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Abstract. The Brutsaert and Nieber (1977) analysis is a well known method that can estimate soil

parameters given discharge data for some aquifers. It has been used for several cases where the

observed late-time behavior of the recession suggests that the water stream that is adjacent to the

aquifer has non-zero depth. However, its mathematical formulation is, strictly speaking, not capable

of reproducing these real-case scenarios since the early time behavior is based on a solution for which5

the aquifer stream has zero depth (Polubarinova-Kochina, 1962). We propose a simple generalization

for the Brutsaert and Nieber (1977) method that takes into consideration the depth of the adjacent

water stream. The generalization is based on already available solutions by Polubarinova-Kochina

(1962), Chor et al. (2013) and Dias et al. (2014) and can be readily implemented with little effort.

The original and proposed equations are tested against numerical simulations of the full nonlinear10

Boussinesq equation. A sensitivity analysis shows that the modification can have significant impact

on the predicted values of both the drainable porosity and the saturated hydraulic conductivity.
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List of Symbols

Symbol Meaning SI Unit

A Area of the watershed (2BL) m2

B Total length of aquifer m

D Hk0/ne m2 s−1

h Water table height m

H Water table height in aquifer at time zero m

H0 Depth of adjacent water stream m

k0 Hydraulic conductivity ms−1

L Length of tributary channel m

p Linearization coefficient 1

p0 Linearization coefficient for the homogeneous case 1

Q Aquifer discharge m3 s−1

q Aquifer discharge per unit length of the channel m2 s−1

ne Drainable porosity 1

t Time s

x Horizontal distance from the aquifer-stream interface m

α,α1,α2 Coefficient for the Brutsaert and Nieber analysis m3−3β tβ−2

β ,β1, β2 Coefficient for the Brutsaert and Nieber analysis 1

φ Normalized water table height (h/H) 1

φ0 Normalized water table height at origin (H0/H) 1

ψ Normalized variable related to the discharge per unit length 1

ψ0 The value of ψ at the origin x= 0 1

Ψ0 The value of ψ0 for the homogeneous case (H0 = 0) 1

ξ Boltzmann similarity variable 1

1 Introduction15

The Brutsaert and Nieber (1977) analysis (from now on referred to as BN77) has been widely used

in hydrologic research to estimate aquifer parameters given some discharge data. This technique is

based on “state-space”-like plots of Q×dQ/dt, where Q(t) is the aquifer discharge as a function of

time. It is based on solutions for the Boussinesq equation for groundwater flow applied to a system

as the one presented in Fig. 1, which shows a water channel of length L with one aquifer of lengthB20

on each side. Traditionally three solutions of the Boussinesq equation are considered for this method,

which are the three solutions proposed by BN77: (i) the solution by Polubarinova-Kochina (1962)

for a semi-infinite aquifer that deals with early-time behavior, (ii) the exact solution provided by

Boussinesq (1904) adequate for later times and (iii) the linearized solution provided by Boussinesq
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Figure 1. Schematic of a watershed of simple geometry during a hydrologic recession.

(1903) that is also used for late-time behavior. From the aforementioned solutions, only (iii) is able25

to deal with non-zero water-stream depths (H0) adjacent to the aquifer (of initial water table height

H). Recently, solution (i) — from now on we call “solution (i)” any solution for a semi-infinite

aquifer where discharge is occurring — has been generalized by Chor et al. (2013) and Dias et al.

(2014). The work by Dias et al. (2014) is of particular importance for the present work because it

extends the early-time behavior to cases where the stream depth is different from zero.30

Since BN77, many changes and improvements have been suggested (for detailed reviews, see

Rupp and Selker (2006) and Troch et al. (2013)) but its main insight remains the same: that one

should look at the rate of discharge as a function of discharge, or, mathematically (for the case of a

power law),

dQ

dt
=−αQβ , (1)35

where Q is the water discharge, t is time and α and β are calibrated coefficients which can be com-

pared to the predictions from the above-mentioned analytical solutions by Polubarinova-Kochina

(1962), Boussinesq (1903) and Boussinesq (1904), among many others (Rupp and Selker, 2006).

If one wishes to estimate only the soil hydraulic conductivity k0 and the drainable porosity ne,

two of the three aforementioned solutions can be used. In this work, the solutions used are the ones40

by Polubarinova-Kochina (1962) and Boussinesq (1903). However, the solution by Polubarinova-

Kochina (1962) is only valid for the case H0 = 0: it is therefore important to assess how much this

assumption affects the estimate of k0 and of ne for cases where it does not hold.

From the long list of solutions of the Boussinesq equation that are used for BN77’s method, very

few take H0 into consideration (from the list of 13 equations presented by Rupp and Selker (2006),45
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only 2 have H0 as a parameter), so it is safe to say that the approximation of zero water level depth

has not been thoroughly studied.

Although the BN77 method has been the focus of many studies for over 40 years, the subject is

not, by any means, exhausted. Among recent findings is the work by Bogaart et al. (2013), which

shows that, for sloping aquifers, it is possible to find a β coefficient of zero — something that until50

then had not been found by any other work and that was again found by Hogarth et al. (2014). Recent

uses of this equation include the linking of geological and geomorphological features to hydrological

behavior (Mutzner et al., 2013; Vannier et al., 2014) and the definition of good engineering practices

for the robust calibration of parsimonious models (Melsen et al., 2014).

Several considerations related to the complexities of real watersheds as well as the actual physical55

mechanisms through which baseflow is produced and routed through the watershed raise criticism

on the applicability of the BN77 recession analysis. A short, and by no means exhaustive, list of such

considerations include the effect of steep hillslopes and vertical inhomogeneity of k0, horizontal in-

homogeneity (variation of hydraulic properties within the watershed), difficulties in the identification

of α and β in (1) due to noisy data, geomorphological effects, etc. (Troch et al., 2013).60

The usefulness of recession analysis in hydrology, however, seems indisputable, as well as the

validity of the Boussinesq model in partly explaining hydrological recessions: the Boussinesq model

has proved able to include realistic effects while being kept relatively simple, and remains an im-

portant tool in obtaining representative parameters for hydrological and land-surface models at the

catchment scale (Pauwels and Troch, 2010; Troch et al., 2013). As such, it is reasonable to expect65

recession analysis and the Boussinesq model to play important roles in future progress towards im-

proved predictive capabilities in Hydrology.

It is beyond the scope of this note to explore all the considerations mentioned above. Instead,

we concentrate on a single effect that has not been given much attention (H0 6= 0) and study it

with a simple mathematical model that allows its importance to be assessed clearly and separately70

from other effects. This is in line with a systematic approach to identify inconsistencies between

the theoretical models and field conditions (Pauwels and Troch, 2010, §4). Our approach using

numerical solutions follows many other similar works on hydrological recessions (van de Giesen

et al., 2005; Rupp and Selker, 2006; Bogaart et al., 2013)

The attention in this paper is focused on the BN77 method applied with (i) and (iii). We will75

generalize the implementation of (i) with existing solutions in order to investigate the effects of

the depth of the adjacent water-stream into the estimation of the drainable porosity and saturated

hydraulic conductivity.
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2 Generalization of the early-time equation

Let ξ denote the Boltzmann variable for the one-dimensional Boussinesq equation (Chor et al., 2013;80

Dias et al., 2014),

ξ(x,t) =
x√
4Dt

, (2)

where D =Hk0/ne, and φ denote a normalized water table height,

φ=
h

H
, (3)

where h(x,t) is the water table height, x is the horizontal distance from the water stream and t is85

time. Under the above change of variables, the Boussinesq equation is reduced to the dimensionless

ordinary differential equation

d

dξ

(
φ
dφ

dξ

)
+ 2ξ

dφ

dξ
= 0 (4)

together with the boundary conditions φ(0) = φ0 and φ(∞) = 1. Due to the second boundary con-

dition, the solution is only valid for the initial phase of aquifer drawdown. For φ0 = 0, as already90

noted, the solution by Polubarinova-Kochina (1962) suffices for the BN77 analysis; for φ0 6= 0, a

series solution of the form

φ(ξ) =

∞∑
n=0

anξ
n (5)

has been proposed by Dias et al. (2014), with a recursion relation for the an’s. An important result

in that work is an empirical equation, fitted to numerically obtained values of a1 in the series above,95

for the value of ψ0, defined below. This is given as Eq. (12) in the present work.

Let us also define

ψ ≡ φdφ
dξ
, (6)

which we apply to Darcy’s law, along with Eqs. (2) and (3) to obtain

q(x,t) =
H3/2(nek0)1/2

2

ψ(ξ(x,t),H0/H)

t1/2
(7)100

where q(x,t) is the flow rate per unit width at any point x of the aquifer. Since we are interested in

the aquifer-stream interaction, we set x= 0, which produces

q(t) =
H3/2(nek0)1/2

2

ψ(ξ = 0,H0/H)

t1/2

=
H3/2(nek0)1/2

2

ψ0(φ0)

t1/2
, (8)

105

where ψ0 ≡ ψ(ξ = 0) and φ0 ≡H0/H .
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The value of ψ0, as far as we know, cannot be obtained analytically and is generally obtained

numerically or by means of approximations: its calculation will be dealt with later. For now, it

suffices to note that ψ0 is a function of φ0 as given above.

Writing dQ/dt=−α1Q
β1 , where the subscript 1 indicates the early-time solution, and Q= 2Lq110

is the flow per unit length taken over the total length (L) of the tributary and main channel sections

upstream from the gaging station, with q as in Eq. (8), yields β1 = 3 and

α1 =
1

2H3k0ne(ψ0(φ0))2L2
=
[
2H3k0ne (ψ0(φ0))

2
L2
]−1

. (9)

Equation (9) is generally used with the assumption ofH0 = 0, which yieldsψ0(0) = Ψ0 ≈ 0.6642,

which (substituting back into (9)) gives the well known equation (18b) of BN77.115

However, often the value of H0 is not small enough in comparison with H in order for this

approximation to be valid (Munster et al., 1996; Serrano and Workman, 1998; Barlow et al., 2000;

Peterson and Connelly, 2001; Langhoff et al., 2006; Ha et al., 2008; Sena and de Melo, 2012). In

these cases the misplaced assumption could lead to biased estimates of k0 and ne. These latter errors

depend not only on the determination of α1, but also on the late-time equations chosen and on the120

determination of the constants for that solution.

Evidence that the water depth of the adjoining stream is not negligible can be found (for example)

in the work by Brutsaert and Lopez (1998), where the late-time data showed a decay with β2 ≈ 1,

which in fact indicates that the watershed analyzed has a ratio H0/H close to one (we use the sub-

script 2 to indicate the late-time solution). Indeed, for φ0 = 0, the exact analytical solution provided125

by (Boussinesq, 1904), which is valid for late times, gives β2 = 3/2 (Brutsaert and Nieber, 1977),

whereas numerical solutions of the Boussinesq equation (Kan, 2005) show that β2 varies from 3/2

down to 1 as H0/H varies from 0 to 1.

3 Comparison between both approaches

We dedicate this section to the estimation of the errors that arise by assuming that the stream depth130

H0 is zero. For that purpose we take as a late-time equation the solution of the linearized Boussinesq

equation presented by Boussinesq (1903),

h(x,t) =H0 +
4

π
(H −H0)

∞∑
n=1,3,5...

1

n
sin
(πnx

2B

)
exp

(
−π

2n2k0pH

4neB2
t

)
, (10)

in which the water table height h is approximated as pH (for linearization purposes) and B is the

length of the aquifer.135

Eq. (10) predicts β2 = 1 and

α2 =
π2k0pHL

2

neA2
, (11)

were A is the area of the watershed, approximated by 2BL.

6



Solution of Eq. (11) and Eq. (9) gives, for ne and k0,

ne =
(p

2

)1/2 π

Hψ0A
(α2α1)

−1/2 (12)140

and

k0 =
A√

2pH2L2πψ0

(
α2

α1

)1/2

. (13)

In this formulation we assume both ψ0 and p to be functions of φ0 =H0/H , so we have ψ0(φ0)

and p(φ0), as was previously emphasized. We also assume that p(φ0) = (1− p0)φ0 + p0, where

p0 = 0.3465, based on the fact that p= 0.3465 for H0 = 0 (Brutsaert and Lopez, 1998). Setting145

H0 = 0 (and therefore φ0 = 0) in this model will yield exactly the same equations as presented by

Brutsaert and Lopez (1998).

To obtain ψ0(φ0) we use the approximation provided by Eq. (14) of Dias et al. (2014), since it is

sufficiently accurate and simple to program, viz.

ψ0(φ0)≈ (Ψd
0 + aφb0)

1
d (1−φc0)(1 + fφg0)e, (14)150

with a= 0.733841, b= 0.999223, c= 0.98359, d= 2.94568, e= 0.186587, f = 0.966673, and g =

0.93347. As explained in Dias et al. (2014), even after a general recursion relation for the an’s in (5)

has been obtained, the values of the an’s still cannot be obtained analytically, essentially because the

series’ radius of convergence is limited so that the boundary condition φ(∞) = 1 cannot be imposed

analytically. Instead, they must be obtained numerically with the aid of numerical solutions of (4).155

The coefficients above have been obtained in Dias et al. (2014) by curve fitting with a large number

of numerical solutions.

In order to compare both approaches, we have solved numerically the original Boussinesq equa-

tion (in x and t) to model the system depicted in Fig. 1 and generated synthetic discharge data for

different values of H0 <H . We then applied the original BN77 method to these data, as well as the160

generalized method we propose here. With this analysis we can quantify the error of both methods

in order to determine their accuracy.

Figures 2 and 3 show the results for k0 and ne, respectively, for increasing values of φ0, plotted

against the true values k0 and ne. As can be seen, the k0 estimate using the original equations remains

close to the true value up to φ0 = 0.4 approximately. Furthermore, there is a more or less linear trend165

in ne estimated with the original equations all the way from φ0 = 0. Both differ considerably from

the truth for large values of φ0 (φ0 > 0.4 for k0 and φ0 > 0.2 for ne, approximately). On the other

hand, our Eqs. (13) and (12) give estimated values of k0 and ne that differ very little from the true

ones for the whole φ0 range, and as such represent a considerable improvement over the original

equations.170

The small kinks between φ0 = 0.7 and φ0 = 0.8 are an artifact of the choice of the range of the

streamflowQ for fitting α1 and α2 used in the recession analysis. This (to the best of our knowledge)
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Figure 2. Comparison between k0 estimated by the original BN77’s analysis (dotted line and symbols) and the

method proposed here (solid line) — both normalized by the real value k0 used to numerically generate the

discharge data.
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Figure 3. Comparison between ne estimated by the original BN77 analysis (dotted line and symbols) and the

method proposed here (solid line) — both normalized by the real value ne used to numerically generate the

discharge data.

is still a subjective part of the BN77 analysis: the ranges were chosen to fit the recession plots

dQ/dt×Q reasonably well, but they were not “fudged” to “optimize”, in any way, the estimated k0

and ne.175

4 Conclusions

We have given an expression for early time aquifer discharge that generalizes the broadly used Eq.

(18) of Brutsaert and Nieber (1977) for cases where H0 is not small enough compared with H to
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make φ0 = 0 a valid approximation and compared the results to the original BN77 method. The main

motivation for this approach was to invetigate the effects of this assumption on the determination of180

the saturated hydraulic conductivity k0 and drainable porosity ne. This generalization, given mainly

by Eq. (9), is easily applicable and requires virtually no change in the original theory presented

by BN77. The comparisons presented in Figs. 2 and 3 suggest that the estimation of the hydraulic

conductivity k0 deviates considerably from the “true” value when H0 is 40% or greater of H , while

this deviation occurs when H0 is greater than 20% for the drainable porosity. We consider the errors185

for both cases to be large enough that the water stream depth should be considered as a variable

when using BN77 to estimate these parameters.
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