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Comparing bias correction methods in downscaling meteorological variables for 1 

hydrologic impact study in an arid area in China 2 

Abstract:  3 

Water resources are essential to the ecosystem and social economy in the desert 4 

and oasis of the arid Tarim River Basin, Northwest China, and expected to be 5 

vulnerable to climate change. It has been demonstrated that Regional Climate Models 6 

(RCM) provide more reliable results for regional impact study of climate change (e.g., 7 

on water resources) than General Circulation Models (GCM). However, due to their 8 

considerable bias it is still necessary to apply bias correction before they are used for 9 

water resources research. In this paper, after a sensitivity analysis on input 10 

meteorological variables based on Sobol‘ method, we compared five precipitation 11 

correction methods and three temperature correction methods in downscaling RCM 12 

simulations applied over the Kaidu River Basin, one of the headwaters of the Tarim 13 

River Basin. Precipitation correction methods applied include Linear Scaling (LS), 14 

LOCal Intensity scaling (LOCI), Power Transformation (PT), Distribution Mapping 15 

(DM) and Quantile Mapping (QM); while temperature correction methods are LS, 16 

VARIance scaling (VARI) and DM. The corrected precipitation and temperature were 17 

compared to the observed meteorological data, prior to be used as meteorological 18 

inputs of a distributed hydrologic model to study their impacts on streamflow. The 19 

results show: 1) Streamflows are sensitive to precipitation, temperature, solar radiation 20 

but not to relative humidity and wind speed; 2) Raw RCM simulations are heavily 21 
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biased from observed meteorological data, and its use for streamflow simulations 22 

results in large biases from observed streamflow, and all bias correction methods 23 

effectively improved these simulations; 3) For precipitation, PT and QM methods 24 

performed equally best in correcting the frequency-based indices (e.g., standard 25 

deviation, percentile values) while LOCI method performed best in terms of the 26 

time-series based indices (e.g., Nash-Sutcliffe coefficient, R
2
); 4) For temperature, all 27 

correction methods performed equally well in correcting raw temperature; 5) For 28 

simulated streamflow, precipitation correction methods have more significant influence 29 

than temperature correction methods and the performances of streamflow simulations 30 

are consistent with those of corrected precipitation, i.e., PT and QM methods 31 

performed equally best in correcting flow duration curve and peak flow while LOCI 32 

method performed best in terms of the time-series based indices. The case study is for 33 

an arid area in China based on a specific RCM and hydrologic model, but the 34 

methodology and some results can be applied to other areas and models. 35 

 36 

 37 

 38 

  39 
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1. Introduction 40 

In recent decades, the ecological situation of the Tarim River Basin in China has 41 

seriously degraded especially in the lower reaches of the Tarim River due to water 42 

scarcity. In the meantime, climate change is significant in this region with an increase 43 

in temperature at a rate of 0.33 ~ 0.39 °C/decade and a slight increase in precipitation 44 

(Li et al., 2012) over the past 5 decades. Under the context of regional climate change, 45 

water resources in this region are expected to be more unstable and ecosystems are 46 

likely to suffer from severe water stress because the hydrologic system of the arid 47 

region is particularly vulnerable to climate change (Arnell et al., 1992; Shen and Chen, 48 

2010; Wang et al., 2013). The impact of climate change on hydrologic system has 49 

already been observed and it is expected that the hydrological system will continue to 50 

change in the future (Liu et al., 2010, 2011; Chen et al., 2010). Therefore, projecting 51 

reliable climate change and its impact on hydrology are important to study the ecology 52 

in the Tarim River Basin. 53 

Only recently efforts have been made to evaluate and project the impact of 54 

climate change on hydrology in the Tarim River Basin. These studies include research 55 

on the relationships of meteorological variables and streamflow based on the historical 56 

measurements (e.g. Chen et al., 2013c; Xu et al., 2013), and use of the GCM outputs to 57 

drive a hydrologic model to study potential climate change on water resources (Liu et 58 

al., 2010, 2011). Study of historical climate - hydrology relationships has limited 59 

applications on future water resources management, especially under the context of 60 

global climate change. Though GCMs have been widely used to study impacts of 61 
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future climate change on hydrological systems and water resources, they are impeded 62 

by their inability to provide reliable information at the hydrological scales (Maraun et 63 

al., 2010; Giorgi, 1990). In particular, for mountainous regions, fine scale information 64 

such as the altitude-dependent precipitation and temperature information, which is 65 

critical for hydrologic modeling, is not represented in GCMs (Seager and Vecchi, 66 

2010). Therefore, recent studies tend to use the higher-resolution Regional Climate 67 

Models (RCMs) to preserve the physical coherence between atmospheric and land 68 

surface variables (Bergstrom et al., 2001; Anderson et al., 2011). As such, when 69 

evaluating the impact of climate change on water resources on a watershed scale, the 70 

use of RCMs instead of GCMs is preferable since RCMs have been proved to provide 71 

more reliable results for impact study of climate change on regional water resources 72 

than GCM models (Buytaert et al., 2010; Elguindi et al., 2011). However, the raw 73 

RCM simulations may be still biased especially in the mountainous regions (Murphy, 74 

1999; Fowler et al., 2007), which makes the use of RCM outputs as  direct input for 75 

hydrological model challenging. As a result it is of significance to properly correct the 76 

RCM simulated meteorological variables before they are used to drive a hydrological 77 

model especially in an arid region where the hydrology is sensitive to climate changes.  78 

Several bias correction methods have been developed to downscale meteorological 79 

variables from the RCMs, ranging from the simple scaling approach to sophisticated 80 

distribution mapping (Teutschbein and Seibert, 2012). And their applicability in the 81 

arid Tarim River Basin has not been investigated, thereby, evaluating and finding the 82 

appropriate bias correction method is necessary to evaluate the impact of climate 83 
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change on water resources. 84 

This study evaluates performances of five precipitation bias correction methods 85 

and three temperature bias correction methods in downscaling RCM simulations and 86 

applied to the Kaidu River Basin, one of the most important headwaters of the Tarim 87 

River. These bias correction methods include most frequently used bias correction 88 

methods. We compare their performances in downscaling precipitation and temperature 89 

and evaluate their impact on streamflow through hydrological modeling. 90 

The paper  is constructed as follows: Section 2 introduces the study area and 91 

data; Section 3 describes the bias correction methods for precipitation and temperature 92 

along with the hydrological model, sensitivity analysis method and result analysis 93 

strategy; and then Section 4 presents results and discussion, followed by conclusions in 94 

Section 5. 95 

 96 

 97 

2 Study area and data 98 

2.1 Study area and observed data 99 

The Kaidu River Basin, with a drainage area of 18,634 km
2
 above the Dashankou 100 

hydrological station, is located on the south slope of the Tianshan Mountains in 101 

Northwest China (Fig. 1). Its altitude ranges from 1,342 m to 4,796 m above sea level 102 

(a.s.l.) with an average elevation of 2,995 m, and its climate is temperate continental 103 

with alpine climate characteristics. As one of the headwaters of the Tarim River, it 104 
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provides water resources for agricultural activity and ecological environment of the 105 

oasis in the lower reaches. This oasis, with a population of over 1.15 million, is 106 

stressed by lack of water and water resources are the main factor constricting the 107 

development (Chen et al., 2013b). Therefore, projecting the impact of future climate 108 

change on water resources is urgent to the sustainable development of this region. 109 

Daily observed meteorological data, including precipitation, maximum/minimum 110 

temperature, wind speed and relative humidity of two meteorological stations 111 

(Bayanbulak and Baluntai, stars in Fig. 1), are from the China Meteorological Data 112 

Sharing Service System (http://cdc.cma.gov.cn/). The mean annual maximum and 113 

minimum temperature at the Bayanbulak meteorological station are 3.1 °C and 114 

-10.6 °C and mean annual precipitation is 267 mm, and generally precipitation falls as 115 

rain from May to September and as snow from October to April of the next year.  116 

The observed streamflow data at the Dashankou hydrologic station (the triangle in 117 

Fig. 1) are from Xinjiang Tarim River Basin Management Bureau. The average daily 118 

flow is around 110 m
3 
s

-1
 (equivalent to 185 mm runoff per year), ranging from 15 m

3 
119 

s
-1

 to 973 m
3 

s
-1

. 120 

2.2 Simulated meteorological variables from the RCM 121 

GCM or RCM outputs are generally biased (Ahmed et al., 2013; Teutschbein and 122 

Seibert, 2012; Mehrotra and Sharma, 2012), and there is a need to correct these outputs 123 

before used for regional impact studies. The RCM outputs used in this study are based 124 

on the work done by Gao et al. (2013), where the RCM outputs used in this study are 125 
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based on the work done by Gao et al. (2013). In Gao et al. (2013), the RCM model 126 

(RegCM, Giorgi and Mearns, 1999) was driven by a global climate model 127 

BCC_CSM1.1 (Beijing Climate Center Climate System Model; Wu et al., 2013; Xin et 128 

al., 2013) at a horizontal resolution of 50 km over China.  129 

The RCM outputs were validated with the observational dataset (CN05.1) over 130 

China for the period from 1961 to 2005. The RCM outputs show reasonable simulation 131 

of temperature and precipitation in most parts of China except some regions where our 132 

study area is located (for more details refer to Gao et al., 2013).  133 

 134 

3 Methodology 135 

Figure 2 shows the flow chart of the comparison procedure. First, grid based 136 

RCM simulation was downscaled to station scale using bias correction methods, and 137 

then the corrected meteorological data were compared to the observation at these two 138 

stations and to each other (―Meteorological data comparison‖ in Fig. 2). These station 139 

based meteorological data were then upscaled to watershed scale with the precipitation 140 

and temperature lapse rates before they were used to drive the hydrological model 141 

(SWAT). Finally, the simulated streamflow driven by the corrected and observed 142 

meteorological data were compared to observed streamflow and to each other 143 

(―Streamflow comparison‖ in Fig. 2). 144 
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3.1 Hydrologic model and sensitivity analysis 145 

SWAT (Soil and Water Assessment Tool; Arnold et al., 1998) is a distributed and 146 

time continuous watershed hydrologic model. The climatic input (driving force) 147 

consists of daily precipitation, maximum/minimum temperature, solar radiation, wind 148 

speed and relative humidity. To account for orographic effects on precipitation and 149 

temperature, elevation bands were used. Within each elevation band, the precipitation 150 

and temperature are estimated based on their lapse rates and elevation. For more details, 151 

refer to SWAT manuals (http://www.brc.tamus.edu/). SWAT has been being widely 152 

used for comprehensive modeling of the impact of management practices and climate 153 

change on the hydrologic cycle and water resources at a watershed scale (e.g., Arnold 154 

et al., 2000; Arnold and Fohrer, 2005; Setegn et al., 2011).  155 

In this study, SWAT model was firstly set up with available DEM, landuse, soil, 156 

and observed climate data, and then model parameters were calibrated with the 157 

observed streamflow data at the Dashankou Station. The simulation results show: 1) 158 

model application shows excellent performances for both calibration period (1986 ~ 159 

1989) and validation period (1990 ~ 2001) with daily ―NS‖s (Nash-Sutcliffe 160 

coefficients, Nash and Sutcliffe, 1970; see the definition in Eq. 16) and ―R
2
‖s over 0.80, 161 

which is highly acceptable; 2) model parameters are reasonable and spatial patterns of 162 

precipitation and temperature are in agreement with other studies in the region (see 163 

more details in Fang et al., 2015). Figure 3 shows a comparison of mean hydrographs 164 

of the observed (―obs‖) and simulated flows (―default‖). This calibrated model hence 165 

provides a basis for evaluation of the impact of different correction methods on 166 

http://www.brc.tamus.edu/
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streamflow.  167 

To study the relative importance of the five meteorological variables, the Sobol‘ 168 

sensitivity analysis method (Sobol', 2001) was applied. The Sobol‘ method is based on 169 

the decomposition of the variance V of objective function:  170 

V = ∑ 𝑉𝑖 + ∑ ∑ 𝑉𝑖𝑗 + ⋯ + 𝑉1,2,⋯,𝑛𝑗>𝑖𝑖𝑖    (1) 171 

where  172 

Vi = 𝑉(𝜇(𝑌|𝑋𝑖))  173 

Vij = 𝑉 (𝜇(𝑌|𝑋𝑖 , 𝑋𝑗)) − Vi − Vj  174 

and so on. Herein, V(.) denotes the variance operator, V is the total variance, and Vi 175 

and Vij are main variance of Xi (the i
th

 factor of X ) and partial variance of Xi and Xj. 176 

Here factors X are the changes applied to these five meteorological variables, 177 

respectively (see Table 1 for a list of these factors). In practice, normalized indices are 178 

often used as sensitivity measures: 179 

𝑆𝑖 =
Vi

V
, 1 ≤ 𝑖 ≤ 𝑛 (2) 180 

𝑆𝑖𝑗 =
Vij

V
, 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 (3) 181 

𝑆𝑇𝑖 = 𝑆𝑖 + ∑ 𝑆𝑖𝑗 + ∑ ∑ 𝑆𝑖𝑗𝑘 + ⋯ + 𝑆1,2,…,𝑛𝑘𝑗𝑗 , 1 ≤ 𝑖 ≤ 𝑛  (4) 182 

Where Si, Sij and STi are the main effect of Xi, first order interaction between Xi and Xj, 183 

and total effect of Xi. STi ranges from 0 to 1 and denotes the importance of the factor to 184 

model output. The larger STi, the more important this factor is. The difference between 185 

STi and Si denotes the significance of the interaction of this factor with other factors. As 186 

a result, the larger this difference, the more significant the interaction is. 187 
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3.2 Bias correction methods 188 

In this study, five bias correction methods were used for precipitation, and three 189 

for temperature. These methods are listed in Table 2. All these bias correction methods 190 

were conducted on a daily basis from 1975 to 2005. 191 

3.2.1 Linear Scaling (LS) of precipitation and temperature 192 

LS method aims to perfectly match the monthly mean of corrected values with 193 

that of observed ones (Lenderink et al., 2007). It operates with monthly correction 194 

values based on the differences between observed and raw data (raw RCM simulated 195 

data in this case). Precipitation is typically corrected with a multiplier and temperature 196 

with an additive term on a monthly basis:  197 

𝑃𝑐𝑜𝑟,𝑚,𝑑 = 𝑃𝑟𝑎𝑤,𝑚,𝑑 ×
𝜇(𝑃𝑜𝑏𝑠,𝑚)

𝜇(𝑃𝑟𝑎𝑤,𝑚)
 

 
(5) 

198 

𝑇𝑐𝑜𝑟,𝑚,𝑑 = 𝑇𝑟𝑎𝑤,𝑚,𝑑 + 𝜇(𝑇𝑜𝑏𝑠,𝑚) − 𝜇(𝑇𝑟𝑎𝑤,𝑚)
 (6) 

199 

where Pcor,m,d and Tcor,m,d are corrected precipitation and temperature on the d
th

 day of 200 

m
th

 month and Praw,m,d and Traw,m,d are the raw precipitation and temperature on the d
th

 201 

day of m
th

 month. 𝜇(. )  represents the expectation operator (e.g., 𝜇(𝑃𝑜𝑏𝑠,𝑚) 202 

represents the mean value of observed precipitation at given month m). 203 

 204 

3.2.2 LOCal Intensity scaling (LOCI) of precipitation 205 

LOCI method (Schmidli et al., 2006) corrects the wet-day frequencies and 206 

intensities and can effectively improve the raw data which have too many drizzle days 207 

(days with little precipitation). It normally involves two steps: firstly, a wet-day 208 

threshold for the m
th

 month Pthres,m is determined from the raw precipitation series to 209 
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ensure that the threshold exceedance matches the wet-day frequency of the observation; 210 

secondly, a scaling factor 𝑠𝑚 =
𝜇(𝑃𝑜𝑏𝑠,𝑚,𝑑|𝑃𝑜𝑏𝑠,𝑚,𝑑>0)

𝜇(𝑃𝑟𝑎𝑤,𝑚,𝑑|𝑃𝑟𝑎𝑤,𝑚,𝑑>𝑃𝑡ℎ𝑟𝑒𝑠,𝑚)
 is calculated and used to 211 

ensure that the mean of the corrected precipitation is equal to that of the observed 212 

precipitation: 213 

𝑃𝑐𝑜𝑟,𝑚,𝑑 = {
0, 𝑖𝑓 𝑃𝑟𝑎𝑤,𝑚,𝑑 < 𝑃𝑡ℎ𝑟𝑒𝑠,𝑚

𝑃𝑟𝑎𝑤,𝑚,𝑑 × 𝑆𝑚, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (7) 214 

 

215 

3.2.3 Power Transformation (PT) of precipitation 216 

While the LS and LOCI account for the bias in the mean precipitation, it does not 217 

correct biases in the variance. PT method uses an exponential form to further adjust the 218 

standard deviation of precipitation series. Since PT has the limitation in correcting the 219 

wet day probability (Teutschbein and Seibert, 2012), which was also confirmed in our 220 

study (not shown), LOCI method is applied to correct precipitation prior to the 221 

correction by PT method.  222 

Therefore, to implement this PT method, firstly, we estimate bm that minimizes: 223 

f(𝑏𝑚) =
𝜎(𝑃𝑜𝑏𝑠,𝑚)

𝜇(𝑃𝑜𝑏𝑠,𝑚)
−

𝜎(𝑃𝐿𝑂𝐶𝐼,𝑚
𝑏𝑚 )

𝜇(𝑃𝐿𝑂𝐶𝐼,𝑚
𝑏𝑚 )

   (8) 224 

where bm is the exponent for the m
th

 month, 𝜎(. ) represents the standard deviation 225 

operator, and PLOCI,m is the LOCI-corrected precipitation in the m
th

 month. If bm is 226 

larger than one, it indicates that the LOCI-corrected precipitation underestimates its 227 

coefficient of variance in month m.  228 

After finding the optimal bm, the parameter 𝑠𝑚 =
𝜇(𝑃𝑜𝑏𝑠,𝑚)

𝜇(𝑃𝐿𝑂𝐶𝐼,𝑚
𝑏𝑚 )

 is then determined 229 

such that the mean of the corrected values corresponds to the observed mean. The 230 

corrected precipitation series are obtained based on the LOCI corrected precipitation 231 
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Pcor,m,d:  232 

𝑃𝑐𝑜𝑟,𝑚,𝑑 = 𝑠𝑚 × 𝑃𝐿𝑂𝐶𝐼,𝑚,𝑑
𝑏𝑚  

 

           (9) 233 

 234 

3.2.4 VARIance scaling (VARI) of temperature 235 

The PT method is an effective method to correct both the mean and variance of 236 

precipitation, but it cannot be used to correct temperature time series, as temperature is 237 

known to be approximately normally distributed (Terink et al., 2010). VARI method 238 

was developed to correct both the mean and variance of normally distributed variable 239 

such as temperature (Teutschbein and Seibert, 2012; Terink et al., 2010). Temperature 240 

is normally corrected using VARI method with Eq. (10). 241 

𝑇𝑐𝑜𝑟,𝑚,𝑑 = [𝑇𝑟𝑎𝑤,𝑚,𝑑 − 𝜇(𝑇𝑟𝑎𝑤,𝑚)] ×
𝜎(𝑇𝑜𝑏𝑠,𝑚)

𝜎(𝑇𝑟𝑎𝑤,𝑚)
+ 𝜇(𝑇𝑜𝑏𝑠,𝑚)

  
(10) 242 

 243 

3.2.5 Distribution Mapping (DM) of precipitation and temperature 244 

DM method is to match the distribution function of raw data to that of observation. 245 

It is used to adjust mean, standard deviation and quantiles. Furthermore, it preserves 246 

the extremes (Themeßl et al., 2012). However, it also has its limitation due to the 247 

assumption that both the observed and raw meteorological variables follow the same 248 

proposed distribution, which may introduce potential new biases.  249 

For precipitation, the Gamma distribution (Thom, 1958) with shape parameter  𝛼 250 

and scale parameter 𝛽 is often used for precipitation distribution and has been proven 251 

to be effective (e.g., Block et al., 2009; Piani et al., 2010): 252 

𝑓𝑟(𝑥|𝛼, 𝛽) = 𝑥𝛼−1 ×
1

𝛽𝛼×Γ(𝛼)
× 𝑒

−𝑥

𝛽 ; 𝑥 ≥ 0, 𝛼, 𝛽 > 0
             

(11) 253 
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where Γ(. )  is the Gamma function. Since the raw RCM-simulated precipitation 254 

contains a large number of drizzle days, which may substantially distort the raw 255 

precipitation distribution, the correction is done on LOCI corrected precipitation 256 

𝑃𝐿𝑂𝐶𝐼,𝑚,𝑑: 257 

𝑃𝑐𝑜𝑟,𝑚,𝑑 = 𝐹𝑟
−1(𝐹𝑟(𝑃𝐿𝑂𝐶𝐼,𝑚,𝑑|𝛼𝐿𝑂𝐶𝐼,𝑚, 𝛽𝐿𝑂𝐶𝐼,𝑚)|𝛼𝑜𝑏𝑠,𝑚, 𝛽𝑜𝑏𝑠,𝑚)      (12) 258 

Where Fr (.) and Fr
-1

(.) are Gamma CDF (cumulative distribution function) and its 259 

inverse. 𝛼𝐿𝑂𝐶𝐼,𝑚  and  𝛽𝐿𝑂𝐶𝐼,𝑚  are the fitted Gamma parameter for the LOCI 260 

corrected precipitation in a given month m, and 𝛼𝑜𝑏𝑠,𝑚 and  𝛽𝑜𝑏𝑠,𝑚 
are these for 261 

observation. 262 

For temperature, the Gaussian distribution (or normal distribution) with mean 𝜇 263 

and standard deviation 𝜎 is usually assumed to fit temperature best (Teutschbein and 264 

Seibert, 2012): 265 

 𝑓𝑁(𝑥|𝜇, 𝜎) =
1

𝜎×√2𝜋
× 𝑒

−(𝑥−𝜇)2

2𝜎2 ; 𝑥 ∈ 𝐑
                                      

(13) 266 

And then similarly the corrected temperature can be expressed as:  267 

𝑇𝑐𝑜𝑟,𝑚,𝑑 = 𝐹𝑁
−1(𝐹𝑁(𝑇𝑟𝑎𝑤,𝑚,𝑑|𝜇𝑟𝑎𝑤,𝑚, 𝜎𝑟𝑎𝑤,𝑚)|𝜇𝑜𝑏𝑠,𝑚, 𝜎𝑜𝑏𝑠,𝑚)  (14) 268 

where 𝐹𝑁(. ) and  𝐹𝑁
−1(. ) are Gaussian CDF and its inverse,  𝜇𝑟𝑎𝑤,𝑚 and 𝜇𝑜𝑏𝑠,𝑚are 269 

the fitted and observed means for the raw and observed precipitation series at a given 270 

month m, and  𝜎𝑟𝑎𝑤,𝑚  and 𝜎𝑜𝑏𝑠,𝑚 are the corresponding standard deviations, 271 

respectively. 272 

 273 

3.2.6 Quantile Mapping (QM) of precipitation 274 

QM method is a non-parametric bias correction method and is generally 275 
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applicable for all possible distributions of precipitation without any assumption on 276 

precipitation distribution. This approach originates from the empirical transformation 277 

(Themeßl et al., 2012) and was successfully implemented in the bias correction of 278 

RCM simulated precipitation (Sun et al., 2011; Themeßl et al., 2012; Chen et al., 2013a; 279 

Wilcke et al., 2013). It can effectively correct bias in the mean, standard deviation and 280 

wet day frequency as well as quantiles.  281 

For precipitation, the adjustment of precipitation using QM can be expressed in 282 

terms of the empirical CDF (ecdf) and its inverse (ecdf
-1

): 283 

𝑃𝑐𝑜𝑟,𝑚,𝑑 = 𝑒𝑐𝑑𝑓𝑜𝑏𝑠,𝑚
−1 (𝑒𝑐𝑑𝑓𝑟𝑎𝑤,𝑚(𝑃𝑟𝑎𝑤,𝑚,𝑑))  (15) 284 

 285 

3.3 Performance evaluation 286 

The performance evaluation of these correction methods is based on their abilities 287 

to reproduce precipitation, temperature, and streamflow simulated with a hydrological 288 

model (SWAT) driven by bias corrected RCM simulations. When evaluating ability to 289 

reproduce streamflow, streamflow is firstly simulated by running the hydrological 290 

model driven by 15 different combinations of corrected precipitation, max/min 291 

temperature with different correction methods (these hydrologic simulations are then 292 

referred to as simulations 1 to 15, which are listed in Table 3) together with hydrologic 293 

simulations driven by observed meteorological data (―default‖) and raw RCM 294 

simulation (―raw‖). These 15 simulations were then compared with observed 295 

streamflows and ―default‖ and ―raw‖.  296 
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The performance evaluation of precipitation, temperature and streamflow are as 297 

follows. 298 

1) For corrected precipitation, frequency-based indices and time series 299 

performances are compared with observed precipitation data. The frequency-based 300 

indices include mean, median, standard deviation, 99
th

 percentile, probability of wet 301 

days, and intensity of wet day while time-series based metrics include Nash-Sutcliffe 302 

coefficient(NS), Percent bias (PBIAS), R
2
 and Mean Absolute Error (MAE) defined as 303 

follows: 304 

𝑁𝑆 = 1 −
∑ (𝑌𝑖

𝑜𝑏𝑠−𝑌𝑖
𝑠𝑖𝑚)

2
𝑛
𝑖=1

∑ (𝑌𝑖
𝑜𝑏𝑠−𝑌𝑚𝑒𝑎𝑛)

2𝑛
𝑖=1

   (16) 305 

𝑃𝐵𝐼𝐴𝑆 =
∑ (𝑌𝑖

𝑜𝑏𝑠−𝑌𝑖
𝑠𝑖𝑚)𝑛

𝑖=1

∑ (𝑌𝑖
𝑜𝑏𝑠)𝑛

𝑖=1

    (17) 306 

𝑀𝐴𝐸 =
∑ |𝑌𝑖

𝑜𝑏𝑠−𝑌𝑖
𝑠𝑖𝑚|𝑛

𝑖=1

𝑛
    (18) 307 

Where Yi
obs

 and Yi
sim

 
are the i

th
 observed and simulated variables, Y

mean
 is the mean of 308 

observed variables, and n is the total number of observations.  309 

NS indicates how well the simulation matches the observation and it ranges 310 

between -∞ and 1, with NS =1 meaning a perfect fit. The higher this value, the more 311 

reliable the model is in comparison to the mean. PBIAS measures the average tendency 312 

of the simulated data to their observed counterparts. Positive values indicate an 313 

overestimation of observation, while negative values indicate an underestimation. The 314 

optimal value of PBIAS is 0.0, with low-magnitude values indicating accurate model 315 

simulations. MAE demonstrates the average model prediction error with less 316 

sensitivity to large errors.  317 

2) For corrected temperature, frequency-based indices and time series 318 
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performances are compared with observed temperature data. The frequency-based 319 

indices include mean, median, standard deviation, and 10
th

, 90
th

 percentile while 320 

time-series based metrics include NS, PBIAS, R
2
 and MAE.  321 

3) For simulated streamflow driven by corrected RCM simulations, the 322 

frequency-based indices are visualized using boxplot, exceedance probability curve. 323 

Time-series based metrics include NS, PBIAS, R
2
 and MAE.  324 

 325 

4 Results and discussion 326 

4.1. Initial streamflow simulation driven with raw RCM simulations and sensitivity 327 

analysis 328 

To illustrate the necessity of bias correction in climate change impact on 329 

hydrology, we re-calibrated SWAT using the raw RCM simulations while keeping all 330 

SWAT parameters in their reasonable ranges. The assumption is that if the re-calibrated 331 

hydrological model driven by the raw RCM simulations performs well and model 332 

parameters are reasonable, then there is no need for bias correction. The streamflow 333 

simulated by the re-calibrated model was plotted in Fig. 3, and it systematically 334 

overestimates the observation with NS equals to -6.65. Therefore, it is necessary to 335 

correct the meteorological variables before they can be used for a hydrological impact 336 

study. 337 

The Sobol‘ method was applied to study which meteorological variables should be 338 

corrected for hydrological modeling. Table 1 lists the sensitivity results for these five 339 
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meteorological variables. As can be seen, precipitation is the most sensitive factor (the 340 

main effect Si is 44.0% and total effect STi is 74.0%), followed by temperature (Si = 341 

15.0% and STi = 36.9%) and solar radiation (Si = 7.7% and STi = 22.6%), and the 342 

interactions between these factors are large. Relative humidity and wind speed are 343 

insensitive in this case. This means precipitation, temperature and solar radiation need 344 

to be bias corrected before applied to hydrologic models, while relative humidity and 345 

wind speed over the region do not need any correction. 346 

 347 

4.2 Evaluation of corrected precipitation and temperature  348 

The bias correction was done on RCM simulated precipitation, max/min 349 

temperature, and solar radiation (for solar radiation, LS and VARI methods were used) 350 

for two meteorological stations Bayanbulak and Baluntai. Results show: 1) for solar 351 

radiation, there is no significant difference for different correction methods. There the 352 

results are not shown. 2) Similar results were obtained for minimum temperature and 353 

maximum temperature, and for Bayanbulak and Baluntai. Therefore we only listed and 354 

discussed results for Bayanbulak, and maximum temperature. 355 

Table 4 lists the frequency-based statistics of observed (―obs‖), raw 356 

RCM-simulated (―raw‖) and corrected (denoted by the corresponding correction 357 

method) precipitation data at the Bayanbulak Station. This station has a daily mean 358 

precipitation of 0.73 mm or annual mean of 266 mm and precipitation falls in 32% 359 

days in a year with a mean intensity of 2.3 mm. Compared to the observation, the raw 360 
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RCM simulation deviates significantly from observation, with overestimation of all the 361 

statistics. All the bias correction methods improve the raw RCM simulated 362 

precipitation, however, there are differences in their corrected statistics. LS method has 363 

a good estimation of the mean while it shows a large bias in other measures, e.g., it 364 

largely overestimated the probability of wet days (e.g., up to 41% overestimation) and 365 

underestimated the standard deviation (up to 0.9 mm underestimation). LOCI method 366 

provides a good estimation in the mean, median, wet-day probability and wet-day 367 

intensity; however, there is a slight underestimation in the standard deviation and 368 

therefore 99
th

 percentile. Compared to LS and LOCI, PT method performs well in all 369 

these metrics. DM method has a slight overestimation of the mean and an 370 

underestimation of standard deviation. This means that precipitation does not follow 371 

the assumed Gamma distribution. On the contrary, QM method doesn‘t have this 372 

assumption and it provides an excellent estimation of these statistics. These results are 373 

consistent with previous studies (Themeßl et al., 2011, 2012; Wilcke et al., 2013; 374 

Graham et al., 2007), but are different from the research by Piani et al. (2010) who 375 

found that performance of DM method is unexpectedly well for the humid Europe 376 

region. This discrepancy can be partly attributed to the precipitation regime for 377 

different regions since better fit of the assumed distribution lead to better performance 378 

of DM. 379 

 380 

Table 5 lists the frequency-based statistics of observed (―obs‖), raw RCM 381 

simulated (―raw‖) and corrected (denoted by the corresponding method) maximum 382 
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temperature data at the Bayanbulak Station. The mean and standard deviation of ―obs‖ 383 

are 3.1 and 14.5 °C, with the 90
th

 percentile being 19.2 °C. Analysis of the ―raw‖ 384 

indicates deviation from ―obs‖, with an overestimation of the mean, and 385 

underestimations of the median, standard deviation, and 90
th

 percentile. All three 386 

correction methods correct biases in the ―raw‖ and improve estimations of the statistics. 387 

LS has a correct estimation of mean but slight underestimations of median and 388 

standard deviation, while VARI and DM have good estimations of all the 389 

frequency-based statistics. These results confirm the study by Teutschbein and Seibert 390 

(2012), i.e., LS method doesn‘t adjust the standard deviation and the percentiles while 391 

VARI and DM methods do.  392 

 393 

Figure 4 shows the exceedance probability curves of the observed and corrected 394 

precipitation and temperature. For precipitation, the raw RCM simulations are heavily 395 

biased (as also shown by statistics in Table 4). All correction methods effectively, but 396 

in different extent, correct biases in raw precipitation. The LS method underestimates 397 

the high precipitation with probabilities below 0.06 and overestimates the low 398 

precipitation with probabilities between 0.06 ~ 0.32. The overestimation of 399 

precipitation with probabilities between 0.32 ~ 0.73 indicates LS method has a very 400 

limited ability in reproducing dry day precipitation (below 0.1 mm). Similar to LS 401 

method, the LOCI method also overestimates the low precipitation with probabilities 402 

between 0.08 ~ 0.32 and underestimates the high intensities with probabilities below 403 

0.08, which is in line with previous arguments by Berg et al. (2012). However, unlike 404 
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LS method, LOCI method performs well on the estimation of the dry days with 405 

precipitation below 0.1 mm. The PT, DM and QM methods well adjust precipitation 406 

exceedance except that DM method slightly overestimates the precipitation with 407 

probabilities between 0.12 ~ 0.28. For temperature, the raw temperature overestimates 408 

low temperature with probabilities above 0.65 and underestimates high temperature 409 

with probabilities below 0.65. All temperature correction methods adjust the biases in 410 

raw temperature and the corrected temperature has similar quantile values with the 411 

observation. They performed equally well and differences among these correction 412 

methods are negligible. 413 

 414 

Time-series based performances were evaluated and results are shown in Fig. 5 415 

and Table 6. For precipitation, all bias correction methods significantly improve the 416 

raw RCM simulations. However, as shown in the right plot of Fig. 5, there is a 417 

systematic mismatch between observation and corrections which follow the pattern of 418 

the raw RCM simulated precipitation, which indicates that all bias correction methods 419 

fail to correct the temporal pattern of precipitation. In addition, this mismatch differs 420 

between different methods, among which the differences are smaller for LS and LOCI 421 

methods than for PT, DM and QM methods. This resulted in a slightly better squared 422 

difference based measures (e.g., NS, R
2
) for LS and LOCI than PT, DM and QM 423 

methods, as is indicated in Table 6. Similar to precipitation, all correction methods 424 

significantly improved the raw RCM simulated temperature.  Biases in raw 425 

temperature (e.g., 1.1 °C in spring, 1.0 °C in summer, 3.3 °C in autumn, and up to 426 
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7.6 °C in winter) were corrected. These three correction methods performed equally 427 

well and no significant differences exist in terms of the average daily temperature 428 

graphs. 429 

 430 

Table 6 lists the time-series based metrics of corrected precipitation and 431 

temperature at the Bayanbulak Station. For precipitation, the performance of the raw 432 

RCM simulated precipitation is very poor with NS = -6.78, PBIAS = 293.28% and MAE 433 

= 65.40 mm for monthly data, and the improvements of correction are obvious. The 434 

―PBIAS‖s of the corrected precipitation are within ±7 % and ―NS‖s approach 0.64. It 435 

is worth noting that LS and LOCI methods perform better than PT and QM methods in 436 

terms of time series performances. For temperature, although the raw RCM simulation 437 

obtains an acceptable NS value (0.84), it overestimates the observation with PBIAS = 438 

15.78% and MAE = 4.31 °C. The ―PBIAS‖s of the corrected temperatures are within 439 

±5% and ―NS‖s are over 94% (better than that of the ―raw‖) for all three correction 440 

methods and there is no significant difference between these results, which indicates 441 

the corrected monthly temperature series are in good agreement with the observation.  442 

 443 

4.3 Evaluation of streamflow simulations 444 

Figure 6 compares the mean, median, first and third quantiles of daily observed 445 

streamflows (―obs‖), simulated streamflows using observed meteorological inputs 446 

(―default‖), raw RCM simulations (―raw‖) and 15 combinations of corrected 447 
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precipitation and corrected temperature (i.e., simulations 1 to 15). The overestimation 448 

of simulated streamflow using raw RCM simulations (i.e., ―raw‖) is obvious. 449 

Simulations 1 to 3 overestimate streamflow with 100% overestimation of the mean 450 

streamflow while simulations 4 to 15 reproduce similar streamflows as the observation 451 

or simulation ―default‖. As the major difference between simulations 1 to 3 and other 452 

simulations is that simulations 1 to 3 use the LS-corrected precipitation, which means 453 

precipitation corrected with LS method has great bias in flow simulation in this study.  454 

To investigate the performances of bias correction methods for different 455 

hydrological seasons, we divided the streamflow into two different periods according 456 

to the hydrograph (Fig. 3): wet period is from April to September and dry period is 457 

from October to March of next year. It indicates that the performances of bias 458 

correction methods are, except for magnitudes, similar for both wet and dry periods 459 

(not shown), which demonstrates that the evaluation is robust and can provide useful 460 

information for both dry and wet seasons. 461 

Figure 7 shows the exceedance probability curves (flow duration curves) of the 462 

observed streamflow (―obs‖), and streamflows with simulation ―default‖ and 463 

simulations 4 to 15. For plotting purpose, simulations ―raw‖ and 1 to 3 are not shown. 464 

Generally all simulations are in good agreement with the observation with probabilities 465 

between 0.12 and 0.72, and precipitation correction methods have more significant 466 

influence than temperature correction methods. This confirms the previous sensitivity 467 

results that precipitation is the most sensitive driving force in streamflow simulation. 468 

Similar to performances of bias corrected precipitation, simulations with DM corrected 469 
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precipitation (i.e. simulations 10 to 12) and LOCI corrected precipitation (i.e., 470 

simulations 4 to 6) deviate the observation the most, followed these with PT and QM 471 

methods. All simulations encounter the problem to correctly mimic the low flow part 472 

(i.e. probabilities larger than 0.7). This might be a systematic problem of the calibrated 473 

hydrologic model (as indicated by simulation ―default‖), e.g., the objective function of 474 

the hydrological modeling is not focused on baseflow. Differences among streamflows 475 

driven by different temperature but same precipitation are insignificant, which is 476 

different from the study of Teutschbein and Seibert (2012). This may be related to the 477 

watershed characteristic. 478 

The performances of simulation ―raw‖, simulations 1 to 15 at daily and monthly 479 

time steps (simulation ―default‖ is taken as reference) are summarized in Table 3. The 480 

―raw‖ is heavily biased with NS close to -56.3 and PBIAS as large as 399 % for monthly 481 

data. All the 15 simulations improve the statistics significantly. For simulations 1 to 3, 482 

whose precipitation series are corrected by LS method, NS ranges from -3.09 to -2.85 483 

for monthly streamflow and they substantially overestimate the streamflow with PBIAS 484 

over 100 %. For simulations 4 to 15, monthly ―NS‖s are over 0.60, which indicates 485 

they can reproduce satisfactory monthly streamflows in this watershed, and 486 

simulations with precipitation corrected by LOCI (simulations 4 to 6) have best ―NS‖s 487 

and ―PBIAS‖s. However, these indices of are lower for daily streamflow (―NS‖s range 488 

from 0.38 to 0.50), and this is related to the mismatch between corrected and observed 489 

precipitation time series (see top plot in Fig. 5), which is intrinsic from the RCM 490 

model and cannot be improved through these correction methods.  491 
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It is worth noting that simulations 1 to 3 and simulations 4 to 6, whose 492 

precipitation is corrected by LS and LOCI, respectively, vary significantly. The 493 

difference between LS and LOCI is that LOCI introduces a threshold for precipitation 494 

on wet days to correct the wet day probability while LS doesn‘t. That is a simple but 495 

quite pragmatic approach since the raw RCM simulated precipitation usually has too 496 

many drizzle days (Teutschbein and Seibert, 2012). Obviously, wet day probability is 497 

crucial to streamflow simulation when using elevation bands to account for spatial 498 

variation in SWAT (see more details in SWAT manual, http://www.brc.tamus.edu/). 499 

Figure 8 shows the monthly mean streamflow and exceedance probability curves 500 

of 7-day peak and 7-day low flow. For the monthly mean streamflow, obviously the 501 

―raw‖ is heavily biased with deviations ranging from 282% to 426%. Simulations 1 to 502 

3 also overestimate the observation and the ―default‖ as discussed before, while 503 

simulations 4 to 15 reproduced good monthly mean streamflow. The annual peak flow 504 

and low flow are presented in Fig. 8 to investigate the impact of bias correction 505 

methods on extreme flows. For the peak flow, the exceedance probabilities of the 506 

simulations 4 to 15 are close to the observation while ―raw‖ and simulations 1 to 3 507 

deviate significantly (not shown). It is worth noting that simulations 4, 5 and 6, which 508 

perform the best in terms of the ―NS‖s, underestimate the peak flow by 1% ~ 28%. The 509 

reason may be that the LOCI method adjusts all precipitation events in a certain month 510 

with a same scaling factor, which leads to the underestimation of the standard 511 

deviation and high precipitation intensity (Table 4), and finally results in an 512 

underestimation of the peak streamflow. For the low flow, all simulations overestimate 513 
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the observation, but are in good agreement with the ―default‖, which can be attributed 514 

to the systematic deficit in the hydrological model. DM method slightly overestimates 515 

both peak flow and low flow. Results show slightly better performance of PT and QM 516 

methods than LOCI and DM in predicting extreme flood and low flow, which is 517 

consistent with previous studies in North America and Europe (e.g., Chen et al., 2013a; 518 

Teutschbein and Seibert, 2012). 519 

 520 

5 Conclusions 521 

The work presented in this study compared the abilities of five precipitation and 522 

three temperature correction methods in downscaling RCM simulations. The 523 

downscaled meteorological data were then used to model hydrologic processes in an 524 

arid region in China. The evaluation of the correction methods includes their abilities 525 

to reproduce precipitation, temperature and streamflow using a hydrological model 526 

driven by corrected meteorological variables. Several conclusions can be drawn:  527 

1) Sensitivity analysis shows precipitation is the most sensitive driving force in 528 

streamflow simulation, followed by temperature and solar radiation, while relative 529 

humidity and wind speed are not sensitive.  530 

2) Raw RCM simulations are heavily biased from observed meteorological data, 531 

and this results in biases in the simulated streamflows which cannot be corrected 532 

through calibration of the hydrological model. However all bias correction methods 533 

effectively improve precipitation, temperature, and streamflow simulations. 534 
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3) Different precipitation correction methods show a big difference in downscaled 535 

precipitations while different temperature correction methods show similar results in 536 

downscaled temperatures. For precipitation, the PT and QM methods performed 537 

equally best in terms of the frequency-based indices; while LOCI method performed 538 

best in terms of the time-series based indices.  539 

4) For simulated streamflow, precipitation correction methods have more 540 

significant influence than temperature correction methods and their performances on 541 

streamflow simulations are consistent with these of corrected precipitation, i.e., PT and 542 

QM methods performed equally best in correcting flow duration curve and peak flow 543 

while LOCI method performed best in terms of the time-series based indices. Note the 544 

LOCI and DM methods should be used with caution when analyzing drought or 545 

extreme streamflows because the LOCI method may underestimate the extreme 546 

precipitation and DM method performs ineffectively when either simulated 547 

precipitation or observed precipitation does not follow the proposed distribution. 548 

Besides, LS method is not suitable in hydrological impact assessment where there is a 549 

large variation in precipitation distribution when few meteorological stations are used 550 

since LS fails to correct wet day probability.  551 

Generally, selection of precipitation correction method is more important than the 552 

selection of temperature correction method to downscale GCM/RCM simulations and 553 

thereafter for streamflow simulations. This might be generally true for other regional 554 

studies as GCMs/RCMs normally tend to better represent the temperature field than the 555 

precipitation field. However, the selection of precipitation correction method will be 556 
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case dependent. The comparison procedure listed in Figure 2 could be applied for other 557 

cases.  558 

 559 
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 697 

Table 1. Sensitivity indices of the five meteorological variables based on the Sobol‘ method. 698 

Factora Meaning 
Factor  

Range 

Main effect Si 

(%) 

Total effect STi 

(%) 

a__tmp Additive change to temperature  [-5,5] 15.0 36.9 

r__pcp Relative change to precipitation [-0.5,0.5] 44.0 74.0 

r__hmd Relative change to humidity [-0.5,0.5] 0.0 0.0 

r__slr Relative change to solar radiation [-0.5,0.5] 7.7 22.6 

r__wnd Relative change to wind speed [-0.5,0.5] 0.3 0.9 

a Here, ‗a__‘ or ‗r__‘ means an addictive or a relative change to the initial parameter values. 699 

 700 

 701 

 702 

 703 

 704 

Table 2. Bias correction methods for RCM-simulated precipitation and temperature. 705 

Bias correction for precipitation Bias correction for temperature 

Linear Scaling (LS) Linear Scaling (LS) 

LOCal Intensity scaling (LOCI) VARIance scaling (VARI) 

Power Transformation (PT) 
Distribution Mapping for temperature using 

Gaussian distribution (DM) 

Distribution Mapping for precipitation using 

Gamma distribution (DM) 
 

Quantile Mapping (QM)  

 706 

  707 
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 708 

Table 3. Performances of simulated streamflows driven by raw RCM simulated (―raw‖) and 15 709 

combinations of bias-corrected precipitation and temperature (denoted as numbers from 1 to 15) 710 

compared to the simulation driven by observed climate (―default‖) during the period 1986 ~ 2001. 711 

For simulations 1 to 15, solar radiation is corrected with Linear Scaling (LS) method. 712 

 713 

 Bias correction method  Daily Monthly 

 
Precipitation Temperature 

NS 

(-) 

PBIAS 

(%) 

R
2 

(-) 

MAE 

(m
3
/s) 

NS 

(-) 

PBIAS 

(%) 

R
2 

(-) 

MAE 

(m
3
/s) 

raw raw raw -47.69  398.9  0.4  547.5  -56.34  399.4  0.6  524.6  

1 LS LS -2.66  106.2 0.5 150.1 -3.09  106.4  0.7  140.2  

2 LS VARI -2.43  103.5 0.5 145.4 -2.85  103.7  0.7  135.9  

3 LS DM -2.43  103.5 0.5 145.4 -2.85  103.7  0.7  135.9  

4 LOCI LS 0.49  -8.0 0.5 56.0 0.70  -7.9  0.7  38.2  

5 LOCI VARI 0.50  -8.6 0.5 55.6 0.70  -8.6  0.7  38.1  

6 LOCI DM 0.50  -8.6 0.5 55.6 0.70  -8.6  0.7  38.1  

7 PT LS 0.38  -3.3 0.4 61.7 0.64  -3.3  0.7  41.4  

8 PT VARI 0.39  -4.1 0.5 61.3 0.65  -4.1  0.7  41.1  

9 PT DM 0.39  -4.1 0.5 61.3 0.65  -4.1  0.7  41.1  

10 DM LS 0.41  3.6 0.5 60.3 0.66  3.6  0.7  40.5  

11 DM VARI 0.42  2.8 0.5 59.5 0.67  2.9  0.7  40.0  

12 DM DM 0.42  2.8 0.5 59.5 0.67  2.9  0.7  40.0  

13 QM LS 0.39  -2.6 0.5 61.3 0.65  -2.6  0.7  40.9  

14 QM VARI 0.40  -3.4 0.5 60.8 0.65  -3.4  0.7  40.7  

15 QM DM 0.40  -3.4 0.5 60.8 0.65  -3.4  0.7  40.7  

  714 
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 715 

Table 4. Frequency-based statistics of daily observed (―obs‖), raw RCM-simulated (―raw‖) and 716 

bias-corrected precipitations at the Bayanbulak Station  717 

 
Mean (mm) 

Median 

(mm) 

Standard deviation 

(mm) 

99
th 

percentile  

(mm) 

Probability of 

wet days (%) 

Intensity of 

wet day (mm) 

obs 0.73 0.0 2.4 12.4 32 2.3 

raw 2.87 1.4 4.1 19.7 86 3.3 

LS 0.73 0.2 1.5 7.6 73 1.0 

LOCI 0.73 0.0 1.7 8.1 32 2.3 

PT 0.73 0.0 2.4 11.4 32 2.3 

DM 0.78 0.0 2.3 11.5 32 2.5 

QM 0.73 0.0 2.4 12.4 32 2.3 

 718 

 719 

  720 



33 
 

 721 

Table 5. Frequency-based statistics (unit: °C) of daily observed (―obs‖), raw RCM simulated 722 

(―raw‖) and bias corrected maximum temperatures at the Bayanbulak Station  723 

 
Mean  Median  Standard deviation  10

th
 percentile 90

th
 percentile 

obs 3.08  7.20  14.50  -18.70  19.20  

raw 3.45  3.21  10.88  -10.34  17.90  

LS 3.08  6.65  14.14  -17.33  19.40  

VARI 3.08  6.85  14.50  -17.76  19.36  

DM 3.08  6.85  14.50  -17.76  19.36  

 724 

 725 

 726 

Table 6. Time-series based metrics of bias-corrected precipitation and temperature calculated on a 727 

monthly scale at the Bayanbulak Station  728 

  

NS 

(-) 

PBIAS  

(%) 

R
2
 

(-) 

MAE  

(mm or °C) 

Precipitation 

raw -6.78 293.28 0.42 65.40  

LS 0.64 0.06 0.65 9.66  

LOCI 0.61 -0.71 0.64 10.14  

PT 0.42 -0.09 0.53 11.98  

DM 0.46 6.64 0.56 11.78  

QM 0.44 0.03 0.54 11.99  

Temperature 

raw 0.84 15.78 0.88 4.31  

LS 0.95  3.04 0.95 2.35  

VARI 0.94 4.78 0.94 2.52  

DM 0.94 4.74 0.94 2.52  

 729 

 730 

  731 



34 
 

 732 

 733 

Fig. 1. Location of the study area, two meteorological stations and one hydrological station. 734 
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 736 

 737 

Fig. 2. Flow chart of comparison procedure  738 
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 740 

 741 

 742 

Fig. 3. Mean annual hydrographs of observed streamflow (―obs‖) and simulated streamflow using 743 

observed meteorological data ("default‖) during the period of 1986 ~ 2001 at the Dashankou 744 

Station. The simulated streamflow using raw RCM-simulated meteorological data after 745 

re-calibration (―raw_recali‖) is also plotted. The NS values are for the daily continuous data and not 746 

for the mean hydrograph. 747 
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 750 

 751 

Fig. 4. Exceedance probabilities of the observed (―obs‖), raw, and bias-corrected precipitation (top) 752 

and temperature (bottom) at the Bayanbulak Station. 753 
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 756 

Fig. 5. Daily mean precipitation and temperature of observed (―obs‖), raw RCM simulated (―raw‖), 757 

and bias corrected values at Bayanbulak Station, which were smoothed with 7-day moving average 758 

method. The precipitation and temperature during May to August is amplified to inspect the 759 

performance of each correction method. 760 
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 762 

Fig. 6. Box plots of observed (―obs‖) and simulated daily streamflows using observed (‖default‖), 763 

raw RCM-simulated (―raw‖) and corrected meteorological data (setup of simulations 1to 15 are 764 

listed in Table 3). The mean values are shown with diamonds.  765 
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 768 

 769 

Fig. 7. Exceedance probability curves of observed (―obs‖) and simulated streamflow driven by 770 

observed (―default‖), and bias-corrected meteorological data (numbers from 4 to 15; see Table 3 for 771 

detailed setup of these simulations).  772 
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 774 

Fig. 8. Monthly mean streamflow (top) and exceedance probability curves of annual 7-day peak 775 

flow (middle) and annual 7-day low flow (bottom) during 1986 ~ 2001 in the Kaidu River Basin 776 

(obs: observed streamflow; default: simulated with observed meteorological data; raw: simulated 777 

with RCM simulated meteorological data; 1~15: simulated with corrected RCM meteorological 778 

data listed in Table 3).  779 
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