Reply to Short Comment by R. Wilby

"This is a well-written and considered manuscript that addresses a topic with much significance to security of water supply in southeast England. The high vulnerability of the region to below average winter rainfall and multi-year drought is clearly articulated. The headline message is the discovery of an association between La Niña episodes and the winter rainfall deficits responsible for some major multi-season drought episodes in the region. However, this assetion should be tempered in the light of earlier work. Fraedrich (1990) was probably the first to show that extreme ENSO phases imprint characteristic responses on atmospheric circulation patterns at the European scale, with strongest signals in winter anticyclonic weather following La Niña episodes. This finding was confirmed for the British Isles by Wilby (1993) using Lamb Weather Types and England and Wales Rainfall which show higher than expected frequencies of anticyclone events, and below normal rainfall in winters (and especially February) linked to La Niña. Fraedrich (1994) subsequently produced a nice review of ENSO impacts on Europe. Lloyd-Hughes (2002) and Lloyd-Hughes & Saunders (2002) specifically consider the feasibility of linking ENSO extremes to drought across Europe, and the extent to which the relationship is modulated by sea surface temperatures (SSTs) in the North Atlantic. Lloyd-Hughes (2002) even applied the Standardised Precipitation Index (SPI) as in the present study. Overall, they found that spring is the most predictable season for European precipitation (given ENSO extreme and North Atlantic SSTs) but the relationship appears to be nonstationary between decades. Others have also explored the seasonal predictability of UK hydrological anomalies using SSTs (Colman and Davey, 1999; Svensson and Prudhomme, 2005), the North Atlantic Oscillation index (Wilby, 2001), and a wide variety of other teleconnection indices (Wedgbrow et al., 2002; Wilby et al., 2004; Svensson and Prudhomme, 2005; Wedgbrow et al., 2005). Admittedly, these studies tend to focus on summer drought given preceding predictors (e.g. winter SSTs, NAO and ENSO). However, some use autocorrelation or persistence tests for the chosen drought metric (e.g. low flow, Palmer Drought Severity Index) to benchmark forecast model skill. Overall, these studies find that summer rainfall absence (drought) is more predictable than rainfall excess. Given the incidence of a winter drought (say under La Niña) it would be helpful to consider how this initial condition links to subsequent summer drought either by hydrological persistence, or lagged teleconnection forcing. For example, Wilby (2007) analysed the frequency-duration of multiseason drought using the updated reconstructed river flow series of Jones et al. (2006) and very long monthly rainfall records. Given above/ below average rainfall for winter/summer half years it was shown (for the example case of the River Medway) that a dry-to-dry season transition has 53%

likelihood. Historically, the longest multi-season drought persisted for ten seasons (i.e. the five years April 1883 to March 1888) (Figure 1). Applying the matrices for dry-to-dry season transitions in a Markov model simulation yielded return periods of 7, 26 and 95 years for droughts lasting 3, 5 and 7 half-years respectively. The authors might consider replicating this simple form of analysis in order to estimate return periods for the multi-season droughts of the wider English Lowlands

>>>> One of the main issues raised is the omission of some important background references. We will accommodate these suggestions where appropriate and will mention earlier literature by Fraedrich and colleagues and Wilby. Given these acknowledgments of earlier work, we will also moderate references to 'first time', although we will highlight the significant differences in scope between earlier work and ours. We note that where the earlier literature shows differences between El Nino and La Nina influences on North Atlantic and European climate, the results suffer not only from inferior data but do not reflect the fact that strong El Ninos have different teleconnections from moderate ones for reasons discussed in our paper and its references. So these papers tend to underestimate the winter climatic signal. Where La Nina results are shown separately, they are qualitatively consistent but lack the accuracy and detail now available. These results are also not for the winter half year but core winter, although there is no critical difference in our own results between these two periods. The Wilby (1993) paper on Lamb types and England & Wales rainfall is a good reference, though the area to which it refers is considerably larger than Lowland England.

>> edited introduction around 12396, L25. We have modified the text to add relevant references and have also moderated references to novelty, although we do highlight we are the first to show this link from ENSO through to drought, and hydrological drought specifically.

Some other comments refer to the other seasons. We have deliberately removed consideration of other seasons from this paper. However we recognise that a full discussion of the drivers of long period droughts requires all other seasons to be included including hydrological persistence between them and influences of climate warming. We will ensure that this is clearer in our discussion and recommendations for further work. This may benefit from research now underway on the drivers of UK and European summer climate variability for instance. We suspect that there is more than one further paper needed to reach this point. Wilby highlights the importance of sequencing between seasons in long droughts, and it is certainly the case that intervening summer half-years will have a significant bearing on the evolution of droughts primed by dry winters (as borne out by a simple comparison of droughts with hot, dry summers such as 1976/1990/2006 with others with damp dull summers or even very wet ones, like the spectacular summer half-year drought termination in 2012).

The Markov-chain based approach Wilby highlights is potentially a useful avenue for such research in future, but beyond the scope of our paper.

>>> edited references to summer and multi-season events in discussion 4.1.

P12936: The authors concede that the long-term outlook for multi-season drought risk is uncertain. However, given that the UKCP09 projections point to increased risk of summer drought and winter excess, on average the expectation might be for shorter duration, perhaps more intense droughts with rapid recharge/recovery in between. On the other hand, even modest winter rainfall deficits following or preceding more intense summer drought (exacerbated by higher temperatures and lower rainfall) could result in operational difficulties. These plausible (but highly uncertain) possibilities merit further discussion.

P 12936: See above points: we will highlight the importance of summer in UK droughts, particularly in a future climate change context.

>>> added in discussion and in climate change sections in "Way forward"

P12940: River flow records for the Thames at Kingston were naturalised to remove the influence of abstractions. However, what if any account was taken for inter-basin transfers to the Thames or for effluent returns? Low flows are particularly susceptible to these influences.

P 12940: Amend wording of text, replacing "This series has been naturalised to remove the influence of abstractions" with "This series has been naturalised, i.e. the flows have been adjusted to take account of the major abstractions upstream of the gauging station". However, no account is taken of inter-basin transfers. The view of the data provider (UK National River Flow Archive, NRFA) is that there are undoubtedly losses/gains (e.g. from consolidation of Sewage Treatment Works around the edges of the Thames basin) but these are unlikely to have a major influence on the Kingston flows. Effluent returns in the catchment are also not accounted for, but again these are deemed unlikely to have major effects on monthly runoff volumes (although will influence timing) relative to the abstractions which the naturalisation accounts for. The Thames is one of the most intensively studied rivers in the world and the Kingston record is one of the most widely used on the NRFA. It has other limitations around homogeneity of low flows which are probably more important – these are detailed at: http://www.ceh.ac.uk/data/nrfa/data/station.html?39001 We will add a link and a brief sentence to point out all these considerations out, but they are not likely to be unduly influential for the drought indicators we are using, aggregated to seasonal scales, when linking with climate drivers.

>>>Modified as above

P12941: To what extent might the multi-decadal risk of multi-season, river/groundwater drought be driven by rising temperatures and/or changes in actual evaporation, as well as by precipitation anomalies?

P 12941: See above points: we will highlight the importance of temperature and evapotranspiration.

>>>added in discussion/ways forward

P12949: The authors might consider displaying the results of their composite analysis (Tables 1 and 2) graphically (as in Figure 2, below). This will clearly show the preponderance for drought under La Nina as well as those events that fall outside of this C5500 HESSD 11, C5498–C5504, 2014 Interactive Comment Full Screen / Esc Printer-friendly Version Interactive Discussion Discussion Paper expectation.

P 12949: We agree that as La Nina provides the clearest Lowland England hydrological driver in the winter half year, a diagram like that of Fig 2 in the comments could be added for precipitation over our region. We will probably retain the Tables as there is additional information not easily captured by the proposed Figure.

>>We have added this Figure

P12950: Note also the North Atlantic SST analysis of Lloyd-Hughes (2002) and of Svensson and Prudhomme (2005).

P 12950: We will add these references. Svensson and Prudhomme (2005) noted a positive concurrent winter (Dec-Feb) correlation between SSTs in the area corresponding to the centre of the SST tripole and river flows in northwest Britain (r=0.36), consistent with Fig. 8b and d. For river flows in southeast Britain, encompassing the English Lowlands, they found a positive concurrent winter correlation with SSTs slightly further to the south (r=0.43), partly overlapping the southernmost centre of the SST tripole. Both these correlations are significant at the 5% level.

>>we added Lloyd-Hughes & Saunders in the intro but felt that it does not really need to be added here as it is focused on spring and does not specifically mention the Tripole. We added the text above, but in section 4 rather than in the tripole section as hydrological variables are being discussed.

P12951: Please provide a brief explanation of the physical processes linking major tropical volcanic eruptions with positive phases of winter NAO. Likewise, please elaborate the solar effects

P 12951: We will also add sentences on the main physical causes of the influence of tropical volcanoes and solar variability on N Atlantic and European winter climate

>>>section added

Reply to Reviewer 1

Specific Comments:

1. I strongly support the decision to not accumulate streamflow or groundwater levels when calculating SGI. I agree with the authors that accumulating streamflow is not necessary because streamflow and groundwater levels have already been integrated by the hydrologic cycle. Applying a accumulation period is therefore arbitrary and only makes sense in the context of accumulating structures, i.e. reservoir storage.

1. we appreciate the reviewer's support for the decision not to accumulate streamflow. Our choice of nomenclature was indeed driven by the fact we use exactly the same non-parametric approach published as the SGI by Bloomfield et al. However, on balance we agree this is confusing. We suggest adopting the Standardized Flow Index (SFI) terminology, because there is no particular formulation nor key reference for standardization for river flows, rather a number of different approaches (see our references); any approach that applies SPI-like concepts to flow could be justifiably named SFI. We think that it is better to refer to the index by the hydrological variable in question (SPI, SFI, SGI, etc) rather than by the methodological approach. We would not want to develop (yet another!) new index name for our approach. Note we propose using SFI rather than SRI as the latter has more typically been applied to modelled runoff (Shukla & Wood, 2008) rather than observed flow.

>>>Text amended and explained using the SSI nomenclature rather than SFI

2. Page 12948, lines 6-14 and Figures 7-10 - In the paper, you link winter rainfall with extreme values of ENSO. Is there concern that results will be confused by testing total precipitation (including snowfall)? If ENSO causes a temperature anomaly, this may shift the balance from rainfall to snowfall, making it seem as though there is a winter rainfall deficit, when in fact total precipitation has remained the same. This may not be a large issue for southeast England, but certainly portion of Europe shown in Figures 7-10 depends on winter snowfall to replenish water reserves

2. we agree that snowfall is not likely to be a major factor in lowland England. Some winter drought periods (e.g. 1963/4, 2010/2011) will have had major snowfall but typically snow makes up a very

minor proportion of precipitation and is a minor runoff generation component (even in cold winters) at the monthly to seasonal scale. So this is not likely to be a confounding factor in our analysis of links with ENSO. However, for an international audience we agree we need to state this. We will add a short paragraph recognising that ENSO temperature anomalies could be important on winter snowfall but noting the generally minimal effect of snow in our target region. We will also point out that the relative importance of snowfall has decreased over the study period. We will highlight that cold-season temperature anomalies and their influence on snowfall is a much more significant factor in drought development in other parts of Europe shown in our analysis (e.g. Van Loon et al. 2014).

>>>added in relevant section

3. Page 12959, line 5-6 – Figure 4 is very illustrative in visualizing how different lags and accumulation periods relate to streamflow and groundwater levels. However, in the conclusions and abstract, I suggest being careful when discussing the importance of lags, as the best correlations for streamflow and groundwater are concurrent. This is particularly clear for groundwater.

3. we agree that we have chosen ambiguous terminology here, and that we are really talking about the relationship between instantaneous SGI and the SPI accumulation period with the highest correlation. This still represents attenuation of the rainfall signal and demonstrates the importance of drought propagation, but we agree that referring to lags in this way can cause confusion given the low lagged correlations (particularly for streamflow; Fig 4a). We will amend this in the discussion and abstract to refer to propagation and attenuation (depending on context) rather than lags. We note also that for groundwater the maximum correlation is a concurrent one but 1- and 2-month lags are also important. We will add clarification of this in our description of the results, in Sect. 2.3

>>added a minor addition in Section 2.3 and a minor change in the last paragraph of the text

4. Table 2 – How is a meteorological drought defined for this table? Also, the column of Yes/No is difficult to read. It might be more useful to only show Yes.

4. meteorological drought is defined according to table 1, using the methodology outlined in 2.2. We will make this clearer and we will amend the table to only show "YES".

>>done

5. Figure 7b – This is a very dense figure. I suggest splitting the top row from the bottom two rows, as the top row shows atmospheric pressure for different time periods from left to right, while the two bottom rows show precipitation indices in the same format (storminess on left, precipitation on right)

5. We agree and the requested split will be introduced

>>>done

6. Figures 8, 9, 11 – Similar to the above comment. Please try to be consistent with the figure orientations. Figure 8 shows drought indices organized along the vertical axis with positive and negative drivers organized along the horizontal. Figure 9 flips this, with drought indices organized along the horizontal axis and atmospheric drivers along the vertical. Same for Figure 11. Please pick an orientation and maintain it for all figures.

6. We agree. A consistent orientation will be created for Figs 8, 9 and 11.

>>>done

7. This is not a required change, only a thought for future work. Figure 12 uses a Welch 2-sample ttest to compare differences in the central value (mean) for pairs of drought indices/climate drivers. It appears that QBO does not affect the mean behavior of the drought indices, but greatly changes the variance. You might want to perform a 2 sample test of variance to quantify this. This could have implications in terms of drought variability.

7. We agree that the variance is influenced by a number of these drivers, and we agree that this would be a useful avenue for a follow-up – we thank the reviewer for this suggestion.

No action

Technical Corrections:

Page 12947, Line 6 – It appears part of this sentence is missing.

Reply: The reviewer is in error here. There is no truncated sentence. We have also checked the original text against the version sent to the reviewer and they are identical and complete. The sentence on the first part of line 6 ends correctly and the next sentence starts and continues correctly: "The character and physical causes of the influences differ between moderate and strong El Niños (Ineson and Scaife, 2008). Folland et al. (2012), their Fig. 7b, show that the overall effect of El Niño on English Lowlands rainfall in December–February is towards modestly wetter than normal conditions, while La Niña (associated with significantly colder than normal SST in the tropical east Pacific) gives modestly drier conditions than normal conditions, consistent with the model results of Davies et al. (1997) and the observational results of Moron and Gouirand (2004).

No action

Page 12947, Line 8 – There is an accidental space in La Nina. Reply: We will correct this Done

Additional references you may also consider "Fraedrich, K. and Müller, K. (1992), Climate anomalies in Europe associated with ENSO extremes. Int. J. Climatol., 12: 25– 31. doi: 10.1002/joc.3370120104" as an original paper that examined anomalies in Europe tied to ENSO

Reply: thank you for the reference suggestion; we are planning to add papers by Fraedrich in response to the comments of Wilby (see Short Comment 1) so will add this to the list of papers to review and consider adding.

>>Done

RESPONSE TO NEIL MAC DONALND

We thank MacDonald for the positive comments on our paper and the helpful suggestions for improvements to the text. We have answered the minor comments as follows.

"I would though encourage the authors to tone down the 'aims and novelty' section on P12937 L1-18, as others have discussed a number of these aspects (e.g. Lloyd-Hughes 2002; Todd et al., 2013)."

>>>In line with the comments from Wilby, regarding precursors to our work, we will tone down claims of novelty in relation to ENSO in our paper, and such a revision partly deals with this comment. With regards to the section highlighted by MacDonald, we do not feel we are making any undue claim to novelty. Here, we simply highlight that there has been a wealth of work on drivers of meteorological drought, but that studies have rarely examined links to hydrological drought; and that while some papers have looked at the NAO, there have been few attempts to look at the factors that force the NAO itself. Lloyd-Hughes and Todd both focus on meteorological/soil moisture droughts (SPI and sc-PDSI); the latter paper has some linkage with NAO. We will moderate this section in line of the comments from Wilby and MacDonald, but we feel this paragraph is a fair reflection of several important gaps in research we have aimed at.

>> done in line with Wilby comments (no major additional action)

"A little more discussion of temperature and its role in drought even within the winter months would be beneficial within a paper considering so many potential drivers".

>>>Agreed, as also noted in responses to Wilby and Reviewer #1 we will highlight the role of temperature, through evapotranspiration and snowfall.

>>done in line with Wilby comments (no major additional action)

P12936 L17, see Lennard et al., (2014 - ref below) linking drought management and water resources >>>>We will add this reference, thank you.

>>we decided not to add this as it doesn't really fit with the argument, not really relevant for the rather general point made here.

P12941 L21-25, consider revising the sentence

>>>>We are not sure exactly what the reviewer means here, but suggest a change to clarify our point: "We also conducted an analysis to examine how spatially coherent these major long 20 droughts are relative to the rest of the UK. Rainfall tends to be influenced differently in northwest Britain when the English Lowlands suffer drought. To show this, Fig. 3 shows correlations between rainfall in the ten climatological rainfall districts covering the UK defined by the UK Met Office and gridded NCIC rainfall data elsewhere in UK for both winter and summer half years based on the 15 drought periods listed in Table 1".

Becomes: "We also conducted an analysis to examine how spatially coherent these major long 20 droughts are relative to the rest of the UK. There is a strong rainfall gradient between the English Lowlands and northwest Britain (an order of magnitude between the wettest parts of the Scottish Highlands and driest parts of East Anglia); given the predominance of westerly airflows interacting with uplands in the west, lowland areas are often in rainshadow so periods of very wet or very dry conditions in the lowlands do not necessarily conform to those in the northwest. The atmospheric drivers of lowland droughts are therefore likely to be somewhat different to those in the northwest. To demonstrate this, Fig. 3 shows correlations between rainfall in the ten climatological rainfall districts covering the UK defined by the UK Met Office and gridded NCIC rainfall data elsewhere in UK for both winter and summer half years based on the 15 drought periods listed in Table 1".

>>> done

P12943 L15-21, I am not convinced this adds to the argument or shows anything particularly beneficial

>>>We agree this is treated rather cursorily at present, although we do use the correlation between SPI and SGI to inform the approach in section 4 of the paper. We agreed to add more coverage of the significance of lags and attenuation (see response to reviewer 1) here, which will hopefully make this section fit the narrative better.

No action needed

P12951 L10, consider removing 3.2.3 as it does not really add to the discussion – up to the authors/editor?

>>>We keep this for completeness of considered drivers (see also Section 4). The coverage is weak at present but we agreed to add this in our response to Wilby, so will add material here.

No action needed

P12971 Add an inset map to Figure 1, showing location in UK, then focus the map closer on the study area, consider adding London and Oxford for reference.

>>>We will add these suggestions.

>>>done

P12975/6, a number of the curves (Figures 5 and 6) in the most extreme drought events are cut so they appear to have a flat bottom, show the full curves if possible, as these illustrate the severity of the event

>>>The truncated parts of the series are a product of the non-parametric approach underlying the SGI as detailed in Bloomfield and Marchant (2014). The behaviour at the extremes is always hard to model because -by their very nature - we don't observe many examples of them. The flat portions of a non-parametric transform are a big hint that all we know about the most extreme drought is that it is the biggest one we see within our data record. A parametric transform might well lead to a smoother curve in the extremes but it only does that because it makes an untestable assumption about the shape of the tail of the distribution. These limits to the SGI do not make a difference to the identified droughts.

>>>no action necessary

P12934 L2 remove 'very', quantifiable

>>> We will do this. Done

P12935 L16 provide a reference to the 'English Lowlands' being the driest part.

>>>We did not feel this statement needed a reference. We could add reference to the NCIC climate averages we use in this paper.

>>We decided not to add a reference

P12935 L17 reference to support rainfall levels.

>>We decided not to add a reference

P12935 L17 population density statement needs a reference as a large portion of the catchment is semi-rural, SE is more densely populated I suspect than the define EL.

>>>agreed that parts within this region are more densely populated. The problem here is that we are referring to a region that we have defined ourselves, using the NRFA regional outflow series, which can't really be compared with other widely used UK regions (e.g. administrative). We will modify "contains some of the most densely populated areas of the UK and, correspondingly, the highest concentrations of commercial enterprise and intensive agriculture; many parts of the region...." Done

P12936 L3, given 'anticipated' increases in pop and urban development

>>>agreed. done

P12936 L15, remove 'dry' EL

>>>agreed. Done

P12936 L27, reconsider 'modulating'

>>>We think this is fine. No Action

P12941 L21 'are' available

>>>agreed (presumably this refers to 12942, L11) done

P12943 L12, clarify 'accumulation'

>>>We think this follows from the preceding discussion but we will modify "As with groundwater levels, monthly river flows were not accumulated over a range of periods in producing the SGI" (also note for clarity will be referred to as Standardized Flow Index – see reviewer #1 response)` done

P12944 L5 are rather than is done

>>>agreed

P12947 L17, 20CR - twentieth century

>>>this is defined on the previous page. NO action needed

P12974, ensure font size is same across a-b

>>>We will do this.

>>>done

1	Multi-annual droughts in the English Lowlands: a review of their characteristics
2	and climate drivers in the winter half year.
3	C.K. Folland ^{1,2} J. Hannaford ³ , J.P. Bloomfield ⁴ , M. Kendon ¹ , C. Svensson ³ , B.P.
4	Marchant⁵, J. Prior¹, E. Wallace¹
5	
6	[1]{Met Office Hadley Centre, Exeter, United Kingdom}
7	[2]{Department of Earth Sciences, University of Gothenburg, Sweden}
8	[3]{Centre & Ecology and Hydrology, Wallingford, United Kingdom}
9	[4]{British Geological Survey, Wallingford, United Kingdom}
10	[5]{British Geological Survey, Keyworth, United Kingdom}
11	
12	
13	Correspondence to: Jamie Hannaford (jaha@ceh.ac.uk]
14	

To Be Submitted to: Hydrology and Earth System Sciences

16 Abstract

17 The English Lowlands is a relatively dry, densely populated region in the southeast of the UK in 18 which water is used very intensively. Consequently, parts of the region are water-stressed and face 19 growing water resource pressures. The region is heavily dependent on groundwater and particularly 20 vulnerable to long, multi-annual droughts, primarily associated with dry winters. Despite this 21 vulnerability, the atmospheric drivers of multi-annual droughts in the region are poorly understood, 22 an obstacle to developing appropriate drought management strategies, including monitoring and early 23 warning systems. To advance our understanding, we assess known key climate drivers in the winter 24 half-year (October-March), and their likely relationships with multi-annual droughts in the region. 25 We characterise historic multi-annual drought episodes back to 1910 for the English Lowlands using 26 various meteorological and hydrological datasets. Multi-annual droughts are identified using a 27 gridded precipitation series for the entire region, and refined using the Standardized Precipitation Index (SPI)-and, Standardized Streamflow Index (SSI) and a-Standardized Groundwater level Index 28 29 (SGI) applied to regional-scale river flow and groundwater time series. We explore linkages between a range of potential climatic driving factors and precipitation, river flow and groundwater level 30 31 indicators in the English Lowlands for the winter half-year. The drivers or forcings include El Niño-32 Southern Oscillation (ENSO), the North Atlantic Tripole Sea Surface Temperature (SST) pattern, the 33 Quasi-Biennial Oscillation (QBO), solar and volcanic forcing and the Atlantic Multi-decadal 34 Oscillation (AMO). As expected, no single driver convincingly explains the occurrence of any multi-35 annual drought in the historical record. However, we demonstrate, for the first time, an association 36 between La Niña episodes and winter rainfall deficits in some major multi-annual drought episodes 37 in the English Lowlands. We also show significant (albeit relatively weak) links between ENSO and 38 drought indicators applied to river flow and groundwater levels. We also show that some of the other 39 drivers listed above are likely to influence English Lowlands rainfall. We conclude by signposting a 40 direction for this future research effort.

41

42 **1** Introduction

From 2010 until early 2012, a protracted drought affected much of the central and southern UK.
Following one of the driest two-year sequences on record (Kendon et al., 2013), the drought had
become severe by March 2012; river flows and groundwater levels were lower in many areas than at
the equivalent time in 1976, the benchmark drought year for the region (Rodda and Marsh, 2011) and

47 water use restrictions were implemented across the drought-affected areas. The outlook for summer 48 2012 was distinctly fragile, but exceptional late spring and summer rainfall terminated the drought 49 and prevented a further deterioration in conditions. In the event, widespread flooding developed 50 (Parry et al., 2013).

51 While the impact of the drought on water resources was not as extensive as feared, due to its sudden 52 cessation before the summer, it had major impacts on agriculture, the environment and recreation (Kendon et al. 2013; Environment Agency, 2012). The 2010-2012 drought brought into focus the 53 54 vulnerability of the lowland areas of south and east England to drought. This arearegion, hereafter 55 referred to as the English Lowlands (Fig 1), is the driest partincludes the driest areas- of the UK. It 56 has a relatively low annual average rainfall: -(a 1961-1990 areal average of 680mm, with <600mm 57 being common in the east of the region). The English Lowlands contains some of the most densely 58 populated areas of the UK (including London) and, correspondingly, the highest concentrations of 59 commercial enterprise and intensive agriculture; many parts of the regionhave the greatest density of 60 population, intensive agriculture and commercial enterprise in the UK, and many parts of the region 61 are already water-stressed (Environment Agency, 2009). The south and east of England is underlain 62 by numerous productive aquifers (Fig 1), and is highly dependent on groundwater resources, with up to 70% of the water supply being from groundwater (Environment Agency, 2006). The region is 63 particularly vulnerable to multi-annual droughts which are typically associated with protracted 64 65 rainfall deficiencies in the winter half-year, leading to the limited recharge of aquifers. The 2010-66 2012 drought was similar to previous multi-annual droughts in the English Lowlands, such as those 67 in 2004-2006 and in the 1990s (1988-1992 and 1995-1997). These also caused major water shortages, 68 with significant ecological impacts (Marsh et al., 2007).

69 Whilst current water management in the English Lowlands presents many challenges, such issues are 70 likely to become much more pressing. Water exploitation is likely to intensify, given anticipated 71 increases in population and urban development (Environment Agency, 2009). The region is projected to become appreciably warmer and drier later this century if greenhouse gas concentrations increase 72 73 as expected (e.g. Murphy et al., 2008), leading to decreased summer river flows (e.g. Prudhomme et 74 al. 2012), decreased groundwater levels (e.g. Jackson et al., 2011) and an accompanying increase in 75 the severity of drought episodes (Burke and Brown, 2010). Although a decrease in summer flows is 76 likely to increase the frequency of single-year, summer droughts (comparable with UK droughts of 77 1984 and 2003), there is currently very limited understanding of how climate change may influence

- 78 the occurrence of longer, multi-season and multi-annual droughts.
 - 16

79 The 2010-2012 drought highlights the need for research aimed at improving our understanding of the 80 drivers of the multi-annual droughts that have the greatest impact on the dry-English Lowlands. Such 81 understanding is vital for improving resilience to drought episodes, and consequently fostering improved systems of drought management and water resources management. Building resilience 82 83 importantly involves both the monitoring and early warning of drought. Early warnings will depend 84 crucially on an enhanced understanding and monitoring of the remote drivers of droughts and a much 85 improved ability to predict their consequences. This includes a better understanding of the propagation of meteorological drought through to the impacts on the hydrological cycle. 86

87 Previous attempts to identify atmospheric drivers of drought in the UK were have been based mostly 88 on the occurrence of key UK weather types favouring drought (e.g. Fowler and Kilsby, 2002; Fleig 89 et al., 2011) or on links with sea-surface temperatures (SSTs) (Kingston et al., 2013). These studies 90 have all-highlighted the importance of catchment properties in modulating hydrological droughts, 91 particularly the substantial lag-times between atmospheric drivers and river flow responses in 92 groundwater dominated catchments in southeast England. A review of efforts focused on seasonal 93 predictability of UK hydrology is provided by Easey et al. (2006). The majority of studies have 94 focused on trying to identify summer drought or low flows given preceding predictors (e.g. winter 95 SSTs, NAO). Nevertheless, concurrent Links between the North Atlantic Oscillation (NAO) and UK 96 rainfall, including extremes, have long been established in the main winter months December to 97 February (e.g. in both models and observations by Scaife et al. 2008). Via such rainfall influences, 98 links between the winter NAO and river flows (Laizé and Hannah, 2010) and groundwater levels 99 (Holman et al., 2009) have been established. However, no attempts have been made to systematically 100 link hydrological droughts anywhere in the UK to the known range of physical drivers of variations 101 in atmospheric circulation that affect the UK. Thus nocomparatively few -studies have addressed links between drought and with-factors such as the El Nino/Southern Oscillation (ENSO) that force 102 103 atmospheric circulation anomalies like the NAO themselves. Most of these drivers can be skilfully 104 predicted months in advance (Folland et al., 2012). Globally, ENSO has very extensive regional 105 effects on drought or flooding periods (e.g. Ropelewski and Halpert, 1996). However, only limited 106 studies have been carried out on the influence of remote forcings on hydrological drought anywhere 107 in Europe, Pioneering studies by Fraedrich (1990, 1992, 1994), however, provided good, including 108 dynamical, evidence for an influence of ENSO on winter atmospheric circulation and temperature and precipitation anomalies. Although ENSO influences on European climate were affected by 109 110 poorer data then available, at the peak of El Nino Fraedrich observed a now accepted pattern of higher

111 pressure at mean sea level (PMSL) over Arctic regions of Europe and lower pressure over southern 112 UK and areas to the south. In particular, Fraedrich (1990) showed an enhanced frequency of cyclonic 113 compared to anticyclonic Grosswetter weather types over Europe during El Nino in almost all days 114 during January and February. During the peak of a La Nina, a somewhat weaker tendency to enhanced 115 anticyclonic Grosswetter types was found in this region. Such results were weakened a little in reality 116 because it was not realised at the time that very strong El Ninos affect European atmospheric 117 circulation in a substantially different way from moderate El Ninos (Toniazzo and Scaife, 2006, 118 Ineson and Scaife, 2008)-[??: Fraedrich material here]. In addition, Lloyd-Hughes and Saunders 119 (2002) established links between ENSO and the Standardized Precipitation Index (SPI) for Europe, 120 finding that precipitation is most predictable in spring. For the UK, Wilby (1993) demonstrated a 121 higher frequency of anticyclonic weather types in winters associated with La Niña conditions, 122 consistent with Fraedrich's analyses. However, while such studies have demonstrated potential links 123 between winter rainfall and predictable climate drivers such as ENSO, no studies have further 124 established the additional link to multi-year hydro(geo)logical droughts.

- In summary, while there has been a considerable research effort, no known studies have explored close to the full range of likely climate drivers on winter half-year rainfall in the English Lowlands, nor examined how these drivers manifest themselves in multi-annual meteorological droughts and propagate through to hydrological and hydrogeological systems. Given these knowledge gaps, key objectives of this study are to:
- Identify major multi-annual droughts in the English Lowlands since 1910.

125

- Characterise the expression of these droughts in precipitation, river flow and groundwater
 levels using standardised indices, and quantify the relative timing and impact of the multi annual droughts between the different components of the terrestrial water-cycle.
- Assess a range of likely drivers of atmospheric circulation that may contribute in the winter
 half-year to multi-annual droughts in the English Lowlands.
- Conduct a preliminary examination of the links between these drivers and drought indicators
 to search for causal connections and point the way to future studies.

139 2. Identifying multi-annual droughts in the English Lowlands

Many studies have assessed the character and duration of historical meteorological and hydrological droughts in the UK. Strong regional contrasts in drought occurrence across the UK have been noted, with a particular contrast between upland northern and western UK, which is susceptible to shortterm (6 month) summer half-year droughts, and the lowlands of south eastern UK that are susceptible to longer-term (18-month or greater) droughts (Jones et al. 1998; Parry et al. 2011). These findings reflect both the climatological rainfall gradient across the UK (see Section 2.2) and the predominance of groundwater dominated catchments in the south-east.

147 In an assessment of the major droughts affecting England and Wales since the early 1800s, Marsh et 148 al. (2007) note that the most severe droughts in the English Lowlands have all been multi-seasonal 149 events featuring at least one dry winter, substantial groundwater impacts being a key component. 150 Partly resulting from the long duration of these events, and the inability of groundwater systems to recover between events, these authors note a tendency for multi-annual droughts to cluster, e.g. the 151 152 "Long Drought" of the 1890s - 1910. Using the Self-Calibrating Palmer Drought Severity Index 153 (PDSI), Todd et al. (2013) have recently reconstructed meteorological droughts for three sites in 154 southeast England back to the 17th Century, and noted numerous "drought rich" and drought poor" 155 periods. The causes of such clustering behaviour remain poorly understood, further underscoring the 156 importance of understanding the likely climate drivers of long droughts.

157 Several studies have quantitatively examined historical droughts within south east UK, as part of 158 wider classifications of droughts in the UK and beyond. Burke et al. (2010) quantified rainfall 159 droughts in south east UK using gridded precipitation data while Parry et al. (2011) and Hannaford 160 et al. (2011) identified major droughts in the southeast of the UK in a regionalised streamflow series. 161 Both studies identified similar major droughts occurring in the mid-1960s, 1975-6, 1988-1992, 1995 162 -1997 and the early 2000s. More recently, Bloomfield and Marchant (2013) developed a groundwater 163 drought index based on the Standardized Precipitation Index (SPI), identifying the same major 164 droughts. However, to the authors' knowledge, no studies have focused on multi-annual droughts 165 where rainfall, river flows and groundwater have been simultaneously studied using consistent 166 indicators; a necessary first step in understanding the propagation of drought from meteorology to 167 hydrology.

- The following sub-sections identify multi-annual droughts in rainfall, river flows and groundwater. Severe droughts since 1910 are characterised in two ways. First (Sect 2.2), we identified major
 - 19

170 meteorological droughts in the areal average English Lowlands rainfall series using a simple approach 171 based on long-term rainfall deficiencies. Second, we further quantify drought characteristics using 172 standardized drought indicators (Sect 2.3). The rationale behind the separate approaches is that using 173 the simple approach, we can identify multi-annual drought events including at least one winter period 174 (which is not necessarily enforced with the later drought indicators), vital for-when we considering 175 relationships between remote drivers and English Lowlands winter rainfall. Furthermore, this 176 approach can identify all droughts of different durations, whereas the Sect 2.3 analysis is influenced 177 by the choice of averaging period used in the standardized indicators.

178

179 2.1 Data sets used to identify multi-annual droughts

A range of hydro-meteorological datasets have been used to identify multi-annual droughts through the historical record. For rainfall, the key dataset is a monthly 5 x 5 km resolution gridded dataset for the UK from 1910 to date, assembled using the methods of Perry and Hollis (2005a). This gridded dataset is based on interpolated rain-gauge observations taking into account factors such as topography. It forms the basis of UK rainfall statistics produced by the UK Met Office National Climate Information Centre (NCIC). We term this dataset 'NCIC Rainfall'.

The station network comprises between 200 and 500 stations covering the UK from 1910 to 1960, a step-increase to over 4000 for the 1960s and 1970s before a gradual decline to around 2500 stations by 2012. Despite the lower network density from 1910 to 1960, these data are still able to identify earlier historical droughts with considerable confidence. Long-term-average (LTA) values were obtained from a monthly 1 x 1 km resolution LTA gridded dataset for the period 1961-1990 (Perry and Hollis, 2005b).

192 River flow and groundwater level data were taken from the UK National River Flow Archive (NRFA) 193 and National Groundwater Level Archive (NGLA). An NRFA regional river flow dataset for the 194 English Lowlands is available to characterise total outflows from the region from 1961 to 2012 195 (Marsh & Dixon, 2012). The series is based on aggregated flows from large rivers and uses 196 hydrological modelling to account for ungauged areas. The boundary shown in Fig. 1 was used to 197 create the "English Lowlands" NCIC rainfall and NRFA regional river flow series used here. A 198 regional groundwater level series was also created for the English Lowlands to directly compare with 199 the English Lowlands rainfall and river flow series - further information on the derivation of the 200 groundwater level series is provided in Sect 2.3.

201 In addition to the regional English Lowlands outflow series, the flow record of the Thames at 202 Kingston, the longest in the NRFA, from 1883 to present, was used to provide a temporal coverage 203 comparable with that of the NCIC rainfall. The river Thames has the largest catchment in the UK 204 (9968 km² at the Kingston gauging station) and constitutes 15% of the English Lowlands study area. 205 This series has been naturalised, i.e. the flows have been adjusted to take account of the major 206 abstractions upstream of the gauging station. It should, however, be noted that the homogeneity of 207 the low flow record is compromised by changes in hydrometric performance over time (Hannaford 208 and Marsh, 2006), although this is not likely to be unduly influential for the present study that focuses 209 on drought indicators rather than trends over time. This series has been naturalised to remove the 210 influence of abstractions. The longest Chalk groundwater level record (starting 1932) from the 211 Thames catchment, the Rockley borehole series, is also used to provide a long-term picture.

212

213 2.2 Identifying major rainfall droughts in the English Lowlands

214 Meteorological droughts are identified from monthly rainfall deficits, calculated as the monthly 215 observed areal mean rainfall total minus the monthly 1961-1990 LTA. These deficits were 216 accumulated over rolling multi-month time periods from 12 to 24 months long. All rainfall deficits 217 over 170 mm (25% of annual average rainfall) over 12 to 24-month timescales were selected to give 218 15 notable droughts from 1910 to 2012 lasting at least one year and encompassing at least one winter 219 - i.e. likely to have significant impact on groundwater resources. These droughts did not necessarily 220 have below average rainfall in all months from October-March; in some instances rainfall may also 221 have been low during the summer half-year (April-September). Table 1 shows that two droughts just 222 exceeded 24 months in length using this method. Fig 2 shows an example rainfall anomaly series, 223 that for the 2010-2012 drought, which includes a few months before and after the chosen drought 224 period to demonstrate a typical example of how drought beginning and end dates were chosen.

Meteorological droughts across the English Lowlands since 1910 identified here include 1920-1921, 1933-1934, 1975-1976, 1990-1992 and 1995-1997, consistent with earlier studies (Marsh et al., 2007) so their identification is not very sensitive to the criteria used. Of these, the 1975-1976 drought is generally regarded as a benchmark across much of England and Wales against which all other droughts are often compared (Rodda and Marsh, 2011). During only this and the 1920-1921 drought were rainfall totals below 65% of LTA over the >12 month time-scale₁ including all or most of a

winter half-year (Table 1). The most recent historical drought of 2010 to 2012 comfortably sits as oneof the most significant prolonged droughts since 1910 (Kendon et al., 2013).

233 We also conducted an analysis to examined how spatially coherent on average these 20 major long 234 20-droughts were overare relative to the rest of the UK. There is a well known strong rainfall gradient 235 between the English Lowlands and northwest Britain (an order of magnitude between the wettest 236 parts of the Scottish Highlands and driest parts of East Anglia); ... reivenBecause of the predominance 237 of westerly airflows interacting with western uplandsin the west, eastern lowland areas are often in 238 rainshadow. Accordingly, so periods of very wet or very dry conditions in the lowlands often differdo not necessarily conform to from those in the northwestern UK. The atmospheric drivers of lowland 239 240 UK droughts are therefore likely to be somewhat different to those in the northwest. To demonstrate 241 this, Fig. 3 shows correlations between rainfall in the ten climatological rainfall districts covering the 242 UK defined by the UK Met Office and gridded NCIC rainfall data elsewhere in UK for both winter 243 and summer half years usingbased on the 15 long drought periods listed in Table 1. We also conducted 244 an analysis to examine how spatially coherent these major long droughts are relative to the rest of the 245 UK. Rainfall tends to be influenced differently in northwest Britain when the English Lowlands suffer 246 drought. To show this, Fig 3 shows correlations between rainfall in the ten elimatological rainfall 247 districts covering the UK defined by the UK Met Office and gridded NCIC rainfall data elsewhere in 248 UK for both winter and summer half-years based on the 15 drought periods listed in Table 1. Although 249 summer is not a focus of the paper, Fig 3 shows a considerable contrastsdifferences between winter and summer correlations patterns. during long period droughts are clear from Fig 3. Generally, there 250 251 is a greater anticorrelationcontrast between southeast UK and northwest UK rainfall in the for winter 252 half year than in the summer half year rainfall. Thuis implies thatts, droughts have a greater tendency 253 to affect the UK as a whole in the summer half year than in the winter half year. Indeed, Fig 3 suggests 254 that northwest Scotland is unlikely to be affected by drought at the same time as southeast England 255 in the winter half year. Rahiz and New (2013) have also recently confirmed a tendency for spatially 256 coherent meteorological droughts in southeast of England to be distinct in time from droughts in 257 northern and western areas of UK.

258 2.3 Identifying major droughts in rainfall, river flows and groundwater from a
 259 hydrological perspective

In order to examine the impact of historical meteorological droughts on river flows and groundwater,consistent indicators are required to identify such drought events. A wide range of drought indicators

262 is are available (e.g. Mishra and Singh, 2010) and there is no current consensus on a single indicator 263 appropriate for capturing the wide range of drought impacts. The Standardized Precipitation Index (SPI, McKee et al. 1993) benefits from being normalised to allow comparisons between diverse 264 regions and through the annual cycle. The formulation of the SPI is described in detail elsewhere; in 265 summary it consists of a normalised index obtained by fitting a gamma or other appropriate 266 267 distribution to the precipitation record, where fitting is done for each calendar month to account for 268 seasonal differences. The monthly fitted distributions are transformed to a standard normal 269 distribution and the estimated standardised values combined to produce the SPI time series. The index 270 is fitted to precipitation data that are typically accumulated over 3, 6, 12 and 24 month periods. The 271 SPI concept has been extended to river flows (e.g. Shukla and Wood, 2008) but numerous variants 272 have been proposed and there is no consensus on the distributions that should be used for 273 normalisation (e.g. Vicente-Serrano et al., 2012). More recently, the SPI concept has been extended 274 to groundwater level records via a Standardized Groundwater level Index, SGI (Bloomfield and 275 Marchant, 2013). This adopts a non-parametric normal scores transformation rather than using a 276 defined statistical distribution.

277 For the present study, the SPI has been applied to the English Lowlands rainfall series, and the SGI 278 has been applied to 11 individual groundwater level records from observation boreholes within the 279 English Lowlands region. These are: Ashton Farm, Chilgrove House, Dalton Holme, Little Bucket 280 Farm, Lower Barn, New Red Lion, Rockley, Stonor House, Therfield Rectory, Well House Inn and 281 West Dean (see Bloomfield and Marchant (2013) for more information on these groundwater 282 records). The groundwater hydrographs have been averaged to create a regional SGI series of English 283 Lowlands groundwater levels. Unlike the SPI, the SGI is not applied to time series that have to be 284 accumulated over a range of durations, because groundwater level and river flow exhibits 285 autocorrelation or 'memory' which implies that a degree of accumulation is inherent in each monthly 286 value. The SGI same methodology was also applied to the English Lowlands regional river flow 287 series (henceforth referred to as Standardized Streamflow Index, SSI). Whilst the SGI was developed 288 primarily for groundwater, its formulation is also highly appropriate for river flows - particularly in 289 the English Lowlands where a substantial proportion of the runoff comes directly from stored 290 groundwater. As with groundwater levels, monthly river flows were not accumulation accumulated 291 over a range of periods in producing to produce was applied in the application of the SGIthe SSI for 292 river flow.

293 SGI-Standardized Indices were was-calculated for English Lowlands regional river flow and regional 294 groundwater levels, and monthly SPI was calculated for all accumulation periods from months 1 to 295 24 (i.e. SPI₁ to SPI₂₄). Figure 4a shows a heatmap of the correlation between lagged English Lowlands 296 river flow (as SSI) (as SGI) and English Lowlands precipitation (as SPI1 to SPI24). The maximum 297 correlation of 0.79 occurs for lag zero between the two time series and for a precipitation 298 accumulation period of 3 months. Figure 4b is a similar heatmap of lagged English Lowlands mean 299 groundwater levels (as SGI) (as SGI) and English Lowlands precipitation (as SPI1 to SPI24). The 300 maximum correlation is 0.82, also for lag zero, but only for a longer precipitation accumulation period 801 of 12 months. In summary, the highest correlations between SSI and SPI and between SGI and SPI 802 are associated with concurrent time series, although correlations >0.75 between SGI and SPI are also 803 seen at lags of a few months.

Figure 5 shows, for the English Lowlands, SPI rainfall series for several accumulation periods and
 the corresponding SSI and SGI river flow and groundwater series. Fig 6 shows the English Lowlands
 rainfall (SPI) series and equivalent series for the long Thames (SSI) record, and the Rockley borehole
 (SGI).

808 Figure 5 shows, for the English Lowlands, SPI rainfall series for several accumulation periods and 309 the SGI river flow and groundwater series. Fig 6 shows the SPI and SGI series for the long Thames 810 ord, the English Lowlands rainfall series and the Rockley borehole. Both figures demonstrate good 311 agreement between the meteorological droughts and associated river flow and groundwater droughts 812 - with some expected lags delays for the onset of given hydrological drought events, demonstrating 313 the propagation between the meteorological and groundwater droughts in particular. Fig 6 also shows 314 very good agreement between the severity of the major rainfall droughts identified independently in 315 Sect. 2.2, suggesting that these long duration events indeed had an identifiable and considerable 316 impact on river flows and groundwater in the English Lowlands. However, a cluster of hydrological 317 drought events in the mid-1950s, not identified in Sect 2.2., is also apparent in Fig 6. The magnitude 318 of the SPI/SGI/SSI anomalies in this period is-are not as great, but the duration is notable. Overall, 319 these analyses demonstrate the strong link between meteorological droughts and their manifestation 320 in hydro(geo)logical responses but they also demonstrate some differences between the two, as 321 expected. From this it is inferred that the major long meteorological droughts identified in Table 1, 322 and the various hydrological drought metrics used to characterise them, provide a good basis for 323 establishing links between potential climate drivers and the major historical droughts experienced in 324 the English Lowlands. Nevertheless, links between the remote drivers of meteorological and

groundwater hydrological droughts in particular are not expected to be identical, and the lag timesidentified above should be considered in interpreting these relationships.

327

328 3. Climate drivers of meteorological drought in the English Lowlands

329 This section considers the evidence for potential forcing factors for multi-annual meteorological 330 droughts in the English Lowlands. We selectively extend published results on the forcing of core 331 winter atmospheric circulation anomalies, and rainfall where this exists, to the winter half-year 332 (October-March). We show results for atmospheric circulation in a global context, and for rainfall 333 most of western Europe, to provide the large-scale context that is appropriate to understanding 334 forcings by remote drivers. By driving or forcing factor we mean a physical factor external to, or 335 within, the climate system that tends to force atmospheric circulation and rainfall responses over the 336 North Atlantic/European region in winter. We do not regard atmospheric circulation anomalies as 337 forcing factors in this paper, though they are of course the immediate causes of anomalies of surface 338 climate.

A necessary first-step in linking driving factors with rainfall anomalies is in is to considering their influence on surface pressure. <u>PMSL</u>. <u>Importantly,Thus</u> English Lowlands rainfall anomalies on seasonal time scales are relatively highly linearly correlated with the simultaneous pressure (pressure at mean sea level, PMSL) anomaly over the English Lowlands. Averaged over the six month long winter half-year, PMSL anomalies are an especially good indicator of rainfall anomalies, the correlation between simultaneous PMSL anomalies and rainfall anomalies being

345 -0.78 over the period 1901-2 to 2011-12 (61% of explained rainfall variance), or -21 mm/hPa 346 averaged over the English Lowlands. For the English Lowlands in the winter half-year, the key to 347 forecasting rainfall is skilfully forecasting PMSL anomalies averaged over the English Lowlands. 348 This is approximately the same as counting the relative number of cyclonic and anticyclonic days, 349 indicating that winter mean Lowland EnglandEnglish Lowlands flow vorticity could add some extra 350 skill to PMSL alone. Jones et al. (2014) discuss controls on seasonal southeast England rainfall in 851 such terms, although they do not use mean PMSL anomalies directly. However, in some otherwestern 352 regions of the UK, forecasting PMSL may not be enough; atmospheric circulation patterns like the 353 NAO are likely to be important because near surface anomalous wind direction and speed quite 354 strongly affect rainfall there (Jones et al., 2014).

355 Folland et al (2012) reviewed the influences of the then-known forcing factors in winter on European 856 temperature and rainfall, mainly for December to February or March, and concluded that the climate 857 models then current_at the time underestimated potential temperature and probably rainfall 358 predictability. Forcing factors investigated included the El Niño-Southern Oscillation (ENSO), North 359 Atlantic sea surface temperature (SST) patterns, the quasi-biennial oscillation (QBO) of equatorial 360 stratospheric winds, major tropical volcanic eruptions and increasing greenhouse gases. Since that 361 paper, physically-based influences of solar variability on winter climate have been discovered (e.g. 362 Ineson et al., 2011, Scaife et al., 2013). Postulated influences of recently reducing Arctic sea ice 363 extent on winter European atmospheric circulation remain unclear and are not discussed further 364 (Cohen et al, 2014) but may still exist.

365 Recently, a much higher level of real-time forecast skill for the NAO has been demonstrated by Scaife 366 et al. (2014a) for the core winter months of December-February for UK and Europe using Glosea 5, 367 a version of the latest Met Office climate model, HadGEM3_-called Glosea 5-(Maclachlan et al., 368 2014). Scaife et al. (2014a) show that this new level of skill reflects many of the factors reviewed by 369 Folland et al. (2012), though not La Niña, and that none are dominant, confirming that a multivariate 370 forcing factor approach is indeed needed tofor further understanding of interannual climate variations 871 in the full winter half-year. However, significant rainfall skill for UK regions was not shown. To 372 investigate drivers of English Lowlands rainfall for the winter half-year, we use several data sets. 373 These include the global 0.5° x 0.5° rainfall data of Mitchell and Jones (2005), PMSL data of Allan 374 and Ansell (2006), 300hPa and PMSL data from the Twentieth Century Reanalysis (20CR) (Compo 375 et al., 2011), the NCEP Reanalysis (Kalnay et al., 1996) and HadISST1 sea surface temperature data 376 (Rayner et al., 2003). For La Niña data we use the Niño 3.4 index using a combination of the Kaplan 377 et al. (1998) SST analysis to 1949 and the Reynolds et al. ERSSTv3b analysis from 1950 (updated 378 from Reynolds et al., 2002), henceforth KRSST. Other driving data include the annual total solar 379 irradiance up to 1978 from Prather et al (2014), interpolated to monthly values, with measured 880 monthly values from 1979 (Fröhlich, in press 2006), May North Atlantic SST Tripole data (Rodwell 381 and Folland, 2002, Folland et al., 2012), the Atlantic Multidecadal Oscillation (AMO) (Parker et al., 382 2007), stratospheric volcanic aerosol loadings (Vernier et al., 2011) and the QBO (Naujokat, 1986). 383 For English Lowlands rainfall, we have created a combined NCIC and Mitchell et al (2005) time 384 series from 1901-2012, regressing Mitchell et al data against the NCIC data set regarded as the 385 primary set to extend the latter back to 1901.

In the following sections, we discuss atmospheric circulation and rainfall anomaly forcing in the winter half-year due to ENSO, the North Atlantic Tripole SST anomaly, the QBO, tropical volcanoes, solar effects and the AMO.

389

416

390 3.1 ENSO

391 Toniazzo and Scaife (2006) showed how El Niños (associated with significantly warmer than normal 392 SST in the tropical east Pacific) affect winter, mainly January-March, extratropical Northern 393 Hemisphere atmospheric circulation and temperature. The character and physical causes of the 894 influences differ between moderate and strong El Niños (Ineson and Scaife, 2008). Moderate El Ninos 895 appear to influence winter extratropical Northern Hemisphere climate through a stratospheric 396 mechanism, whereas very strong El Ninos force a wave train through the troposphere from the tropics 897 (Ineson and Scaife, 2008) giving very different patterns of winter atmospheric circulation response. 398 Folland et al. (2012), their Fig 7b, show that the overall effect of El Niño on English Lowlands rainfall 399 in December-February is towards modestly wetter than normal conditions, while La Niña (associated 400 with significantly colder than normal SST in the tropical east Pacific) gives modestly drier conditions 401 than normal conditions, consistent with the model results of Davies et al. (1997) and the observational 402 results of Moron and Gouirand (2004). There is no evidence that strong La Niñas influence 403 atmospheric circulation in different ways from moderate ones.

404 To investigate the influence of La Niña events, Fig 7a first shows the mean global SST_anomaly 405 pattern associated with La Niña events where SST averaged over the Niño 3.4 region (120°W-170°W, 406 $5^{\circ}N-5^{\circ}S$) is has an anomaly <= -1.0°C, compared tobelow the 1961-1990 average. SST values 407 averaging >= 1.0°C above normal give a broadly opposite SST pattern. To provide dynamically 408 consistent information about PMSL since the late 19th Century, we use median results from the 20CR. 409 This assimilates observed PMSL and surface temperature data into a physically consistent climate 410 model framework every 6 hours for most of the last 130 years using an ensemble of over 50 different 411 slightly differing analyses. Fig 7b, top panel, shows mean PMSL anomalies (from 1961-1990) for La 412 Niñas where Nino 3.4 region SST anomalies are <-0.92°C for two independent epochs 1876-1950 413 and 1951-2009. The value -0.92C is minus one standard deviation of Nino 3.4 SSTs over 1951-2009. 414 Both epochs show a finger of higher than normal PMSL stretching toward the southern UK, much 415 stronger in the latter period, with lower than normal PMSL to the north. General similarities in the

27

patterns tend to confirm the robustness of the PMSL pattern. PMSL anomalies project as expected

onto the positive winter NAO in both epochs, but with higher PMSL over the south of the UK duringLa Niña than in the classical NAO pattern.

419 The central panel shows anomalies of atmospheric storminess from the NCEP Reanalysis for 1951-420 2013 and western European rainfall anomalies for 1901-2011. These show significantly drier than 421 average conditions and slightly reduced storminess over the English Lowlands during La Niña. The 422 dry anomalies over the English Lowlands average around 5 mm/month (30 mm in the winter half 423 year-as-a-whole) while northwest Scotland by contrast has significant slight to moderate wet 424 anomalies exceeding 10mm/month. The average PMSL anomaly over the English Lowlands in 1951-425 2009 of 1.8hPa in Fig 7b corresponds to about a 38mm rainfall deficit, 11% of the 1961-1990 winter 426 half year average of 348mm. The average effect is thus modest, as with all other individual climatic 427 influences, though individual La Niña events can have a stronger influence. Details of the influence 428 of La Niña on UK PMSL and rainfall vary through the winter half-year (e.g. Fereday et al, 2008), 429 illustrated in Supplementary Information Fig S1 for each winter half-year month. Fig S1 shows no 430 English Lowlands rainfall signal in January, though a dry signal appears to a greater or lesser extent 431 in the remaining five months.

El Niño, by contrast, is associated with slightly wetter conditions than normal in the English Lowlands
and slightly enhanced storminess (Fig 7b, bottom right). Indeed, broadly opposite PMSL anomaly
and rainfall anomaly patterns can be seen in the bottom panels of Fig 7b in given locations over most
of UK and Europe during moderate El Niños (0.92°C< Niño 3.4 SST anomaly < 1.5°C). For the
relatively uncommon extreme El Niños, PMSL (Toniazzo and Scaife, 2006) and rainfall patterns
change over the UK and Lowland EnglandEnglish Lowlands (not shown).

438 Table 1 shows the mean winter half-year Niño 3.4 SST anomaly during each drought. No moderate 439 to strong El Niños occurred in these droughts but there was one weak El Niño, four weak La Niñas 440 (SST anomaly between 0.5 and 1°C), seven "neutral" conditions (anomalies between +-0.5°C, all here with weak negative SST anomalies) and three moderate to strong La Niñas. The mean winter half-441 442 year Niño 3.4 SST anomaly in all 15 droughts is -0.45°C. Table 2 looks at the problem in another way, showing the winter half-year rainfall anomaly associated with the strongest La Niñas and noting 443 444 if a Table 1 drought occurred. Many La Niñas are not associated with winter half-year components 445 of Table 1 droughts. However the probability of a Table 1 drought occurring during the top 20 winter 446 half-year La Niñas is nominally 0.35, compared to a chance probability of 0.15, so the probability of 447 a severe drought is approximately doubled compared to chance. The overall English Lowlands winter

448 half-year rainfall anomaly during all top 20 Nino 3.4 years is nevertheless weak at 25.2 mm or -0.39

standard deviations. So a doubling of the chance probability is worth noting, but La Niña is inadequate to indicate a Table 1 drought with any confidence by itself. Moreover, La Niña winters can occasionally behave very far from expectation. The clearest example is 2000-1, the wettest winter half-year in this record at 43 mm/month but accompanied by a weak La Niña with an SST anomaly of -0.70°C. This very cyclonic winter may have been caused by the overriding influence of other strong forcings, especially in October-December (Blackburn and Hoskins, 2001).

455 Finally Fig 7c shows cumulative distributions of English Lowlands rainfall when Nino3.4 SST 456 anomalies <-0.5°C and Nino 3.4 SST anomalies >0.5°C but < 1.5°C were observed. The latter is an 457 approximate lower Nino3.4 SST limit for extreme El Ninos; these extreme years tend to be more 458 anticyclonic over the English Lowlands so on average drier than other El Nino years. Fig 7c shows 459 drier conditions in La Nina compared to El Nino through almost all of the cumulative probability 460 distribution of English Lowland rainfall. A clear exception is the wettest winter half year, 2000-2001. 461 Including the three extreme El Nino years (not shown) slightly reduces the contrast between El Nino 462 and La Nina influences.

463 3.2. Other potential climate drivers for English Lowlands rainfall in the winter half-464 year

465 3.2.1 North Atlantic tripole SST anomalies

466 Rodwell et al. (1999) and Rodwell and Folland (2002) showed that a tripole SST pattern in the North 467 Atlantic in December-February was associated in climate models and observations with a weak if clear physical modulation of a PMSL pattern quite like the NAO. The tripole has been the most 468 469 prominent SST pattern in the North Atlantic since the 1940s. Rodwell and Folland (2002) explain 470 why the state of the SST tripole best predicts the winter NAO in the May prior to the winter being 471 forecast. Folland et al. (2012) extended these results to show the European December-February winter 472 rainfall pattern predicted by the May tripole. We further extend these results to the winter half-year, 473 though the tripole index is currently only available for 1949-2008. Despite the short data set, 474 composite PMSL analyses for tripole indices of <-1 SD and >1 SD give widely significant results. 475 The positive index is associated (over this period) with a positive NAO displaced slightly southwards, 476 and the negative index with a negative NAO (Fig 8a, c), results fairly like those for December-477 February. Accordingly, positive values of the tripole index in May are associated with wet conditions 478 in western UK in the following winter half-year, though only marginally wet conditions in the English Lowlands. Negative indices give a tendency to dry conditions in western UK and to some extent the 479

480 English Lowlands (Fig 8b, d). In conclusion, a negative North Atlantic SST tripole index in May481 tends to weakly favour dry conditions in the English Lowlands in the following winter half-year.

482

483 3.2.2 Quasi-biennial oscillation of stratospheric winds

484 Marshall and Scaife (2009) discuss differences in atmospheric circulation and surface temperature in 485 the extratropical Northern Hemisphere between winters (December-February) with strong lower 486 stratospheric westerly winds near the equator at 30hPa and those with easterly winds at that level. 487 These winds vary with a period of between two -and three years and are known as the quasi-biennial 488 oscillation (QBO). The easterly QBO tends to increase North Atlantic blocking, with a negative 489 NAO, in December-February while the westerly QBO mode is associated with a positive NAO. 490 Mechanisms by which equatorial stratospheric QBO winds influence the lower winter extratropical 491 troposphere are partly understood; Folland et al. (2012) give references. Folland et al. (2012) show 492 precipitation anomalies for +1SD of the QBO signal but these are weak over the UK and Europe. The 493 QBO can now be reliably forecast a year or more ahead (Scaife et al., 2014b).

494 Fig 9 illustrates global PMSL and rainfall anomalies over UK and nearby Europe associated with 495 strong easterly and westerly QBO winds at 30hPa in the winter half-year. Because strong easterly 496 QBO winds are substantially stronger than strong westerly QBO winds, we compare PMSL and 497 rainfall for the most easterly 15% of all winter half-year QBO winds (top panels) and the most 498 westerly 15% (bottom panels). A value of 15% is selected because although the influence on 499 atmospheric circulation of the most westerly 10% and 10%-20% of QBO winds is similar, the easterly 500 influence weakens below 15%. Strong easterly QBO conditions are indeed associated with blocked 501 conditions in the winter half-year and strong westerly conditions with a positive NAO as for 502 December-February. However PMSL is near normal for westerly QBO conditions over the English 503 Lowlands giving no rainfall signal (bottom right). Strong easterly QBO winds tend to give a small 504 negative PMSL anomaly over the English Lowlands with modestly wetter than average conditions 505 (bottom left panel). So the QBO appears to have only a small influence on English Lowlands winter 506 half-year mean rainfall. However, Fig 9 shows that strong easterly or westerly phases of the QBO 507 quite strongly and symmetrically affect winter atmospheric circulation over the North Atlantic. 508 Interacting with other forcing factors, QBO influences might have more importance for English Lowlands winter rainfall than this analysis suggests. 509

510

511 3.2.3 Major tropical volcanic eruptions

512 The winter (December-February) rainfall patterns associated with major tropical volcanic eruptions 513 were shown by Folland et al (2012). Major tropical volcanic eruptions are uncommon and tend to 514 force the positive westerly phase of the NAO in winter (e.g. Robock, 2000, Marshall et al., 2009). 515 Wetter than normal conditions are seen in northern Scotland with slightly drier than normal conditions 516 further south and over the English Lowlands (Fig 5 of Folland et al., 2012). Further analysis is beyond 517 the scope of this paper. Although climate models often have difficulty with this relationship, the 518 main cause of the increased westerly phase of the NAO is thought to be an increase in the temperature 519 gradient in the lower stratosphere between the tropics and the Arctic. This is caused by warming of 520 the lower stratosphere by absorption of upward long wave radiation from the troposphere and surface 521 by the volcanic aerosols (mainly tiny sulphuric acid particles) where heating is much greater in the 522 tropics (Robock, 2000). The resulting increased temperature gradient between the tropics and the 523 polar regions favours stronger extratropical westerly winds in the lower stratosphere through the 524 change in the geostrophic balance. In turn enhanced extratropical tropospheric westerly winds result 525 through wave-mean flow interaction, a dynamical mechanism only partly understood (e.g. Perlwitz 526 and Graf, 1995).

527

528 3.2.4 Solar effects

529 Solar effects on North Atlantic climate have identified in observations for winter (December-530 February) for Europe (e.g. Lockwood et al., 2010). Ineson et al. (2011) carried out model experiments 531 with a vertically highly resolved model extending to the lower mesosphere showing to show that 532 ultraviolet solar radiation variations associated with the 11 year solar cycle of total solar irradiance 533 (TSI) modulates the Arctic Oscillation and NAO and thus winter blocking over UK through 534 stratospheric-tropospheric interactions. Thus sStronger solar ultraviolet radiation near the maximum 535 of the solar cycle favours the_-westerly positive phase of the NAO over UK and weaker radiation at 536 solar minimum favours blocking, easterly winds and the negative phase of NAO. Ineson et al (2011) 537 showed that the mechanism for these effects starts in the lower mesosphere or stratosphere. Here, for 538 example, reduced ultraviolet radiation at solar minimum- causes a decrease in ozone heating. This 539 cooling signal peaks in the tropics; so opposite to the volcanic forcing influence described above, this 540 decreases the tropics to polar region stratospheric temperature gradient. This leads to weaker 541 stratospheric winds as the geostrophic balance changes. These reduced winds propagate downward

into the troposphere through wave-mean flow interaction to give a more negative or easterly phase
than average NAO. __Scaife et al. (2013) also showed that solar modulation of the NAO feeds back
onto the North Atlantic SST Tripole. This in turn influences the winter atmospheric circulation which
feeds back onto the SST tripole etc. As a result, to create a maximum westerly positive NAO winter
atmospheric circulation response_occurs 1-4 years after solar maximum (westerly phase of the NAO)
and a maximum easterly negative phase of the NAO occurs 1-4 years after
solar minimum. (easterly
phase of the NAO).

549 We have carried out a preliminary study for the longer October-March period. Mean PMSL anomalies 550 in the Atlantic sector tend to be fairly consistent at or near solar maximum, but much less consistent 551 and weak around solar minimum. So we confine our results to high values of TSI. Fig 10 shows 552 global PMSL and UK and European rainfall anomalies for winter half-year lagged by one year on 553 average compared to the highest 20% of values of TSI over 1948-2011. A modest, significant, 554 cyclonic anomaly occurs west of the UK with a significant if small tendency to wetter than normal 555 conditions in the English Lowlands. The highest 25% of TSI values gives much the same result_ 556 values smaller than 20% lose significance because of the limited number of winters. Some studies 557 suggest that given the phases of the QBO and solar minimacycle phases may interact to influence 558 North Atlantic winter atmospheric circulation (Anstey and Shepherd, 2014) in a more complex way, 559 so this could be a topic for the future.

560

561 3.2.5 The Atlantic Multidecadal Oscillation

562 The AMO is likely to be both largely an natural internal variation of the North Atlantic Ocean (Knight 563 et al, 2005) and anthropogenically forced (Booth et al., 2012). In a model study, Knight et al. (2006) 564 showed influences of the model AMO on UK seasonal climate, indicating a marked variation in the 565 effects of the AMO between three month seasons, as more recently shown by Sutton and Dong (2012) 566 from observations. The version of the observed AMO we use here is that due to Parker et al. (2007) 567 which reflects an associated quasi- global interhemispheric SST pattern concentrated in the North 568 Atlantic, much as seen by Knight et al. (2005) in the HadCM3 coupled model. Fig 11 shows global 569 PMSL and UK and European rainfall anomalies for the winter half-year AMO index over the common 570 data availability period 1901-2011 for winter half-year AMO values >1 and <1 standard deviation 571 calculated forover this period. These, corresponding to warm and cold North Atlantic states corrected 572 for the trends in global mean sea surface temperature., respectively. (The state in 2014 iswas 573 relatively warm). The AMO varies mostly interdecadally so any AMO related climate signal is likely 574 also mostly interdecadal. There is a significant, clear and symmetric PMSL signal over the North 575 Atlantic region. A negative NAO is seen when the AMO is in its positive phase and a positive NAO 576 when the AMO is negative. AMO effects on rainfall over much of UK are clearest for the negative 577 AMO phase which favours mostly drier than average conditions in the west. Unfortunately, neither 578 phase of the AMO provides a rainfall signal for the English Lowlands. However, Fig 11 may hide 579 considerable variability within the winter half-year as implied by Sutton and Dong's Dong (2012) 580 results for autumn and springshow large differences in European climate signals between different 581 calendar three month periods. So Lintraseasonal influences of the AMO on atmospheric circulation 582 within the winter half-year require investigation.

583

584 3.3 Links between large-scale drivers and drought indicators

In this section, we explore relationships between the various potential large-scale drivers identified in Sect 3.2 and the hydrological drought indicators discussed in Section 2.

587 Figure 12 comprises boxplots of the various response variables for the winter half year rainfall and 588 river flow, as well as the drought indicators (SPI, SSI and SGI) for low (<-0.5 SD) and high (>0.5 589 SD) values of the predictors. Figure 12 comprises boxplots of the various response variables for the 590 winter half year (rainfall, river flow, groundwater and SGI flow, SGI groundwater and SPI), for low 591 (< 0.5 SD) and high (> 0.5 SD) values of the predictors. This figure is intended to provide an overview 592 of possible linkages between drought relevant hydro-climatic time series and the various climate 593 drivers discussed in this study. The driving data include Niño 3.4, the May SST tripole, the QBO, 594 stratospheric volcanic aerosol loadings, TSI, and the AMO.

The data for the drivers and response variables in Figure 12 are mostly averaged over October-March, 595 596 so that the analysis is for concurrent data. However, the groundwater SGI is averaged with a lag of 597 two months, and is thus shown for December-May, to reflect the temporal delay in groundwater 598 formation. Because the SPI describes rainfall accumulated over a number of preceding months, these 599 have also been lagged compared with the drivers so as to be centred on the target period October-600 March. Accordingly, the SPI3 is shifted forward by 1 month, and averaged for November-April; thus 601 the first three-month accumulation starts in September and the last ends in April. Corresponding shifts 602 for the SPI6 and SPI12 are three and six months respectively. The TSI precedes the hydrological

response variable by two years to be consistent with the findings by Scaife et al. (2013) as discussedin Sect 3.2.4. Significance levels are calculated using one-sided Welch two-sample t-tests.

605 As perhaps expected, given the relationships discussed in Sect 3.2, the majority of univariate relationships shown in Fig. 12 are very weak and non-significant, and the majority of individual 606 607 drivers have little discernible impact on the means of the response variable. The only significant 608 relationship for English Lowlands rainfall is with the Niño 3.4 SST anomaly. Nevertheless, there is a 609 clear tendency for El Niños (weak, moderate and strong) to be associated with wet conditions, and higher river flows and groundwater levels, and La Niña with dry conditions and lower flows and 610 611 levels, consistent with Sect 3.2 and Folland et al. (2012). As mentioned in section 3.2, a strong note 612 of caution, and a cause of the poor significance, is that the wettest winter half year in Fig 8c, 2000-613 2001, is associated with a weak La Niña and not an El Niño. SPI3 shows a significant relationship 614 with the SST tripole, which is only very weakly supported by the other variables. However, the spatial 615 analysis shown in Fig 8 (bottom panels) suggests a stronger relationship exists for the upland north-616 west of the UK rather than the lowland south-east. - Svensson and Prudhomme (2005) noted a positive 617 concurrent winter (Dec-Feb) correlation between SSTs in the area corresponding to the centre of the 618 SST tripole and river flows in northwest Britain (r=0.36), consistent with Fig. 8b and d. For river 619 flows in southeast Britain, encompassing the English Lowlands, they found a positive concurrent 620 winter correlation with SSTs slightly further to the south (r=0.43), partly overlapping the 621 southernmost centre of the SST tripole.

For the majority of other potential climate drivers, the distributions of the drought indicators are typically not significantly different from one another for values >0.5 or <-0.5 SD of the respective drivers. The key finding is that no single driver is close to compellingly explaining English Lowlands rainfall, river flows or groundwater levels. Combinations of drivers are of course difficult to test with the limited observational data available.

627

628 **4. Discussion**

629 4.1 General considerations

The predictability of winter droughts in the English Lowlands is a <u>strongly multivariate_multiple</u> forcing problem made more difficult by the relatively small scale of the English Lowlands compared to that of atmospheric anomalies. Temperature is a small additional factor in the winter half-year for <u>drought</u> but it is much more important in summer, when high rates of evapotranspiration can

634 exacerbate hydrological drought.--In winter, temperature could be influential in increasing the 635 likelihood of snowfall as opposed to rainfall, which could potentially confound links between the 636 atmospheric drivers we have identified and precipitation, river flow and groundwater deficits. While 637 water storage in snow/ice during the cold season can be a major influence on hydrological drought in 638 parts of Europe (e.g. van Loon et al. 2014), generally, snowfall is limited in lowland England the 639 English Lowlands. Some winter drought periods (e.g. 19632/663, 2010/2011) were associated with 640 major snowfall and persistent snow cover, but typically snow makes up a modest proportion of 641 precipitation and is a minor runoff generation component (even in cold winters) at the monthly to 642 seasonal scale.

643 Our work has focused on the winter half-year, but we acknowledge that a complete discussion of the 644 multiannual drought problem requires an investigation of the influences of remote drivers on summer 645 half-year precipitation and temperature. Our current understanding of the drivers of atmospheric 646 circulation in December-February over the UK and Europe has clearly improved, reflected in the new 647 level of skill in dynamical forecasts of atmospheric circulation near UK shown by Scaife et al. (2014) 648 mentioned in Section 3. Folland et al (2012) point out that the magnitude of the drivers we discuss in 649 Section 3 can all be skilfully predicted in December-February winter or the winter half-year a season 650 or more ahead. In other seasons, understanding is much less and seasonal forecasting models 651 commensurably much less skilful. However, the AMO is known to affect UK summer atmospheric 652 circulation and rainfall (Folland et al., 2009; Sutton and Dong, 2012) as well as spring and autumn 653 rainfall (Sutton and Dong, 2012) and is skilfully predictable a year or more ahead using persistence. 654 Folland et al. (2009) also suggest an influence from strong La Niñas towards wetter than normal 655 conditions in July and August. So a major effort in studying drivers of predictability should be made 656 for all seasons, particularly summer, when droughts can manifest themselves most severely. Whilst 657 the winter season is most important for replenishment of water resources in the English Lowlands, 658 intervening summers can be influential in dictating the outcomes of droughts - as was the case for 659 the 2010 - 2012 drought, including its dramatic termination by the summer (Parry et al. 2013). In 660 contrast, some of the most severe droughts have been associated with the combination of one or more dry winters with subsequent arid summers (e.g. in 1976, 1989). There is therefore a need to understand 661 662 the drivers of both winter half-year and summer half-year deficiencies, and the likelihood of 663 persistence between them in driving sequences of below-normal rainfall between seasons in long 664 droughts. Folland et al (2009) showed that in summer, the summer NAO is the most prominent 665 atmospheric circulation pattern and especially affects the English Lowlands. Its phase strongly

modulates rainfall and temperature together such that both enhance drought or flood conditions. This is because high PMSL in summer, corresponding to the positive phase of the summer NAO is associated with dry, sunny and warm conditions while cyclonic conditions, associated with the negative phase, are associated with wet, dull and cooler conditions. Long droughts can also terminate at the end of summer dramatically, e.g. that of 1975-1976 (Folland, 1983).

671 Because many complex dynamical processes are involved, non-linear interactions may be important 672 in creating the climatic outcome from a given combination of predictors. Only climate models can, 673 in principle, represent these interactions as observed data are too few for reliable non-linear statistical 674 methods. Furthermore, the climate is in any case becoming increasingly non-stationary as global 675 temperatures increase. It used to be thought that increasing greenhouse gases would most likely be 676 associated with a slow tendency to an increasing positive, westerly phase of the winter NAO over the 677 UK (e.g. Gillett et al., 2003). However a recent tendency towards more negative winter Arctic and 678 North Atlantic Oscillations casts doubt on this result (Hanna et al., 2014). Furthermore, ten dynamical 679 models with high resolution stratospheres suggest that increasing greenhouse gases may be associated 680 with a tendency to more winter blocking over higher northern latitudes with perhaps some increased 681 frequency of easterly winds over northern UK in winter compared to current climate (Scaife et al., 682 2012). The net effect on winter English Lowlands rainfall is by no means certain, though Scaife et al 683 find increased winter rainfall. In summer, there is more consensus that anticyclonic conditions may 684 increase in the long-term under increased greenhouse gases in southern UK with decreased English 685 Lowlands summer rainfall (e.g. Rowell and Jones, 2006, Folland et al, 2009). It is increasingly clear, 686 though, that AMO fluctuations, which themselves may be influenced by anthropogenic forcing, may for decades reduce or hide this tendency or temporarily enhance it. However Arctic sea ice reductions 687 688 might affect long term summer trends in hitherto unexpected ways (Belflamme et al., 2013), and 689 become an important influence in all seasons. In general, though, dDespite considerable uncertainty 690 around changes in precipitation patterns, projections for future increases in temperature for the UK 691 are more robust. The associated increases in evapotranspiration are likely to be a further factor 692 increasing drought severity in future. 693 -drought

694 4.4 The way forward

Recent developments in climate modelling (e.g. Hazeleger et al., 2010, Scaife et al., 2011, Maclachlan
et al., 2014) provide the key way forward for investigating European climate mechanisms, supported

Formatted: Font: Not Bold

by observational studies using improving and temporally expanded reanalyses. Dynamical climate models can be run in various complimentary ways. This includes running coupled ocean-atmosphere models, running their atmospheric component (AGCM) against observed lower boundary layer forcing, particularly SST and sea ice extents, and carrying out special experiments with specified forcings like observed SST patterns, including ENSO, or combinations of other forcings discussed above.

Recent research indicates that using AGCMs with specified SST and sea ice (e.g. HadISST1, Rayner et al., 2003) is a useful way forward for predictability studies though there are limitations (e.g. Chen and Schneider, 2014). This may allow estimates of UK and perhaps English Lowlands rainfall predictability through the seasonal cycle, for example using the newly improved HadISST2 data set (Titchner and Rayner, 2014). An advantage of such runs is that SST variations are realistic whereas they may not be in coupled models.

709 Coupled models have already shown great promise as shown by the high skill of an ensemble of 710 retrospective December-February European forecasts from a high resolution version of the 711 HadGEM3 coupled ocean-atmosphere climate model run for the last 20 winters (Scaife et al., 2014a). 712 The SST predictions for this season also show considerable skill (MacLachlan et al., 2014). This 713 work also shows that some aspects of the seasonal surface climate prediction can be further improved 714 by basing them on forecasts of the governing atmospheric circulation pattern rather than the directly 715 forecast surface conditions per se. For example, prediction of the NAO is more skilful than, say, the 716 prediction of temperature across northern Europe but because the NAO often governs regional climate 717 fluctuations, European winter surface climate predictions may be improved if derived from the 718 forecast NAO (Scaife et al., 2014a), at least in some regions. Thus a good way to use dynamical 719 seasonal climate predictions of regional UK rainfall in a hydrological context may be to combine 720 dynamical atmospheric circulation predictions with statistical downscaling. A combination of 721 atmospheric and coupled model approaches might be particularly valuable for studying the hitherto 722 unknown causes of the large and persistent atmospheric circulation changes that resulted in the 723 sudden ends of some major droughts like those of 1975-76 and 2010-2012.

The 20CR₇ stretching back to $187\theta_{1, now in an enhanced version 2 form$ (http://www.esrl.noaa.gov/psd/data/gridded/data.20thC ReanV2.html) and other existing and planned reanalyses will allow new observational studies of relationships between predictors, atmospheric circulation through the depth of the troposphere and rainfall for more than the last century. Thus the late 19th century and very early 20th century is an especially interesting period for

729 study. It included several major English Lowland drought episodes, including a long drought from 730 1854-1860, a major drought from 1887-1888 and the 'Long Drought' of 1890-1910 (Marsh et al., 731 2007; Todd et al., 2013). The latter was associated with several clusters of dry winters analogous to 732 some recent multi-annual droughts. Such studies emphasise the importance of further digitizing 733 historical rainfall data. For example, digitized UK rainfall records from paper archives would enable 734 key datasets such as NCIC rainfall to be pushed back into well into the late 19th Century. This, coupled 735 with the longevity of the 20CR data, would open up new possibilities for examining the climatic 736 drivers behind these multi-annual droughts of the 19th Century. As indicated in section 4.1, aone of 737 the key issues in long, multi-annual droughts is the sequencing between dry winter and summer half-738 years. The use of long hydrometric records opens up the possibility of exploring frequency-duration 739 relationships to examine drought persistence in a probabilistic sense, e.g. using Markov Chain models 740 to explore dry(wet) to dry(wet) season persistence (Wilby, in preparation)

741 A key area for further study is improved understanding of the hydrological response to precipitation 742 deficits during the onset, development of and recovery from, drought episodes. This study has used 743 consistent indicators of rainfall, flow and groundwater to shed new light on temporal correlations 744 between meteorological drought anomalies (SPI) and their response in river flow (SSI) and 745 groundwater levels (SGI). However, this has only been evaluated at a broad scale for the English 746 Lowlands - the temporal relationships will vary widely across the study domain, depending on aquifer 747 properties (Bloomfield and Marchant, 2013) and catchment properties (Fleig et al., 2011; Chiverton 748 et al. in 2015). The study highlights the need for more systematic studies of drought propagation using 749 a combination of observational and catchment modelling approaches (e.g. as carried out for one 750 English catchment by Peters et al., 2006, and for selected European catchments by Van Loon et al. 751 2012). A key area for further study is improved understanding of the hydrological response to 752 precipitation deficits during the onset, development of and recovery from, drought episodes. This 753 study has used consistent indicators of rainfall, flow and groundwater and has shed some new light 754 755 the meteorological drought anomalies (SPI) and their response in river flow and groundwater levels. 756 However, this has only been conducted at a broad scale for the English Lowlands - the time lags will 757 vary widely across the study domain, depending on aquifer properties (Bloomfield and Marchant, 758 2013) and catchment properties (Fleig et al., 2011; Chiverton et al. in press). There is a need for more 759 systematic studies of drought propagation using a combination of observational and catchment 760 modelling approaches (e.g. as carried out for one English catchment by Peters et al., 2006, and for

761 selected European catchments by Van Loon et al. 2012). Finally, it is important to emphasise that the 762 manifestation of drought impacts in the English Lowlands will be heavily influenced by water 763 management infrastructure and societal responses (e.g. the effects of surface and groundwater 764 abstractions, reservoir operations, and the influence of societal demand during drought events). This 765 study has examined the region at a coarse scale, but an examination of the finer catchment/aquifer scale links between climate drivers and flow/groundwater responses will require an appreciation of 766 767 the moderating role these influences will have on the propagation of climate drivers through to 768 streamfow and groundwater responses.

769

770 Acknowledgements

Met Office authors were supported by the Joint UK DECC/Defra Met Office Hadley Centre Climate 771 772 Programme (GA01101). The work of John Bloomfield and Ben Marchant has been funded by the 773 British Geological Survey (Natural Environment Research Council, NERC), and is published with 774 permission of the Executive Director of BGS (NERC). Centre for Ecology & Hydrology authors 775 acknowledge support from NERC National Capability funding₂₇ River flow data was from the 776 National River Flow Archive (www.ceh.ac.uk/data/nrfa) and groundwater data from the National 777 Groundwater Level Archive (http://www.bgs.ac.uk/research/groundwater/datainfo/levels/ngla.html). 778 We wish to acknowledge use of the KNMI Explorer software for some of the diagrams. We thank 779 Rob Wilby, Neil MacDonald and an anonymous reviewer for their helpful and constructive comments 780 on the original manuscript.

781

782 References

- Allan, R.J. and Ansell, T.J.: A new globally complete monthly historical gridded mean sea level
 pressure data set (HadSLP2): 1850-2004, *J. Climate*, 19, 5816-5842, 2006.
- 785 Anstey, J.A. and Shepherd, T.G.: High-latitude influence of the quasi-biennial oscillation, *Quart. J.*
- 786 Roy. Met. Soc., 140: 1–21, DOI:10.1002/qj.2132, 2014.
- 787 Belleflamme, A., Fettweis, X., Lang, C. and Erpicum, M.: Current and future atmospheric
- 788 circulation at 500 hPa over Greenland simulated by the CMIP3 and CMIP5 global models. Clim.
- 789 Dyn. 41: 2061–2080,doi: 10.1007/s00382-012-1538-2, 2013.

- Blackburn, M. and Hoskins, B. J.: Atmospheric variability and extreme autumn rainfall in the UK,
 http://www.met.reading.ac.uk/~mike/autumn2000.html, 2001.
- Bloomfield J.P. and Marchant B.P.: Analysis of groundwater drought building on the standardised
 precipitation index approach. *HESS*, 17, 4769-4787, 2013.
- 794 Booth, B.B.B., Dunstone, N.J., Halloran, P.R., Andrews, T. and Bellouin, N.: Aerosols implicated
- as a prime driver of twentieth-century North Atlantic climate variability, *Nature*, 484, 228–232,
 doi:10.1038/nature10946, 2012.
- Burke, E.J. and Brown, S.J.: Regional drought over the UK and changes in the future, *J. Hydrol.*394, 471-485, 2010.
- 799 Chen, H. and Schneider, E.K.: Comparison of the SST forced responses between coupled and 800 uncoupled climate simulations, *J. Climate*, 27, 740-756, 2014.
- 801 Chiverton, A., Hannaford, J., Holman, I., Prudhomme, C., Bloomfield, J., Hess, T. Which
- catchment characteristics influence the temporal dependence of river flows. Hydrological Processes.
 29(6), 1353-1369, DOI: 10.1002/hyp.10252, 2014.
- 804 Chiverton, A., Hannaford, J., Holman, I., Prudhomme, C., Bloomfield, J., Hess, T. Which
- 805 catchment characteristics influence the temporal dependence of river flows. In press: Hydrological
- 806 Processes. DOI: 10.1002/hyp.10252. In press.
- 807 Cohen, J., Screen, J.A., Furtado, J.C., Barlow, M., Whittleston, D., Coumou, D., Francis, J.,
- Dethloff, K., Entekhabi, D., Overland, J. and Jones, J.: Recent Arctic amplification and extreme
 mid-latitude weather, *Nature Geoscience*, 7, 627-637, doi:10.1038/ngeo2234, 2014.
- 810 Compo, G.P., Whitaker, J.S., Sardeshmukh, P.D., Matsui, N., Allan, R.J., Yin, X., Gleason, B.E.,
- 811 Vose, R.S., Rutledge, G., Bessemoulin, P., Brönnimann, S., Brunet, M., Crouthamel, R.I., Grant,
- 812 A.N., Groisman, P.Y., Jones, P.D., Kruk, M.C., Kruger, A.C., Marshall, G.J., Maugeri, M., Mok,
- 813 H.Y. Nordli, Ø., Ross, T.F., Trigo, R.M., Wang, X.L., Woodruff, S.D. and Worley, S.J.: The
- 814 Twentieth Century Reanalysis Project, Quart. J. Roy. Met.. Soc., 137, 1-28. DOI: 10.1002/qj.776,
- 815 2011.
- 816 Davies, J.R., Rowell, D.P. and Folland C.K.: North Atlantic and European seasonal predictability
- 817 using an ensemble of multidecadal AGCM simulations, Int. J. Climatol., 12, 1263–1284, 1997.

- 818 Easey, J., Prudhomme, C. and Hannah, D. M. Seasonal Forecasting of river flows: a review of the
- 819 state of the art. In: Demuth, S., Gustard, A., Planos, E., Scaneta, F. and Servat, E. Climate Variability
- and Change: Hydrological Impacts. IAHS Publication 308, 158 162, 2006.
- 821 Environment Agency. 2006. Underground, under threat. Environment Agency Report, Bristol, UK,
- Environment Agency. 2009. Water for people and the environment. Water resources strategy forEngland and Wales. Environment Agency Report, Bristol, UK
- 824 Environment Agency. 2012. Review of the 2010-12 drought and the prospects for ware resources in
- 825 2013. 48 pages. http://www.environment-agency.gov.uk/research/library/publications/131328.aspx
- 826 Fereday, D.R., Knight, J.R., Scaife, A.A., Folland, C.K. and Philipp A.: Cluster analysis of North
- Atlantic/European circulation types and links with tropical Pacific sea surface temperatures, J. *Climate*, 21, 3687–3703. DOI:10.1175/2007JCLI1875.1, 2008.
- 829 Fleig, A.K., Tallaksen, L.M., Hisdal, H., and Hannah, D.M.: Regional hydrological drought in north-
- western Europe: linking a new Regional Drought Area Index with weather types, *Hydrol. Proc.*, 25,
 1163-1179, 10.1002/hyp.7644, 2011.
- Folland, C.K.: Regional-scale interannual variability of climate a north-west European perspective. *Met. Mag.*, 112, 163-183, 1983.
- Folland, C.K., Knight, J., Linderholm, H.W., Fereday, D., Ineson, S. and Hurrell, J.W.: The summer
 North Atlantic Oscillation: past, present and future, *J. Clim.*, 22: 1082–1103, DOI:
 10.1175/2008JCLI2459, 2009.
- 837 Folland, C.K., Scaife, A.A., Lindesay, J. and Stevenson, D.B.: How potentially predictable is northern
- European winter climate a season ahead?, *Int. J. Climatol.*, 32, 801–818. DOI: 10.1002/joc.2314,
 2012.
- Fowler, H. J., and Kilsby, C. G.: A weather-type approach to analysing water resource drought in the
 Yorkshire region from 1881 to 1998, Journal of Hydrology, 262, 177-192, 2002.
- 842 Fraedrich, K.,: European Grosswetter during the warm and cold extremes of the El Nino/ Southern
- 843 <u>Oscillation. Int. J. Climatol.</u>, 10, 21-32, 1990.
- Fraedrich, K., and Müller, K.: Climate Anomalies in Europe Associated with ENSO extremes. *Int. J. Climatol.*, 12, 25-31, 1992
- <u>Cumator., 12, 23-51, 1772</u>
- Fraedrich, K.: An ENSO impact on Europe? A Review. *Tellus*, 46A, 541-552, 1994.

- Fröhlich, C.: Solar Irradiance Variability Since 1978: Revision of the {PMOD} composite during
 Solar Cycle 21, *Space Science Rev.*, in press. 125, 53-65, 2006
- Gillett, N.P, Zwiers, F.W., Weaver, A.J. and Stott, P.A.: Detection of human influence on sea-level
 pressure, *Nature*, 422, 292–294, 2003.
- 851 Hanna, E., Cropper, T.E., Jones, P.D., Scaife, A.A. and Allan, R.: Recent seasonal asymmetric
- 852 changes in the NAO (a marked summer decline and increased winter variability) and associated
- changes in the AO and Greenland Blocking Index. *Int. J. Climatol.*, doi: 10.1002/joc.4157 (on line),
 2014.
- <u>Hannaford, J., and Marsh, T.: An assessment of trends in UK runoff and low flows using a network</u>
 of undisturbed catchments, *Int. J. Climat.*, 26, 1237-1253, 2006.
 - Formatted: Font: (Default) Times New Roman, 12 pt, Italic Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt

- Hannaford, J., Lloyd-Hughes, B., Keef, C., Parry, S., and Prudhomme, C.: Examining the large-scale
 spatial coherence of European drought using regional indicators of precipitation and streamflow
 deficit. *Hydrol. Proc.* 25, 1146-1162, 2011.
- Hazeleger, W.: EC-Earth: A Seamless Earth-System Prediction Approach in Action, *Bull. Amer. Met. Soc.*, 91, 1357-1363, doi: <u>doi.org/10.1175/2010BAMS2877.1</u>, 2010
- 862 Holman, I.P., Rivas-Casado, M., Howden, N.J.K., Bloomfield, J.P. and Williams, A.T.: Linking
- 863 North Atlantic ocean-atmosphere teleconnection patterns and hydrogeological responses in
- temperate groundwater systems, *Hydrol. Proc.*, 23, 3123-3126, Doi 10.1002/Hyp.7466, 2009.
- Ineson S. and Scaife A.A.: <u>The role of the stratosphere in the European climate response to El Nino</u>, *Nature Geoscience*, 2, 32-36. DOI: 10.1038/NGEO381, 2008.
- 867 Ineson, S., Scaife, A.A., Knight, J.R., Manners, J.C., Dunstone, N.J., Gray, L.J. and Haigh, J.D.:
- Solar Forcing of Winter Climate Variability in the Northern Hemisphere, *Nature Geoscience*, 4,
 753-757, doi:10.1038/ngeo1282, 2011.
- 870 Jackson, C.R., Meister, R. and Prudhomme, C.: Modelling the effects of climate change and its
- 871 uncertainty on UK Chalk groundwater resources from an ensemble of global climate model
- 872 projections, Journal of Hydrology, 399, 12-28, 10.1016/j.jhydrol.2010.12.028, 2011.
- 873 Jones, P. D. and Lister, D. H.: Riverflow reconstructions for 15 catchments over England and Wales
- and an assessment of hydrologic drought since 1865, Int. J. Climatol., 18, 999-1013, 1998.

- Jones, P.D., Osborn, T.J., Harpham, C. and Briffa, K.R.: The development of Lamb weather types:
- from subjective analysis of weather charts to objective approaches using reanalyses, *Weather*, 69,
 128-132, doi: 10.1002/wea.2255, 2014.
- 878 Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin L., Iredell, M., Saha. S.,
- 879 White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowaiak, J., Mo, K.C.,
- Ropelewski, C., Wang, J., Leetma, A., Reynolds, R., Jenne, R. and Joseph, D.: The NCEP/NCAR 40year reanalysis project, *Bull Amer. Met. Soc.*, 77, 437-471, 1996.
- Kaplan, A., Cane, M., Kushnir, Y., Clement, A., Blumenthal, M. and Rajagopalan, B., Analyses of
 global sea surface temperature 1856-1991, *J. Geophys. Res.*, 103, 18,567-18,589, 1998.
- Kendon, M., Marsh, T. and Parry S.: The 2010-2012 drought in England and Wales, *Weather*, 68, 88-95, 2013.
- 886 Kingston, D.G., Fleig, A. K., Tallaksen, L. M., and Hannah, D.M.: Ocean-Atmosphere Forcing of
- 887 Summer Streamflow Drought in Great Britain, *Journal of Hydrometeorology*, 14, 331-344, Doi
- 888 10.1175/Jhm-D-11-0100.1, 2013.
- Knight, J.R., Allan R.J., Folland, C.K., Vellinga, M. and Mann, M.E.: A signature of persistent natural
 thermohaline circulation cycles in observed climate, *Geophys. Res. Lett.*, 32, L20708, doi:
 1029/2005GL024233, 2005.
- Knight, J.R., Folland, C.K. and Scaife, A.A.: Climatic Impacts of the Atlantic Multidecadal
 Oscillation, *Geophys. Res. Lett.*, 33, L17706. doi: 10.1029/2006GL026242, 2006.
- Laizé, C.L.R., and Hannah, D.M.: Modification of climate-river flow associations by basin
 properties, *Journal of Hydrology*, 389, 186-204, 10.1016/j.jhydrol.2010.05.048, 2010
- Lockwood, M., Harrison, R.G., Woollings, T. and Solanki, S.: Are cold winters in Europe associated
 with low solar activity?, *Environ. Res. Lett.*, 5, 024001, 2010.
- 898 Lloyd-Hughes, B. and Saunders, M.A. Seasonal prediction of European spring precipitation from El
- 899 <u>Niño-Southern Oscillation and Local sea-surface temperatures. *International Journal of*</u>
- 900 <u>*Climatology*, 22, 1 14. 2002.</u>
- 901 MacLachlan, C., Arribas, A., Peterson, K.A., Maidens, A., Fereday, D., Scaife, A.A., Gordon,
- 902 M., Vellinga, M., Williams, A., Comer, R. E., Camp, J., Xavier, P. and Madec, G.: Global Seasonal

Formatted: Font: Italic

- 903 Forecast System version 5 (GloSea5): a high resolution seasonal forecast system, (on line),
 904 DOI:10.1002/qj.2396, 2014
- Marsh, T., Cole G. and Wilby R.: Major droughts in England and Wales, 1800-2006, *Weather*, 62,
 87-93, 2007
- 907 Marsh T.J. and Dixon H.: The UK Water Balance: how much has it changed in a warming world?
- In: Proceedings of the eleventh national BHS symposium, Dundee, July 2012: "Hydrology for achanging world". British Hydrological Society. 5pp. 2012.
- Marshall A. and Scaife, A.A.: Impact of the Quasi-Biennial Oscillation on Seasonal Forecasts. J. *Geophys. Res.*, 114, D18110, doi:10.1029/2009JD011737, 2009.
- 912 Marshall, A.G., Scaife, A.A. and Ineson, S.: Enhanced seasonal prediction of European winter
- 913 warming following volcanic eruptions, *J. Climate*, 22, 6168-6180. Doi: 10.1175/2009JCLI3145.1,
 914 2009.
- 915 McKee, T.B., Doesken, N.J. & Kliest, J. The relationship of drought frequency and duration to time
- scales. Proceedings of the 8th Conference on Applied Climatology, 17-22 January. AmericanMeteorological Society. Anaheim, CA. 1993.
- Mishra, A.K., and Singh, V.P.: A review of drought concepts, *Journal of Hydrology*, 391, 202-216,
 10.1016/j.jhydrol.2010.07.012, 2010.
- Mitchell, T.D. and Jones, P.: An improved method of constructing a database of monthly climate
 observations and associated high-resolution grids, *Int. J. Climatol.*, 25, 693-712, 2005.
- 922 Moron, V. and Gouirand, I.: Seasonal modulation of the El Nino-Southern Oscillation relationship
- 923 with sea level pressure anomalies over the North Atlantic in October-March 1873–1996, Int. J.
- 924 Climatol., 23, 143–155, 2004.
- Murphy, J.M. et al. UK Climate Projections Science Report: Climate Change Projections, Met
 Office Hadley Centre, Exeter. 2008.
- Naujokat, B.: An update of the observed quasi-biennial oscillation of the stratospheric winds over
 the tropics, *J. Atmos. Sci.*, 43, 1873-1877, 1986.
- 929 Parker, D.E., Folland C.K., Scaife, A.A., Colman, A., Knight, J., Fereday, D., Baines, P. and Smith,
- 930 D.: Decadal to interdecadal climate variability and predictability and the background of climate
- 931 change, J. Geophys. Res. (Atmos), 112, D18115, doi: 10.1029/2007JD008411, 2007

- Parry, S., Hannaford, J., Lloyd-Hughes, B., and Prudhomme, C.: Multi-year droughts in Europe:
 analysis of development and causes, *Hydrology Research*, 43, 689-706, Doi 10.2166/Nh.2012.024,
 2012.
- Parry, S. Hannaford, J., Prudhomme, C., Lloyd-Hughes, B., Williamson, J. Objective drought and
 high flow catalogues for Europe. WATCH Technical Report 33. 57pp. <u>http://www.eu-</u>
 watch.org/publications/technical-reports, 2011.
- Parry, S., Marsh T. and Kendon M.: 2012: from drought to floods in England and Wales, *Weather*,
 68, 268-274 doi: 10.1002/wea.2152, 2013.
- 940
- Perlwitz, J. and Graf, H.-F.: The statistical connection between tropospheric and stratospheric
 circulation of the Northern Hemisphere in winter, *J. Climate*, 8, 2281-2295, 1995.
- Perry, M.C. and Hollis D.M.: The generation of monthly gridded datasets for a range of climatic
 variables over the UK, *Int. J. Climatol.*, 25, 1041-1054, 2005a.
- Perry, M.C. and Hollis D.M.: The development of a new set of long term average climate averagesfor the UK, *Int. J. Climatol* 25, 1023-1039, 2005b.
- Peters, E., Bier, G., van Lanen, H.A.J., and Torfs, P.J.J.F.: Propagation and spatial distribution of
 drought in a groundwater catchment, *Journal of Hydrology* 321, 257-275,
 10.1016/j.jhydrol.2005.08.004, 2006.
- 950 Prather, M., Flato, G., Friedlingstein, P., Jones, C., Lamarque, J-F., Liao, H., and Rasch, P.: Annex
- 951 II: Climate System Scenario Tables, Climate Change 2013: The Physical Science Basis. Fifth
- Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press,2014.
- 954 Prudhomme, C., Young, A., Watts, G., Haxton, T., Crooks, S., Williamson, J., Davies, H., Dadson,
- S., and Allen, S.: The drying up of Britain? A national estimate of changes in seasonal river flows
 from 11 Regional Climate Model simulations, *Hydrological Processes*, 26, 1115-1118, Doi
 10.1002/Hyp.8434, 2012.
- Rahiz, M. and New, M.: Spatial coherence of meteorological droughts in the UK since 1914, Area,
- 959 44, 400-410, DOI 10.1111/j.1475-4762.2012.01131.x, 2012.

- 960 Rayner, N.A., Parker, D.E., Horton, E.B., Folland, C.K., Alexander, L.V., Rowell, D.P., Kent, E.C.
- 961 and Kaplan, A.: Global analyses of sea surface temperature, sea ice, and night marine air temperature
- 962 since the late nineteenth century, J. Geophys. Res., 108, 4407, doi: 10.1209/2002JD002670, 2003.
- Reynolds, R., Rayner, N. Smith, T., Stokes, D. and Wang, W.: An improved in situ and satellite
 SST analysis for climate, *J. Climate*, 15, 1609-1625, 2002.
- 965 Robock, A.: Volcanic eruptions and climate, Rev. Geophys., 38, 191–219, 2000.
- Rodda, J.C. and Marsh, T.: The 1975-76 drought: a contemporary and retrospective review,
 http://www.ceh.ac.uk/data/nrfa/nhmp/other-reports.html (accessed February 2013), 2011.
- 968 Rodwell, M.J., Rowell, D.P. and Folland, C.K.: Oceanic forcing of the wintertime North Atlantic
- 969 Oscillation and European climate, *Nature*, 398, 320-323,1999.
- 970 Rodwell, M.J. and Folland, C.K.: Atlantic air-sea interaction and seasonal predictability, Q. J. Roy.
- 971 Met. Soc., 128, 1413-1443, 2002.
- 872 Ropelewski, C.F. and Halpert, M.S.: Quantifying Southern Oscillation Precipitation relationships, *J. Climate*, 9, 1043–1059, 1996.
- 974 Rowell, D.P. and Jones, R.G.: Causes and uncertainty of future summer drying over Europe,
- 975 Climate Dyn., 27, 281–299, doi:10.1007/s00382-006-0125-9, 2006.
- Scaife, A., Folland, C.K., Alexander, L.V. Moberg, A., Brown, S. and Knight, J.R.: European climate
 extremes and the North Atlantic Oscillation, *J. Climate*, 21, 72-83, 2008.
- 978 Scaife A.A., Copsey, D., Gordon, C., Harris, C., Hinton, T., Keeley, S.J., O'Neill, A., Roberts, M.
- and Williams, K.: Improved blocking in a climate model, *Geophys. Res. Lett.*, 38, L23703,
- 980 doi:10.1029/2011GL049573, 2011.
- 981 Scaife A.A., Spangehl, T., Fereday, D., Cubasch, U., Langematz, U., Akiyoshi, H., Bekki, S.,
- 982 Braesicke, P., Butchart, N., Chipperfield, M., Gettelman, A., Hardiman, S., Michou, M., Rozanov,
- E. and T.G. Shepherd: Climate Change and Stratosphere-Troposphere Interaction, *Clim. Dyn.*, 38, 2089-2097, Doi: 10.1007/s00382-011-1080-7, 2012.
- 985 Scaife, A.A., Ineson, S., Knight, J.R., Gray, L., Kodera K. and Smith D.M.: A Mechanism for
- Lagged North Atlantic Climate Response to Solar Variability, *Geophys. Res. Lett.*, 40, 434-439,
- 987 DOI:10.1002/grl.50099, 2013.

- 988 Scaife, A.A., Arribas, A., Blockley, E., Brookshaw, A., Clark, R.T., Dunstone, N., Eade, R., Fereday,
- 989 D., Folland, C.K., Gordon, M., Hermanson, L., Knight, J.R., Lea, D.J., MacLachlan, C., Maidens,
- 990 A., Martin, M., Peterson, A.K., Smith, D., Vellinga, M., Wallace, E., Waters, J. and Williams, A.:
- 991 Skilful Long Range Prediction of European and North American Winters, Geophys. Res. Lett.,.41,
- 992 2514-2519, DOI: 10.1002/2014GL059637, 2014a.
- 993 Scaife A.A., Athanassiadou, M., Andrews M.B., Arribas, A., Baldwin, M.P., Dunstone, N,. Knight,
- 994 J.R, Maclachlan, C., Manzini, E., Müller, W.A., Pohlmann, H., Smith, D., Stockdale, T. and
- 995 Williams, A: Predictability of the Quasi-Biennial Oscillation and its Northern Winter Teleconnection
- 996 on Seasonal to Decadal Timescales. Geophys. Res. Lett. 41, 1752-1758, 2014b.
- Shukla, S. and Wood, A.W.: Use of a standardized runoff index for characterizing hydrologic
 drought, *Geophys. Res. Lett.*, 35, L02405. 2008.
- 999 Sutton R.T. and Dong, B.: Atlantic Ocean influence on a shift in European climate in the 1990s,
- 1000 Nature Geoscience, 5, 788-792 doi:10.1038/ngeo1595, 2012.
- 1001 Titchner, H.A. and Rayner, N.A.: The Met Office Hadley Centre Sea Ice and Sea-Surface
- 1002 Temperature data set, version 2, part 1: Sea ice concentrations, J. Geophys. Res. (Atmos.), 119,
- 1003 2864–2889, doi:10.1002/2013JD020316, 2014.

1004 Todd, B., Macdonald, N., Chiverrell, R. C., Caminade, C., and Hooke, J. M.: Severity, duration and

- 1005 frequency of drought in SE England from 1697 to 2011, *Climatic Change*, 121, 673-687, DOI
 1006 10.1007/s10584-013-0970-6, 2013.
- 1007 Toniazzo, T. and Scaife, A.A.: The influence of ENSO on winter North Atlantic climate,
- 1008 Geophys. Res. Lett., 33, L24704, doi:10.1029/2006GL027881, 2006.
- Trenberth, K.E. and Shea, D.J.: Atlantic hurricanes and natural variability in 2005, *Geophys. Res. Lett.*, 33, L12704, doi:10.1029/2006GL026894, 2006.
- 1011 Van Loon, A. F., Van Huijgevoort, M H.J., and Van Lanen, H.A.J.: Evaluation of drought
- 1012 propagation in an ensemble mean of large-scale hydrological models, Hydrology and Earth System
- 1013 Sciences, 16, 4057-4078, DOI 10.5194/hess-16-4057-2012, 2012.
- 1014 Van Loon, A., Ploum, S.W., Parajka, J., Fleig, A.K., Garnier, E., Laaha, G., and Van Lanen, H.A.J..
- 1015 Hydrological drought typology: Temperature-related drought types and associated societal impacts.
- 1016 Hydrology and Earth System Sciences Discussions, 10465. 2014, http://www.hydrol-earth-syst-sci-
- 1017 <u>discuss.net/11/10465/2014/hessd-11-10465-2014.html</u>

Formatted: Font: Italic

1019	Vernier, JP., Thomason, L.W., Pommereau, JP., Bourassa, A., Pelon, J., Garnier, A.,		
1020	Hauchecorne, A., Blanot, L., Trepte, C., Degenstein, D. and Vargas, F.: Major influence of tropical		
1021	volcanic eruptions on the stratospheric aerosol layer during the last decade, Geophys. Res. Lett., 38,		
1022	L12807, doi:10.1029/2011GL047563, 2011.		
1023	Vicente-Serrano, S.M., Lopez-Moreno, J.I., Begueria, S., Lorenzo-Lacruz, J.M., Azorin-Moline, C,		
1024	Moran-Tejeda, E. : Accurate computation of a streamflow drought index. Journal of Hydrologic		
1025	Engineering, 17, 318 – 332. 2012.		
1026	Wilby, R.L., Evidence of ENSO in the synoptic climate of the British Isles. Weather, 48, 234-239.		
1027	<u>1993.</u>		
1028			
1029	Wilby, R.L., Prudhomme, C., Hannaford, J., Parry, S. Persistence of meteorological drought in the	_	Formatted: Font: (Default) Times New Roman, 12 pt, Not
1030	British Isles: A regional analysis of multi-season rainfall and river flow anomalies. Journal of		Formatted: Font: Italic
1031	Extreme Events. In preparation.		
1032			
1033			
1034			

Table 1. Fifteen key 13- to 26-month duration meteorological droughts across the English Lowlands, 1910 to 2012, based on NCIC gridded rainfall data.

1037 Table 1 is ordered by drought severity, expressed as percentage of long term average rainfall. The

49

1038 Niňo 3.4 SST anomaly is the average for all winter half-year months during the drought.

1039

Start month	End month	Duration (months)	Total rainfall (mm)	1961-1990 average (mm)	Deficit (mm)	% of average	Winter Nino3.4 SST anom.	Category of La Niña or El Niño	
May-1975	Aug-1976	16	541	898	357	60	-1.32	Strong La Niña	
Aug-1920	Dec-1921	17	630	991	361	64	-0.42	Cold Neutral	
Feb-1943	Jun-1944	17	662	937	276	71	-0.66	Weak La Niña	
Apr-1995	Apr-1997	25	1004	1411	407	71	-0.62	Weak La Niña	
Apr-1933	Nov-1934	20	829	1133	304	73	-0.83	Weak La Niña	
Mar-1990	Feb-1992	24	1006	1361	354	74	0.81	Weak El Niño	
Dec-1963	Feb-1965	15	639	855	215	75	-0.17	Cold Neutral	
Jun-1937	Jun-1938	13	556	735	179	76	-0.25	Cold Neutral	
Aug-1988	Nov-1989	16	702	924	222	76	-1.49	Strong La Niña	
Feb-1962	Feb-1963	13	556	726	170	77	-0.29	Cold Neutral	
Apr-2010	Mar-2012	24	1050	1361	311	77	-1.14	Strong La Niña	
Apr-1928	Sep-1929	18	782	1006	224	78	-0.03	Cold Neutral	
Aug-1972	May-1974	22	995	1255	260	79	-0.07	Cold Neutral	
Nov-2004	Apr-2006	18	810	1025	215	79	-0.02	Cold Neutral	
Aug-1947	Sep-1949	26	1181	1478	296	80	-0.19	Cold Neutral	

1040

1042 Table 2 Top 20 winter half-year La Niňas and English Lowlands rainfall since 1910-1911,

1043indicating whether these correspond to the meteorological droughts in Table 1 (as described in1044Sect 2.2)

WINTER HALF YEAR	La Nina SST anomaly,°C, (from 1961-90)	Table 1 Meteorological Drought lasting 5-6 months in given winter	Rainfall anomaly mm/month
1988-1989	-1.87	YES	-15.2
1973-1974	-1.82	YES	-9.3
2007-2008	-1.56	NO	1.7
1942-1943	-1.46	NO	2.3
1999-2000	-1.43	NO	-6.8
2010-2011	-1.42	YES	-10.5
1998-1999	-1.39	NO	-15.2
1975-1976	-1.32	YES	-26.0
1970-1971	-1.25	NO	4.2
1916-1917	-1.20	NO	4.5
1949-1950	-1.10	NO	9.3
1984-1985	-1.09	NO	-0.2
1933-1934	-1.05	YES	-19.7
1955-1956	-1.02	NO	-5.7
1924-1925	-0.89	NO	8.7
1938-1939	-0.88	NO	14.7
2011-2012	-0.86	YES	-18.9
1995-1996	-0.85	YES	-10.5
1983-1984	-0.71	NO	1.0
1910-1911	-0.71	NO	8.3

1047 Table 3. Summary of remote drivers of English Lowlands rainfall.

1048 Only the influence on English Lowlands climate are summarised; effects elsewhere in UK may be1049 larger or different. Conditions that favour drier winters are highlighted in yellow

Climate driver	Effect on English Lowlands winter half-year precipitation and temperature						
ENSO	El Niño tends to give somewhat wetter conditions than normal, while La Niño tends to give somewhat drier conditions than normal. There are intra-seasonal variations in these effects (Supplementary Info S1)						
North Atlantic tripole SST anomaly	A negative North Atlantic SST tripole index in May weakly favours dry conditions in English Lowlands in the following winter half year. A positive index marginally favours wetter than normal conditions.						
QBO	The QBO has only a small direct influence. A westerly QBO gives no significant rainfall signal, while a strong easterly QBO tends to give modestly wetter than average conditions. However, the rather strong effect of more extreme QBO phases on North Atlantic atmospheric circulation might modulate influences of other factors.						
Major tropical volcanic eruptions	Major tropical volcanic eruptions are uncommon. They tend to force the positive westerly phase of the NAO in winter associated with wetter than normal conditions in northern Scotland and slightly drier than normal conditions much further south, including the English Lowlands.						
Solar effects	Cyclonic anomalies associated near or just after solar maxima may be associated with a tendency to wetter than normal conditions						
АМО	A negative NAO tends to occur when the AMO is positive and a positive NAO when the AMO is negative. However, neither phase of the AMO provides a rainfall signal for the English Lowlands. Differing intra-seasonal influences and interactions with other forcing factors cannot be ruled out.						

1052 Figure Captions

1053 Fig 1. Map of the English Lowlands study region (bold line indicates boundary), also showing the 1054 river Thames (blue) and its catchment (above the Kingston gauging station (red)) and the location of 1055 the Rockley borehole (red). For context, the Mmap also shows the location of London, major aquifers 1056 (light grey) and upland areas over 200m (dark grey) 1057 1058 Fig 2. Example of a meteorological drought, April 2010 to March 2012 1059 1060 Fig 3. Correlations of designated district average rainfalls with 5 x 5 km gridded rainfall data 1061 elsewhere in UK for winter and summer half-years of droughts -identified in this paper. N is the 1062 calculated equivalent number of independent rainfall stations across the UK in Table 1 droughts, a 1063 measure of spatial rainfall anomaly variability in the droughts, where rainfall anomalies are 1064 differences from their long-term means. 1065 1066 Fig 4a. Heatmap of the correlation between lagged English Lowlands river flow SGLSSI over a one-1067 month timescale and English Lowlands precipitation as SPI over 1-24 months, with maximum 1068 correlation highlighted with black circle. 1069 1070 Fig 4b.. Heatmap of the correlation between lagged English Lowlands groundwater level SGI over a 1071 one-month timescale and English Lowlands precipitation as SPI over 1-24 months, with maximum

1072 correlation highlighted with black circle.

1073

Fig 5. SPI<u>, SSI and and SGI</u> for regional English Lowlands series, where the first three time series are SPI based on the English Lowlands precipitation time series, with SPI 3 month rainfall accumulation, SPI 6 month rainfall accumulation and SPI 12 month rainfall accumulation; the latter two are <u>SGI SSI</u> for the English Lowlands regional river flow series and SGI for the English Lowlands groundwater level time series.

1079

Fig 6. SPI<u>, SSI-and_and</u>SGI series for the Thames, where the first three are based on the Thames catchment rainfall time series, with SPI 3 month accumulation, SPI 6 month accumulation and SPI 1082 12 month accumulation; the latter two are the <u>SGI-SSI</u> series for the Thames river flow at Kingston and the SGI series for the Rockley groundwater level series.

1084

Fig 7a. Composite global SST anomalies from 1961-1990, winter half-year, over 1901-2013 when
Nino 3.4 anomalies <-1.0°C

1087

1088 Fig 7b. Top panels: Global PMSL anomalies (hPa) from the 20th Century reanalysis averaged over 1089 winter half-year for La Niñas measured by SST <-1 standard deviation over Nino 3.4, corresponding 1090 to a 1961-1990 SST anomaly <-0.92°C, for two independent epochs 1876-1950 (left) and 1951-2009 1091 (right). The standard deviation is for 1951-2010. Central panels (left): global storminess anomalies, 1092 1951-2013 measured by anomalies of 2-7 day band pass variance of 500hPa height (dm²), (right) west 1093 European rainfall anomalies (mm/month) 1901-2011 for La Niňas for winter half-year. Bottom panels 1094 (left): as top right panel for moderate El Niños (anomalies of 0.92°C <Nino 3.4 <1.5°C) (right) as 1095 central right panel but for moderate El Niños. Dark colours are locally significant at the 5% level. 1096 Light colours on global maps only (all diagrams) are included show the patterns more clearly but are 1097 not significant. Rainfall from the Mitchell and Jones (2005) 0.5° x0.5° degree data set, as it is for 1098 Figs. 9-12.

Fig 7c Cumulative distributions of English Lowlands rainfall, 1901-2014, expressed as a percentage
 of the 1961-90 average, for (a) La Nina and (b) El Nino conditions excluding extreme El Ninos, as
 described in the text

- 1102
- 1103

Fig 8. (Top left) Global PMSL anomalies (hPa) in winter half-year for a tripole SST index <-1 SD;
(Top right) >1 SD in the previous May. (Bottom left) Rainfall anomalies in winter half-year
(mm/month) over UK and nearby Europe for tripole SST index <-1 SD. (Bottom right) for >1 SD.
Areas significant at the 5% level are darkly coloured. Tripole SD calculated for May 1949-2008.
PMSL comes from the NCEP Reanalysis.

1109

1110	Fig 9. (Top left) Near global PMSL anomalies (hPa) in winter half-year for most easterly QBO 15%
1111	of 30hPa equatorial stratospheric winds (1953-1954 to 2012-2013). (Top right) Rainfall anomalies
1112	for the top 15% most easterly of all equatorial winds. (Bottom left) As top left but for the 15% most
1113	westerly QBO winds. (Bottom right) As top right, but for the 15% most westerly winds. Areas
1114	significant at the 5% level are dark coloured. PMSL is from the NCEP Reanalysis.
1115	

Fig 10. (Left) Near global PMSL anomalies (hPa) in winter half year for TSI values in the highest 20% of the its winter half year distribution over 1948-2011. Earlier years not used as solar cycle mostly varied at an averaged reduced level of total solar radiation. (Right) Rainfall anomalies (mm/month) over UK and nearby Europe. Areas significant at the 5% level are darker coloured.

1120

Fig 11e. (Top left) Near global PMSL anomalies (hPa) in winter half year for monthly AMO index values <-1SD calculated over 1871-2013. (Top right) rainfall anomalies (mm/month) for AMO index values <-1SD. (Bottom left) Near global PMSL anomalies for AMO index values >1SD (Bottom right) Rainfall anomalies (mm/month) for AMO Index values >1SD. Areas significant at the 5% level are darker coloured. PMSL is from the 20CR

1126

Fig 11b. (Top left) Near global PMSL anomalies (hPa) in summer for monthly AMO index values <-
128 1SD calculated over 1871-2013. (Top right) rainfall anomalies (mm/month) for AMO index values
129 <- 1SD. (Bottom left) Near global PMSL anomalies for AMO index values >1SD (Bottom right)
130 Rainfall anomalies (mm/month) for AMO Index values >1SD. Areas significant at the 5% level are
131 darker coloured. PMSL is from the 20CR

1132

Fig 12a. Box plots of English Lowland response variables for the October to March winter half year
(English Lowlands areal rainfall and total flow), for low (<-0.5 SD) and high (>0.5 SD) values of
different drivers (Niño 3.4, IPO, TSI, May SST tripole, AMO, stratospheric aerosol loadings and
QBO).

1137

1138Fig 12b. Box plots of English Lowland response variables for the October to March winter half year1139(rainfall, river flow, groundwater and SSGI flow, SGI Groundwater and SPIthree accumulation)

1140	periods for the SPI), for low (<-0.5 SD) and high (>0.5 SD) values of different drivers (Niño 3.4,
1141	IPO, TSI, May SST tripole, AMO, stratospheric aerosol loadings and QBO).
1142	
1143	
1144	
1145	
1146	
1147	
1148	
1149	
1150	
1151	
1152	
1153	
1154	
1155	
1156	
1157	
1158	
1159	
1160	
1161	
1162	
1163	
1164	

.....

