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Response to Reviewer #3

Lukas Gudmundsson & Sonia I. Seneviratne

May 5, 2015

We would like to thank Reviewer #3 for reporting his/her constructive suggestions. In the

following we provide point by point answers to his/her comments. For the sake of clarity we

first repeat the reviewer’s comments (in italic) and then provide our response.

I was not involved in the first round of revision, and I thus take this revised paper as a new

one.

SYNTHESIS

1. In simple words, I would tell that this paper presents a method to upscale and then inter-

polate the observed streamflow from small catchments. A validation is proposed based on (i)

cross validation, (ii) large catchments which were not part of the initial catchment dataset, (iii)

independent evaporation measurements. A comparison is provided based on a combination of

LSM data.

We appreciate this concise summary of our research.

WHAT I LIKED IN THIS PAPER

2. This paper is scientifically sound (I appreciated the three steps validation step in particular).

It is rather well written (although sometimes I feel that the authors use unneeded complex words

for things which are after all very simple).

We would like to thank the referee for this positive evaluation of our research.

WHAT I DID NOT LIKE SO MUCH IN THIS PAPER

3. I always have problem with machine learning techniques which I like to classify as “fancy

statistical methods” because they are black-box (sometimes only grey...) sometimes difficult to

follow and always difficult to INTERPRET PHYSICALLY. My preferred approach would have

been to use a simple regression (Q=a*Pˆb*Eˆc... eventually with monthly varying parameters,

because these parameters are easy to interpret) and THEN use the machine learning technique

to interpolate the residual. It would probably have given exactly the same efficiency but it would

have been much easier to interpret. I have no objections to have a black-box approach to map
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residuals (because by definition, the residual is impossible to understand), I always consider it

a pity to mix what is understandable with what is not.

We fully agree with the referee on the merits of simple regression models, which can help to

disentangle contributions of different predictors on a target variable. However, the primary aim

of the presented study is not to focus on physical understanding but on developing a framework

that can be used to estimate runoff at ungauged locations. To this end we decided to follow the

approach of Jung et al. (2009, 2010, 2011) who used machine learning techniques to estimate

land-atmosphere fluxes at the global scale. The advantage of this approach is that it does

not rely on strong prior assumptions and hence reduces the danger of biases that are related

to model formulation. Consequently, we expect machine learning techniques also to capture

relevant processes which influence the data, but might not be considered in a parametric (e.g.

additive or multiplicative) model setup. This is also nicely illustrated by Beck et al. (2013,

Figure 6). In the present context, the choice of machine learning over parametric regression

is consequently a tradeoff between predictive power and the possibility to interpret the model

structure. As the aim of this study is to produce reliable estimates of European runoff we opted

for increased predictive power.

To clarify this aspect to the reader we extended the paragraph, introducing the approach

of Jung et al. (2009, 2010, 2011) accordingly.

RECOMMANDATIONS

4. You must do something about the negative RFM values in Fig. 11 you cant just write that

you know they exist!

See our next answer.

5. Fig 11 : there is certainly a lot of information to gather from the differences in Fig 11.

May I suggest mapping the differences in the Turc-Budyko non dimensional graph (i.e. x=P/E0

and y=Q/P, each catchment is represented by a point and the colour of the point would present

the difference between the two models), this could help explain physically the differences.

Reviewer #3 correctly notes that that the longterm mean difference between precipitation

and estimated runoff is negative in Scandinavia, pointing towards physically inconsistent data.

This inconsistency does already emerge at small scales: For a large portion of Scandinavian

grid-cells, the runoff coefficients Q/P are larger than one, suggesting that the WATCH forcing

data underestimate precipitation in this region. This issue has been extensively documented

in previous studies (Gudmundsson et al., 2012; Kauffeldt et al., 2013). For convenience Figure

A1 provides a reproduction of Figure 1c in Gudmundsson et al. (2012), which systematically

documents this issue. Kauffeldt et al. (2013) conclude that these differences mostly occur in

regions where snow undercatch is an issue.
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The statistical runoff model accounts for this bias and consequently the difference between

WFD precipitation and estimated runoff is negative. This artefact is an intrinsic feature of the

data. Therefore we refrain from further modifications such as ad-hoc adjustments of precipita-

tion in Scandinavia as they would incorporate a subjective component into our analysis. Only

an un-biased precipitation estimator would resolve this issue.

We expanded the section discussing this results aiming at communicating the source of

this bias more systematically to the reader. We did however refrain from adding additional

quantitative results to the paper as the inconsistency between runoff observations and WFD

precipitation is already documented in the literature (Gudmundsson et al., 2012; Kauffeldt

et al., 2013).

Figure A1: Long-term runoff coefficient (Q̄/P̄ ) derived from observed runoff (Q̄) and WFD
precipitation (P̄ ). Shaded areas indicate Q̄/P̄ ≥ 1. Reproduction of Figure 1c in Gudmundsson
et al. (2012).

CONCLUSION

Overall, I liked this paper and I recommend its publication. Here are my suggestions to improve

its readability:

6. You should try to synthesize your approach using simpler words in the introduction (for

example, what you do is a spatial interpolation but I did not find the word in your paper);

We thank Referee #3 for this suggestion. To account for this, we did extend the paragraph

introducing the approach of Jung et al. (2009, 2010, 2011), emphasising that it is basically a

(non-linear) regression.

Note also, that we do not do an “spatial interpolation” as suggested by the referee. We

rather build a non-parametric regression model that maps monthly runoff as a function of at-
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mospheric conditions. This would correspond to an “interpolation in the atmospheric variable

space”. As this could be easily confused with spatial interpolation we prefer not to use the

term “interpolation” in the article.

7. Line 122 : you should not include LSM runoff in the validation data paragraph... it is

just a comparison (just change : 2.2 Comparison data and then 2.3 Validation data

We thank Referee #3 for this suggestion. The sectioning was changed accordingly.

8. Line 324 : do something for those negative values.

See our corresponding reply above.
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Abstract. Terrestrial water variables are the key to understanding ecosystem processes, feed back

on weather and climate, and are a prerequisite for human activities. To provide context for local

investigations and to better understand phenomena that only emerge at large spatial scales, reliable

information on continental scale freshwater dynamics is necessary. To date streamflow is among

the best observed variables of terrestrial water systems. However, observation networks have a lim-5

ited station density and often incomplete temporal coverage, limiting investigations to locations and

times with observations. This paper presents a methodology to estimate continental scale runoff on

a 0.5◦ spatial grid with monthly resolution. The methodology is based on statistical up-scaling of

observed streamflow from small catchments in Europe and exploits readily available gridded atmo-

spheric forcing data combined with the capability of machine learning techniques. The resulting10

runoff estimates are validated against (1) runoff from small catchments that were not used for model

training, (2) river discharge from nine continental scale river basins and (3) independent estimates

of long-term mean evapotranspiration at the pan-European scale. In addition it is shown that the

produced gridded runoff compares on average better to observations than a multi-model ensemble

of comprehensive Land Surface Models (LSMs), making it an ideal candidate for model evaluation15

and model development. In particular, the presented machine learning approach may help determin-

ing which factors are most relevant for an efficient modelling of runoff at regional scales. Finally,

the resulting data product is used to derive a comprehensive runoff-climatology for Europe and its

potential for drought monitoring is illustrated.

1



1 Introduction20

Terrestrial water storages and fluxes are key variables in the Earth system, as they are a primary

control for many ecosystem processes (e.g. Ciais et al., 2005; Granier et al., 2007; Reichstein et al.,

2013; Guan et al., 2015), influence weather and climate through land-atmosphere interactions (e.g.

Koster et al., 2004; Seneviratne et al., 2010) and are the basis for many human activities (e.g Döll

et al., 2009; Vörösmarty et al., 2010; Orlowsky et al., 2014). Consequently information of the his-25

torical space and time evolution of variables such as evapotranspiration, soil moisture, groundwater

and runoff are of great interest. However, most of these variables are only observed at few locations

in space and often with irregular temporal coverage, limiting analysis to the well monitored regions.

Consequently data products providing reliable estimates of the historical space-time evolution of

these variables for large, continental scale regions are of vital importance. Such data products will30

not only allow to investigate terrestrial water dynamics at locations without observations, but more

importantly
:::
also

:
allow the study of processes and phenomena that emerge on large, continental,

scales. Such studies include but are not limited to: (1) The analysis of fresh water climatologies (e.g.

Dettinger and Diaz, 2000; Fekete et al., 2002; Reager and Famiglietti, 2013); (2) The assessment of

large-scale droughts (e.g. Sheffield et al., 2012; Tallaksen and Stahl, 2014; Thomas et al., 2014; Gud-35

mundsson et al., 2014; Gudmundsson and Seneviratne, 2015); (3) The validation of Land Surface

Models (LSMs) and hydrological models used at large scales (e.g. Dirmeyer et al., 2006; Haddeland

et al., 2011; Gudmundsson et al., 2012a,b; Schewe et al., 2014); (4) Investigating the link between

climate variability and terrestrial water dynamics, including feedbacks (e.g. Tootle and Piechota,

2006; Jung et al., 2010; Gudmundsson et al., 2011b; Mueller and Seneviratne, 2012; de Linage40

et al., 2014; Miralles et al., 2014); and (5) Analysing the effect of climate change on freshwater re-

sources (e.g. Krakauer and Fung, 2008; Stahl et al., 2012; Famiglietti and Rodell, 2013; Greve et al.,

2014).

To date, two main approaches for continental to global scale estimation of terrestrial water dy-

namics are in use. The first approach is based on LSMs that are driven by historical atmospheric45

forcing (e.g. Fekete et al., 2002; Rodell et al., 2004; Dirmeyer et al., 2006; Fekete et al., 2011; Bal-

samo et al., 2013). While LSM-based estimates are attractive because they provide comprehensive

information on a large number of relevant variables, the resulting data are still highly model de-

pendent and large uncertainties remain (e.g Haddeland et al., 2012; Gudmundsson et al., 2012a,b;

Mueller et al., 2011b, 2013; Prudhomme et al., 2014). In recent years, the rapid evolution of satellite50

remote sensing has allowed to provide estimates of selected variables including soil moisture (e.g.

Wagner et al., 2007; de Jeu et al., 2008; Seneviratne et al., 2010) and total terrestrial water storage

(e.g Houborg et al., 2012; Landerer and Swenson, 2012; Rodell and Famiglietti, 1999; Famiglietti

and Rodell, 2013). However, satellite observations only cover a relatively short time window and

issues such as inhomogeneities due to changes in instrumentations
:::::::::::::
instrumentation and uncertainties55

in retrieval algorithms are still limiting their application (Loew et al., 2013; Hirschi et al., 2014).

2



A common feature of the above mentioned approaches is that they only exploit in-situ observations

of terrestrial water variables to a very limited degree. Historically, catchment runoff is likely the best

monitored variable of terrestrial water systems, which has been observed for centuries to decades at

thousands of locations covering the entire globe (Slack and Landwehr, 1992; Hannah et al., 2011)60

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Slack and Landwehr, 1992; Hannah et al., 2011; Fekete et al., 2012) . Other variables such as evap-

otranspiration or soil moisture have received less attention and consequently respective ground ob-

servations are available at fewer locations and often cover much shorter time periods (Baldocchi,

2008; Seneviratne et al., 2010; Dorigo et al., 2013). Nevertheless recent studies (Jung et al., 2009, 2010, 2011) succeeded

to up-scale in-situ observations
::::::::::::::::::::::::::::::::::
Jung et al. (2009, 2010, 2011) successfully

::::::
derive

::::::
global

::::::::
estimates65

of evapotranspiration, sensible heat flux and carbon exchange to regular spatial grids using machine

learning techniques. Combining the quality of
::
on

:::
the

:::::
basis

::
of

:::::
in-situ

:::::::::::
observations

::
of

:
the FLUXNET

observatories (Baldocchi, 2008) , the availability of gridded explanatory variables and the versatility

of modern machine learning they derived global estimates of evaportranspiration and carbon fluxes

with monthly resolution on regular spatial grids.
::::
using

:::::::
machine

::::::::
learning

:::::::::
techniques.

:::::::::::
Technically70

::::::::
speaking,

:::::::::::::::::::::::::::
Jung et al. (2009, 2010, 2011) did

:::::
build

:
a
::::::::
nonlinear

::::::::
regression

::::::
model

:::
that

:::::::
predicts

:::::::::::::
land-atmosphere

:::::
fluxes

::
as

::
a
::::::::
function

::
of

:::::::
gridded

:::::::::::
atmospheric

::::::::
variables

::::
(e.g.

:::::::::::::
precipitation)

:::
and

::::::::
remotely

:::::::
sensed

:::::::::
information

:::
on

:::::::::
vegetation

:::::::
activity.

::::
As

:::
the

:::::::::::
nonlinearity

::
of

:::
the

::::::::::
underlying

::::::::
processes

:::::::
prevents

::::
the

:::::::::::
identification

::
of

:::::::::
parametric

:::::::::
regression

:::::::
models,

::::
the

:::::::::
application

:::
of

:::::::
machine

::::::::
learning

::
is

:::::::::
necessary.

::::
This

:
is
::::
also

:::::::::
illustrated

::
by

::::::::::::::::
Beck et al. (2013) ,

::::
who

::::
used

::::::
neural

::::::::
networks

::
to

:::::::
estimate

::::::
global

::::
maps

:::
of75

::::::
several

:::::::::
streamflow

::::::::::::
characteristics,

::::::::
including

:::
the

::::
base

::::
flow

::::::
index.

This study suggests
:::
The

::::::::
presented

:::::
study

:::::::
proposes

:
a framework for estimating the historical space-

time evolution of runoff in Europe on the basis of observations from small catchments. Following

Jung et al. (2009, 2010, 2011) we combine the advantage of in situ observations and the availabil-

ity of gridded atmospheric observations with machine learning techniques to derive estimates of80

monthly runoff in Europe on a regular spatial grid. The accuracy of the estimated runoff fields is as-

sessed with respect to data that were not used for model identification and compared to an ensemble

of comprehensive land surface models. Finally, example applications of the resulting data product

are provided and implications from the empirical modelling exercise are discussed in the context of

physical model development.85

2 Data

2.1 Modelling data

2.1.1 Atmospheric forcing

Estimates of atmospheric near-surface variables were taken from the WATCH Forcing Data (WFD,

Weedon et al., 2011) which are available on a regular 0.5◦×0.5◦ grid. The WFD were developed in90
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the context of the WATCH (Water and Global Change) project (http://www.eu-watch.org/, accessed:

June 24 2014). The analysis is based on the full WFD, covering the following set of variables: Rain-

fall, snowfall, air temperature, incoming long and short wave radiations, humidity, surface pressure

and wind speed. The WFD are available at sub-daily resolution and were aggregated to monthly

mean values.95

2.1.2 Runoff observations

The investigation is based on 426 streamflow series from small undisturbed catchments, covering

the 1963 - 2000 time period (Figure 1). The data are a subset (see Stahl et al., 2010, for details)

of the European Water Archive (EWA). The EWA is collected by the European Flow Regimes

from International Experimental and Network Data (Euro-FRIEND) project (http://ne-friend.bafg.100

de/servlet/is/7413/, accessed: June 24 2014) and held by the Global Runoff Data Centre (GRDC,

http://grdc.bafg.de, accessed: June 24 2014).

As the majority of the considered catchments is much smaller than the 0.5◦ grid cells of the

atmospheric forcing data (Figure 1), the time series of the individual catchments were assigned

to the corresponding grid cells. Following previous studies (Arnell, 1995; Gudmundsson et al.,105

2011b, 2012b,a), streamflow observations from the individual catchments were first converted into

runoff rates per unit area and the coordinates of the gauging stations were assigned to the 0.5◦ grid

cells defined by the atmospheric forcing data. If more than one gauging station occurred in one

catchment, the catchment area weighted average runoff rate was used. This procedure results in 298

grid cells with observed daily runoff rates, which were subsequently aggregated to mean monthly110

values (Figure 1).

In the following the monthly mean grid-cell averaged runoff rates are referred to as “observed

runoff”. Although streamflow, which is used to compute these estimate, is different from runoff we

argue that the differences between the two quantities become small at the considered space and time

scales. The main difference between streamflow and runoff is that the former has been routed trough115

a channel network. However, the associated processes operate on time scales that are much smaller

than the resolution of the presented analysis. For example, hydrograph wave speeds are approxi-

mately 0.5m sec−1 = 1.8km h−1 = 43.2km day−1 (e.g. Wong and Laurenson, 1983), implying that

at least daily resolution would be required to resolve these processes for 0.5◦ grid-cells. At monthly

time scales, however, total catchment runoff can be assumed to equal the sum of streamflow, if water120

losses through e.g. channel evaporation are negligible. As the presented study operates on monthly

resolution and on a 0.5◦ grid (≈ 50km), it is consequently unlikely that effects of channel routing

will impair the results.
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2.1.3 Land parameters

Median grid-cell slope was derived from the HYDRO1k dataset which
:
is

:
available from the U.S.125

Geological Survey (Figure 2). Information on soil texture for each grid-cell
:::
grid

:::
cell

:
(median fraction

of clay, silt, sand, gravel) were taken from the Harmonized World Soil Database (version 1.2) (FAO

et al., 2012) (Figure 3).

2.2 Validation data

2.2.1 LSM runoff130

The results of the statistical modelling exercise were also compared to runoff simulations from

nine state-of-the-art LSMs, developed by the WATCH project. Details on the simulation setup,

key features of the participating models, and further model validation can be found in the literature

(Haddeland et al., 2011; Gudmundsson et al., 2012b,a) . All participating models were forced using

the WFD which guarantees a fair comparison with the statistical runoff estimates introduced in this135

study. The LSM runoff simulations were augmented by the multi-model mean (MMM).

2.2.1 Continental scale river discharge

Observed monthly discharge from nine continental scale river basins (Ebro, Elbe, Garonne, Loire,

Po, Rhine, Rhone, Seine, Weser) and corresponding catchment shapes where taken from a previously

assembled collection (see Hirschi et al. (2006) and Mueller et al. (2011a) for details).140

2.2.2 Long-Term mean evapotranspiration

A comprehensive estimate of the long-term mean (1989 - 1995) land evapotranspiration was taken

from the LandFlux-EVAL synthesis product (Mueller et al., 2013), which combines informations

from 40 distinct evapotranspiration estimates on a 2◦ grid.

2.3
::::::::::
Comparison

:::::
Data145

:::
The

::::::
results

:::
of

:::
the

::::::::
statistical

:::::::::
modelling

:::::::
exercise

:::::
were

::::
also

:::::::::
compared

::
to

::::::
runoff

::::::::::
simulations

:::::
from

:::
nine

:::::::::::::
state-of-the-art

::::::
LSMs,

:::::::::
developed

:::
by

:::
the

::::::::
WATCH

:::::::
project.

:::::::
Details

:::
on

:::
the

:::::::::
simulation

::::::
setup,

:::
key

:::::::
features

::
of

:::
the

:::::::::::
participating

::::::
models,

::::
and

::::::
further

:::::
model

:::::::::
validation

:::
can

:::
be

:::::
found

::
in

:::
the

::::::::
literature

:::::::::::::::::::::::::::::::::::::::::::::
(Haddeland et al., 2011; Gudmundsson et al., 2012b,a) .

:::
All

:::::::::::
participating

::::::
models

::::
were

::::::
forced

:::::
using

::
the

:::::
WFD

::::::
which

:::::::::
guarantees

:
a
::::
fair

:::::::::
comparison

:::::
with

:::
the

::::::::
statistical

:::::
runoff

::::::::
estimates

:::::::::
introduced

::
in

::::
this150

:::::
study.

:::
The

:::::
LSM

:::::
runoff

::::::::::
simulations

:::::
were

:::::::::
augmented

::
by

:::
the

:::::::::::
multi-model

:::::
mean

:::::::
(MMM).

:
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3 Methods

3.1 Statistical model setup

The aim of this study is to estimate monthly runoff,Qx,t, at different land units x and time steps t. To

achieve this, Qx,t is related to a set of explanatory variables that are available at all locations within155

the spatial domain through a machine learning model h, which is described in detail in Section 3.2.

We derive three models, of various degrees of complexity. The simplest case assessed in this study

is solely based on gridded precipitation, Px,t, and temperature Tx,t such that

Qx,t = h(τn(Px,t), τn(Tx,t)), (1)

where the time lag operator τn is defined as τn(Xx,t) = [Xx,t,Xx,t−1, . . . ,Xx,t−n] and gives access160

to atmospheric conditions over the past n time steps (months). This time lag operator allows to

approximate storage effects that are relevant for runoff generation. In the presented analysis, input

from the previous year is considered (n= 11), which enables the model to take limited storage

processes related e.g. to groundwater and snow into account. Note also that the model h is only

identified once and applicable at all locations in space. This implies that all information on spatial165

variability only comes from the atmospheric input data. As the WFD provides separate information

on rain and snowfall, precipitation is here defined as the sum of both components. This simple setup

is motivated by the tradition that runoff modelling at catchment scales relies in many cases only on

precipitation and temperature forcing.

The second model setup is defined as170

Qx,t = h(τn(I1x,t), τn(I2x,t), . . . , τn(Ipx,t)), (2)

where I1x,t, . . . , I
p
x,t are all atmospheric forcing variables available within the WFD (see Section

2.1.1). The rationale underlying this approach is that processes such as evapotranspiration and snow

dynamics do not only depend on precipitation and temperature but also on many other forcing vari-

ables including humidity, wind speed and different radiation components.175

Finally the most complex model setup is specified as

Qx,t = h(τn(I1x,t), τn(I2x,t), . . . , τn(Ipx,t),Πx), (3)

where Πx is a vector, containing information on slope and soil texture (see Section 2.1.1). The

idea underlying this last setup is to increase the realism of the statistical model, as terrestrial water

dynamics is not only dependent on atmospheric forcing but also on local variations in land properties180

which influence runoff generation.

3.2 Model identification

The practical challenge in the application of Equations 1 to 3 is the identification of the model h.

For this we follow Jung et al. (2009, 2010, 2011) and exploit the capability of modern machine
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learning techniques. In contrast to Jung et al. (2009, 2010, 2011), who used Model Tree Ensembles,185

we employ here a closely related method called Random Forests (RF) (Breiman, 2001). The use of

RF is a pragmatic choice, as this technique is well established, requires only few user specifications

(see e.g. Hastie et al., 2009) and is implemented in standard software environments (e.g. Liaw and

Wiener, 2002). Note, however, that other machine learning tools such as Boosting techniques, Neural

Networks or Support Vector Machines are likely to have similar performance (e.g. Bishop, 2006;190

Hastie et al., 2009).

Technically, RF are based on large ensembles of a modified version of Classification and Regres-

sion Trees, each grown on a bootstrap sample of the data. Despite its considerable complexity, the

RF algorithm (Breiman, 2001; Liaw and Wiener, 2002; Hastie et al., 2009) can be summarised in a

simplified manner as:195

1. Draw B bootstrap samples from the data.

2. For each bootstrap sample, grow a Random Forest tree by recursively repeating the following

steps:

(a) Select m of the available predictor variables at random.

(b) Among the m selected variables: find the one with the split point that best partitions the200

data.

(c) Split the data into two nodes and repeat the two previous steps on each node until the

terminal node has reached the minimum node size n.

3. The RF prediction for new data is the average of the predictions of the B individual trees.

The free parameters of RFs need to be specified by the user. We opted for B = 1000, n= 10, and205

m= p/3, where p is the number of predictor variables, following recommendations in the literature

(Hastie et al., 2009). In general, we found the results to be little sensitive to the parameter choice as

long as the number of grown trees (B) was large enough.

3.3 Model selection and validation

3.3.1 Cross validation210

An important issue in statistical modelling is the fact that using the same data for model identification

and model evaluation can result in too optimistic estimates of model performance. Therefore, the

results of machine learning tools are commonly assessed using K fold cross validation (e.g. Bishop,

2006; Hastie et al., 2009). Cross-validation guarantees that the data used for model validation are

independent from the data used for model identification. For cross validation, the data are first215

randomly split into K subsamples. Subsequently one of the subsamples is removed and the model

is trained on the remaining K−1 subsamples. Finally the resulting model is used to predict the data

7



that have been left out. These steps are repeated K times until each subsample has been left out

once.

The procedure consequently results in predictions of the data that are independent of the data used220

for model identification.

To enhance the interpretability of cross validation in the context of this study we focus on the

following two modifications of the usual cross validation procedure: In a first experiment, the focus

is on the models ability to estimate runoff at spatial locations (x) that were not used for model

identification. For this, the grid cells with observations are randomly split into K = 10 subsamples,225

which were successively left out for model training. This procedure guarantees that at each location

with observations, model estimates are available that are independent of the data used for model

identification. In the following we refer to this procedure as “cross validation in space”. Note

that this validation strategy makes the analysis compatible with the Prediction of Ungauged Basins

(PUB) initiative (Sivapalan et al., 2003; Blöschl et al., 2013; Hrachowitz et al., 2013; Parajka et al.,230

2013) of the International Association of Hydrological Sciences (IAHS). In a second experiment the

focus is on the models’ ability to estimate runoff dynamics at time steps (t) that were not used for

model identification. For this, the data were split into K = 10 continuous time blocks, which were

successively left out once for model training. This procedure is referred to as “cross validation in

time” and provides estimates of runoff at time steps that were not used for model identification.235

3.3.2 Model Selection

Model selection is based on the total root mean square error, integrating model accuracy over space

and time:

RMSE =

√∑
x,t

(mx,t− ox,t)2, (4)

where mx,t and ox,t refer to the modelled and observed values respectively. RMSE for each of the240

candidate models (Section 3.1) is estimated based on the two cross validation experiments. Uncer-

tainty of the RMSE is quantified using 95% bootstrap confidence intervals with 2000 replications.

3.3.3 Model validation

Model performance is assessed for individual grid cells, where ot refers to the observed and mt to

the modelled runoff series. Model performance is quantified using six different performance metrics,245

each focusing on different aspects of runoff dynamics:

1. The seasonal cycle skill score (Wilks, 2011) is defined as

Sseas = 1−
∑

t(mt− ot)2∑
t(mt− seas(ot))2

, (5)

where seas(ot) refers to the long-term mean runoff for each month. Sseas ε (−∞,1] and pos-

itive values indicate that the model is on average closer to the observations than the mean250
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annual cycle.

2. The model efficiency (Nash and Sutcliffe, 1970; Wilks, 2011) is defined as

MEf = 1−
∑

t(mt− ot)2∑
t(mt−mean(ot))2

, (6)

where mean(ot) refers to the long-term mean of the observation. SMEf ε (−∞,1] and positive

values indicate that the model is on average closer to the observations than the mean of the255

observations.

3. The relative model bias is defined as

BIAS =
mean(mt− ot)

mean(ot)
, (7)

i.e. the mean difference between observed and modelled values scaled by the mean of the

observations. The optimal value is zero and positive (negative) values indicate overestimation260

(underestimation) of the mean runoff.

4. The coefficient of determination (squared correlation coefficient),R2, measures the agreement

between the temporal evolution of the modelled and observed series.

5. The coefficient of determination between the observed and the modelled mean annual cycle,

Climatology-R2, is sensitive to differences in the phasing of the mean annual cycle.265

6. The coefficient of determination between the monthly anomalies (i.e. monthly time series with

the long-term mean of each month removed), Anomaly-R2, indicates the agreement between

observed and modelled values after removing the mean seasonal cycle.

4 Results

4.1 Model Selection270

Figure 4 shows the RMSE of the Random Forest Model (RFM) for all three model setups and both

cross validation experiments. For the cross validation in space, the model that only depends on pre-

cipitation and temperature (Equation (1)) has the largest error and the two other models (Equations

(2) and (3)) have almost equal performance. The situation differs for the cross validation in time.

Here the model with full atmospheric forcing (Equation (2)) significantly outperforms the other two275

models. As the model with full atmospheric forcing shows the best performance in both cross val-

idation experiments it was selected and is considered for further analysis. In the following RFM

refers to this selected model, unless specified differently.
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4.2 Model Validation

4.2.1 Grid-cell scale validation280

Figure 5 shows the RMSE of the RFM, derived from the cross validation in space experiment at each

grid cell with observations as well as time series of observed and modelled runoff at the grid cells

with the smallest, the median and the largest error. The grid cell error shows some spatial patterns,

with a tendency to increase in mountainous regions where observed runoff rates are highest. The

selected time series allow for a qualitative assessment of the strengths and shortcomings of the285

RFM, indicating a good agreement of observed and modelled runoff, but also highlighting some

deficiencies in capturing peak flows.

A more comprehensive overview on model performance is provided in Figures 6 and 7, which

show the spatial distribution of all considered skill scores of the selected RFM for both the cross

validation in time and for the cross validation in space. Table 1 lists the median performance for290

both cross-validation experiments. In addition the boxplots in Figures 6 and 7 allow to compare the

distribution of the performance of all considered modelling setups (Equations (1) - (3)) to the perfor-

mance of LSM simulations. For the sake of brevity the following description of the results is limited

to the selected RFM with full atmospheric forcing. Overall, there are no clear spatial patterns in

Sseas and MEf which are on average positive for both cross validation experiments. This shows that295

the RFM is at most locations a better estimator of monthly runoff variability than mere repetitions of

the climatology. Interestingly the RFM also outperforms all LSMs under consideration with respect

to Sseas and MEf. On average the relative BIAS of the RFM is slightly negative, indicating a ten-

dency of the model to underestimate monthly runoff rates in the considered catchments. Generally

the relative bias of the considered LSMs is comparable to the RFM bias highlighting their similar300

mean annual runoff rates. The median coefficient of determination, R2, between the RFM and the

observed runoff rates are high and there are no pronounced spatial patterns for both cross validation

experiments. This indicates the capability of the empirical model to capture the temporal evolution

of runoff in Europe. Also with respect toR2, the selected RFM is closer to the observations than any

LSM under consideration. The remarkably high coefficient of determination between the observed305

and modelled mean annual cycles, Climatology-R2, of the RFM are contrasted by the relatively

low correlations of the LSMs. This result highlights the RFM’s ability to capture the seasonality

of runoff, but also points towards the fact that the considered LSMs have issues with reproducing

this feature. The median coefficient of determination of observed and modelled monthly runoff

anomalies, Anomaly-R2, reach only intermediate levels showing the RFMs capability to estimate310

anomalies is somewhat lower than capturing the seasonal cycle. For AnomalyR2 the difference

between the RFM and the LSMs is less pronounced.

To assess whether model performance is dependent on climate conditions, a correlation analysis

was conducted, relating the spatial patterns in model performance to annual means of runoff, pre-
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cipitation and temperature. Overall the results (Figure 8) indicate that there is little influence of315

mean climate on model performance (all correlations being |r|< 0.5). Nevertheless Figure 8 also

suggests that there is some dependence of the relative bias on mean annual runoff. In addition Figure

8 suggests a possible link between mean temperature and Anomaly-R2.

Finally, the difference between the cross validation in time and the cross validation in space is

interesting to note. Overall the RFM has a slightly higher performance for the cross validation in320

space. This shows that the RFM is more skilful in estimating runoff dynamics at ungauged locations

than at times without observations.

4.2.2 Basin scale validation

Although the RFM was initially developed to estimate grid-scale runoff it can also be used to derive

first-order estimates of monthly river discharge. For this, monthly runoff from all grid cells within a325

river basin are spatially averaged for each time step. The resulting series of estimated monthly river

discharge correspond reasonably well to the observed values (Figures 9 and 10). The RFM is also

closer to the observations than the considered LSMs with respect to the majority of the performance

metrics (Sseas, MEf, R2 and Anomaly-R2). However, in most river basins, two LSMs show as

similar, ability in capturing the seasonal cycle of river discharge (Climatology-R2) and the RFM is330

outperformed by the LSMs with respect to the relative bias.

4.2.3 Long-term mean evapotranspiration

The long-term difference between the WFD precipitation and RFM runoff was compared to a bench-

mark estimate of land evapotranspiration from the LandFlux-EVAL synthesis product (Mueller et al.,

2013). Figure 11 shows the long-term mean evapotranspiration derived from the RFM and the335

LandFlux-EVAL synthesis product. Overall the two products agree well (R2=0.66), and the RFM-

based estimate lies in the majority of the cases within the uncertainty bounds of the LandFlux-EVAL

product. Note that the RFM estimate does have small negative values in some parts of Scandinavia,

which is related to a previously documented biasin the precipitation forcing (Gudmundsson et al., 2012b; Kauffeldt et al., 2013) .

:
.
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4.3 Example applications350

4.3.1 Drought Monitoring

The RFM based gridded runoff estimates can for example be used to monitor surface water avail-

ability in Europe. While the monthly resolution may limit its ability to capture flash floods, it is

still suitable for observing slowly evolving phenomena that are relevant for water resources man-

agement such as droughts. In Europe, 1976 is documented as a year with one of the most severe355

droughts of the twentieth century (Zaidman et al., 2002; Briffa et al., 2009; Tallaksen and Stahl,

2014). The severity of this drought is illustrated in Figure 12. Overall the runoff rates are low in

large parts of Europe reaching values well below 1 mm day−1. Accordingly monthly standardised

runoff anomalies are negative in most parts of the continent and the extreme departures from nor-

mal conditions in southern England, France and central Europe corresponds to previously reported360

observations (Zaidman et al., 2002). As in Zaidman et al. (2002), runoff rates were log-transformed

before standardisation, to account for the skewed distribution of the data.

4.3.2 A runoff climatology for Europe

Figure 13 shows a runoff climatology for Europe, that is based on the RFM based runoff estimates.

The spatial pattern of the mean annual runoff rates highlights regions with abundant water availabil-365

ity in Central and Northern Europe. These are contrasted by low runoff rates in Southern and Eastern

Europe. The maps displaying the month with the maximum and the month with the minimum of the

mean annual cycle capture the contrasting influence of snow and evapotranspiration dynamics on

runoff in Europe. On the one hand, snow accumulation leads to low flows in the winter months of

the cold regions (high latitudes and high altitudes) and corresponding spring floods when the water370

stored as snow is released. On the other hand evapotranspiration rates follow the seasonality of the

atmospheric water demand, leading to minimum runoff rates throughout late summer in large parts

of central and southern Europe and winter floods in the West of the continent.

5 Discussion

5.1 Model selection and overfitting375

The fact that increasing the model complexity, from a model that considers only atmospheric forcing

(Equation (2)) to a model taking land parameters into account (Equation (3)), deteriorates model

performance points towards issues with overfitting. Overfitting is referred to instances where the

statistical model is fitted to random fluctuations (errors) instead of the true underlying relationship.

This in turn leads to a reduction of the predictive power of the resulting model. As any machine380

learning technique, Random Forests are prone to overfitting, most likely in instances where the

number of input variables that have no explanatory power increases (Hastie et al., 2009). In the
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context of this study, the fact that the inclusion of selected land parameters deteriorates the models

performance therefore suggests that they have little or no explanatory power for continental scale

runoff dynamics.385

5.2 Model performance

The reasonable performance of the selected RFM with respect to (1) grid cell runoff, (2) discharge

from continental drainage basins and (3) large-scale evapotranspiration demonstrates the fidelity of

the RFM, also out of its expected comfort zone. The results from the cross validation show that

the performance of the RFM reaches satisfactory levels, indicating that the employed technique is390

suitable for estimating monthly runoff at ungauged locations. Despite the fact that the selected RFM

does not consider locally varying land parameters, the median performance measures lie within the

range of other studies focusing on the prediction of monthly runoff at ungauged locations (Duan

et al., 2006; Xia et al., 2012; Kumar et al., 2013; Blöschl et al., 2013).

The fact the RFM outperformed the considered LSMs with respect to most performance metrics395

(Figures 6, 7 and 10) shows that the RFM-based runoff estimates are closer to the observations

than the considered LSMs with the exception of its mean bias. This possibly indicates that the

considered LSMs have been optimised with respect to the mean continental river discharge, which

might have introduced compensating errors in other features such as the seasonal cycle. Albeit a full

explanation of the generally low performance of the LSMs lies beyond the scope of this study, it is400

also noteworthy that the differences between the RFM and the LSMs are most pronounced for the

correlation between the observed and modelled mean seasonal cycles (R2
clim). This issue has been

previously reported (Gudmundsson et al., 2012b) and suggests that the LSMs may have deficiencies

in capturing processes that govern the seasonality of runoff, such as evapotranspiration and snow

dynamics.405

5.3 Factors dominating large-scale terrestrial water dynamics

The results of the model selection procedure (Figure 4) do not only allow to identify the model

setup that is best suited for estimating gridded monthly runoff in Europe, but also provide interesting

clues on the optimal description of large-scale terrestrial water dynamics. The finding that the model

forced by precipitation and temperature only is outperformed by the model considering the full410

atmospheric forcing, highlights the importance of the remaining atmospheric variables on terrestrial

water dynamics. Among the factors that are likely to be important are the snowfall rate and drivers

of evapotranspiration (e.g. radiation, humidity and wind speed). Nevertheless, the performance

difference between these two modelling setups is relatively small if compared to the performance of

the LSMs. This shows that gridded precipitation and temperature may be sufficient for estimating415

continental scale runoff dynamics with a reasonable degree of accuracy.

It is surprising that the inclusion of location specific land parameters did not improve the gridded
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runoff estimate. The fact that the spatial cross validation errors of the models with and without land

parameters (equations (3) and (2) respectively) is not distinguishable implies that the influence of

soil texture and topography on monthly runoff could not be detected. This, combined with previous420

results showing that signatures of runoff dynamics (Gudmundsson et al., 2011b; Sawicz et al., 2011;

Ye et al., 2012; Yaeger et al., 2012; Szolgayova et al., 2014) as well as calibrated model parameters

(van Werkhoven et al., 2008; Merz et al., 2011) are primarily controlled by climatic conditions, raises

questions on the influence of location specific land parameters. In other words, one could speculate

that the control of local variations of land parameters on large-scale terrestrial water dynamics may425

not be detectable, as their influence is overruled by atmospheric forcing. This is discussed in more

detail in the following section.

5.4 Scale dependency and implications for model development

The fact that the influence of the considered land parameters did not improve the skill of the pre-

sented model raises interesting questions regarding the role of locally varying land parameters on430

terrestrial water dynamics. A likely explanation of this feature is related to the spatiotemporal reso-

lution at which the machine learning model is applied, i.e. that locally varying land parameters may

only have a minor influence on regional scale water fluxes. Previous publications have already sug-

gested that the influence of land cover change on floods and droughts is more pronounced on small

scales (e.g Blöschl et al., 2007) and that locally varying parameters do only have a minor influence435

on regional scale soil moisture simulations (e.g. Robock et al., 1998). Similarly Oudin et al. (2008)

found only a weak empirical influence of land cover on longterm mean annual streamflow. However,

an exhaustive assessment of such scale effects is still lacking.

While a complete assessment lies beyond the scope of this study a simple analysis of scale can

provide some clues on the spatial and temporal resolution at which the effects of locally varying land440

parameters on runoff are expected to be detectable. For this we adopt the idea that terrestrial water

dynamics has two separate space and time scales: A short scale where heterogeneous land properties

dominate water dynamics and a large scale where homogeneous features of atmospheric forcing are

dominating. Following previous suggestions (Vinnikov et al., 1996; Robock et al., 1998; Entin et al.,

2000), the separation of time scales can be expressed as a mixture of two autocorrelation functions445

with exponential decay such that

r(τ) = ζ exp

(
− τ

TL

)
+ (1− ζ)exp

(
− τ

TA

)
(8)

where τ is a time lag; the de-correlation time TL is the time scale related to heterogeneous land prop-

erties, TA the time scale related to the atmospheric forcing and ζ ε [0,1] is the fraction of variance

related to TL. Note also that TL < TA. Similarly the separation of space scales can be expressed as450

r(λ) = η exp

(
− λ

LL

)
+ (1− η)exp

(
− λ

LA

)
(9)
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where λ is the lag distance, LL is the length scale related to heterogeneous land properties, LA the

length scale related to the atmospheric forcing and η ε [0,1] is the fraction of variance related to LL.

While the abovementioned separation of scales has been developed and is well documented for

soil moisture (Vinnikov et al., 1996; Robock et al., 1998; Entin et al., 2000; Crow et al., 2012;455

Mittelbach and Seneviratne, 2012), its validity for other variables is less clear. Therefore we asses

the applicability of Equations (8) and (9) for the considered streamflow observations in Europe.

(Details on the estimation of space and time scales are summarised in Appendix A.) Figure 14

shows the estimated temporal and spatial correlation functions for runoff in Europe and Table 2

reports the parameters of Equations (8) and (9) fitted to the data. Overall, the small p-values of all460

parameters show that the hypothesised separation of scales is supported by observations. The time

scale related to heterogeneous land parameters, TL is approximately one week, which is well below

the monthly resolution of the statistical model presented in this study. Similarly, the length scale

related to land parameters LL, is found to be ≤ 10 km, being substantially smaller than the edge

length of the 0.5◦ grid cells. The results of this analysis of scales hence suggest that the effect of465

small scale variations in land parameters on runoff dynamics may only be detectable for models

with spatial and temporal resolutions much higher than the one considered in this study. This is also

consistent with the results of the model identification procedure, which could not find a significant

improvement of model performance with to the inclusion of land parameters for the considered,

coarse, spatiotemporal resolution.470

6 Conclusions and Outlook

This study introduced a framework for estimating runoff on regular space-time grids in large spatial

domains. The framework is based on the assumption that runoff at any location in space can be

modelled as a function of gridded predictors, including both atmospheric variables and land param-

eters. While the framework has been applied to estimate monthly runoff on a 0.5◦ grid in Europe475

it can in principle be applied to finer spatial and temporal resolutions. The results from both model

selection and model validation show that the model is capable to estimate monthly runoff dynamics

at locations that were not used for model identification with a reasonable degree of accuracy. These

results also show that the derived data are consistent with other variables of the terrestrial water

cycle, which increases the confidence in the validity of the gridded runoff estimates. Such grids do480

allow to map historical runoff dynamics, providing first order estimates on its past evolution at any

location in space, even if no ground observations are available. This is for example interesting in

regions where no regular updates of streamflow archives exists (for Europe see e.g. Viglione et al.,

2010). In such regions one could exploit the presented methodology to provide estimates of runoff

for the years in which the station observations are not yet available.485

Although the skill of the proposed method is reasonable and in line with previously published
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results (Duan et al., 2006; Xia et al., 2012; Kumar et al., 2013; Blöschl et al., 2013), there is still room

for improving future estimates of runoff dynamics in Europe. Possible extensions of the presented

analysis, each requiring an independent research effort, may focus on one of the following themes:

1. Uncertainty of the considered data: The considered atmospheric forcing data and the land490

parameters depend both on in-situ observations as well as on the methods used to derive esti-

mates of the respective variables on a regular spatial grid. Unfortunately the uncertainty of the

observations and the estimation procedures is often not documented in sufficient detail. How-

ever, several studies suggest that both the choice of atmospheric forcing data and mapped land

parameters (e.g. Teuling et al., 2009; Guillod et al., 2013) can have pronounced impacts on495

simulation results. Similarly uncertainty estimates of the considered streamflow observations

are not available.

2. Limitations of the employed statistical methods: Although Random Forests, like other ma-

chine learning techniques, are powerful tools for data driven modelling their application in

the presented context may be limited. As other machine learning techniques they are prone to500

over fitting, implying that noise in the data can obscure possible signals (Hastie et al., 2009).

Further, Random Forests do not explicitly handle spatial and temporal correlation in the data,

and the implicit treatment of temporal correlations in equations (1) to (3) may be not suffi-

cient. Consequently the application of other statistical techniques may improve large-scale

estimates of terrestrial water dynamics in the future. Such work could potentially be based on505

top-kriging approaches (Sauquet et al., 2000; Skøien et al., 2006; Skøien and Blöschl, 2007;

Laaha et al., 2013), that account for spatial dependence within the constraints of a channel

network.

3. Usage of large river basins for model identification: This study did rely solely on stream-

flow from small catchments to estimate runoff at the grid-cell scale. However, discharge from510

large river basins does also carry information, which would be valuable to include into esti-

mates of terrestrial water dynamics. A possible approach for this would be to first route the

gridded runoff estimates through a channel network, and subsequently applying the procedure

suggested by Fekete et al. (2002, 2011) to account for observations from large river basins.

4. The non exhaustive list of considered land parameters: In this study only the grid-cell515

slope and information on median grid-cell soil texture were taken into account. Although

similar information is regularly used in LSMs, other parameters including the topographic

index (Beven and Kirkby, 1979) or information on vegetation structure (Bonan, 2008) may

have detectable impacts on large scale runoff dynamics in Europe.

5. Temporal and spatial resolution: The presented analysis is limited to relatively coarse spatial520

(0.5◦) and temporal (monthly) resolution, focusing on large-scale phenomena. Obviously this
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resolution limits the application of the derived data to the analysis of large, continental scale

patterns. To which degree the suggested methodology is capable of capturing small scale

variations of runoff (e.g. flash floods) remains an open question. Further investigations may

help to clarify the effect of increasing the spatial and the temporal resolution on modelling525

runoff at ungauged locations using machine learning tools.

6. Implications for model development: The results from the model identification and vali-

dation raised interesting questions regarding the influence of land parameters on continental

scale runoff dynamics. This, paired with an analysis of scales suggested that the influence

of land parameters may only be detectable at model resolutions shorter than one week and530

smaller than ten kilometres. While this is consistent with the long history of catchment scale

studies, it also raises questions on the optimal design of global scale models that are build

to capture climatological phenomena. In fact, the results suggest that parsimonious physi-

cal descriptions, neglecting the influence of small scale variations in land parameters, may

be sufficient to effectively describe terrestrial water dynamics on large scales. In a more for-535

mal setting, this can also be expressed as the hypothesis that hydrological variability at any

location in space does solely depend on present and past atmospheric forcing – and not on lo-

cally varying land parameters. Of course this “Constant Land Parameter Hypothesis” (CLPH)

will only be valid in certain circumstances and thus can act as a null hypothesis for testing

the influence of selected land parameters on terrestrial water dynamics. This could guide the540

development efficient model physics.

In conclusion, we presented a novel approach for estimating the historical space-time evolution

of runoff on regular spatial grids. The proposed methodology relies on the power of machine learn-

ing techniques to combine in-situ observations of runoff with gridded atmospheric variables. For

Europe, the resulting runoff estimates compare well with observations and are consistent with other545

variables of the terrestrial water cycle, including evapotranspiration. Despite some remaining open

questions, related e.g. to data uncertainty and spatiotemporal resolution, the derived runoff grid en-

ables a new perspective on features of terrestrial water dynamics that emerge on large spatial scales.

This was exemplified by (1) the validation of process based models, (2) the continuous mapping of

runoff climatologies and (3) the analysis of hydrological droughts on large scales. Consequently,550

the resulting data product allows for a more comprehensive assessment of the historical space-time

evolution of runoff in Europe relaxing the constraints of a limited observation network.
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Appendix A

Estimating space and time scales of streamflow

Following a previous study (Skøien et al., 2003), daily streamflow observations from all catchments555

were log transformed and seasonal effects were removed. The deseasonalisation strictly follows

recommendations on an removal of the seasonal cycle in the mean and the variance using harmonic

regression (Hipel and McLeod, 1994; McLeod and Gweon, 2013). Temporal correlation was first

estimated for each gauging station separately. The maximum time lag was limited to 120 days to

reduce effects of climate induced interannual variability, which is reportedly strong in the data under560

investigation (Gudmundsson et al., 2011b). The estimated temporal autocorrelation functions from

the individual stations were finally averaged as in previous studies (Entin et al., 2000; Skøien et al.,

2003; Vinnikov et al., 1996) to obtain an estimate of the mean autocorrelation function of runoff in

Europe. Spatial correlation was estimated using Morans I (Moran, 1950; Legendre and Legendre,

1998) for each time step separately with a spatial bin width of 10 km. This bin width is a compromise565

between having enough station pairs per bin and the ability to resolve small scale processes (the first

bin contains 31 pairs, the median number of pairs: 490). The analysis of spatial correlation was

limited to a maximum lag distance of 400 kilometres to reduce the effect of large scale climate

gradients, which impact European runoff dynamics (Gudmundsson et al., 2011a,b). Finally the

spatial correlation functions were then averaged over all time steps, resulting in an estimate of mean570

spatial correlation for the time period under investigation.
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Fekete, B. M., Vörösmarty, C. J., and Grabs, W.: High-resolution fields of global runoff combin-

ing observed river discharge and simulated water balances, Global Biogeochem. Cycles, 16, 1042,645

doi:10.1029/1999GB001254, 2002.

Fekete, B. M., Looser, U., Pietroniro, A., and Robarts, R. D.: Rationale for Monitoring Discharge on the

Ground, J. Hydrometeor, 13, 1977–1986, doi:10.1175/JHM-D-11-0126.1, 2012.
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Hrachowitz, M., Savenije, H. H. G., Blöschl, G., McDonnell, J. J., Sivapalan, M., Pomeroy, J. W., Arheimer,

B., Blume, T., Clark, M. P., Ehret, U., Fenicia, F., Freer, J. E., Gelfan, A., Gupta, H. V., Hughes, D. A., Hut,705

R. W., Montanari, A., Pande, S., Tetzlaff, D., Troch, P. A., Uhlenbrook, S., Wagener, T., Winsemius, H. C.,

Woods, R. A., Zehe, E., and Cudennec, C.: A decade of Predictions in Ungauged Basins (PUB) – a review,

Hydrological Sciences Journal, 58:6, 1198 – 1255, doi:10.1080/02626667.2013.803183, 2013.

Jung, M., Reichstein, M., and Bondeau, A.: Towards global empirical upscaling of FLUXNET eddy covariance

observations: validation of a model tree ensemble approach using a biosphere model, Biogeosciences, 6,710

2001–2013, doi:10.5194/bg-6-2001-2009, 2009.

Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., Bonan, G., Cescatti, A.,

Chen, J., de Jeu, R., Dolman, A. J., Eugster, W., Gerten, D., Gianelle, D., Gobron, N., Heinke, J., Kimball,

J., Law, B. E., Montagnani, L., Mu, Q., Mueller, B., Oleson, K., Papale, D., Richardson, A. D., Roupsard,

O., Running, S., Tomelleri, E., Viovy, N., Weber, U., Williams, C., Wood, E., Zaehle, S., and Zhang, K.:715

Recent decline in the global land evapotranspiration trend due to limited moisture supply, Nature, 467, 951

– 954, doi:10.1038/nature09396, 2010.

Jung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richardson, A. D., Arain, M. A., Arneth, A., Bern-

hofer, C., Bonal, D., Chen, J., Gianelle, D., Gobron, N., Kiely, G., Kutsch, W., Lasslop, G., Law, B. E.,

Lindroth, A., Merbold, L., Montagnani, L., Moors, E. J., Papale, D., Sottocornola, M., Vaccari, F., and720

Williams, C.: Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat

derived from eddy covariance, satellite, and meteorological observations, J. Geophys. Res., 116, G00J07,

doi:10.1029/2010JG001566, 2011.

Kauffeldt, A., Halldin, S., Rodhe, A., Xu, C.-Y., and Westerberg, I. K.: Disinformative data in large-scale

hydrological modelling, Hydrology and Earth System Sciences, 17, 2845–2857, doi:10.5194/hess-17-2845-725

2013, 2013.

Koster, R. D., Dirmeyer, P. A., Guo, Z., Bonan, G., Chan, E., Cox, P., Gordon, C. T., Kanae, S., Kowalczyk, E.,

Lawrence, D., Liu, P., Lu, C.-H., Malyshev, S., McAvaney, B., Mitchell, K., Mocko, D., Oki, T., Oleson, K.,

Pitman, A., Sud, Y. C., Taylor, C. M., Verseghy, D., Vasic, R., Xue, Y., and Yamada, T.: Regions of Strong

Coupling Between Soil Moisture and Precipitation, Science, 305, 1138–1140, doi:10.1126/science.1100217,730

2004.

Krakauer, N. Y. and Fung, I.: Mapping and attribution of change in streamflow in the coterminous United States,

Hydrology and Earth System Sciences, 12, 1111–1120, doi:10.5194/hess-12-1111-2008, 2008.

Kumar, R., Livneh, B., and Samaniego, L.: Toward computationally efficient large-scale hydrologic

predictions with a multiscale regionalization scheme, Water Resources Research, 49, 5700–5714,735

doi:10.1002/wrcr.20431, 2013.

22

http://dx.doi.org/10.1175/JHM480.1
http://dx.doi.org/10.1016/j.rse.2014.08.030
http://dx.doi.org/10.1029/2011WR011291
http://dx.doi.org/10.1080/02626667.2013.803183
http://dx.doi.org/10.5194/bg-6-2001-2009
http://dx.doi.org/10.1038/nature09396
http://dx.doi.org/10.1029/2010JG001566
http://dx.doi.org/10.5194/hess-17-2845-2013
http://dx.doi.org/10.5194/hess-17-2845-2013
http://dx.doi.org/10.5194/hess-17-2845-2013
http://dx.doi.org/10.1126/science.1100217
http://dx.doi.org/10.5194/hess-12-1111-2008
http://dx.doi.org/10.1002/wrcr.20431


Laaha, G., Skøien, J. O., Nobilis, F., and Bløschl, G.: Spatial Prediction of Stream Temperatures Using Top-

Kriging with an External Drift, Environmental Modeling & Assessment, 18, 671–683, doi:10.1007/s10666-

013-9373-3, 2013.

Landerer, F. W. and Swenson, S. C.: Accuracy of scaled GRACE terrestrial water storage estimates, Water740

Resour. Res., 48, W04 531, doi:10.1029/2011WR011453, 2012.

Legendre, P. and Legendre, L.: Numerical ecology, Elsevier New York, 1998.

Liaw, A. and Wiener, M.: Classification and Regression by randomForest, R News, 2, 18 – 22, 2002.

Loew, A., Stacke, T., Dorigo, W., de Jeu, R., and Hagemann, S.: Potential and limitations of multidecadal satel-

lite soil moisture observations for selected climate model evaluation studies, Hydrology and Earth System745

Sciences, 17, 3523–3542, doi:10.5194/hess-17-3523-2013, 2013.

McLeod, A. I. and Gweon, H.: Optimal Deseasonalization for Monthly and Daily Geophysical Time Series,

Journal of Environmentl Statistics, 4, http://jes.stat.ucla.edu/v04/i11, 2013.
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Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn,

S. E., Sullivan, C. A., Liermann, C. R., and Davies, P. M.: Global threats to human water security and river

biodiversity, Nature, 467, 555–561, doi:10.1038/nature09440, 2010.860
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Fig. 1. Runoff observations: Left: Locations of the gauging stations of the considered catchments, as well as

the grid cells with observations. Right: Histogram of catchment areas. The vertical lines indicate the grid-cell

size of the southern- and northernmost grid cells.
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Fig. 4. Model Selection: Root mean square error (RMSE) of the three considered model setups (PT: Precipita-

tion and Temperature forcing. FULL: Full atmospheric forcing. FULL-LP: Full atmospheric forcing and land

parameters; see Section 3.1). RMSE is estimated for both the cross-validation in space and the cross validation

in time (see Section 3.3.1).
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Fig. 6. Grid-cell scale validation (A): Spatial distribution of the performance of the Random Forest model with

full atmospheric forcing (Equation (2)), measured with different skill scores and derived for the cross validation

(CV) in time and the CV in space experiment. The boxplots allow to compare the performance distribution of

all tested Random Forest models (Equations (1) to (3)) with runoff simulations from a multi model ensemble of

LSMs. The individual boxes are ordered according to the median performance, such that the best performing

model ranks highest.
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Fig. 9. Basin scale validation (A): Top, nine continental scale river basins used for model validation. Bottom,

comparison between observed monthly river discharge to river discharge estimates derived from the Random

Forest Model with full atmospheric forcing (left) and comparison between observed and modelled monthly

discharge anomalies (right). The similarity between observed an modelled river discharge is quantified in

Figure 10.
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Fig. 10. Basin scale validation (B): Performance of the Random Forest Model with full atmospheric forcing

compared to the performance of the considered LSMs. Model performance is assessed with respect to conti-

nental scale river discharge, quantified using six different performance metric. The best performing model for

each river is marked by a dot.
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Fig. 11. Comparison of mean evapotranspiration (1989 - 1995) derived from the Random Forest Model

with full atmospheric forcing and the LandFlux-EVAL synthesis product: Top left: Mean evapotranspira-

tion computed as the mean difference between precipitation and runoff derived from the RFM. Top right: Mean

evapotranspiration from the LandFlux-Eval synthesis product (Mueller et al., 2013). Bottom: Comparison of

the RFM and the LandFux-EVAL estimates of mean evapotranspiration. The vertical bars denote the interquar-

tile range (IQR) and the range of all 40 data sets entering the LandFux-EVAL product. The points and crosses

indicate the median and mean evapotranspiration of the LandFlux-EVAL product.
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Fig. 12. The 1976 drought in Europe: The top left panel shows the monthly runoff rate in June 1976. The top

right panels shows the corresponding standardised runoff anomalies. The bottom panel shows the time series

of the spatial average of standardised runoff anomalies for the entire region under investigation.
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Fig. 13. European runoff climatology (1964 - 2000): Left: Long-Term mean daily runoff rates. Centre:

Maximum month of the long-term mean annual cycle. Right: Minimum month of the long-term mean annual

cycle.
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Fig. 14. Time and space scales of runoff in Europe: (a) Empirical results suggest that runoff in Europe

has two space and time scales. A small scale (TL: time scale; LL: space scale), at which runoff dynamics is

strongly influenced by locally varying land properties, and a large scale (TA: time scale; LA: space scale) at

which runoff dynamics is dominated by atmospheric forcing. Both the spatial and temporal resolution of this

study are located well above the scales at which land properties are expected to have a strong influence on runoff

dynamics. (b,c) Small and large scales are estimated from observed autocorrelations of daily runoff anomalies

in Europe. Vertical bars denote the standard deviation of the observed autocorrelation. See text for details.
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Table 1. Median grid-cell performance of the Random Forest Model with full atmospheric forcing (Equa-

tion (2))

CV in Space CV in Time

Sseas 0.31 0.27

MEf 0.64 0.61

BIAS -0.08 -0.09

R2 0.78 0.73

R2
clim 0.93 0.94

R2
ano 0.71 0.60
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Table 2. Temporal and spatial scales of daily runoff in Europe: Estimate, standard error and p-value (t-test)

of the scaling models (equations (8) and (9)) fitted to observed temporal and spatial correlation functions using

nonlinear least squares regression. Note, that the lower limit of LL was set to the resolution of the empirical

spatial correlation function (10 km).

Temporal Spatial

ζ [-] TL [days] TA [days] η [-] LL [km] LA [km]

Estimate 0.50 7.4 68.3 0.51 ≤10 180.5

Standard Error 3.8×10−3 0.1 0.6 0.04 2.9 19.6

p - value <0.001 <0.001 <0.001 <0.001 0.002 <0.001
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