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Abstract

Natural stochasticity can pose challenges in managing the quality of the environment,
or hinder understanding of the system structure. It is problematic because unfavourable
stochastic events cancel management efforts and because a favourable stochastic event
may overestimate perceived success. This paper presents a variance-based modelling5

method that can be used to quantify the extent to which natural stochasticity can affect
the target environment. We use a case study of a eutrophication assessment in a Norwe-
gian lake of Årungen, using a lake model MyLake, in order to present the method, and
how this method could assist in answering scientific and management questions. Here we
contrasted two effects of nutrient loading in runoff (partially controllable by policies) and me-10

teorology (purely natural stochastic events), illustrated in the case study, in order to achieve
the season-by-season quantification of mutually confounding factors of stochastic events.
The results indicate that, for example, variation in runoff volume was most prevalent during
autumn and winter, while variation in phosphorus inflow was most extensive from late win-
ter to early spring. Thermal-related properties in the lake were well predicted by the model,15

and showed that the time of thermocline formation varied among years by more than one
month, from mid-April to mid-May, whereas loading was the most important factor for phy-
toplankton biomass and water transparency. Mild winters and greater inputs of suspended
matter and phosphorus were followed by increased phytoplankton biomass and light at-
tenuation. These findings also suggest that future changes in the global climate may have20

important implications for local water management decision-making. The present method
of disentangling mutually confounding factors is not limited to lake water quality studies and
may also provide utility in other types of aquatic system modelling.

1 Introduction

Natural stochasticity sometimes presents challenges in maintaining the quality of the en-25

vironment. Such is the case in the context of reducing nutrient loads for the purpose of
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improving water quality of downstream environments (Deelstra et al., 2010; Skarbøvik and
Bechmann, 2010). Natural variation in weather, for example, may confound costly abate-
ment efforts by counteracting any positive benefits derived from the abatement itself. In
particular, nutrient loading is determined both by hydrology (partially determined by me-
teorological forcing on land) and by the management effort (agriculture and urban related5

nutrient loading). Furthermore, the weather may be directly consequential in lake processes
such as algal growth. Under these challenges, it is paramount to evaluate to what extent
confounding variables can actually make significant differences in lake water quality . The
present study illustrates how a variance-based modelling method is able to disentangle two
major factors affecting a lake, with a test case study of eutrophication recovery of a Norwe-10

gian lake.
The scientific community has learnt that nutrient enrichment of lakes may lead to high

phytoplankton mass development, low water transparency, and fish mortality due to oxygen
depletion (Smith et al., 1999). There are two main factors affecting the nutrient loading to
lakes: (1) the soil and land use in the lake catchment, and (2) the hydrology of the water-15

shed. Phosphorus is generally regarded as the limiting nutrient for phytoplankton production
in freshwater lakes (Schindler, 1977). Much effort has therefore been given to reduce phos-
phorus input to aquatic ecosystems, which has demonstrably led to reduced phytoplankton
production and increased water transparency in many lakes in Europe and North America
(Jeppesen et al., 2005). On the other hand, many lakes have revealed delayed or negligible20

improvements in water quality despite reduced nutrients loading (Jeppesen et al., 2007a).
Year-to-year weather variations have also been recognised to affect physical, chemical

and biological processes in lakes (Bailey-Watts and Kirika, 1999; Blenckner et al., 2007;
Jeppesen et al., 2009, 2007b; Whitehead et al., 2009). An increase in air temperature has
been shown to increase the water temperature (George et al., 2007) and the stability of ther-25

mal stratification (Straile et al., 2003a), change the phytoplankton community towards domi-
nance of species adapted to warmer water (Weyhenmeyer et al., 2002), and possibly lead to
earlier and higher phytoplankton production (Huber et al., 2008; Weyhenmeyer et al., 2002).
Changes in thermal conditions and mixing regime can in turn influence the light, oxygen and
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nutrient dynamics in lakes, and thereby impact the phytoplankton primary production and
community structure (Tirok and Gaedke, 2007; Wilhelm and Adrian, 2008). Precipitation is
also deemed as an important factor in determining water transparency, runoff intensity, and
suspended matter discharge (Arheimer et al., 2005; Nõges et al., 2007; Ulén et al., 2007).

Norway has, generally, a low fraction of arable land (3 %) and low population density5

(12 persons km−2), so eutrophication is mainly recognizable in intensive agricultural districts
at low altitudes. Lake Årungen is situated in a developed agricultural area south-east in
Norway, and is one of the most nutrient rich lakes in the country. Geological studies suggest
that the natural phosphorus concentration of lakes in this area is 7–8mgm−3 (Borch et al.,
2007). Eutrophication became a problem in the lake during the 1960s, with phosphorus10

concentration exceeding 400mgm−3 in the 1980s (Løvstad and Krogstad, 1993). Algal
blooms, low water transparency, malodorous water, reduced fish stocks, and occasional
mass mortality of fish were observed in the lake in this period (Ensby et al., 1984). Despite
investments in sewage treatment and extensive changes in agricultural practices since the
1970s to reduce nutrient leaching and erosion from the catchment, algal growth remains15

high.
Predicting eutrophication responses to nutrient loading is a complex task due to the dy-

namics of a lake’s response to stochastic nature of weather, the confounding factor. Here
we used a lake model MyLake (Saloranta and Andersen, 2007) based on a system of
processes that have been identified as a primary tool for improving our understanding of20

recovery and progression of eutrophication (Mooij et al., 2010). More precisely, we made
combinations of forcing data (meteorological and nutrient loading inputs) for the model, with

1. some forcing data from the actual records and

2. others being the average day-to-day record for the period of 16 years, repeated 16
times.25

This approach interweaves the day-to-day and year-to-year variability in a systematic man-
ner, and simulation outputs based on dissimilar combinations of these “actual” and “re-
peated average year” can be analysed once again from the day-to-day and year-to-year
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variability. In principle, the actual data are more variable than the repeated average year. If
a particular forcing variable is significant in affecting the lake water quality, switching from
the actual to repeated average year reduces the year-to-year variation in lake water quality
variables. More importantly, the current study demonstrates the use of year-to-year vari-
ance for each day of year, which is a powerful visual and quantitative tool in detecting the5

critical season for a variable.
The separation of two temporarily varied factors affecting the same environmental re-

ceptor is not only useful in lake water quality modeling. For example, agricultural yield and
forestry are affected by weather, soil conditions, diseases, and tilling and fertilisation amount
and timing. Other examples may be climate change impacts on the physical landscape,10

such as glacial extent or surface water ice cover, which are affected by stochastic meteoro-
logical conditions and warming forcing which are mostly anthropogenic but also of natural
origin (e.g., volcanic activities), as well as regional multi-year fluctuation such as the North
Atlantic Oscillation or El Nino.

The current study primarily aims to evaluate the relative importance of year-to-year varia-15

tion of two major factors, namely meteorological forcing and nutrient loading, contributing to
lake’s physical, chemical and biological conditions. We visually inspect how their respective
significance varies over the season. To this aim, (1) the MyLake model was first calibrated
against the lake data, then (2) various meteorological and nutrient loading scenarios com-
bining variation of these two major factors were applied, and finally (3) year-to-year variation20

in model outputs were compared among the scenarios.

2 Material and methods

2.1 Study site

Lake Årungen is a dimictic lake with maximum and average depths of 13 and 8m, respec-
tively. The lake is located in south-east Norway (59◦41′18′′N, 10◦44′38′′E; Fig. 1), 25 km25

south of Oslo, and has a surface area of 1.2 km2. The catchment area covers 51 km2,
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where 53 % is agricultural land, 34 % forestry, 10 % densely populated and 3 % open water
surfaces. The lake is highly exposed to agricultural runoff that causes high nutrient and par-
ticle loading. Runoff is mainly through 6 streams of 1.5 to 5 km length. The outlet connects
the lake to the marine environment as Lake Årungen enters the Oslofjord through a 3-km
long stream.5

2.2 Model

MyLake is a one-dimensional lake model, adapted from MINLAKE (Riley and Stefan, 1988),
which simulates daily changes in physical and chemical dynamics over the depth gradient
(Saloranta and Andersen, 2007). The model simulates ice and snow dynamics in a mech-
anistic manner and it has been applied to winter-freezing lakes in Norway and Finland10

(Kankaala et al., 2006; Lydersen et al., 2003; Saloranta et al., 2009; Saloranta, 2006; Cou-
ture et al., 2014). It was therefore considered as a suitable model for Lake Årungen.

2.3 Inputs and outputs

MyLake requires inputs of meteorological forcing, runoff volume and temperature, and
fluxes of suspended inorganic particles and total phosphorus (TP) to model phosphorus15

and phytoplankton dynamics in the lake (Table 1). Meteorological data for daily air temper-
ature, global radiation, cloud cover, precipitation, relative humidity and wind speed were
obtained from the nearby meteorological station located at the Norwegian University of Life
Sciences (59◦39′37′′N, 10◦46′54′′E). Direct measurements of daily runoff volume, runoff
water temperature, and fluxes of suspended inorganic particles and total phosphorus to20

the study lake Årungen was not available. However these values were estimated using the
Skuterud monitoring station (Fig. 1) with a hydrovolumetric weir at which these runoff vari-
ables were monitored (1994–2010), providing accurate flux at this subcatchment. In order
to account for runoff contributions of different types of landuse in the other subcatchments,
such as agriculture and urban build up, we used previously determined scaling factors that25

both correct for flow and nutrient contributors (Askilsrud, 2010). The monitoring station is lo-

6



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

cated at an inlet stream to Østensjøvann (59◦41′18′′N, 10◦49′45′′E), a small lake of 0.4 km2

which drains into the Lake Årungen (Deelstra et al., 2007). A separate MyLake model was
set up for Lake Østensjøvann to account for the buffering effects of this lake in the largest
sub-catchment of Lake Årungen. The simulated water properties of Lake Østensjøvann
were combined with runoff from the other sub-catchments as an estimate of the total runoff5

to Lake Årungen.
Six variables (whole-lake average TP pool, mean surface chlorophyll concentration, light

attenuation coefficient, thermocline depth, epilimnion temperature, and ice thickness) were
calculated from unprocessed model outputs (Table 1) in order to ease interpretation of the
statistical analyses for the scenario experiments described below.10

2.4 Model calibration

Water temperature, TP, soluble reactive phosphorus (SRP), and chlorophyll a concentration
from the deepest location in the lake were used to calibrate the model (Table 1). Vertical
water temperature profiles were continuously logged every hour at eight depths between
0.7 and 12.6m by Hobo pendant temperature loggers (model 64K-UA-002-64; Onset Com-15

puter Corporation, Bourne, MA, USA) in the period from November 2008 to August 2010.
Water samples for chemical and biological analyses were collected with a modified Rut-
tner water sampler at seven depths twice a month or monthly (n= 49) from January 2008
to September 2010. TP, SRP and chlorophyll a were determined spectrophotometrically
(UV-VIS Spectrophotometer UV-1201, Shimadzu, Kyoto, Japan).20

We employed the Markov chain Monte Carlo (MCMC) method (Andrieu et al., 2003; Salo-
ranta et al., 2009) during the calibration procedure. The calibration consisted of two stages.
The first MCMC calibration stage involved three physical parameters (Table 2) that only af-
fect heat dynamics, in particular thermocline depth. This first calibration was run against
daily temperature measurements, using 2000 MCMC steps with the first 1000 for burn-in.25

The second MCMC calibration stage involving eight parameters (Table 2) that affect phos-
phorus and chlorophyll dynamics, but not temperature, was run against measurements of
TP, SRP, and chlorophyll a in 30 000 MCMC steps with the first 10 000 for burn-in. For exam-
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ple, algal growth in the MyLake model is a function of nutrient concentration, light availability
and water temperature, and amplitude of these factors were controlled by the parameters.
In the present study, runoff was given as external input to the model, and water temperature
and underwater light conditions were determined in the first stage of MCMC. Therefore, for
the example of algal growth, the second stage of MCMC only changed the amplitude of5

algal growth in response to these external factors. For these MCMC applications, conver-
gence was monitored visually. Linear interpolation was used to match model outputs on
a 0.5m vertical grid to the actual measurement depths. Although it was not used directly
during the MCMC calibration, model goodness of fit was informally assessed by root mean
square error (RMSE). The medians of the posterior parameter distributions generated from10

both stages of the MCMC calibrations were used for the scenarios experiments described
in the following.

2.5 The variance-based method for disentangling confounding factors

The model was run under four scenarios for nutrient loading and weather in order to quantify
the respective impacts of weather variation and loading conditions on phosphorus and phy-15

toplankton dynamics (Table 3). Precipitation (in the meteorology group) predominantly influ-
ences runoff volume (in the runoff group). But runoff volume was kept together with runoff
concentrations as the most important influence possessed by runoff is the total amount of
nutrients, which we obtain by multiplying concentration by volume. These scenarios were
based on input combination of observed data (original data, 1994–2010) and synthetic data,20

where the synthetic data were created by taking the year-to-year mean (n= 16) of each of
the days of year. Synthetic data repeats the calculated mean year with 365 days sixteen
times. The 29 February is removed in year-to-year mean calculation, and 28 February was
repeated to account for the 29 in leap years.

This approach combines the actual forcing data for some variables together with average25

year data for the other forcing data variables. Comparing such a synthetic scenario against
the scenario using full actual forcing data elucidates the importance of year-to-year variation
of the second set of variables. For example, scenario C (repeated average-year runoff)
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will necessarily have lower year-to-year variation (n= 16) in output variables compared
with scenario A (full original data) (Table 3); the difference in the scenario input (i.e. runoff
input) accounts for the reduction in the year-to-year varition in the output variables. By
examining which output variables were most reduced in year-to-year variation among all
output variables, we obtain crucial information on the importance of runoff forcing data in5

the output. Thus we achieved the the objective of the present study, namely disentangling
the relative importance of year-to-year variation of two major factors (meteorological and
loading inputs). The idea of mixing actual and average-year forcing data were derived from
the study conducted by Jöhnk et al. (2008), in which the authors assessed the relative
importance of various meteorological variables (air temperature, cloudiness, wind speed)10

in affecting various lake responses such as water temperature and algal cell counts of 3
phytoplankton groups. The present study compares standard deviation of the 16 years of
simulation outputs for each day of year for 6 output variables among several sceniarios.

Combining the repeated average input together with actual stochastic input (such as in
the scenarios B and C, Table 3) causes unrealistic input for two reasons. One reason is the15

inconsistency among variables on the daily basis. For example, because runoff is controlled
by precipitation, the scenario C for instance (original weather + averaged runoff) on a daily
basis may suffer from a potentially undesirable situation such as high precipitation with
little cloud on a certain day. This is unrealistic, but from the lake ecosystem perspective,
the runoff’s role is mostly as the source of nutrient, and weather as the source of energy,20

and the fact that lake water is an accumulation of old water from runoff introduced many
days ago, the influence of this inconsistency in combination is minimal. The second reason
is that the intra-variability or within-year variability that naturally stochastic variables such
as meteorological inputs should have is lost in the present study’s design. This can cause
problems such as not providing extreme wind events due to averaging despite such wind25

events being crucial for the on-set of ice formation, or determination of the thermocline.
Hydrodynamic models are therefore usually driven by stochastically generated time series
(Semenov et al., 1998; Schlabing et al., 2014). Alternatively, most average looking years
could have been chosen as in Jöhnk et al. (2008). However, the current study requires the
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average to be done on multiple criteria or variables. By rendering a choice of one year as
the average year for a certain variable, it will not necessarily be the average year on all
variables concurrently. To achieve the purpose of reducing the year-to-year variation and
not to be particularly bound by a selected single year or randomly generated year, repeated
average year was used despite these potential problems. In the present study, year-to-year5

variation in outputs of these four scenarios will be discussed but not the actual values on
the daily basis, and the results are interpreted with care that scenario A is the most variable
on a year-to-year basis, that either B or C is the next, and finally that D is the least, although
this care does not completely safeguard the results from unrealistic intra-year variations or
inconsistencies.10

2.6 Post-simulation methods

All the data analysis and statistical analyses were done using R (version 3.1.2, R Core Team
(2014)). A two-way analysis of variance (ANOVA) was run on the 16 years of water year

based simulation statistics (water year mean, see Table 1), among scenarios A, B, C and D
(two weather factors by two loading factors, see Table 3). All annual averages are computed15

over the period from 1 October to 30 September, commonly used in Europe to refer on
a hydrological year, or a water year (Otnes and Ræstad, 1978). Since treatment contrasts
are nested within water years we factored out the between-year variances to gain a greater
power in the statistical tests. Principal component analysis (PCA) was used to explore the
relationships between meteorological and land-related forcing and their relevance for the20

simulated lake response. Four water years with extreme PCA scores were selected for
studying contrasting lake responses in closer details.
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3 Results

3.1 Calibration

The simulated water temperature and thermal dynamics of the lake were in agreement
with the lake observed data. Observed water temperature measurements were well pre-
dicted by simulation and the RMSE was less than 2 ◦C at all lake depths (Fig. 2). After the5

water temperature calibration, parameters controlling TP, SRP, and chlorophyll a were cal-
ibrated against observed data for the period from January 2008 to September 2010. The
epilimnion TP, SRP, and chlorophyll a concentrations were well predicted by the model, al-
though their prediction was less successful than the prediction of the water temperature.
The TP and SRP were better predicted by the model in pelagic surface water than in deep10

water whereas the chlorophyll a showed the opposite pattern. In general, the model simu-
lated TP and SRP well, although both phosphorus forms were overestimated in early spring
and autumn at shallow depths, while underestimated in bottom water. Simulated SRP con-
centrations were also somewhat higher than observed in winters. However, the simulation
succeeded in showing a decreasing trend of lake phosphorus in spring and midsummer,15

and in mimicking its increase during the autumn mixing of water. Although the simulated
chlorophyll concentrations were lower than the measured values, the model was able to
predict seasonal variation in phytoplankton primary production and to simulate high phyto-
plankton biomasses in the lake epilimnion during midsummer.

3.2 Variability in forcing data20

Inter-annual variation was expressed as the standard deviation in inputs and outputs be-
tween the years. All weather inputs varied between years (Fig. 3), with air temperature
and global radiation having the strongest seasonal pattern in inter-annual variation (i.e.
greater 16 year variation as compared to year-to-year variation on a day-of-year basis). The
inter-annual variation in air temperature was strongest in the winter period, whereas global25

radiation varied most during the summer months. The variation in cloud cover, precipitation
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and relative humidity was generally similar across seasons. The year-to-year variation for
precipitation was particularly high in December and in the period from July to September,
the latter reflecting extreme precipitation events. Wind speed varied most in winters.

Runoff input data on water flow and concentrations of TP and suspended matter all varied
seasonally and between years. The variation in runoff volume was greatest in the period5

from October to May. No clear seasonal pattern in the degree of variability could be found
for suspended matter and TP fluxes, although the variation of TP influx seemed to peak in
February and March.

3.3 Variability in simulation outputs: disentangled significance of confounding
factors10

Differences in year-to-year variation among the scenarios (Fig. 4) and the annual statis-
tics (Table 4) illustrate the seasonal influence of the external forcing on the thermal regime
and the phosphorus and phytoplankton dynamics in the lake. There is a large amount of
N in Årungen, as N is applied in surplus at the agricultural fields. Even though there is
some reduction in N during summer, N is excluded as the limiting nutrient (Romarheim,15

2012). The lake responded differently between years; all simulated outputs, except ice thick-
ness, showed large variation in the beginning and at the end of the phytoplankton growing
season (Fig. 4). All simulated output variables were influenced by external forcing as they
varied inter-annually for all model scenarios (see variance decomposition in Table 4). Ice
thickness was significantly affected by weather (P < 0.001) as both air temperature and20

winter precipitation highly contributed to its variation between years (Table 4; Fig. 4). The
variation in thermocline depth in May and October was well revealed by the model, and
seemed to be equally dependent on weather and loading. The epilimnion temperature dur-
ing the whole growing season was largely controlled by weather. The TP content in the lake
was most variable in the period from November to January, and in April and July. Loading25

could mostly explain the inter-annual TP variation in the lake, whereas precipitation con-
tributed to TP variation only in the spring, and air temperature only during the winter period.
Loading was the overall most important factor in controlling the light attenuation coefficient
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(P < 0.001) and surface chlorophyll concentration (P < 0.001). Weather seemed to be im-
portant in controlling chlorophyll and light attenuation in early spring whereas loading was
the most important factor controlling the both variables from June to September. The year-
to-year variation in these two variables from June to September under the scenario C was
higher than scenario A, despite that scenario C is less variable year-to-year than scenario A5

in loading. This might be because scenario C may distribute the autumn runoff events that
is still significant after spreading over the years, and this might have caused the light-related
variables to be unstable on a day-to-day scale.

The years 1996, 2000, 2006 and 2007 were the four most extreme years determined on
the basis of the PCA analysis (Fig. 5). The year 1996 was characterized by relatively low10

average annual air temperature, a thin cloud cover and low precipitation, which resulted in
low epilimnion water temperature, short lasting thermocline, low runoff volume, and TP in
the lake. The year 2007 represents an opposite to 1996 regarding weather characteristics,
resulting in a model simulation with relatively high average annual air temperature and pre-
cipitation. Increased wind speed, decreased air temperature, and decreased precipitation15

coincided with increased ice thickness and glocal radiation, such as in 2003–2006, 2009,
and 2010. These weather conditions resulted in lower suspended inorganic particles and
TP in runoff which coincided with lower surface chlorophyll concentration and light atten-
uation. The year 2006 was identified to be extreme during this period, with a cold winter
followed by a warm summer. In contrast, the year 2000 was characterized as a year with20

less global radiation, lower summer air temperature, and higher wind speed, but with higher
winter temperature and precipitation. Such weather conditions pronounced higher TP and
suspended particle in runoff compared with an average year, resulting in a high surface
chlorophyll concentration and lower water transparency.

The methodological choice of using a repeating average year (see Section 2.5) may have25

reduced the impact of extreme weather events but probably caused little difference in the
overall interpretation and conclusion. But the result that the daily year-to-year variation for
either scenario B or C was closely following scenario A, depending on the modelled variable
(TP content, surface chlorophyll, light attenuation coefficient for scenario B, and ice thick-
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ness, thermocline depth, and epilimnion temperature for scenario C) provides confidence
that the conclusions will not change due to the methodological limitation.

4 Discussion

4.1 Year-to-year variability in lake responses

Year-to-year weather variations, as well as the influence of catchment land-use and hy-5

drology, hinder our understanding of how individual stressors may affect the lake response
(Blenckner, 2005). Our model experiment, which involved the input of weather and loading
data for 16 years, was able to outline the respective importance of year-to-year variation in
external forcing on physical, chemical and biological response in Lake Årungen. The com-
bination of high forcing variability and high lake response sensitivity made the inter-annual10

variation most dramatically expressed in spring and autumn.
Air temperature, precipitation, and wind speed are the principal factors influencing fresh-

water ecosystems in a changing climate (Nickus et al., 2010). The lake thermal regime
was to a large extent affected by weather conditions, particularly by air temperature. The
dynamics of winter air temperatures were an important factor influencing the heating and15

mixing processes during spring. A dynamic physical environment at the beginning of the
growing season has considerable influence on the phytoplankton community structure and
its dynamics (Weyhenmeyer et al., 2002). For example, increased surface water tempera-
tures in the English Lake District (George et al., 2007) and incomplete water mixing in Lake
Constance (Straile et al., 2003a) have earlier been associated with mild winters. High inter-20

annual variation in winter air temperatures in Lake Årungen was reflected in the simulated
ice thickness and phenology of ice formation, with ice forming in December–January and
disappearing in March–April. Likewise in other lake studies, thinner and shorter ice cover
has been related to mild winters (Nickus et al., 2010). In this study, the timing of thermo-
cline formation varied among years by more than one month, from mid-April to mid-May.25

The large year-to-year variation in thermocline depth and duration could lead to changes in
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temperature, light, and nutrient condition in the lake, which further shape the phytoplankton
community and determine its total biomass (Padisák et al., 2010; Zohary et al., 2010). For
instance, early disappearance of diatoms and high development of cyanobacteria in Euro-
pean lakes has been related to winter warming and increased water temperature (Weyhen-
meyer et al., 2002). Furthermore, an increase in water stability favours the buoyant phyto-5

plankton species such as bloom forming cyanobacteria (Reynolds et al., 1983; Winder and
Hunter, 2008).

Year-to-year variation in phosphorus content in the lake was highly influenced by nutri-
ent loading. This indicates that the external nutrient supply remains an important source of
phosphorus in the lake. Although changes in nutrient loading have been primarily linked to10

anthropogenic activities in the catchment, in particular to practices in agriculture, the short-
term variations in weather and runoff can also influence the nutrient supply from external
sources. Lake Årungen is surrounded by agricultural land, and is especially sensitive to vari-
able weather conditions that promote nutrient loading from the catchment. More precisely,
air temperature and rainfall frequency and intensity affect the runoff and the soil erosion pat-15

tern, particularly during the winter period. Increases in winter temperatures simultaneously
occurring with frequent freezing and melting events increases the risk of erosion, which in
turn increases the nutrient loading to the lake (Bechmann et al., 2005; Jeppesen et al.,
2009; Nõges et al., 2007). Although not statistically demonstrated in the present study, the
indirect impacts of weather conditions on discharge may still be important in regulating the20

nutrient dynamics. Variable winter weather conditions, and the timing of ice out were most
important cause of year-to-year variable phosphorus content in the period from November
to January and in April in Lake Årungen. Enhanced phosphorus concentrations in streams
during winter and high phosphorus loading in early spring both contribute to the total lake
phosphorus concentration during the following summer in two Norwegian lakes with agricul-25

tural catchments (Bechmann et al., 2005). In addition, the variation in summer TP content
could also be the result of between-year variation in rainfall, especially due to extreme pre-
cipitation events as observed for particular days in July. High inter-annual variation in TP
content can consequently result in variable phytoplankton biomass between years.
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Phytoplankton biomass and light were significantly affected by loading, although atmo-
spheric forcing also contributed to their inter-annual variation in the lake. The effect of load-
ing was pronounced during the whole algal growing season, whereas weather had the
strongest effect in early spring and from mid-August to the end of the growing season.
Thermal stratification is highly dependent on weather and may further influence water mix-5

ing as well as light and nutrient regimes, which are important in controlling the phytoplankton
dynamics (Padisák et al., 2010; Zohary et al., 2010). Similar patterns of year-to-year vari-
ation in water temperature, chlorophyll concentration, and light attenuation indicate a close
relationship between these variables. Higher air temperature promoted higher water tem-
perature and higher stability of the thermal stratification which enhanced phytoplankton pro-10

duction of bloom forming cyanobacteria (Reynolds et al., 1983; Weyhenmeyer et al., 2002).
Runoff and soil erosion, caused by intense precipitation and frequent melting of snow and
ice during mild winters, affect eutrophication and water turbidity (Bechmann et al., 2005;
Jeppesen et al., 2009). Thus, light may limit phytoplankton growth more than nutrients in
highly turbid lakes such as Lake Årungen (Dokulil, 1994). Reduced light availability may be15

crucial for the competitive success of cyanobacteria which are functionally adapted to low
light conditions (Litchman, 1998). Particularly high dominance of cyanobacteria has been
observed in the Lake Årungen after mild winters followed by low light conditions in spring
(Romarheim et al., unpublished). Therefore, additional measures to control soil erosion may
need to be implemented in water management, not only to reduce the supply of nutrients,20

but also to avoid low water transparency which may favour development of potentially toxic
cyanobacteria.

4.2 Implications for lake management

According to our PCA analysis, most of the 1990s were categorized by winters with higher
temperatures and more rainfall. The mild winters were related to a positive North Atlantic25

Oscillation (NAO) phase which has been shown to strongly influence physicochemical and
biological responses in western European lakes (George et al., 2007; Straile et al., 2003b;
Weyhenmeyer et al., 2002). The effect of climate condition on water ecosystems, however,
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should be considered individually as the lake response is also determined by the lake’s ge-
ographical position, landscape topography, and the lake’s morphometry and mixing regime
(Nickus et al., 2010). Our model experiment indicated that greater inflow of suspended
matter and phosphorus to the lake Årungen is expected after mild winters with high precip-
itation. Consequently, higher chlorophyll concentrations and greater light attenuation were5

predicted after mild and wet winters such as in the year of 2000. Mild winters potentially
counteract measures aimed to reduce external nutrient supply and control phytoplankton
production in cold temperate lakes. On the contrary, cold winters were associated to thicker
ice layer, less inflow of suspended matter and phosphorus, and low chlorophyll and light
attenuation. This was consistent with the observed increase in water transparency and re-10

duction of phytoplankton biomass, particularly of cyanobacteria, in Lake Årungen after the
cold winter in 2010 (Romarheim et al., unpublished). Special attention must therefore be
given to management practices, which should minimize the use of fertilizers and reduce the
risk of nutrient runoff and soil erosion, especially in areas that drains directly into the lake.
Higher annual air temperature coincided with warmer epilimnion, shallower thermocline and15

extended summer stratification such as for the year of 2007. In addition, high annual pre-
cipitation and runoff volume, particularly in summer, coincided with warmer years.

Globally, all years in the period from 1995 to 2006, with an exception of 1996, were
among the warmest since 1850 (Trenberth et al., 2007). Likewise, the year 1996 was char-
acterised with low average annual air temperature in our model experiment. Lower annual20

air temperature and low rainfall in 1996 led to low epilimnion temperature, and a deep and
short lasting thermocline. According to future climate projections for Scandinavia, warmer
and wetter winter is expected in south-eastern Norway (Hanssen-Bauer et al., 2005). If so,
we should also expect more intensive soil erosion, higher phosphorus loading, lower water
transparency, and greater phytoplankton biomasses, primarily of cyanobacteira in the lakes.25

Global climate changes and inter-annual variations in the local weather both directly, and
indirectly through an impact on the catchment, influence the physicochemical and biological
processes in lakes. The limnological and biogeochemical knowledge of this lake identified
by decomposing year-to-year variation of the two factors, carries potential in determining
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future management. Runoff is partially controlled by precipitation which in turn is predicted
to change, and so are air temperature and global radiation. Therefore, the effects of cli-
mate should be critically considered in future decision-making processes concerning water
management.
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Table 1. Input and output data, and observed lake data for the calibration of the MyLake model and
statistics for the ANOVA and PCA analyses.

MyLake inputs MyLake outputs (selected) Observed lake data

Meteorological dataa, f Calibration purposea Calibration purpose
Air temperature (every 0.5m by depth) (at 7 depths)
Global radiation Water temperature Water temperaturea

Cloud cover TP concentration TP concentrationb

Precipitation SRP concentration SRP concentrationb

Relative humidity Chlorophyll concentration Chlorophyll a concentrationb

Wind speed
Statistics calculated for PCA

Runoff a, g (volume weighted mean 0–3.0m)
Flow volume TP content
Water temperature Mean surface chlorophyll
Suspended matter flux Light attenuation coeficient
TP flux Thermocline depth

Mean epilimnion temperaturee

Statistics calculated for PCA Ice thickness
Global radiationc

Cloud coverc

Air temperaturec

Wind speedc

Precipitationc

Flow volumec

Winter air temperatured, h

Summer air temperatured, i

Winter precipitationd, h

Summer precipitationd, i

Suspended matter fluxd

TP fluxd

a Daily data. b Biweekly data. c Annual mean. d Water year basis (October through September). e Volume weighted above
thermocline depth. f Inferred with data from Ås meteorological station. g Inferred with data from Skuterud monitoring station
and land use. h December through March, mean. i June through September, mean.
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Table 2. Parameters involved in calibration based on two-stage Markov chain Monte Carlo (MCMC)
application (first stage for three parameters using 2000 MCMC steps with 1000 steps for burn-in
and second stage for eight parameters using 30 000 MCMC steps with 10 000 for burn-in). MyLake
equation numbers refer to the original model description (Saloranta and Andersen, 2007). Median
values were chosen among the posterior parameter distribution.

Parameter Value Equation Unit Prior distribution

Physical parameters
Open-water vertical diffusion coefficient 7.56× 10−3 Eq. (10) m2 day−1 0.00706× (1.18× (10x)× 10−6)0.56 where x∼ N(0,1)
Wind sheltering coefficient 7.96× 10−2 Eq. (13) – 1− e−0.3×1.18×10x×10−6

where x∼ N(0,1)
Minimum possible stability frequency 9.31× 10−5 Eq. (10) s−2 1.14× 10−4 × 10x where x∼ N(0,1)

Biological and chemical parameters
PAR saturation level for photosynthesis 2.04× 10−4 Eq. (29) mol quantam−2 s−1 3.00× 10−5 × 10x where x∼ N(0,0.5)
Particle resuspension mass transfer coefficient 2.94× 10−5 § 2.7 mday−1, dry 3.63× 10−7 × 10x where x∼ N(0,0.5)
Settling velocity for suspended matter 1.38 Eq. (20) mday−1 0.25× 10x where x∼ N(0,0.5)
Settling velocity for chlorophyll 7.31× 10−2 Eq. (20) mday−1 0.200× 10x where x∼ N(0,0.5)
Specific mortality rate of phytoplankton 1.86× 10−1 Eq. (26) day−1 0.200× 10x where x∼ N(0,0.5)
Max specific growth rate of phytoplankton 1.76 Eq. (27) day−1 1.50× 10x where x∼ N(0,0.5)
Half saturation inorganic phosphorus 9.99× 102 Eq. (24) mgm−3 2500× 10x where x∼ N(0,0.5)
concentration for Langmuir isotherm
Saturation level for inorganic phosphorus isotherm 4.96× 104 Eq. (24) mg kg−1 8000× 10x where x∼ N(0,0.5)
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Table 3. Model scenarios. The scenarios comprise either original input data (denoted O), pseudo
repeated average year based on 16 years of input data (denoted R), or a combination of O and R.

Model scenarios A B C D

Model inputs

Weather
Global radiation O R O R
Cloud cover O R O R
Relative humidity O R O R
Wind speed O R O R
Air pressure O R O R
Air temperature O R O R
Precipitation O R O R

Runoff
Flow volume O O R R
Suspended matter flux O O R R
Inflow water temperature O O R R
TP flux O O R R
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Table 4. Summary results for six two-factor within-subject ANOVA (n= 16× 2× 2). Significance
of additive and interactive effects of weather (two levels, original O or repeated average R) and
loading (two levels, original O or repeated average R) inputs on the six selected model outputs are
shown using P value. High P values for interactive effects for all six tests indicate pure additive
two-factor model and test for each factor separately. The variance decomposition shows the relative
contributions of each factor and interaction to the total sum of squares with the between-year error
term factored out.

F-value P-value Variance decomposition

Model outputs W L W×L W L W×L W L W×L

Ice thickness 31.93 0.13 0.34 < 0.000 0.723 0.565 0.413 0.002 0.004
Thermocline depth 0.27 0.91 1.93 0.605 0.346 0.172 0.006 0.019 0.040
Epilimnion temperature 3.19 4.91 0.39 0.081 0.032 0.537 0.060 0.092 0.007
TP content 0.81 1.26 0.02 0.374 0.268 0.888 0.017 0.027 0.000
Surface chlorophyll 0.05 18.76 0.14 0.827 < 0.000 0.713 0.001 0.293 0.002
Light attenuation coefficient 0.78 14.82 0.23 0.382 < 0.000 0.631 0.013 0.244 0.004
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Figure 1. Map of catchment draining into (1) Lake Årungen, with the (2) weather station at Ås, (3)
Lake Østensjøvannet and (4) the Skuterud monitoring station. Runoff data from the Skuterud sub-
catchment (indicated by dark shading) are scaled up according to land area and usage of the rest
of the catchment to estimate the total loading to Lake Årungen.
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Figure 2. Simulated (line) and observed (circles) lake state variables for water temperature, TP, SRP,
and chlorophyll a concentrations at seven depths. RMSE values are in their respective original units,
and they are shown only for the presentation purpose and were not used during the calibration. See
text for the details of calibration procedure.

29



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Nov Jan Mar May Jul Sep

2
3

4
5

6
7

8

dateseq
S

D
 A

ir 
te

m
pe

ra
tu

re
 (

 °C
)

Nov Jan Mar May Jul Sep

0
2

4
6

8

dateseq

S
D

 G
lo

ba
l r

ad
ia

tio
n 

(M
J 

m
−2

)

Nov Jan Mar May Jul Sep

0.
15

0.
20

0.
25

0.
30

0.
35

dateseq

S
D

 C
lo

ud
 c

ov
er

 (
−

)

Nov Jan Mar May Jul Sep

0
5

10
15

20

dateseq

S
D

 P
re

ci
pi

ta
tio

n 
(m

m
 d

ay
−1

)

Nov Jan Mar May Jul Sep

5
10

15
20

S
D

 R
el

at
iv

e 
hu

m
id

ity
 (

%
)

Nov Jan Mar May Jul Sep

0.
5

1.
0

1.
5

2.
0

2.
5

dateseq

S
D

 W
in

d 
sp

ee
d 

(m
 s

−1
)

Nov Jan Mar May Jul Sep

0e
+

00
2e

+
05

4e
+

05

dateseq

S
D

 R
un

of
f v

ol
um

e 
(m

3  d
ay

−1
)

Nov Jan Mar May Jul Sep

0.
05

0.
10

0.
15

0.
20

dateseq

S
D

 S
us

pe
nd

ed
 m

at
te

r 
in

 r
un

of
f (

kg
 m

−3
)

Nov Jan Mar May Jul Sep

50
10

0
15

0
20

0
25

0
30

0

dateseq

S
D

 T
ot

al
 p

ho
sp

ho
ru

s 
in

 r
un

of
f (

kg
 m

−3
)

30



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Figure 3. Input variability shown as standard deviations on a water year scale (day-by-day, year-to-
year variation, n= 16, curves), with the overall 16 year standard deviations indicated by horizontal
lines.

31



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

32



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Nov Jan Mar May Jul Sep

0
10

0
20

0
30

0
40

0

S
D

 T
P

 c
on

te
nt

 (
kg

)

Nov Jan Mar May Jul Sep

0
2

4
6

8

S
D

 S
ur

fa
ce

 c
hl

 c
on

ce
nt

ra
tio

n 
(m

g 
m

−3
)

Nov Jan Mar May Jul Sep

0
1

2
3

4
5

6

S
D

 T
he

rm
oc

lin
e 

de
pt

h 
(m

)

Nov Jan Mar May Jul Sep

0
1

2
3

4

S
D

 E
pi

lim
ni

on
 te

m
pe

ra
tu

re
 (

 °C
)

Nov Jan Mar May Jul Sep

0.
00

0.
05

0.
10

0.
15

S
D

 L
ig

ht
 a

tte
nu

at
io

nc
oe

ffi
ci

en
t (

m
−1

)

Nov Jan Mar May Jul Sep

0.
00

0.
02

0.
04

0.
06

0.
08

S
D

 Ic
e 

th
ic

kn
es

s 
(m

)

33



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Figure 4. Output variability shown as standard deviations on a water year scale (day-by-day, year-
to-year variation, n= 16) for scenarios A (black solid line or top solid line), B (red dotted line), C
(blue dashed line), and D (green solid line or bottom solid line). Consequently, each panel illustrates
4×365 standard deviation values, and each standard deviation is based on sample size n= 16. See
Table 3 for scenario configurations.
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Figure 5. Principal component analysis (PCA) loadings for the two greatest components (explaining
39.0 % and 16.5 % of variance) and scores for the two components for 16 water years (letters).
Black coding for PC loading indicates the weather input, brown the runoff input, and blue the lake
simulation.
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