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1 Introduction
We would like to thank the Reviewers and the Editor for their valuable comments. We
give our answers in a single file.

Apart from the answers that are discussed below and that are specific for the com-
ments raised during revision, some re-wording was made to better suit the context of the
discussion and that can be seen in blue in lines 21, 31 and 182.

2 General answers and description of numerical experiment
In our original manuscript, we believed that our analytical results might alone be enough
to carry our argument. In retrospect, we agree that an independent verification can
strengthen it.

Indeed, our previous version shows results from estimates that amend the original BN77
theory for φ0 6= 0, but still rely on Boussinesq [1903]’s linearized solution. It is well worth
comparing how our (still approximate) estimates in Eqns (10) and (11) perform against
true values resulting from the more physically accurate Boussinesq nonlinear differential
equation.

However, we do not believe that field data exist where independent values of ne and
k0 can be obtained with enough confidence — i.e. small enough uncertainty. After the
reviewer’s comments, it has come to our attention that some laboratory experiments have
been performed that might be useful as validation sets [Hewlett and Hibbert, 1963, Sanford
et al., 1993, Mizumura, (2002],but we haven’t yet looked at those data in detail. Moreover,
and importantly, it is not clear that a wide enough range of carefully controlled values of
φ0 would be available to validate our results.

Therefore, we have decided to run an extensive set of numerical simulations of the full
nonlinear Boussinesq equation. We would like to argue that this is a valid alternative,
that has been used in important research related to the theme [see Szilagyi et al., 1998,
Rupp and Selker, 2006].

We describe our simulations here but chose not to include this description in the
manuscript; the description is relevant to our answers to Referees # 1 and # 2. With
an implicit finite-difference method, we solved the fully nonlinear Boussinesq equation in
dimensionless form, i.e.

∂φ

∂τ
= ∂

∂η

(
φ
∂φ

∂η

)
; φ(η, 0) = 1, φ(0, τ) = φ0,

∂φ

∂η
(1, τ) = 0, (1)
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Figure 1: Performance of ne/ne using the proposed equation (10) (solid line), and error
incurred by the traditional BN77 analysis (dotted line and symbols).

with

φ ≡ h

H
, (2)

η ≡ x

B
, (3)

τ ≡ k0H

neB2 t. (4)

Before anything else, we checked (with excellent results) the numerical solution against
the only known analytical solution of the nonlinear PDE, which is valid for φ0 = 0, as was
obtained by Boussinesq [1904]. We do not show the comparison here, but it is available
upon request. Then we varied φ0 from 0 to 0.95 in increments of 0.05. For each φ0, a
Brutsaert-Nieber recession analysis was performed and k0 and ne were estimated against
their true values k0 and ne using Equations (10) and (11). The evident advantage of
the dimensionless form is economy: one need not “vary” k0 and ne (which are kept at
nominal unity values, as well as H and B), but only φ0: all that matters are the ratios
of the estimates, namely ne/ne and k0/k0. In order to be consistent with the estimates
given by equations (10) and (11), the slopes of the recession analyses were fixed at β1 = 3
(early time) and β2 = 1 (late time), and only α1 and α2 were estimated using a nonlinear
Levenberg-Marquardt least squares method.

We now re-plot our former Figure 2 in the first version of the manuscript as two new
figures: one for ne and the other for k0 (which are Figures 1 and 2 in this reply, but
correspond to Figures 2 and 3 of the current version of the manuscript).

Notice the change in the choice of (for instance) k0/k0 instead of the former k0(BN)/k0,
which avoids the log scale of Figure 2 and allows a more clear picture to emerge. Moreover,
while our Figure 2 was actually the ratio of two estimates, we are now able (after our
numerical simulations) to plot the results against true known values ne and k0.

As can be seen, the k0 estimate using the original equations remains “robust” up to
φ0 = 0.4 approximately. On the other hand, there is a more or less linear trend in ne

estimated with the original equations all the way from φ0 = 0. Our modified equations
(10) and (11) give estimated values of k0 and ne that differ very little from the true ones
for the whole φ0 range, and as such represent a considerable improvement over the original
equations.
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Figure 2: Performance of k0/k0 using the proposed equation (11) (solid line), and error
incurred by the traditional BN77 analysis (dotted line and symbols).

The small kinks between φ0 = 0.7 and φ0 = 0.8 are an artifact of the choice of the
range of the streamflow Q for fitting α1 and α2 used in the recession analysis. This (to
the best of our knowledge) is still a subjective part of the BN77 analysis: the ranges were
chosen to fit the recession plots dQ/dt × Q reasonably well, but they were not “fudged”
to “optimize”, in any way, the estimated k0 and ne. Our recession data are also available
so that these results can be verified independently.

The last two paragraphs (with a few modifications as well as a brief introduction about
the numerical experiment) were added in lines 158–175 of the main document. Line 10 in
the abstract was also modified to include this new comparison.

3 Answer to Referee #1
We thank again Reviewer # 1 and address his specific comments.

Section 1: “... can be compared to the predictions from analytical solutions...” The
authors may want to extend this paragraph by showing explicitly which analytical
solutions they have in mind and how they are used.
The following replaced the previous sentence in line 36:

can be compared to the predictions from the above-mentioned analytical
solutions by Polubarinova-Kochina [1962], Boussinesq [1903] and Boussi-
nesq [1904], among many others [see Rupp and Selker, 2006].

And the explicit reference to the solutions are made in line 40 with the following
text:

In this work, the solutions used are the ones by Polubarinova-Kochina
[1962] and Boussinesq [1903]

Section 1: “... does not account for that case.” and “... is not strictly true ...” The two
statements seem to contradict each other and need clarification.
Paragraph in lines 39–43 was replaced by:

3



If one wishes to estimate only the soil hydraulic conductivity k0 and the
drainable porosity ne, two of the three aforementioned solutions can be
used. In this work, the solutions used are the ones by Polubarinova-
Kochina [1962] and Boussinesq [1903]. However, the solution by Polubarinova-
Kochina [1962] is only valid for the case H0 = 0: it is therefore important
to assess how much this assumption affects the estimate of k0 and of ne

for cases where it does not hold.

Section 2: As the solutions of Chor (2013) and Dias (2014) are essential in this para-
graph it may be worth noting the equations together with one or two sentences of
explanation. This will give the reader the possibility to focus on the text rather than
getting distracted by consulting the references to understand what follows.
Text in line 85 was extended until line 96 with:

where h(x, t) is the water table height, x is the horizontal distance from the
water stream and t is the time. Under the above change of variables, the
Boussinesq equation is reduced to the dimensionless ordinary differential
equation

d

dξ

(
φ
dφ

dξ

)
+ 2ξ dφ

dξ
= 0 (5)

together with the boundary conditions φ(0) = φ0 and φ(∞) = 1. Due to
the second boundary condition, the solution is only valid for the initial
phase of aquifer drawdown. For φ0 = 0, as already noted, the solution by
Polubarinova-Kochina [1962] suffices for the BN77 analysis; for φ0 6= 0, a
series solution of the form

φ(ξ) =
∞∑

n=0
anξ

n (6)

has been proposed by Dias et al. [2014], with a recursion relation for the
an’s. An important result in that work is an empirical equation, fitted to
numerically obtained values of a1 in the series above, for the value of ψ0,
defined below. This is given as equation (12) in the present work.

After eq. 12: Where do the numerical values for eq 12 come from? Please clarify.
Text below was added in line 152–157.

As explained in Dias et al. [2014], even after a general recursion relation
for the an’s in (6) has been obtained, the values of the an’s still cannot be
obtained analytically, essentially because the series’ radius of convergence
is limited so that the boundary condition φ(∞) = 1 cannot be imposed
analytically. Instead, they must be obtained numerically with the aid
of numerical solutions of (5). The coefficients above have been obtained
in Dias et al. [2014] by curve fitting with a large number of numerical
solutions.

4 Answer to Referee # 2
We once again thank the referee for his comments. It appears to us that the Referee
believes that the Brutsaert-Nieber analysis is now somewhat outdated, or rendered inap-
plicable, due to recent findings.
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We believe that most of the criticism by the Referee can be traced back to the paper
by Rupp and Selker [2006]: because it is well known by us, and because it is already in our
list of references, we would like, in the following, to argue on the basis of this reference.

First of all, we realize that our choice of words may lead to the optimistic impression
that our results are all that is needed to “fix” the BN77 recession analysis. We know
better than that, and are ready to admit that the issue of φ0 6= 0 that we address in this
manuscript does not, by any means, exhaust the subject. We make that clear now in the
sentence in line 68.

As Rupp and Selker [2006] argue convincingly, there are at least two other issues that
can compond the difficulty of BN77 recession analyses considerably: steep slopes and the
k0 dependency on aquifer depth h. The latter leads to an even more general non-linear
equation than (1).

We also note, however, that exactly as we do here, Rupp and Selker [2006] resorted to
numerical simulations. This may well have been chosen wisely, as (sadly!) real field data
are bound to complicate the picture even more with measurement error, the existence
of many more flow components contributing to the measured streamflow, complicated
geometry, etc..

At any rate, Rupp and Selker [2006] results do not by any means sound a death knell
on BN77. In particular, we call attention to their conclusions in paragraphs 60 and 62,
reproduced in part below:

§ 60 “A definition for the recession parameter a was also derived for late time, mean-
ing that in theory the Brutsaert and Nieber method can be used to determine the
hydraulic properties of a sloping aquifer.”

§ 62 “In the case of a horizontal or very mildly sloping aquifer, Szilagyi et al. [1998] found
the assumption of a representative single rectangular aquifer to be robust, based on
numerical solutions of the 2-D Boussinesq equation in a synthetic catchment. The
general shape of the recession slope curve for catchment discharge was similar to
that for discharge from a 1-D rectangular aquifer, though with a smoother transition
between the early and late time domains. Furthermore, the basin-scale hydraulic and
geometric aquifer parameters were reasonably estimated by recession slope analysis
using (2), including cases where the saturated hydraulic conductivity varied across
the catchment. As of yet, however, we are not aware of numerical experiments similar
to that of Szilagyi et al. [1998] for catchments composed of hillslopes of moderate
to steep gradient.”

In short, it seems to us that these remarks: (i) do not by any means consider BN77’s
idea to be discarded, but only call our attention, very correctly, to possible complicating
factors and (ii) also call our attention to the fact that there is good evidence supporting
the approach for mild slopes.

None of the aforementioned complications dishearten us, and on a fundamental level
we believe that they should not be used as arguments against conducting research using
simplifying assumptions. In our manuscript, we chose a very simple approach: we studied a
zero-slope, constant k0 aquifer. These assumptions may, to varying degrees, not correspond
to real watersheds, and we are more than ready to acknowledge this. Of course, such
caveats will be incorporated in the manuscript if it is accepted. On the other hand, these
simplyfying assumptions allow us to concentrate on the issue of how φ0 6= 0 affects the
estimates of the physically-based parameters k0 and ne. Again, we would like to argue
strongly, but cordially, that the simplifications are valid if one is — for the first time —
investigating a new issue.
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We made some chages in the text to make it more in accordance with this discussion.
The changes can be seen in blue in lines 7–8, 179–181. Some of the issues raised here were
also addressed openly in lines 48–78.

5 Answers to editor’s comment
We thank the editor once again.

Following his request, we included a brief summary of the current use of the BN77
analysis, wrote a few more lines and rephrased some sentences in order to address the
issues raised by reviwer 2. These changes can be seen beginning in line 48 and that
extends until line 78, and also on the already mentioned lines 179 to 181.
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