the head gradients depicted in Fig. 3 are representative of the
7 general pattern for the whole study period. The hydraulic heads suggested groundwater
8 upwelling to the stream at all stations, as illustrated by manually interpolated isopotential
9 lines (Fig. 3). However, at station 1, head gradients in the close proximity of the stream were
10 significantly smaller than at station 2 and 4 (Fig. 3a), indicating a less strong upwelling. At
11 station 2, hydraulic heads indicated an upward flow to the right of the stream with very high
12 gradients (Fig. 3b) while rather lateral flow towards the stream seems to dominate the left
13 side of the stream channel. At station 4 to the right of the stream, hydraulic heads indicated
14 an upward flow towards the wetland (Fig. 3c).

15

16 **4.2 Detection of point to reach-scale spatial variability of focused groundwater
17 discharge**

18 The results from the point to reach scale investigations conducted during the June 2012
19 campaign are summarised in Fig. 4. DTS measurements revealed a number of focused
20 groundwater discharge sites with their location generally confirmed by the ADCP differential
21 flow gauging. In layout A the ADCP measurements showed only a slight net increase in
22 stream discharge along the first 400 m coinciding with no distinct temperature anomalies
23 detected by the DTS. However, at 600, 640, 705, 735, 800 and 825 m in the downstream
24 direction colder streambed temperatures were detected by the DTS (Fig. 4a) potentially
25 indicating high groundwater discharge supported by an increase in stream discharge of
26 approximately 14% along the layout (Fig. 4). At the last 200 m of layout A the inflow of the
27 tributary, which had an average discharge of $0.23 \text{ m}^3 \text{ s}^{-1}$ during the measurement period,
28 caused the significant increase in stream discharge observed.

29

30 Layout B revealed the largest spatial variability in groundwater discharge of the three
31 layouts, with both losing and gaining sections (Fig. 4). The losing section was detected by
32 the ADCP at the beginning of layout B causing the stream discharge to decrease with
33 approximately 13 % (Fig. 4). However, ADCP measurements in the main stream suggested
34 that stream water is already recharging at the very last section of layout A, since only an
35 increase of $0.15 \text{ m}^3 \text{ s}^{-1}$ is observed despite the inflow of $0.23 \text{ m}^3 \text{ s}^{-1}$ from the tributary. At the
36 same time, DTS measurements suggested that there were as well some groundwater
37 discharge sites along the loosing reach in layout B, reflecting a high spatial variability in

1 surface water/groundwater interactions. No visible outflows such as ditches or ponds at the
2 stream banks were present, and no unusual streambed or bank sediments were detected to
3 explain this loss of stream water. Thus, it is found likely that part of this water loss can be
4 attributed to the fishing lakes bordering the stream where artificial precautions might locally
5 disturb the groundwater head gradients. At 1205 and 1400 m two potential high discharge
6 sites were identified with DTS which was supported by a concurrent increase in stream
7 discharge of about 7 %.

8
9 The most gradual net increase in discharge was observed along layout C by ADCP
10 measurements and confirmed by several cold streambed temperature zones indicated by
11 the DTS, suggesting more diffuse groundwater inflow compared to layout A and B. In layout
12 C the most pronounced cold temperature anomalies were detected at the downstream end
13 at 1900, 1980, 2285, 2380 and 2415 m (Fig. 4a). Due to a rain event on 9 June, the air
14 temperature decreased and therefore the lowest streambed temperatures of all layouts were
15 measured in layout C. The rain event also caused the stream discharge to be slightly higher
16 on average during the first round of measurement compared to the second round (Fig. 4b).
17 However, the event mainly occurred during the evening and night, and only the stream
18 discharge pattern observed between the two most downstream ADCP measurements in
19 layout C are suspected to be directly influenced by the rain event.

20
21 To couple reach-scale groundwater discharge indications and point-scale flux estimates VTP
22 measurements were carried out at 18, 9, and 15 locations in layout A, B and C, respectively,
23 at the locations with the cold temperature anomalies as shown by the DTS. The average
24 RMSE for the fitted temperature profiles was 0.126°C between the measured and the
25 modeled temperatures (minimum RMSE: 0.016°C, maximum RMSE: 0.304°C). Generally,
26 there was an agreement between significant groundwater discharge sections indicated by
27 DTS, ADCP and the estimated vertical fluxes (Fig. 4b). However, a significant spatial
28 variability in the measured fluxes was found. In layout A estimated vertical groundwater
29 fluxes ranged from 0.09 to 1.3 m d⁻¹ with a mean of 0.44 m d⁻¹ (Fig. 4b), within short
30 distances. In layout B a minimum and maximum flux of 0.07 m d⁻¹ and 0.52 m d⁻¹ were
31 estimated, the lowest flux occurring along the losing reach. The VTP measurements were
32 carried out at potential discharge sites, correspondingly even in the losing reach the
33 streambed temperature profiles visually indicate upward fluxes by streambed temperatures
34 quickly decreasing below the streambed. Due to firm streambed sediments VTP
35 measurements were only possible at the most downstream end of layout C there showing
36 vertical flux estimates from 0.06 m d⁻¹ to 0.86 m d⁻¹ with a mean of 0.29 m d⁻¹.

37

1 For layout A and B the comparison between estimated upward groundwater fluxes and the
2 strength of the groundwater signal (Eq. 3) at the corresponding DTS locations showed a
3 moderate correlation (significant on the $p<0.01$ and $p<0.05$ level, respectively) (Fig. 5). This
4 indicated that higher upward fluxes usually coincided with a stronger groundwater signal. In
5 layout C, however, there was no correlation, potentially due to the smaller temperature
6 difference between air and stream water during measurement of that layout.

7

8 **4.4 Variability in catchment runoff sources**

9 The rainfall-runoff conditions during the three monitored events are summarised in Table 4,
10 and the signatures used for calculating the hydrograph separations are shown in Table 5. No
11 stream water samples were collected prior to the September event. However, the May and
12 September events had similar antecedent conditions, and therefore the May pre event
13 signatures were used as September pre-event and subsurface signatures of EC and $\delta^2\text{H}$,
14 respectively.

15

16 The variability in stream water $\delta^2\text{H}$ and EC during all three events showed a tendency of
17 being more damped in the downstream direction with decreasing standard deviations (Fig. 6)
18 likely reflecting an increased groundwater influence. The smallest variability was observed at
19 station 3 and the largest variability at station 1, reflecting most of the variability in
20 precipitation input. The events also resulted in three different temporal patterns in tracer
21 values where the largest variability in $\delta^2\text{H}$ and EC stream values occurred during the
22 September event (Fig. 6a) and the smallest variability occurred during the April event (Fig.
23 6b).

24

25 The most significant event responses from all four sub catchments were detected during the
26 first part of the September event (Fig. 7). Station 1 showed the quickest and most
27 pronounced response with the pre-event fraction reaching a minimum of 35% (Fig. 7c) and a
28 recovery time of approximately 9 hours (recovery time is defined as the time it takes to reach
29 pre-event concentrations). Stations 2 and 4 showed delayed and less pronounced event
30 responses compared to station 1 with a minimum of 40% and 55% pre-event water,
31 respectively (Fig. 7d, f). Station 3 only showed a clear event response on 21 September,
32 with the pre-event fraction being 70% at the peak of the response (Fig. 7e). This response at
33 station 3 was significantly delayed, approximately 15 h, compared to station 1, and showed a
34 more gradually increasing response curve. Stations 2, 3 and 4 exhibited similar recovery
35 times, approximately 24 h (Fig. 7c-f).

36

1 Generally, pre-event fractions were similar at all stations during peaks of the different events
2 (Fig. 8a). Station 1 consistently showed the largest event responses and stations 2 and 4
3 reacted similarly but less pronounced than station 1. There was a tendency for station 4 to
4 be damped in the pre-event responses as compared to station 2 (Fig. 8a). This is expected
5 to be partly due to the inflow from the groundwater-dominated tributary between stations 2
6 and 4. Station 3 only showed modest peak response with min 70% pre-event fractions
7 during all events (Fig. 8a). The subsurface fractions showed similar responses at all stations
8 as the pre-event fractions (Fig. 8b). However, with the exception of the September 1 event,
9 the sub-surface fractions for stations 1, 2 and 4 varied significantly less than the pre-event
10 fractions between events (Fig. 8). For instance, at station 4 the sub-surface fractions varied
11 only between 80 and 90%, whereas the pre-event fractions varied between 65 and 95%.
12 Calculated uncertainties at the peaks of the event and subsurface fractions depicted in Fig. 8
13 were all below 10% (not shown).

14

15 **5 Discussion**

16 **5.1 Spatial variability and magnitude of groundwater discharge from point to reach 17 scale**

18 The point to reach-scale investigation confirmed that the studied part of the stream is
19 groundwater-dominated. On the reach-scale, between station 2 and station 4, groundwater
20 discharge to the stream resulted in approximately 30% increase in total stream discharge.
21 However, DTS and VTP measurements showed that the spatial distribution of groundwater
22 discharge in this section is not homogeneous (Fig. 4), similarly to the DTS observations of
23 Lowry et al. (2007), Briggs et al. (2011) and the VTP-based flux estimations of Schmidt et al.
24 (2007) and Anibas et al. (2011). The large spatial variability in groundwater discharge is
25 most likely due to heterogeneity in streambed hydraulic conductivity (Kalbus et al., 2006;
26 Sebok et al., 2014), which was also suggested by the streambed composition with
27 interchanging sand, gravel and clusters of macrophyte growth. The spatial heterogeneity
28 was also reflected at the point scale. Especially in layout C data showed that even if the DTS
29 streambed temperatures were higher than the mean, thus no high discharge was expected,
30 upward fluxes up to 0.15 m d^{-1} could still be measured at the point scale. This suggests that
31 more diffuse groundwater inflow is also significant along the streambed.

32

33 DTS measurements have previously been used to locate and calculate groundwater
34 discharge to streams (Selker et al., 2006b, Briggs et al., 2011) based on a temperature
35 mixing approach combined with differential gauging upstream and downstream of discharge
36 sites. The DTS results from June 2012 also showed drops in streambed temperatures of 0.5-

1 1 °C possibly due to groundwater discharge (Fig. 4). However, instead of large step changes
2 in streambed temperatures (Selker et al., 2006b, Briggs et al., 2011) groundwater discharge
3 did not alter the downstream temperatures as also observed in a wetland stream (Lowry et
4 al., 2007) and in a Danish stream with a significantly lower mean discharge of $0.25 \text{ m}^3 \text{ s}^{-1}$
5 (Matheswaran et al., 2012). Thus, quantification of discharge using the traditional mixing
6 analysis based on DTS measured temperatures was not possible due to the small
7 temperature contrast.

8
9 Consequently, our results suggest that a significant part of the groundwater discharge along
10 the studied 2.5 km long reach is concentrated in relatively few focused zones. Hence, most
11 likely the groundwater reaches the stream via preferential flow paths governed by
12 differences in streambed hydraulic conductivity and hydraulic head conditions (Kalbus et al.,
13 2006). Since these focused high discharge zones will also carry the largest amounts of, for
14 instance, nutrients or potential contaminants (with a flux of up to 1.3 md^{-1} in this study), their
15 detection and quantification are of great importance. This is of special interest for gaining
16 lowland streams in agricultural areas due to the potential of high nutrient loads, as also
17 discussed by Krause et al. (2012).

18
19 **5.2 Comparison of groundwater discharge measurements at different spatial scales**
20 So far, only few studies have endeavoured to confirm groundwater discharge sites indicated
21 by the DTS with estimates of discharge based on either seepage meter data or vertical
22 temperature profiles (Lowry et al., 2007, Sebok et al., 2013). This study shows that VTPs
23 generally reflect the same spatial variability in groundwater discharge as the DTS (Fig. 4).
24 There is a discrepancy of estimated fluxes and groundwater signal strength in the case of
25 layout C, which is most likely caused by the reduced difference between the streambed
26 temperatures and groundwater temperature (Fig. 4a). The DTS and VTP measurements of
27 this study mostly complemented each other, confirming that cold streambed temperature
28 anomalies correspond to locations of high upward groundwater fluxes. Thus, the
29 combination of VTP and DTS measurements provides a useful tool for obtaining more robust
30 groundwater discharge estimates in lowland groundwater dominated streams where the low
31 temperature contrast between groundwater and surface water prevents discharge
32 calculations by the method of mixing analysis.

33
34 The focused discharge locations detected by DTS and confirmed by VTPs agreed well with
35 the net increases in stream discharge as measured by ADCP with the exception that DTS
36 cannot identify loosing stream sections. Contrary to the differential flow gauging of Briggs et
37 al. (2011) where an Acoustic Doppler Velocimeter was used, the ADCP measurements here

1 gave a good estimation of net groundwater discharge between measurement sections of
2 150-200 m spacing. In this study the combined ADCP and DTS methods made the detailed
3 mapping of gaining and loosing stream stretches possible, showing not only the net changes
4 in discharge, but based on DTS also the approximate location of the focused discharge
5 sites. However, a great logistical effort is required in order to map stream stretches longer
6 than a few kilometres.

7

8 The discrepancy between the spatial resolutions of the methods is illustrated when
9 comparing the ADCP measurements to the DTS and VTP data. Since the ADCP is expected
10 to measure discharge within an uncertainty of 5%, there exists a lower limit for measurement
11 spacing during differential gauging, since the change in discharge has to differ by more than
12 the 5%. For this study, intervals of approximately 150-200 m were close to the lower limit,
13 especially for layout A and C, where the most gradual increase in discharge was observed.
14 Consequently, the ADCP method was not capable of showing the same spatial variability in
15 groundwater discharge as the metre-scale DTS and the point-scale VTP measurements. For
16 this reason, it was also possible to still detect cold temperature anomalies indicating
17 groundwater discharge and relatively high upward fluxes of 0.43 m d^{-1} in a stream section of
18 layout B, where ADCP suggested losing conditions (Fig. 4). Due to the diffuse groundwater
19 discharge it is also likely that DTS is only identifying focused discharge areas above a
20 specific flux value marking a detection limit (Sebok et al., 2013). Schmadel et al. (2014)
21 found similar discrepancies between methods mapping discharge across point to reach
22 scale. These findings emphasise the importance of combining methods covering different
23 scales to avoid ambiguity or wrong inferences due to interpolation of results between scales.

24

25 **5.3 Temporal dynamics and catchment scale differences in runoff sources and 26 implications for water management**

27 From the results of the hydrograph separations at the four different stations it is clear that the
28 most pronounced differences in runoff sources occur between station 1 and station 3 (Fig.
29 8a), with station 3 indicating a significantly larger and constant groundwater influence during
30 events (maximum event water fraction was 30 %). The differences in forest cover (Table 1)
31 could explain some of the differences in runoff sources during events since forest cover has
32 previously been shown to significantly decrease surface runoff and enhance evaporation
33 (Bosch and Hewlett, 1982; Brown et al., 2005). Also, the fact that station 3 was immediately
34 surrounded by wetlands, while station 1 had a larger proportion of agricultural fields with tile
35 drains in the near stream area, may explain part of the larger proportion of event water
36 observed at station 1, due to the importance of the riparian zones in terms of runoff
37 processes (Tetzlaff et al., 2014; Vidon and Cuadra, 2010). The consistently high fractions of

1 pre event water observed at station 3 (Fig 8a) suggest that the surrounding area has a
2 shallow groundwater table as well as high hydraulic conductivity, allowing precipitation to
3 seep to groundwater and preventing the presence of a zone of stored soil water which could
4 otherwise have created a pre event soil water component. This is supported by the fact, that
5 no significant differences were seen between pre-event fractions and sub-surface fractions
6 at station 3 (Fig 8). Thus, most likely the assumption of two end-members in the hydrograph
7 separation was met, with pre-event water and sub-surface water representing the same
8 groundwater component.

9

10 The large contribution from event water (maximum was 65% event water) at station 1 could
11 also be explained by the observed less strong groundwater gradients towards the stream,
12 compared to the other three stations. Weaker groundwater gradients could potentially allow
13 for a temporarily weakening of the groundwater discharge to the stream during large rain
14 events, entailing a temporary dominance of surface and event water. Similar mechanisms
15 were observed by Karan et al. (2014) where large rain events temporarily decreased
16 groundwater discharge to Holtum stream. Also Gerecht et al. (2012) observed highly
17 dynamic responses to rapid stage changes in terms of shifting between gaining and loosing
18 conditions in a groundwater influenced river. These observed differences in responses to
19 large rain events between the studied catchments are of particular interest, in relation to
20 being able to predict sensitive areas with the possibility of fast routing of nutrients and
21 pollutants to streams. Catchments reacting similarly to station 1 would be more prone to fast
22 routing of excess nutrients or pollutants than for instance catchments similar to station 3.

23

24 The discrepancies of around 10 % difference observed between subsurface and pre-event
25 fractions at stations 1, 2 and 4 (Fig. 8) are similar to the findings of Gonzales et al. (2009) for
26 a lowland stream, and could indicate the occurrence of a component which is not accounted
27 for by either of the two hydrograph separation methods (Wels et al., 1991; Hooper and
28 Shoemaker, 1986). According to Karan et al. (2013) a shallow relatively young groundwater
29 component was discharging to the stream at station 4, supporting that the stream flow
30 components could be divided into a deep groundwater component discharging right beneath
31 the stream channel, a shallow component and a surface/event water component. However,
32 there was no distinct difference between the average EC and $\delta^2\text{H}$ of the shallow
33 soil/groundwater and the deep groundwater. Thus, the prerequisite of distinct differences in
34 end members for a two-tracer three-component hydrograph separation was not met with the
35 given dataset (Genereux and Hooper, 1998).

36

1 Both the pre-event fractions as well as the subsurface fractions suggested that an event as
2 the one in April, with 15 mm rain and a resulting discharge increase of 30-50%, constitutes a
3 threshold below which runoff sources are not altered. These changes in contributing runoff
4 sources between the sub catchments are contrary to the findings of Gonzales et al. (2009).
5 They found that their studied lowland stream system was at all times groundwater
6 dominated, with minimum 90% groundwater during events concluding that such consistently
7 high influence of groundwater will most likely be found in the majority of similar lowland
8 stream networks. However, our study illustrates that significant differences in event
9 responses can exist among similar adjacent lowland catchments both in terms of the
10 magnitude of event response and the response time (Fig. 7). These differences in catchment
11 runoff sources during large rain events are important to take into account in water
12 management practices, since a significant transport of phosphorus and nitrogen has been
13 shown to be associated with storm events (Jordan et al., 2005; Kronvang and Bruhn, 1996;
14 Stutter et al., 2008). Furthermore, the travel time (Flewelling et al., 2012) and origin (Clément
15 et al., 2003) of discharging groundwater are decisive for the possibility of nitrate reduction.

16

17 **6 Conclusions**

18 Groundwater-surface water dynamics were studied in a groundwater gaining lowland stream
19 in Denmark. The aim of this study was to combine hydraulic and tracer methods from point
20 to catchment scale to assess the temporal and spatial variability of groundwater discharge
21 and to assess the capability, limitations and synthesis of novel monitoring methods applied
22 across the different spatial scales in terms of water management practices.

23

24 Significant groundwater discharge was observed, resulting in a total stream discharge
25 increase of approximately 30% over a stream reach of 2400 m. The groundwater discharge
26 was found to be primarily confined in few distinct zones, suggesting the presence of
27 preferential flow paths. The major zones of groundwater discharge were mapped by DTS
28 and ADCP measurements and were supported by point scale VTP measurements indicating
29 groundwater fluxes of up to 1 m day^{-1} . This coupling of ADCP, DTS and VTP proposes a
30 new method to detect areas of concentrated groundwater discharge in detail. The
31 hydrograph separations conducted for the three rain events at the four different stations
32 revealed distinct differences in runoff sources between the four sub-catchments. The most
33 pronounced differences in event responses were seen between station 1 and station 3,
34 where station 3 consistently had a minimum of 70% pre-event water in the stream whereas
35 station 1 had only 35% pre-event water during the largest rain event. The event responses
36 were damped downstream indicating an increasing groundwater influence, in agreement

1 with the medium-scale investigations indicating a significant groundwater inflow between
2 station 2 and station 4.

3

4 Based on this study it is concluded, that despite a significantly groundwater influenced
5 lowland catchment, there is still a high variability in the surface water/groundwater
6 interaction. Hence, in relation to the growing demand of accurately estimating the transport
7 of nutrients and other pollutants to streams, lakes and sea (e.g. European Commission:
8 Directive 2000/60/EC), our study points to the challenges with variability in runoff sources in
9 lowland streams. Our study emphasises the importance of considering the variability in
10 groundwater discharge to streams across a range of scales. A strong focus should be on
11 combining methods not just on the smaller scales, which has been subject to substantial
12 investigations, but also seek to link to the catchment scale, where relatively simple
13 hydrograph separations seem to be a useful tool even in lowland groundwater dominated
14 streams.

15

16 **Acknowledgements**

17 We would like to thank members of the Northern Rivers Institute, Aberdeen University, for
18 helpful discussions of data. We also thank Lars Rasmussen, Jolanta Kazmierczak and
19 Charlotte Ditlevsen for help in the field. This study is part of the Hydrology Observatory,
20 HOBE (<http://www.hobe.dk>) funded by the Villum Foundation and was as well funded by the
21 Aarhus University Research Foundation.

22

23

24

25

26

27

28

29

30

31

32

33

34

35

1 **References**

2 Anibas, C., Buis, K., Verhoeven, R., Meire, P., Batelaan, O., 2011. A simple thermal
3 mapping method of seasonal patterns of surface water-groundwater interaction. *J. Hydrol.*,
4 397, 93-104.

5

6 Bencala, K., Gooseff, M. N., Kimball, B. A., 2011. Rethinking hyporheic flow and transient
7 storage to advance understanding of stream-catchment connections. *Water Resour. Res.*,
8 47 (W00H03), doi:10.1029/2010WR010066.

9

10 Bosch, J.M., Hewlett, J.D., 1982. A review of catchment experiments to determine the effect
11 of vegetation changes on water yield and evapotranspiration. *J. Hydrol.*, 55 (1/4), 3–23.

12

13 Boulton, A. J., Datry, T., Kasahara, T., Mutz, M., Stanford, J. A., 2010. Ecology and
14 management of the hyporheic zone: stream-groundwater interactions of running waters and
15 their floodplains. *Stanford Source: J. North Am. Benthol. Soc.*, 29 (1), 26-40.

16

17 Bredehoeft, J. D., Papadopoulos, I. S., 1965. Rates of Vertical Groundwater Movement
18 Estimated from the Earth's Thermal Profile. *Water Resour. Res.*, 1(2), 325-328.

19

20 Briggs, M. A., Lautz, L. K., McKenzie, J. M., 2011. A comparison of fibre-optic distributed
21 temperature sensing to traditional methods of evaluating groundwater inflow to streams.
22 *Hydrol. Process.*, 25, doi:10.1002/hyp.8200.

23

24 Brown, A.E, Zhang, L., McMahon, T.A., Western, A.W., Vertessy, R.A., 2005. A review of
25 paired catchment studies for determining changes in water yield resulting from alterations in
26 vegetation. *J. Hydrol.*, 310, 28-61.

27

28 Brunke, M., Gonser, T., 1997. The ecological significance of exchange processes between
29 rivers and groundwater. *Freshwat. Biol.*, 37, 1-33.

30

31 Clément, J-C., Aquilina, L., Bour, O., Plaine K., Burt, T. P., Pinay, G., 2003. Hydrological
32 flowpaths and nitrate removal rates within a riparian floodplain along a fourth-order stream in
33 Brittany (France). *Hydrol. Process.*, 17, 1177-1195.

34

35 Conant, B., 2004. Delineating and quantifying groundwater discharge zones using
36 streambed temperatures. *Groundwater*, 42 (2), 243-257.

1 Dahl, M., Nilsson, B., Langhoff, J. H., Refsgaard, J. C., 2007. Review of classification
2 systems and new multi-scale typology of groundwater- surface water interaction. *J. Hydrol.*,
3 344, 1-16.

4

5 Danish Ministry of Environment, 2011. Summary of River Basin Management Plans. Note
6 from the Danish Ministry of Environment, 22 December 2011, 25 pp. (In Danish) (see also
7 http://www.naturstyrelsen.dk/Vandet/Vandplaner/Se_vandplanerne/).

8

9 European Commission: Directive 2000/60/EC of the European Parliament and of the Council
10 establishing a framework for Community action in the field of water policy, *Official Journal of*
11 *the European Community*, L327, 1–72, 2000.

12

13 Flewelling, S. A., Herman, J. S., Hornberger, G. M., Mills, A. L., 2012. Travel time controls
14 the magnitude of nitrate discharge in groundwater bypassing the riparian zone to a stream
15 on Virginia's coastal plain. *Hydrol. Process.*, 26, 1242-1253.

16

17 Genereux, D., 1998. Quantifying uncertainty in tracer-based hydrograph separations. *Water*
18 *Resour. Res.*, 3 (4), 915-919.

19

20 Genereux, D. P., Hooper, R. P, 1998. Oxygen and hydrogen isotopes in rainfall-runoff
21 studies, in *Isotope Tracers in Catchment Hydrology*, edited by C. Kendall and J. J.
22 McDonnell, Elsevier Sci., Amsterdam.

23

24 Gerecht, K. E., Cardenas, M. B., Guswa, A. J., Sawyer, A. H., Nowinski, J. D., Swanson, T.
25 E., 2011. Dynamics of hyporheic flow and heat transport across a bed-to-bank continuum in
26 a large regulated river. *Water Resour. Res.*, 47, doi:10.1029/2010WR009794

27

28 Gonzales, A. I., Nonner, J., Heijkers, J., Uhlenbrook, S., 2009. Comparison of different base
29 flow separation methods in a lowland catchment. *Hydrol. Earth Syst. Sci.*, 13, 2055-2068.

30

31 Gooseff, M. N., 2010. Defining hyporheic zones-advancing conceptual and operational
32 definitions of where stream water and groundwater meet. *Geogr. Compass*, 4/8, 945-955.

33

34 Griffith, J., Binley, A., Crook, N., Nutter, J., Young, A., Fletcher, S., 2006. Streamflow
35 generation in the Pang and Lambourn catchments, Berkshire, UK. *J. Hydrol.*, 330, 71-83.

36

1 Hatch, C. E., Fisher, A. T., Revenaugh, J. S., Constan, J., Ruehl, C., 2006. Quantifying
2 surface water-groundwater interactions using time series analysis of streambed thermal
3 records: Method development. *Water Resour. Res.*, 42, doi:10.1029/2005WR004787.

4

5 Hayashi, M., Rosenberry, D., 2002. Effects of ground water exchange on hydrology and
6 ecology of surface water. *Groundwater*, 40 (3), 309-316.

7

8 Herschy, R. W., 1999. *Hydrometry, Principles and Practices*. 2. ed. John Wiley & Sons, Inc.

9

10 Hoffmann, C. C., Baattrup-Pedersen, A., 2007. Re-establishing freshwater wetlands in
11 Denmark. *Ecol. Eng.*, 30, 157-166.

12

13 Hooper, R. P., Shoemaker, C. A., 1986. A comparison of chemical and isotopic hydrograph
14 separation. *Water Resour. Res.*, 22(10), 1444-1454.

15

16 Houmark-Nielsen M., 1989. The last interglacial-glacial cycle in Denmark. *Quatern. Int.*, 3/4,
17 31-39.

18

19 Jensen, J. K., Engesgaard, P., 2011. Nonuniform Groundwater Discharge across a
20 Streambed: Heat as a Tracer. *Vadose Zone J.*, 10, 98-109, doi:10.2136/vzj2010.0005.

21

22 Jordan, P., Arnscheidt, J., McGrogan, H., McCormick, S., 2005. High-resolution phosphorus
23 transfers at the catchment scale: the hidden importance of non-storm transfers. *Hydrol.*
24 *Earth Syst. Sci.*, 9 (6), 685-691.

25

26 Kalbus, E., Reinstorf, F., Schirmer, 2006. Measuring methods for groundwater-surface water
27 interactions: a review. *Hydrol. Earth Syst. Sci.*, 10, 873-887.

28

29 Karan, S., Engesgaard, P., Looms, M. C., Laier, T., Kazmierczak, J., 2013. Groundwater
30 flow and mixing in a wetland-stream system: Field study and numerical modelling. *J. Hydrol.*,
31 488, 73-83.

32

33 Karan, S., Engesgaard, P., Rasmussen J., 2014. Dynamic streambed fluxes during rainfall-
34 runoff events. *Water Resour. Res.*, 50, doi:10.1002/2013WR014155.

35

36 Kasahara, T., Hill, A. R., 2008. Modeling the effects of lowland stream restoration projects on
37 stream-subsurface water exchange. *Ecol. Eng.*, 32, 310-319.

1 Keery, J., Binley, A., Crook, N., Smith, J. W. N., 2007. Temporal and spatial variability of
2 groundwater-surface water fluxes: Development and application of an analytical method
3 using temperature time series. *J. Hydrol.*, 336, 1-17.

4

5 Krause, S., Heathwaite, A. L., Miller, F., Hulme, P., Crowe, A., 2008. Groundwater-
6 dependent wetlands in the UK and Ireland: controls, eco-hydrological functions and
7 assessing the likelihood of damage from human activities, *J. Water Resour. Manage.*, 21,
8 2015-2025.

9

10 Krause, S., Blume, T., Cassidy, N. J., 2012. Investigating patterns and controls of
11 groundwater up-welling in a lowland river by combining Fibre-optic Distributed Temperature
12 Sensing with observations of vertical hydraulic gradients. *Hydrol. Earth Syst. Sci.*, 16, 1775-
13 1792.

14

15 Kronvang, B., Bruhn, A. J., 1996. Choice of sampling strategy and estimation method for
16 calculating nitrogen and phosphorus transport in small lowland streams. *Hydrol. Process.*,
17 10, 1483-1501.

18

19 Kronvang, B., Jeppesen, E., Conley, D. J., Søndergaard, M., Larsen, S. E., Ovesen, N. B.,
20 Carstensen, J., 2005. Nutrient pressures and ecological responses to nutrient loading
21 reductions in Danish streams, lakes and coastal waters. *J. Hydrol.*, 304, 274-288.

22

23 Landon, M. K., Rus, D. L., Harvey, F. E., 2001. Comparison of Instream Methods for
24 Measuring Hydraulic Conductivity in Sandy Streambeds. *Groundwater*, 39 (6), 870-885.

25

26 Langhoff, J. H., Rasmussen, K. R., Christensen, S., 2006. Quantification and regionalization
27 of groundwater-surface water interaction along an alluvial stream. *J. Hydrol.*, 320, 342-358,
28 doi:10.1016/j.jhydrol.2005.07.040.

29

30 Lischeid, G., 2008. Combining Hydrometric and Hydrochemical Data sets for Investigating
31 Runoff Generation Processes: Tautologies, Inconsistencies and possible explanations.
32 *Geogr. Compass*, 2/1, 255-280.

33

34 Lowry, C. S., Walker, J. F., Hunt, R. J., Anderson, M. P., 2007. Identifying spatial variability
35 of groundwater discharge in a wetland stream using a distributed temperature sensor. *Water
36 Resour. Res.*, 43, doi:10.1029/2007WR006145.

37

1 Malcolm, I. A., Youngson, A. F., Soulsby, C., 2003. Survival of salmonid eggs in a degraded
2 gravel-bed stream: effects of groundwater-surface water interactions. *River Res. Applic.*, 19,
3 303-316.

4

5 Matheswaran, K., M., Blommer, M., Rosbjerg, D., Bøgh, E., 2012. Seasonal variations in
6 groundwater upwelling zones in a Danish lowland stream analyzed using Distributed
7 Temperature Sensing (DTS). *Hydrol. Process.*, doi:10.1002/hyp.9690.

8

9 McCallum, J. L., Cook, P. G., Berhane, D., Rumpf, C., McMahon, G. A., 2012. Quantifying
10 groundwater flows to streams using differential flow gauging and water chemistry. *J. Hydrol.*,
11 416-417, 118-132.

12

13 McDonnell, J. J., Bonell, M., Stewart, M. K., Pearce, A. J. 1990. Deuterium Variations in
14 Storm Rainfall: Implications for Stream Hydrograph Separation. *Water Resour. Res.*, 26 (3),
15 455-458.

16

17 Mueller, D.S., Wagner, C.R., 2009. Measuring Discharge with Acoustic Doppler Current
18 Profilers from a Moving Boat. U.S. Geological Survey, Chapter 22, Book 3, Section A.

19

20 Muste, M., Yu, K., Pratt, T., Abraham, D., 2004a. Practical aspects of ADCP data use for
21 quantification of mean river flow characteristics; Part II: fixed-vessel measurements. *Flow*
22 *Meas. Instrum.*, 15(1), 17-28.

23

24 Muste, M., Yu, K., Spasojevic, M., 2004b. Practical aspects of ADCP data use for
25 quantification of mean river flow characteristics; Part I: moving-vessel measurements. *Flow*
26 *Meas. Instrum.*, 15(1), 1-16.

27

28 Pinder, G. F., Jones, J. F., 1969. Determination of ground-water component of peak
29 discharge from chemistry of total runoff, *Water Resour. Res.*, 5(2), 438-445, doi:
30 10.1029/WR005i002p00438.

31

32 Rantz, S.E., 1982. Measurement and computation of streamflow: Volume 1. Measurement of
33 stage and discharge. United States Geological Survey.

34

35 Ringgaard, R., Herbst, M., Friberg, T., Schelde, K., Thomsen, A., Søgaard, H. 2011. Energy
36 fluxes above three disparate surfaces in a temperate meso-scale coastal catchment. *Vadose*
37 *Zone J.*, 10, 54-66.

1 Rodhe, A., 1998. Snowmelt-dominated systems, in Isotope Tracers in Catchment Hydrology,
2 edited by C. Kendall and J. J. McDonnell, pp. 391-433, Elsevier Sci., Amsterdam.

3

4 Rosenberry, D.O., 2008. A seepage meter designed for use in flowing water. *J. Hydrol.*, 359:
5 118-130.

6

7 Scanlon, B. R., Healy, R. W., Cook, P. G., 2002. Choosing appropriate techniques for
8 quantifying groundwater recharge. *Hydrogeol. J.*, 10, 18-39.

9

10 Schmadel, N. M., Neilson, B. T., Kasahara, T., 2014. Deducing the spatial variability of
11 exchange within a longitudinal channel water balance. *Hydrol. Process.*, 28, 3088–3103.

12

13 Schmidt, C., Contant, B., Bayer-Raich, M., Schirmer, M., 2007. Evaluation and field-scale
14 application of an analytical method to quantify groundwater discharge using mapped
15 streambed temperatures. *J. Hydrol.*, 347(3-4), 292-307.

16

17 Sebok, E., Duque, C., Kazmierczak, J., Engesgaard, P., Nilsson, B., Karan, S., Frandsen, M.
18 2013 High-resolution distributed temperature sensing to detect seasonal groundwater
19 discharge to Lake Væng. *Water Resour. Res.*, doi:10.1002/wrcr.20436.

20

21 Sebok, E., Duque, C., Engesgaard, P., Boegh, E. 2014. Spatial variability in streambed
22 hydraulic conductivity of contrasting stream morphologies: channel bend and straight
23 channel. *Hydrol. Process.* doi: 10.1002/hyp.10170.

24

25 Selker, J. S., Thévenaz, L., Huwald, H., Mallet, A., Luxemburg, W., van de Giesen, N.,
26 Stejskal, M., Zeman, J., Westhoff, M., Parlange, M. B., 2006a. Distributed fiber-optic
27 temperature sensing for hydrologic systems. *Water Resour. Res.*, 42,
28 doi:10.1029/2006WR005326.

29

30 Selker, J. S., van de Giesen, N., Westhoff, M., Luxemburg, W., Parlange, M. B., 2006b.
31 Fiber optics opens window on stream dynamics. *Geophys. Res. Lett.*, 33, L24401.
32 doi:10.1029/2006GL027979.

33

34 Sklash, M. G., Farvolden, R. N., 1979. Role of groundwater in storm runoff. *J. Hydrol.*, 43(1-
35 4), 45-65, doi:10.1016/0022-1694(79)90164-1.

36

1 Stutter, M. I., Langan, S. J., Cooper, R. J., 2008. Spatial contributions of diffuse inputs and
2 within-channel processes to the form of stream water phosphorus over storm events. *J.*
3 *Hydrol.*, 350, 3-4, 203-2014, doi: 10.1016/j.jhydrol.2007.10.045.

4

5 Tetzlaff, D., Birkel, C., Dick, J., Geris, J., Soulsby, C., 2014. Storage dynamics in
6 hydropedological units control hillslope connectivity, runoff generation and the evolution of
7 catchment transit time distributions. *Water Resour. Res.*, 50, doi: 10.1002/2013WR014147.

8

9 Tyler, S. W., Selker, J. S., Hauser, M. B., Hatch, C. E., Torgersen, T., Thodal, C. E.,
10 Schladow, G., 2009. Environmental temperature sensing using Raman spectra DTS fiber-
11 optic methods. *Water Resour. Res.*, 45, doi:10.1029/2008WR007052.

12

13 Uhlenbrook, S., Hoeg, S., 2003. Quantifying uncertainties in tracer-based hydrograph
14 separations: a case study for two-, three- and five-component hydrograph separations in a
15 mountainous catchment. *Hydrol. Process.*, 17, 431-453.

16

17 Vidon, P., Cuadra, P. E., 2010. Impact of precipitation characteristics on soil hydrology in
18 tile-drained landscapes. *Hydrol. Process.*, 24, 1821-1833, doi:10.1002/hyp.7627.

19

20 Wels, C., Cornett, R. J., Lazerte, B. D., 1991. Hydrograph separation: A comparison of
21 geochemical and isotopic tracers. *J. Hydrol.*, 122, 253-274.

22

23 Winter, T. C., 1999. Relation of streams, lakes, and wetlands to groundwater flow systems.
24 *J. Hydrogeol.*, 7, 28-45.

25

26

27

28

29

30

31

32

33

1 Table 1. Catchment characteristics and land use for each sub-catchment, with mean annual
 2 discharge, catchment size, specific discharge, distance from the source^a and land use.

	Mean annual discharge, m ³ s ⁻¹	Catchment size, km ²	Distance from the source, km	Urban %	Agriculture %	Forest %
Station 1	0.17	26	6.6	27	51	20
Station 2	0.8	70	12.7	21	56	22
Station 3	0.28	42	11.6	16	41	41
(tributary)						
Station 4	1.2	114	14.7	13	53	34

3 ^aFor station 3 it is distance to the source of the tributary.

4

5

6 Table 2. Summary of sampling periods and data collection methods, with the scale covered by the
 7 method, the method/instrument and time of measurement.

Scale	Measurement	Time of measurement
Point		
	VTP	9-13 Jun 2012
	Piezometer water sampling	Mar 2012 and Feb 2013
	Piezometer hydraulic heads	Aug 2012, Feb 2013, May 2013 (station 1) Dec 2011, Mar 2012, Feb 2013, Jun 2013 (station 2) March 2012 (station 4)
Reach/Campaign		
	ADCP	9-13 Jun 2012
	DTS	9-13 Jun 2012
Catchment		
	EC and δ ² H	20-30 Apr 2012, 8-14 May 2012, 21-30 Sept 2012

8

9

10

11 Table 3. Time of DTS stream bed temperature measurements with the length and precision of each
 12 layout.

	Time of measurement	Length, m	Precision, °C
Layout A	11 June 13:20-12 June 11:50	0-905	0.05
Layout B	12 June 17:20-13 June 16:00	906-1366	0.21
Layout C	9 June 18:00-10 June 17:20	1530-2452	0.04

13

14

15

16

1 Table 4. Summary of rainfall and runoff characteristics with rainfall intensity and duration, peak
 2 discharge, maximum discharge increase and number of rain samples for each precipitation event.
 3 September is divided into three sub-events.

Event	April	May	September 1	September 2	September 3
Precip. intensity ^a , mm h ⁻¹	1	1.4	2.4	1.1	2.3
Precip. event duration, h	15	11	15	16	7
Total rainfall, mm	15	15	36	18	16
Peak discharge ^b , mm h ⁻¹	0.06	0.06	0.1	0.07	0.07
Discharge increase ^c , %	49	70	207	44	35
Number of rainfall samples	1	2	4	2	2
Frequency of stream water samples, h	5	4,3 ^d	3	3	3

4 ^a Calculated as average precipitation intensity.

5 ^b Discharge at station 4.

6 ^c The increase in discharge from immediately before the event to the peak.

7 ^d 4 h during the first half of the event, 3 h during the second half of the event.

8
 9 Table 5. Mean \pm Standard Deviation of stream water and rainfall EC and $\delta^2\text{H}$ signatures used as pre-
 10 event- (C_{pe}), subsurface- (C_G)^a, event- (C_e) and surface- (C_s)^b components for the hydrograph
 11 separations.

	April		May		September 1		September 2		September 3	
C_{pe} ($\delta^2\text{H}$, ‰) and C_G (EC, μScm^{-1}), mean \pm STD										
	$\delta^2\text{H}$	EC	$\delta^2\text{H}$	EC	$\delta^2\text{H}$	EC	$\delta^2\text{H}$	EC	$\delta^2\text{H}$	EC
Station 1	-54.7 \pm 0.16	308 \pm 4	-52.9 \pm 0.2	320 \pm 10						
Station 2	-		-51.2 \pm 0.4	284 \pm 2	May event ^c					
Station 3	-52.2 \pm 0.21	286 \pm 4	-51.2 \pm 0.4	283 \pm 3						
Station 4	-52.8 \pm 0.42	278 \pm 2	-52.37 \pm 0.2	204 \pm 2						
C_e ($\delta^2\text{H}$, ‰) and C_s (EC, μScm^{-1}), mean \pm STD										
Rainfall ^b	-38.4	42	-44.7 \pm 30.0	81 \pm 41	-71.0 \pm 24.1	84 \pm 76	-55.5 \pm 3	45 \pm 4	-71.6 \pm 9.1	38 \pm 16

12 ^a Average of stream samples taken prior to event start, April = 6, May = 11 samples.

13 ^b Signaturess calculated from bulk values of rainfall samples.

14 ^c Data from the May event used for pre-event and subsurface values for all three September events.

15

16

17

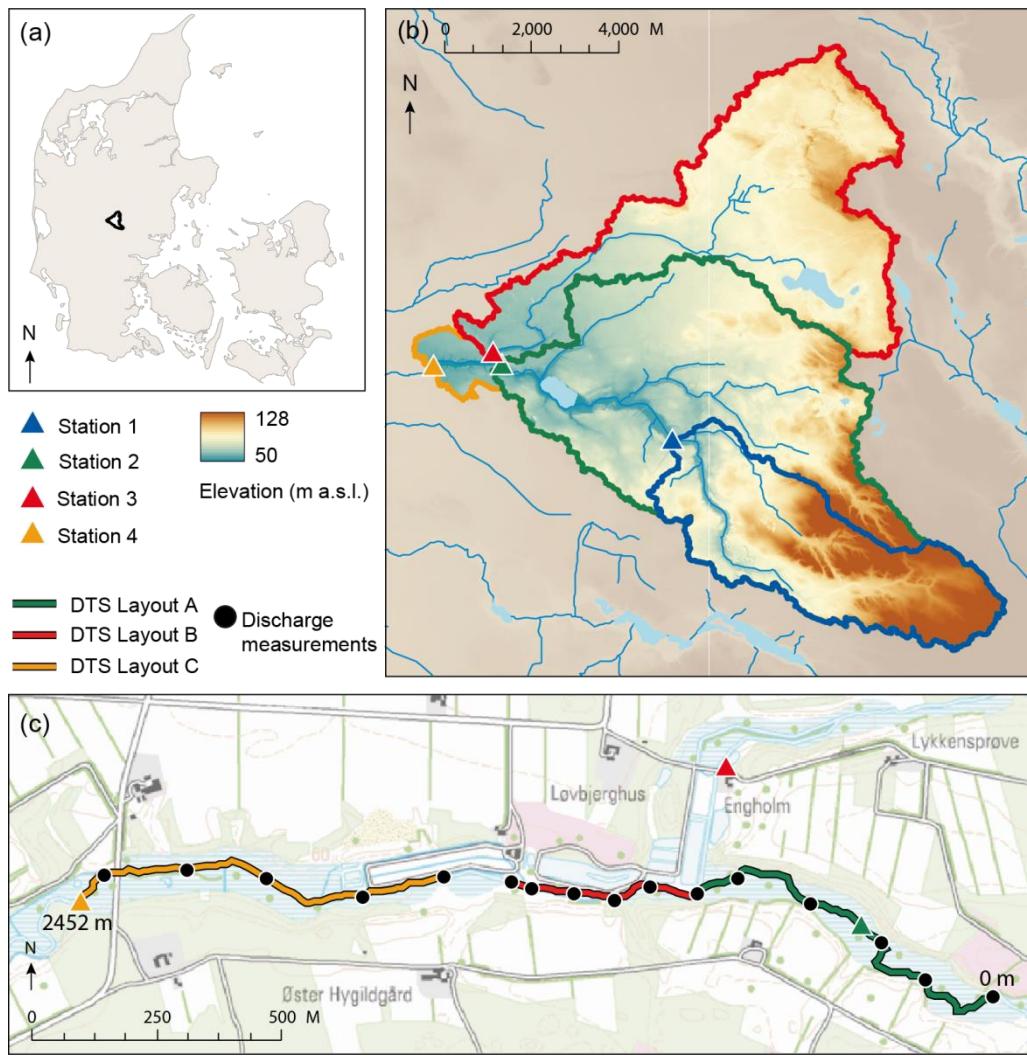
18

19

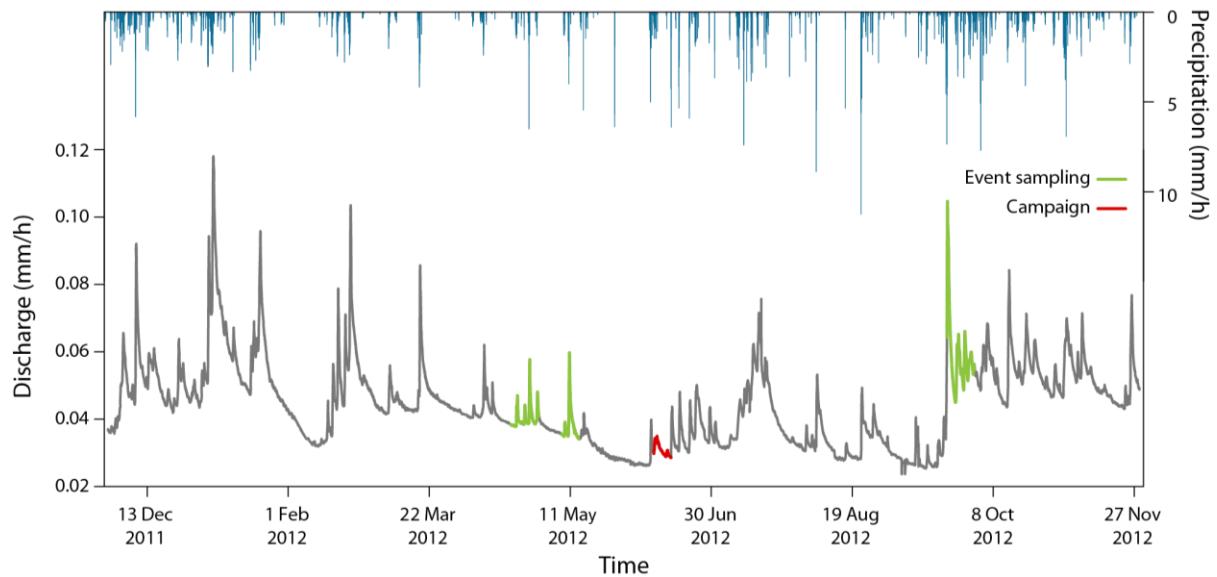
20

21

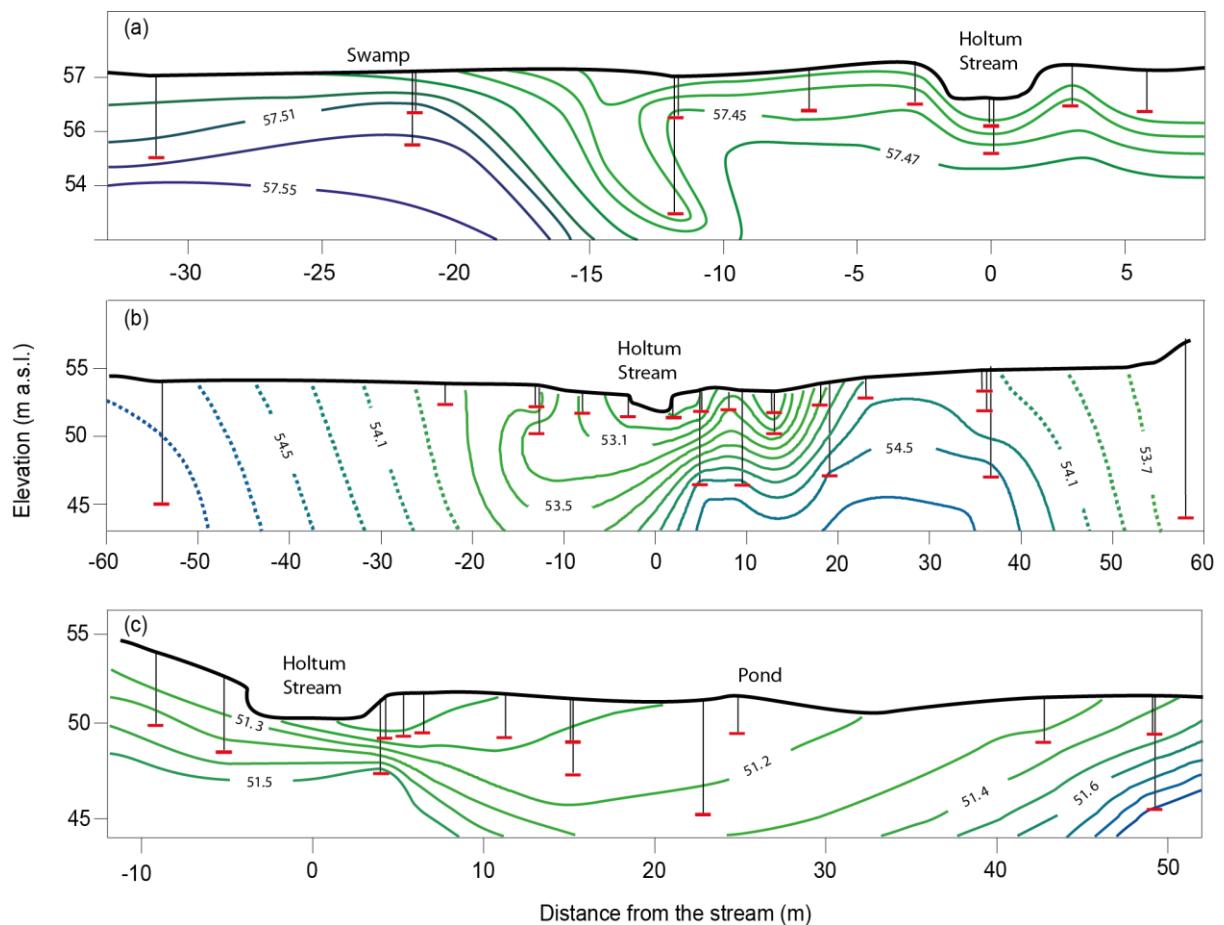
22


23

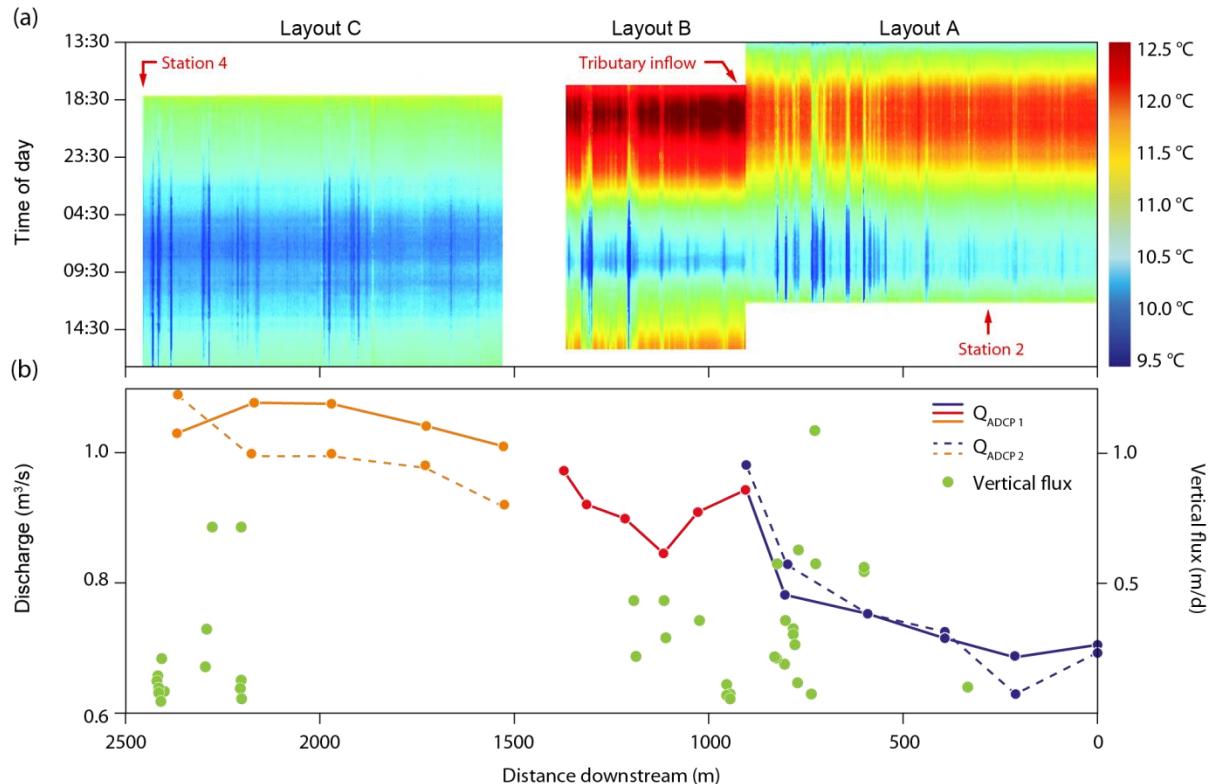
1 Table 6. Mean \pm Standard Deviation, minimum and maximum of groundwater $\delta^2\text{H}$ and EC from
 2 samples collected in the piezometers at stations 1, 2 and 4.


n ^a	$\delta^2\text{H, } ^\circ\text{oo}$			EC, μScm^{-1}			
	Mean \pm STD	Min	Max	Mean \pm STD	Min	Max	
Mar 2012							
Station 1	5	-54.7 \pm 1.3	-56.9	-53.8	203 \pm 37	179	269
Station 2	11	-53.8 \pm 1.7	-55.4	-50.8	226 \pm 77	97	308
Station 4	14	-51.2 \pm 2.2	-55.0	-48.4	222 \pm 32	169	272
Feb 2013							
Station 1	11	-52.0 \pm 2.3	-54.8	-48.8	418 \pm 105	288	596
Station 2	30	-54.1 \pm 2.4	-57.0	-46.3	272 \pm 160	92	741
Station 4	15	-52.1 \pm 1.7	-54.6	-48.3	216 \pm 63	135	344

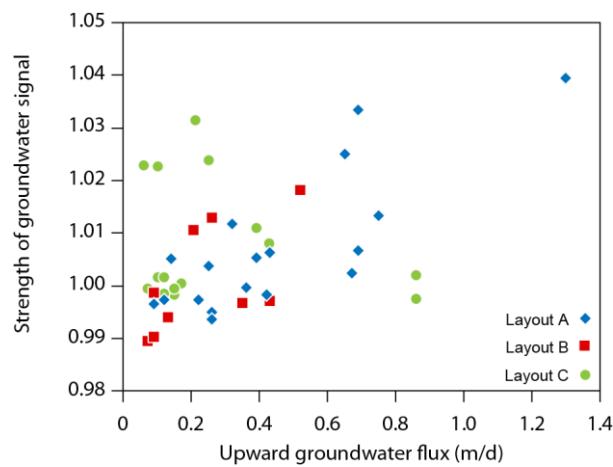
3 ^a n = Total number of wells sampled at each station.


4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14

1
2 Fig. 1. Map of the study area and sampling sites. (a) Map of the study area in Jutland, Denmark,
3 showing the Skjern River catchment and sampling sites. At this site, the stream flows from east to
4 west. (b) Locations of the stations of event samplings and their corresponding catchments. (c) The
5 campaign measurements conducted between station 2 and station 4.
6


1
2 Fig. 2. Precipitation and discharge during 2011/2012. Upper part: hourly precipitation measured 6 km
3 northwest of station 4. Lower part: the measured discharge at the catchment outlet (station 4).
4

5
6 Fig. 3. Manually interpolated cross-sectional contour maps of hydraulic heads. (a) Cross-section at
7 station 1 based on data from February 2013. (b) Cross-section at station 2 based on data from June
8 2013. (c) Cross-section at station 4 based on data from March 2012. The horizontal red lines


1 represent the screen depth of the piezometers where hydraulic heads were measured. Dashed
 2 isopotential lines indicate areas with sparse data coverage.

3

4
 5 Fig. 4. DTS, VTP and ADCP measurements from the campaign sampling in June 2012. (a) DTS
 6 temperatures measured in three layouts A, B and C between stations 2 and 4. (b) ADCP discharge
 7 measurements combined by trend lines. Dashed and solid trend lines represent separate
 8 measurement rounds. Uncertainties of the ADCP stream discharge measurements were all below 5%
 9 (not shown). Vertical flux points are estimated based on VTP measurements.

10

11

12 Fig. 5. Correlation of the strength of the groundwater signal as recorded by DTS with upward
 13 groundwater fluxes estimated from VTPs. Measurements from each layout are separated by colors.

14

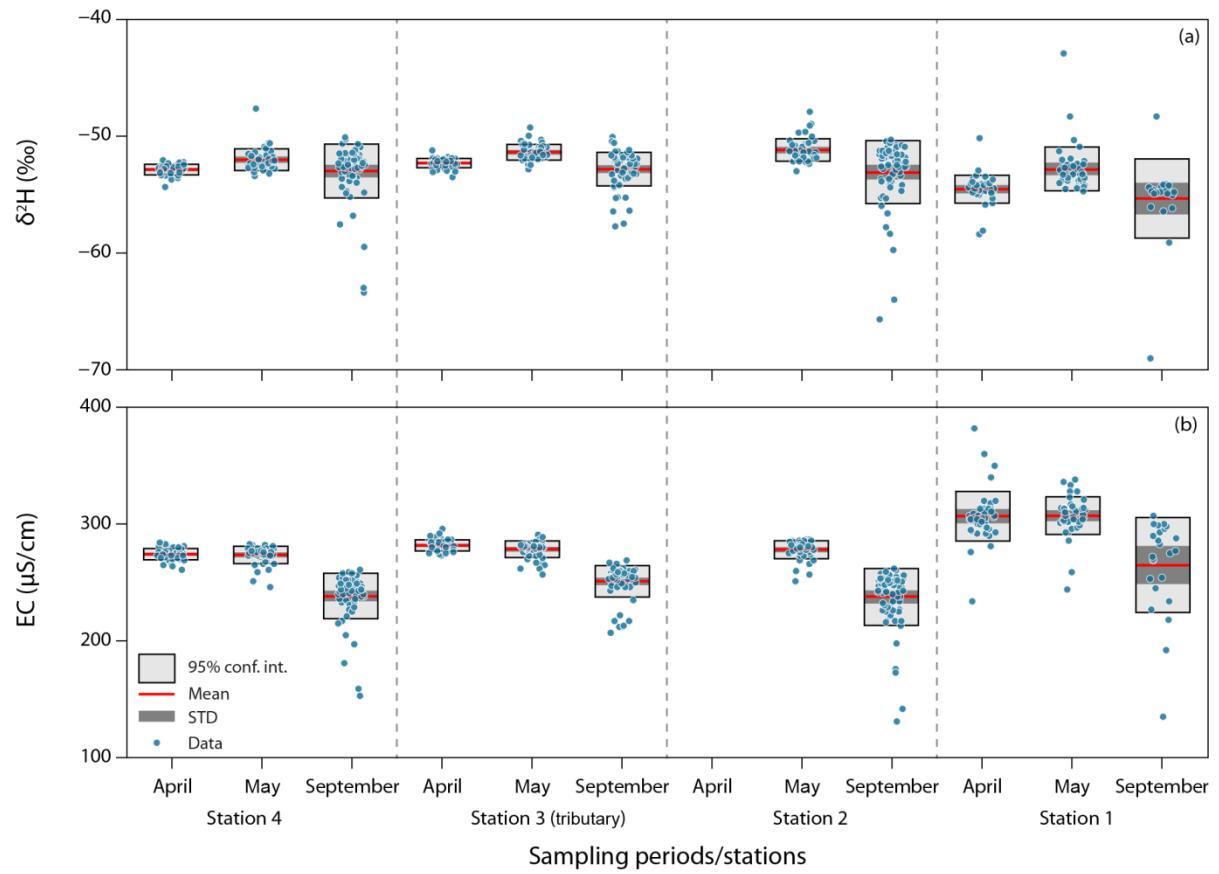
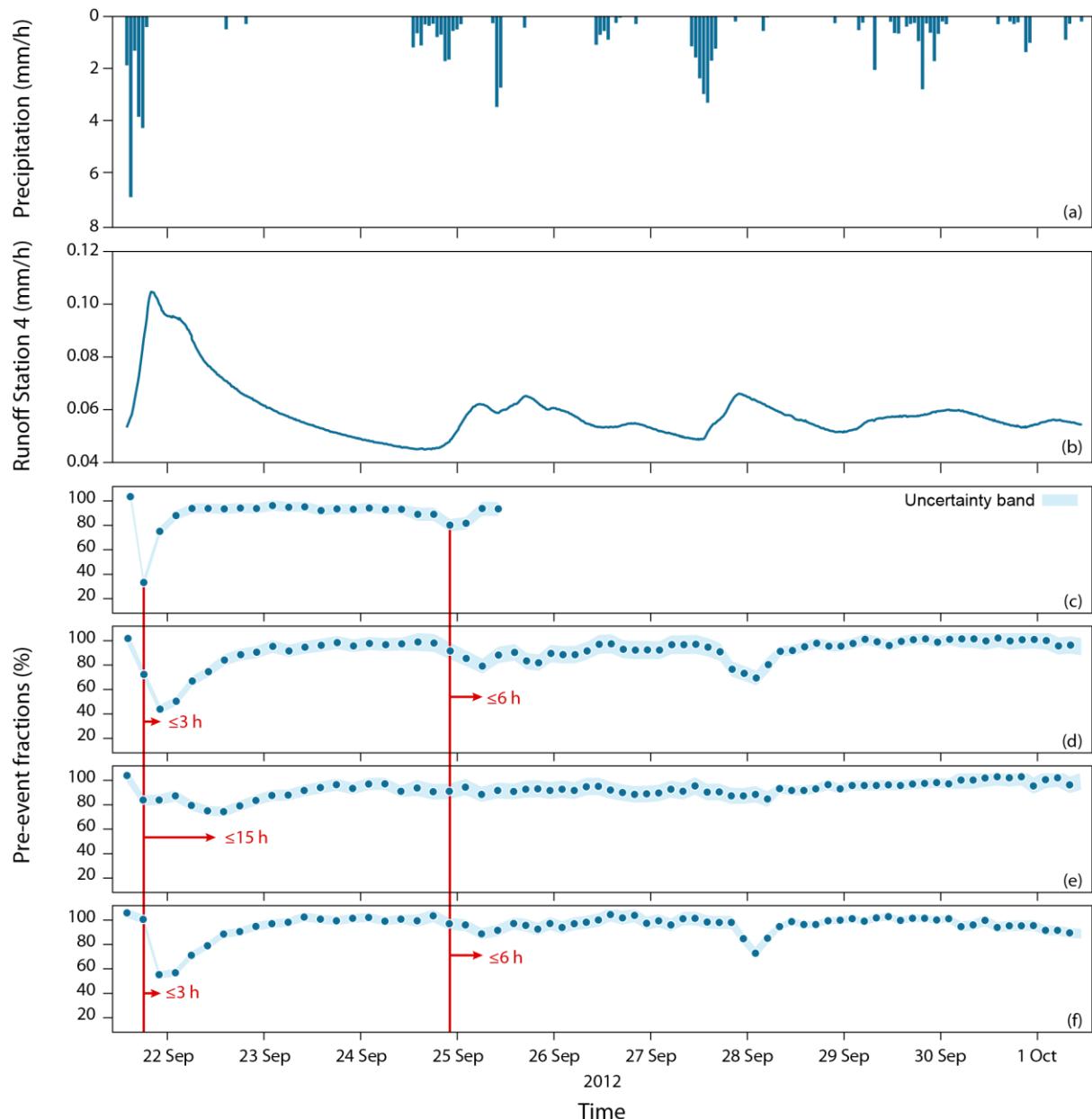
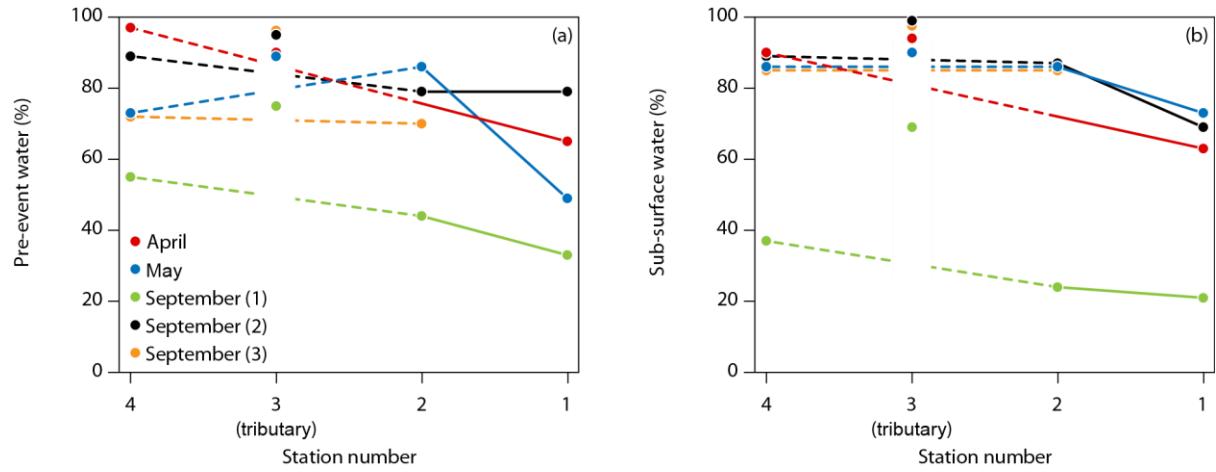




Fig. 6. Variability in tracer values measured during event sampling of stream water. (a) $\delta^2\text{H}$ and (b) EC values measured in the stream water during the events at the four stations.

1
2 Fig. 7. Runoff and precipitation characteristics and pre-event fractions for the September event. (a)
3 Hourly precipitation measured 6 km northwest of station 4. (b) Catchment runoff measured at station
4 4. (c-f) Pre-event fractions for stations 1, 2, 3 and 4, respectively. Lag times between peak responses
5 are indicated with red lines.
6

1
2 Fig. 8. (a) Pre-event fractions and (b) sub-surface fractions for all events. The September event was
3 subdivided into three sub-events September 1 (21–22 Sept), September 2 (25 Sept), and September
4 3 (28 Sept) and trend lines are added between pre-event and subsurface fractions calculated for the
5 main stream. Uncertainties were less than 10% for all fractions (not shown).
6