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Interactive comment on “Sampling frequency trade-offs in the assessment of mean transit times of 
tropical montane catchment waters under semi-steady-state conditions” by E. Timbe et al. 

 

REPLY TO THE EDITOR MARKUS HRACHOWITZ 

Editor’s Initial Decision: Consider submission after major revisions (05 Jan 2015) by Markus 

Hrachowitz 

Comments to the Author: 

Dear authors, 

As you have seen, both reviewers find the topic of your manuscript of general interest. Reviewer 

#2, however, points out a striking similarity of a recent paper of your group. Unfortunately, upon 

closer inspection, I fully agree with reviewer #2 and see the same problems with the current 

paper as (s)he does. For these reasons the manuscript cannot be considered for publication in its 

current state as it requires quite some substantial reworking.  

In principle, I would be fine with receiving a substantially revised version of the manuscript that 

(1) unambiguously identifies material directly taken from Timbe et al. (2014), (2) makes it clear 

why in some cases only a selective choice of data, etc. from Timbe et al. (2014) was used, (3) 

fully addresses in detail *all* reviewer comments and, most importantly, that (4) can be 

considered as a standalone paper with a significant, new (i.e. not from Timbe et al., 2014) 

scientific contribution. This additional scientific understanding, building on that previous paper, 

needs to be identified and discussed in a much clearer and detailed way, so as to provide the 

reader an unambiguous distinction between the two papers. 

=> The authors like to express gratitude to the Editor and the reviewers for their constructive 

remarks. The latter gave us the opportunity to improve the manuscript, more in particular to 

accentuate the specific aspects of the presented research that makes the manuscript, although a 

follow up of the research presented in Timbe et al. (2014), distinctly different. The manuscript 

has been rewritten such that at least to our opinion the strongly revised version meets the 

requirements of a standalone paper. 

As you will observe, in accordance to suggestions from Referee#2 and the Editor, all sections of 

the manuscript have been redesigned and completely overhauled. Now the paper focus 

exclusively on the new findings from the current research. Besides, as we used data collected in a 

previous research the references hereto, Timbe et al. (2014), have been implemented in the 

revised version along the text and especially in the Material & Methods sections. In the same 

line, tables, figures and formulas depicting data or methods that were already used and discussed 

in previous research paper have been deleted. By doing that, the new version of the paper was 

substantially shortened, but yet it presents in the format of a standalone paper the specific and 

innovative aspects of the research the authors wanted to share with the scientific community, it is 

assessment of the effect of sampling frequency of stable water isotopes on the results of lumped-

parameter models, with application to a baseflow dominated Ecuadorian tropical montane cloud 

forest catchment. We believe that the results are fairly new and revealing and that the results at 
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one hand will inspire further research and at the other hand are beneficial for colleague 

researchers interested in the hydrological analysis of Andean mountain basins. 

An important change introduced in the current version is the differentiation of the current 

experimental setup from the one used in Timbe et al. (2014). As part of these changes, the 

reasoning for using selective data, lumped-models, and a slightly different time-series period for 

the present research, as compared to the former research, is explained in detail.  

Last but not least, by concentrating on the description of the current experimental setup and 

corresponding specific results, a clearer discussion of the findings was performed, which 

permitted to get rid of any ambiguity as compared to previous related findings from Timbe et al. 

(2014). 

We thank to the Editor for the useful remarks and for giving us the chance to prepare and upload 

a fully revised version of the paper. (Please find below the version of the paper showing all the 

changes performed). 
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Abstract 14 

Stream water, soil water and precipitation samples were collected on a weekly basis Precipitation 15 

event samples and weekly-based water samples from streams and soils, were collected in a tropical 16 

montane cloud forest catchment for two years and analyzed for stable water isotopes in order to 17 

infer understand the effect of sampling frequency in the performance of three lumped-parameter 18 

distribution functions: transit time distribution functions and to define the mean transit times. 19 

Depending on the water type (stream or soil water), lumped distribution functions such as 20 

Exponential-Piston flow, Linear-Piston flow and Gamma; which were used to estimate mean 21 

transit times of waters. Precipitation data, used as input function for the models, were aggregated 22 

models using temporal isotopic variations of precipitation as input, were fitted. Samples were 23 

aggregated to daily, weekly, bi-weekly, monthly and bi-monthly time scalessampling resolutions; 24 

while analyzed frequencies for outflows went from weekly to bi-monthly. By using different 25 

scenarios involving diverse sampling frequencies, in order to check the sensitivity of temporal 26 

sampling on model predictions. The this study reveals that the effect of decreasing lowering the 27 

sampling frequency depends on the water type. For soil waters, with transit times in the order of 28 

few weeks to months, there was a clear trend of over predictions. In contrast, the trend of prediction 29 

for stream waters, with awhich have a more damped dampened isotopic signal and mean transit 30 

times in the order of 2 to 3 years, was less clear and depending showed a dependence on the type 31 

of model used. The trade-off to coarse data resolutions could potentially lead to misleading 32 
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conclusions on how water actually moves through the catchment, while at the same 1 

timenotwithstanding that these predictions can could reach better fitting efficiencies, lesser 2 

uncertainties, errors and biases. For both water types an optimal sampling frequency seems to be 3 

one or at most two weeks. The results of our analyses provide information for the planning (in 4 

particular in terms of cost-benefit and time requirements) of future fieldwork in similar Andean or 5 

other catchments. 6 

1. Introduction 7 

In catchment hydrology, The the application of tracersenvironmental isotopes as tracers, and 8 

particularly environmental stable water isotopes, was enhanced isotopes have become valuable 9 

and attractive tools in catchment hydrology, providing new insights in the allocation of water 10 

provenance (e.g. Barthold et al., 2010), runoff component identification and quantification (e.g. 11 

Ladouche et al., 2001), age dating and transit time distribution (TTD) of water (e.g. Timbe et al., 12 

2014; Leibundgut et al., 2009; Kendall and McDonnell, 1998). An important benchmark in the use 13 

of tracers in hydrology was provided by the contributions of Maloszewski and Zuber (1982, 1993), 14 

who described and applied the methodology of tracer dating in detail. In their approach, the routing 15 

of water in a catchment was mathematically expressed by a lumped lumped-parameter transit time 16 

distribution function (TTD) function, commonly solved by the convolution method. In this 17 

method, fundamental conditions are the homogeneity of the system and steady- state conditions. 18 

Although presently more complex models considering time-variant conditions are being tested 19 

(e.g., models dealing with time-variable conditions: Rinaldo et al., 2011; Botter et al., 2010, 2011), 20 

the lumped model approaches are still widely used. It provides since they provide basic inferences 21 

of the water paths and the transit times of water (e.g., Muñoz-Villers and McDonnell, 2012; 22 

Hrachowitz et al., 2009a; Kabeya et al., 2006; Maloszewski et al., 2006; McGuire and McDonnell, 23 

2006; Rodgers et al., 2005; McGuire et al., 2002; Soulsby et al., 2000; Dewalle et al., 1997; Timbe 24 

et al., 2014). 25 

The insights on TTD and mean transit times (MTT) of streams, springs, groundwater or even soil 26 

waters to be gained by the jointly application of lumped-parameter models and tracers Ideally, the 27 

interpretation of environmental tracers by the means of lumped parameter models should be used 28 

along with hydrometric and chemical data as a complementary tool to support or contrast findings 29 

from those traditional methods (e.g. Crespo et al., 2012). However, in practice, many studies in 30 

this field based their main findings on environmental tracers alone. This is, in any case justifiable, 31 

either by their relative low cost and easy applicableness. Besides the classical chemical tracer (e.g. 32 

chloride) used in lumped parameter models, the use of environmental isotopes (i.e. stable water 33 
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isotopes) has become an appealing alternative to infer the functioning processes of a hydrologic 1 

system (Leibundgut et al., 2009). Their use is often advisable as a first step to gain insights in the 2 

hydrology of a catchment, not only for poorly gauged catchments for which common constraints 3 

are: difficult access, harsh climate conditions or scarce funding. Insights of mean transit times 4 

(MTT) or TTD functions of streams, springs, groundwater or even soils waters to be gained by the 5 

application of lumped parameter models also can serve as a starting point towards employing an 6 

improved sampling campaign which integrates more sources of data, or other types of tracers (e.g., 7 

Kirchner et al., 2010; Stewart et al., 2010), not to mention a more accurate sampling length and 8 

frequency. Along with the increase of their applicability, Given this background, the widespread 9 

use of environmental tracers and lumped parameter models does not come as a surprise. Tthe 10 

handling and processing of tracer data, and even the estimation of uncertainties of the inferred 11 

results, this type of data is becoming a routine process in hydrological research (e.g., McGuire and 12 

McDonnell, 2006). Along with the increase in application, uncertainty analyses of the inferred 13 

results are becoming a routine procedure. 14 

 Solutions, formerly based only on the best fit to a particular model, now frequently include a range 15 

of behavioral or possible solutions (Weiler et al., 2003; Vaché and McDonnell, 2006; McGuire et 16 

al., 2007; Hrachowitz et al., 2009a, 2010, 2013; Birkel et al., 2011; Capell et al., 2012; Muñoz-17 

Villers and McDonnell, 2012; Timbe et al., 2014). However, an appropriate sensitivity analysis of 18 

the model parameters to factors such as the degree of temporal resolution of the input data used to 19 

calibrate the tracer- based lumped models is still uncommon as it is in traditional rainfall-runoff 20 

modelling (McGuire and McDonnell, 2006). 21 

Such an analysis is necessary; the predictions provided by steady-state approaches are simple 22 

approximations of the real functioning of a catchment system, although only valid in waters in 23 

which time-invariant conditions are applicable (e.g., groundwater systems) for groundwater 24 

systems or median conditions of waters. Besides, Predictions, however, could be very approximate 25 

since most steady-state analyses of published studies are based on relatively poor information in 26 

terms of temporal and spatial variability of environmental tracers due to sampling (Rinaldo et al., 27 

2011). In this regard For instance, by using a conceptual-lumped model, Birkel et al. (2010) found 28 

that isotope data of high temporal resolution isotope data were beneficial, especially for model 29 

conceptualization and calibration. That assertion was corroborated by Hrachowitz et al. (2011) 30 

who, using a lumped-parameter model, found evidence of potential misleading insights for a small 31 

headwater catchment of Scotland, derived from a lumped model, when low sampling frequency 32 

resolution data were used (e.g., monthly or bimonthly). Similarly, McDonnell et al. (2010) stated 33 

that high frequency data may enable to falsify the assumption of a time-invariant TTD. In theory, 34 
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the temporal resolution of a data set depends on the field sampling frequency, which must The 1 

sampling frequency should be in accordance to the expected time scale of the transit or residence 2 

time of the analyzed waters (McGuire and McDonnell, 2006) (e.g., higher frequencies should be 3 

used for waters with short transit times than for longer ones). However, in practice, this factor is 4 

often constrained by logistical reasons, especially in remote catchments. 5 

Most of the available tracer studies looking for the TTD or MTT of a catchment are based on 6 

weekly, bi-weekly, and less common on monthly data. Rare are samplings at higher time scales 7 

than weekly (e.g., Kirchner et al., 2000; Birkel et al., 2010). Sometimes high temporal resolution 8 

measurements are used for the analysis of rainfall-runoff events at smaller spatial scales, (e.g., 9 

hillslope), in which the transit time of fast flows of the order of hours to few days is being searched 10 

for. But for those cases, time-variant instead of steady -state approaches are necessary (e.g., 11 

Heidbüchel et al., 2012; Rinaldo et al., 2011; Botter et al., 2011; Weiler et al., 2003; Barnes and 12 

Bonell, 1996). In general, the temporal resolution of the data employed to infer hydrological 13 

process understanding from lumped parameter models can influence the results, thereby making it 14 

difficult to compare predictions from different studies (Hrachowitz et al., 2011). 15 

To gain insights from the effect of the sampling frequency on the results of lumped- parameter 16 

models, we collected stable water isotope time- series of stable water isotopes in a baseflow-17 

dominated Ecuadorian tropical montane cloud forest catchment. Data were aggregated into diverse 18 

levels of temporal resolution in order to analyze their effect sensitivity of this resolution on the 19 

predictions from model parameters and results (e.g., MTT) and the respective TTD of three widely 20 

known lumped models, whose applicability was identified in a previous research (Timbe et al. 21 

2014). The time sequence of this study consists of: around two years of high- resolution samples 22 

of rainfall events, weekly grab samples of stream waters from the main river and its seven 23 

tributaries,  in the outlet of the catchment of the Rio San Francisco and seven tributaries, and bulk 24 

water samples from six representative soils sites., collected in the lower part of the catchment at 25 

0.25 m depth. In order to apply time-invariant approaches, for For the analyzed waters, only 26 

baseflow or average conditionssteady-state conditions were considered. 27 

The hypotheses on which this study is based are: 1) for the analyzed waters, Some some temporal 28 

resolutions of input data could substantially influences the results of lumped parameter models 29 

(e.g., coarse temporal data resolution such as monthly or bimonthly can lead to misleading 30 

conclusions although the fitting efficiencies are high), even when baseflow or mean conditions are 31 

considered for the analyzed waters; in this regard 2) a sensibility analysis of the sampling 32 

resolution is essential as part of analyzing the suitability of a lumped-parameter model, similarities 33 
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or divergences of results from diverse sampling trade-offs could provide insights on the degree of 1 

reliability of a particular sampling frequency. 2 

2. Materials and Methods 3 

2.1 Study Area 4 

The study area of the Rio San Francisco catchment (76.9 km2, Fig. 1) is located in the eastern 5 

escarpments of the Andean mountains in south Ecuador. The local tropical climate is mainly 6 

influenced by easterly trade winds and thus by the Atlantic circulation patterns (Beck et al., 2008a). 7 

According to the records of four meteorological stations established in 1998 within the study area 8 

the The mean annual temperature ranges from 15°C in the lower part of the study areacatchment 9 

(1,957 m a.s.l.) to 10°C on the ridges (3,150 m a.s.l.), with an altitudinal gradient of -0.57°C per 10 

100 m. Annual precipitation ranges from 2,500 mm to 4,000 mm in wet years. A large rainfall 11 

gradient of 220 mm per 100 m exists (Bendix et al., 2008b). Fog precipitation contributes 12 

additional 5% to 35% of measured tipping-bucket rainfall (Rollenbeck et al., 2011). Rainfall 13 

intensities are low, in general  (less than 10 mm h-1 ) and the relative humidity is high, up varies 14 

from 85% in the lower parts to 96% at the ridges. 15 

The geology of the study area consists of sedimentary and metamorphic Paleozoic rocks of the 16 

Chiguinda unit with contacts to the Zamora batholith (Beck et al., 2008b). Major soil types are 17 

Histosols associated with Stagnasols, Cambisols and Regosols; Umbrisols and Leptosols are 18 

present to a lesser degree (Liess et al., 2009). The topography of the area has an altitudinal range 19 

of 1,725 to 3,150 m a.s.l. and is characterized by steep valleys with an average slope of 63%. 20 

Landslides are present in the catchment, especially along the paved road between the cities of Loja 21 

and Zamora. Seven main tributaries feed the San Francisco River,. Their their catchment areas 22 

vary in size from 0.7 to 34.9 km2 and in their land cover, constituted mainly by pristine forest and 23 

pastures : the southern part of the catchment is covered by pristine primary forest and sub-páramo, 24 

while the northern part is covered by grassland, shrubland, secondary forest and sub-páramo. 25 

Presently 68% of the catchment is covered by forest, 20% by sub-páramo, 7% is used as pastures 26 

and 3% is degraded grassland covered with shrubs (Goettlicher et al., 2009; Plesca et al., 2012). 27 

According Timbe et al. (2014), MTT of water in the surficial horizons is of the order of few weeks 28 

to months. The stream waters of the river and its tributaries are perennial and baseflow-dominated. 29 

Previous research accounted the groundwater contribution in 85% of the total runoff, characterized 30 

by MTT of the order of 2 to 4 years (Timbe et al., 2014; Crespo et al., 2012). The main river and 31 

its tributaries are perennial. The flashy reaction of the hydrograph are due to rainstorms (Fig. 2a), 32 

while the slowly varying underlying trend corresponds to groundwater contribution (baseflow), 33 
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which accounts for 85% of the total runoff (Table 1). Given the climate of the area, a continuous 1 

yearly growing season, the absence of snowmelt and the uniform precipitation distribution over 2 

the year, the hydrograph does not show marked seasonal differences. Main physical and 3 

hydrological features of the catchment and tributaries are presented in Table 1. Additional detailed 4 

information on the climate and ecosystem gradients of the research area can be found A detailed 5 

description of the physical, hydrological and land cover characteristics of the catchment and main 6 

tributaries are given in Timbe et al. (2014), whereas additional information on the climate and 7 

ecosystem gradients of the research area can be found in Bendix et al. (2008a), Fiedler and Beck 8 

(2008) and Wilcke et al. (2008). 9 

2.2 Hydrometric measurementsSampling site selection and methodology 10 

 For the present study, the same field data used in Timbe et al. (2014) was employed. In 11 

brief, for around two years and starting in mid-August 2010, samples for isotopic analyses (δ18O 12 

and δ2H) were collected in the study catchment. Weekly-based dip samples were taken for stream 13 

waters at every sub-catchment and main catchment outlets while volume-weighted samples for 14 

soil waters were collected using wick-samplers located in soil sites covered with pastures and 15 

forest (Fig. 1). As stream water samples represent an instantaneous condition in time, in order to 16 

account for the baseflow conditions of the catchment, samples taken during extreme rainfall-runoff 17 

events were discarded. Rainfall samples for isotopic analyses were taken after every rainfall event, 18 

in the lower part of the catchment at 1,900 m a.s.l. The end of every event of rainfall was marked 19 

by a time span of at least 30 min without rainfall. The isotopic variation of rainfall through the 20 

catchment was inferred from the sampled point by using the altitudinal isotopic gradient of 21 

−0.22‰ δ18O, −1.12‰ δ2H and 0.6‰ deuterium excess per 100 m elevation gain, as estimated by 22 

Windhorst et al. (2013) for the same investigated area. In this study only δ18O was selected for 23 

further analysis since δ18O and δ2H showed a high linear correlation. The stable isotope signatures 24 

are reported in per-mil value relative to the Vienna Standard Mean Ocean Water (VSMOW) 25 

(Craig, 1961). The water isotopic composition was analyzed by wavelength-scanned cavity ring 26 

down spectroscopy (WS-CRDS) with a precision of 0.1 ‰ for δ18O and 0.5 ‰ for δ2H 27 

(PicarroL1102-i, CA, US). 28 

 It should be noticed that while the aim of Timbe el al. (2014) was to identify the most 29 

reliable TTD and to characterize the MTT for all the sampled sites (i.e. a total of 32 sites covering 30 

waters from streams, soils and  springs) based on the intercomparison of fitting efficiencies and 31 

ranges of uncertainties provided by predictions of seven lumped-parameter models, for the present 32 

research we focused on accounting the average trends of predictions as a results of using diverse 33 
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sampling frequencies. In Timbe et al. (2014) a fixed weekly sampling frequency was used. To 1 

avoid over-representation of a specific isotopic signal in the depiction of general predictive trends, 2 

the number of analyzed stream waters was limited to the seven main nested sub-catchments: 3 

Navidades (QN), Pastos (QP), Cruces (QC), Milagro (QM), Ramon (QR), Francisco Head (FH), 4 

Zurita (QZ) and the main catchment outlet Planta (PL) (Fig. 1). Accordingly, only lumped models 5 

were considered. Since differences between soil water sampling sites were bigger than on site 6 

differences (Timbe et al., 2014) we limited in this study the number of soil depths from three to 7 

one specific soil depth, more precisely at 0.25 m, resulting in a total of 6 sampling locations (A, 8 

B, C, D, E, F) instead of 18 as performed in Timbe et al. (2014). In the latter research water samples 9 

were collected at three depths, respective at 0.10, 0.25 and 0.40 m below surface.  10 

 Besides selecting only representative sampling locations, also a slight variance in the length 11 

of the data set characterizes both studies. In the present study rainfall and stream waters were 12 

analyzed for the period of the 1st of October 2010 till mid August 2012, while in Timbe et al. 13 

(2014) the used data set stretched from mid-August 2010 till mid August 2012. The decision to 14 

shorten in this study the time series by shifting the beginning of the study period to the last quarter 15 

of 2010 was taken in order to homogenize the different time series for the aggregation into different 16 

sampling frequencies (up to 3 months during tryouts) and to assure that divergences among 17 

predictions are only due to the applied temporal resolutions. An additional reason of shortening 18 

the time series is that the wick-samplers for the collection of soil water samples were installed after 19 

October 2010 (Timbe et al., 2014). 20 

2.2  21 

The main catchment outlet and its sub-catchments were equipped with water level sensors (mini-22 

diver, Schlumberger Water Services, Delft, NL) to obtain continuous water level readings. 23 

Reference discharge measurements using the salt dilution method were made frequently during 24 

the time of sampling. However, due to the high variability of the river bed in the sites Pastos (QP), 25 

Zurita (QZ) and Ramon (QR), only records for the sub-catchments Francisco Head (FH), 26 

Navidades (QN), Milagro (QM) and Cruces (QC) and for the main outlet Planta (PL) were 27 

considered as reliable to calculate stage-discharge curves and hydrographs (see Fig. 2a for PL; 28 

abbreviations of names for all study sites are defined in Fig. 1 and Table 2). For the remaining 29 

sites, discharge measured at the moment of sampling was used. The hydrometric information was 30 

used to derive baseflow, applying the Water Engineering Time Series PROcessing tool 31 

(WETSPRO) (Willems, 2009), making it possible to discern between stream water samples taken 32 

under baseflow and peak flow conditions. Since time invariant conditions are considered for the 33 
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application of the chosen lumped parameter models, samples taken during peak flows were 1 

discarded. 2 

2.3 Sampling scheme and isotopic analyses 3 

From October 2010 until August 2012, weekly grab samples of stream water for isotopic analysis 4 

(δ18O and δ2H) were collected in 2 mL amber glass bottles in the catchment’s outlet (Fig. 2b) and 5 

in seven of its tributaries (Fig. 1, Tables 1-2). These samples represent an instantaneous isotopic 6 

concentration in time. Soil water was sampled weekly from cumulative drainage water of six wick-7 

samplers at 0.25 m below surface, located in two characteristic areas of the lower part of the 8 

research area (Fig. 1, Table 2). The first three devices were installed in September 2010 in forest 9 

land and the remaining three in November 2010 in pastures. The devices share a comparable 10 

altitudinal gradient between pastures and forest. Details of the wick-sampler construction are given 11 

by Timbe et al. (2014). Once per week (generally the same day for stream water sampling) the 12 

cumulated volume in each 2 L sampling bottle was registered and a 2 mL sample for isotopic 13 

analysis was taken. These samples represent the weekly average bulk isotopic composition of soil 14 

water. Sampling was, in a few occasions, disrupted by short dry periods (after one or two weeks 15 

without rainfall), for which, no water was found in the bottles. 16 

For the same time span as for stream water, rainfall samples for isotopic analyses were taken after 17 

every rainfall event, in the lower part of the catchment at 1,900 m a.s.l. Samples were collected 18 

manually in 1 L bottles using a Ø25 cm funnel, placed at the top of 1.5 m standing pole. The end 19 

of every event of rainfall was marked by a time span of at least 30 min without rainfall. After each 20 

event, the corresponding sampling bottle was covered with a lid and stored for analysis within a 21 

week in 2 mL amber glass bottles. Only sample volumes > 2 mL were found suitable for permanent 22 

storage and measurements. Events with a sample volume < 2 mL were discarded. A total of 946 23 

samples during 515 rain days (average duration of 3.2 h, varying from 0.25 to 19 h, with maximum 24 

11 events per day) (Fig. 2c). 25 

Table 2 shows the total number of analyzed samples according to the type of water. The stable 26 

isotopes signatures of δ18O and δ2H are reported in this study in per mil value relative to the Vienna 27 

Standard Mean Ocean Water (VSMOW) (Craig, 1961). The water isotopic composition was 28 

analyzed by wavelength-scanned cavity ring down spectroscopy (WS-CRDS) with a precision of 29 

0.1 ‰ for δ18O and 0.5 for δ2H (PicarroL1102-i, CA, US). 30 

2.4 Isotopic gradient of rainfall 31 
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Given the large altitudinal gradient in the San Francisco basin, it is to be expected that the input 1 

isotopic signal of rainfall for every sub-catchment varies according to its elevation (Dansgaard, 2 

1964). However, due to economic constraints, it is a common practice to infer the isotopic variation 3 

for a larger area based on only one sampling location. Samples are usually volume-weighted and 4 

bulked for a predefined time interval such as weeks or months (McGuire and McDonnell, 2006). 5 

For this research, the isotopic variation of rainfall through the catchment was inferred from the 6 

sampling point located at 1,900 m a.s.l. by using the altitudinal isotopic gradient of −0.22‰ δ18O, 7 

−1.12‰ δ2H and 0.6‰ deuterium excess per 100 m elevation gain estimated by Windhorst et al. 8 

(2013) for the same investigated area. This altitude gradient was applied to the volume-weighted 9 

isotope signals under the assumption that the incoming rainfall signal is the sole source of water. 10 

Windhorst et al. (2013) evaluated the spatial and seasonal variation of stable isotopes of rainfall, 11 

concluding that only the altitude effect is significant and that in this factor there is no significant 12 

influence of temperature, relative humidity and precipitation amount or intensity. Since δ18O or 13 

δ2H where highly correlated, it is highly probable that similar estimations of MTT are derived 14 

either using δ18O or δ2H (Timbe et al., 2014). Therefore, in this study only δ18O was selected for 15 

further analysis. 16 

2.52.3 Lumped- parameter equation and distribution functions to infer mean  transit times 17 

of water 18 

For the calculation of the MTT, the lumped -parameter approach was utilized. The lumped 19 

approachThis method considers the aquifer system as an integral unit, while the flow pattern is 20 

assumed to be constant. The transport of a tracer through a catchment can be deducted from the 21 

following general equation:Particular for conservative tracers, the transport of a tracer through a 22 

catchment can be mathematically expressed by the convolution integral equation for stable tracers 23 

(Eq. 1), in which  24 

𝐶𝑜𝑢𝑡(𝑡) =  ∫ 𝐶𝑖𝑛
𝑡

−∞
(𝑡′) 𝑒𝑥𝑝[−𝜆 (𝑡 − 𝑡′) ] 𝑔(𝑡 − 𝑡′) 𝑑𝑡′      (1) 25 

In Eq. (1), known as the convolution integral equation,  the tracer’s outflow composition Cout at a 26 

time t (time of exit) consists of the tracer’s input composition Cin that falls uniformly on the 27 

catchment in a previous time step t’ (time of entry). Cout is lagged according to a TTD that rules 28 

the tracer’s transit time ().g(t-t’).  This TTD is represented by the normalized distribution function 29 

of the tracer g() injected instantaneously over an entire area.The factor exp[-λ(t-t’)] is used to 30 

correct for decay when a radioactive tracer is used (λ = tracer’s radioactive decay constant). For 31 

stable tracers (λ = 0), considering a time span t-t’ and a tracer transit time , Eq. (1) can be rewritten 32 

as Eq. (2): 33 
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𝐶𝑜𝑢𝑡(𝑡) =  ∫ 𝐶𝑖𝑛
∞

0
(𝑡 − 𝜏)  𝑔(𝜏) 𝑑𝜏         (12) 1 

where the transit time distribution TTD, known as the weighting function, is described by the 2 

normalized distribution function of the tracer g() injected instantaneously over an entire area. 3 

Transit time distributions of water 4 

Widely known lumped parameter models applied to describe catchment’s TTD function 5 

estimations were commented and applied in detail by Maloszewski and Zuber (1982) and since 6 

then were used in many other related studies (e.g., McGuire and McDonnell, 2006; Amin and 7 

Campana, 1996). Every model is based on considerations of the flow type which depends on the 8 

aquifer system. For instance, when using the Piston Flow Model (PFM) it is assumed that there 9 

are no flow lines with different transit times, and, hydrodynamic dispersion and molecular 10 

diffusion are negligible. In contrast, the Exponential Model (EM) considers that an exponential 11 

distribution of transit times exists, and that the mixing takes place only at the sampling site. The 12 

Linear Model (LM) assumes that distribution of transit times are constant: flow lines have equal 13 

velocity but linearly increasing flow times. The mentioned models are defined by only one 14 

parameter: the MTT of the tracer . In general it is unrealistic to expect that these simple models 15 

match the behavior of real systems. Therefore, two-parameter models consisting of the 16 

combination of two simple models such as Based on findings from a previous research (Timbe et 17 

al., 2014), for the stream waters of San Francisco, Exponential-Piston (EPM) and Gamma (GM) 18 

models, were identified as reliable TTD in terms of providing predictions with high fitting 19 

efficiencies and low uncertainty ranges; while Linear-Piston (LPM) and GM models were found 20 

most appropriate for soil water data (a detailed description of the TTD models is shown in Timbe 21 

et al., 2014). These models are widely known among the two-parameter TTD models the 22 

Exponential-Piston (EPM) or the Linear-Piston (LPM) are commonly used. The additional 23 

parameter η explains the portion of contribution of each type of flow. Two-parameter functions 24 

are more flexible than simpler models since they can represent various mixing possibilities 25 

(McGuire and McDonnell, 2006). Since the studies published by (Kirchner et al.,  (2000, 2001; 26 

Maloszewski and Zuber, 1982; McGuire and McDonnell, 2006; Amin and Campana, 1996)., EPM 27 

and LPM are defined by  and η (η explains the portion of contribution of each type of flow), while 28 

the GM model is defined by the another widely known two-parameter function in tracer hydrology 29 

is the Gamma distribution model (GM) with the parameters shape α and scale β parameters. 30 

The optimal selection of a TTD is not that easy to achieve by direct or experimental methods 31 

(McGuire and McDonnell, 2006). A common practice is to assume a flow type system and to 32 

estimate the model parameters through a trial-and-error simulation-based process until ‘the best 33 
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fit’ to the observed data is obtained. According to previous insights for the same research area 1 

(Timbe et al., 2014), distribution functions such as GM (Eq. 3) and EPM (Eq. 4) yielded the best 2 

results when predicting the behavior of isotopic variation of the baseflow. GM and LPM (Eq. 5) 3 

provided the best matches to observed isotopic soil water data. The plausibility of these functions 4 

were shown by Timbe et al. (2014) in a detailed comparison of seven lumped models, including 5 

the EM, LM, GM, EPM, LPM, a Dispersion Model and the Two Parallel Linear Reservoir Model 6 

(Weiler et al., 2003). Hence, the following study explicitly investigates the model performance of 7 

the three pre-selected, most appropriate models: 8 

𝑔(𝜏)𝐺𝑀 =
𝜏𝛼−1

𝛽𝛼 Γ(𝛼)
exp (−

𝜏

𝛽
)   for  𝛼 > 0  and  𝛽 =

𝛼

𝜏
;      (3) 9 

𝑔(𝜏)𝐸𝑃𝑀 =
𝜂

𝜏
 exp (−

𝜂

𝜏
+ 𝜂 − 1)   for  𝑡 ≥ 𝜏(1 − 𝜂−1)  or  0  for  𝑡 < 𝜏(1 − 𝜂−1); (4) 10 

𝑔(𝜏)𝐿𝑃𝑀 =
𝜂

2𝜏
, for: −

𝜏

𝜂
≤ 𝑡 ≤ 𝜏 +

𝜏

𝜂
   or  0  for other  𝜏     (5) 11 

2.4 Model performance 12 

For the calibration of every lumped parameter model and type of water, we used the convolution 13 

method between the tracer’s input signal (i.e., isotopic rainfall time series) and the expected TTD. 14 

The results were then compared with the observed variation in the respective analyzed effluent 15 

(e.g., stream or soil water). The convolution method for the calibration of every model, describing 16 

each sampled water and sampling frequency, was used. Input data for models consist on isotopic 17 

time-series of rainfall, while the observed variation at each analyzed effluent (e.g., stream or soil 18 

waters) were used for calibration. The used approach follows nearly the same methodology applied 19 

in Timbe et al. (2014), with some slight modifications to allow the analysis of diverse sampling 20 

resolutions. Briefly, 21 

For every simulation  the goodness of fit of every simulation, as defined by the Nash-Sutcliffe 22 

Efficiency coefficient NSE (Nash and Sutcliffe, 1970), was calculated.  comparing predictions to 23 

observed data. To automate and standardize the equation’s resolution, we repeated 10,000 24 

simulations by randomly sampling using the Monte Carlo based Generalized Likelihood 25 

Uncertainty Analysis Estimation (GLUE) (Beven and Freer, 2001) method. Behavioral solutions, 26 

for which were selected for every case based on a lower limit dependent on the best NSE reached 27 

for every case. In our case, the lower limit was establish at 5%, and the weighted quantiles between 28 

0.05 and 0.95 (90% of the behavioral limits) were calculated, were selected for every prediction 29 

based on a lower limit (5%) which were dependent on the best NSE reached for every case. From 30 

these values, in order to ease inter-comparisons, for every simulation the magnitude of uncertainty 31 
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for each predicted parameter was calculated by subtracting the lower behavioral limit from the 1 

maximum one (, α, η). For the best predictions, the Root Mean Square Error (RMSE) and 2 

the bias with respect to the mean (BIAS) were calculated to account for errors and deviations of 3 

predictions. In both cases they were reported in per mil (‰) units. 4 

In most simulations, the convergence of solutions towards one solution peak was clearly defined 5 

within a predefined fixed range dependent on the type of model:  [0-10 yr], α [0.01-10], η [1-10]. 6 

In For cases with more than one solution peak, in order to improve the convergence of , we 7 

restricted the behavioral solutions to the largest peak for the second model parameter (assumption 8 

made by the authors). It should also be noticed that for the particular case of LPM, in order to easy 9 

the interpretation of results and at the same time improve the convergence of , the lower limit 10 

value for η was set to 1 instead of 0.5 as it was in Timbe et al. (2014). The latter consideration was 11 

performed after accounting the results from the referred study in which for most of the analyzed 12 

soil water sites the best solutions provided by an LPM model were characterized by a η slightly 13 

larger than 1. the largest peak was selected for the second model parameter in order to improve the 14 

convergence of the parameter that identifies the MTT of the tracer . 15 

Similarly to Timbe et al. (2014) and other related studies (Hrachowitz et al., 2011; Muñoz-Villers 16 

and McDonnell, 2012) To get more stable results an artificial warm up period was generated by 17 

repeating measured isotopic rainfall time series in a loop. For our case, to guarantee stable results, 18 

the warming-up period was set to 20 times. of 40 years was generated by repeating measured two 19 

year isotopic rainfall time series 20 times in a loop. This is a common practice when the seasonality 20 

of the inter-annual signal is repetitive and well defined (Hrachowitz et al., 2011; Muñoz-Villers 21 

and McDonnell, 2012). 22 

2.6 2.5 Temporal resolution of data 23 

As explained earlier, sSolving the convolution method requires a fixed time step for the input 24 

function Cin, which in turn will be the same time step resolution of the predicted output data Cout. 25 

In order to check the effect of the time temporal resolution of the input datasampling on the 26 

predictions, the simulations were performed by aggregating high- resolution samples of rainfall 27 

(i.e., per event) into five levels of temporal resolution: daily, weekly, bi-weekly, monthly and bi-28 

monthly. For each data set, the isotopic composition for every event was weighted according to 29 

the collected volume for the considered time span, thereby yielding bulk isotopic signals as if they 30 

had been collected over the entire corresponding sampling interval (Fig. 3). For time spans 31 

corresponding to zero rainfall, the isotope signal of the antecedent time step was used. By using a 32 
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predefined TTD function g(), Eq. (1) could be solved and it became possible to derive the best 1 

possible fit to the observed data for every outflow by varying the model parameters. Depending 2 

on how we aggregated the data, two distinct scenarios were considered. 3 

Scenario 1: For every sampled site, observed isotopic data series of rainfall and outflows:, stream 4 

and soil waters, were aggregated into coarser levels of data resolution. Since the finest resolution 5 

of outflow waters was weekly, we used this data resolution to calibrate models having daily rainfall 6 

data sets as input. For weekly, bi-weekly, monthly and bi-monthly data sets, we used the 7 

corresponding time step resolution. For stream water, due to the smooth variation between two 8 

successive isotopic data, no volumetric weighting was applied, but a simple averaging of weekly 9 

isotopic values (e.g., a monthly value results from an averaging of four weekly values). For soil 10 

water, volumetric weighting was applied. 11 

Scenario 2: Diminishing the sampling resolution in both types of observed data at the same time 12 

(rainfall and outflows), as performed in Scenarios 1, could lead to incomplete insights, if we 13 

consider that coarse data resolutions, such as monthly or bi-monthly, could provide lesser 14 

uncertainties or better simulation statistics than finer data resolutions (by the simple fact that less 15 

data is involved in the analyses). In this regard, a second scenario was set up, in which only the 16 

highest temporal resolution data of observed outflows (i.e. weekly) was considered for calibration,; 17 

while the rainfall data used as input functions for the diverse temporal resolutions were considered 18 

the same as in Scenario 1. Results from this second scenario, facilitates to discern the adequacy of 19 

a particular time resolution over another. 20 

It should be noted that, given these considerations, the predictive results for daily and weekly time 21 

resolutions are the same for both scenarios. For data resolutions larger than weekly, the 22 

combination of two different levels of information in the same lumped predictive model (e.g., 23 

monthly data for the input function of rainfall and weekly for the observed outflows) was handled 24 

through considering weekly time steps, although originally previously those rainfall values were 25 

derived as volumetrically weighted rainfall data from bi-weekly, monthly or bi-monthly sampling 26 

resolutions. 27 

Analysis of these two scenarios provides a quantifiable effect of data resolution on parameter 28 

estimation of the applied models. For comparative purposes among sampling trade-offs, for our 29 

study, the finest analyzed temporal resolution (i.e., daily rainfall and weekly outflow data) was 30 

considered as the main reference in order to define a particular result as lower or higher estimate. 31 

In order to look for similarities, divergences and trends between predictions, results were visually 32 

compared using Box-Whisker plots and the respective median (expressed in this text with a tilde 33 
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on the top of a parameter symbol, e.g., �̃�) for the grouped six soil water sites and the eight stream 1 

water sites. Interpretation of the physical meaning of results considers that the MTT of water can 2 

be adequately characterized by the MTT of the tracer (). 3 

3. Results 4 

3. For this study, as a result of the use of a slightly shorter time-series than those used in 5 

Timbe et al. (2014), slight differences for model parameter predictions can be found when weekly-6 

based predictions are contrastedcompared to the former published results. 7 

3.1 Soil water (Table 1, Fig. 2) 8 

3.1.1 Type 1 scenarios – varying resolution of rain and soil water isotope data (Table 3, Fig. 9 

4).  10 

Median values of NSE for GM and LPM were rather similar;, ranging between 0.76 to 0.86. 11 

Likewise, for both models the RMSE and BIAS were comparable between time resolutions. 12 

Furthermore,  13 

Using the GM or LPM the best predictions of the mean transit time (,) as defined by the NSE, 14 

showed a clear increasing trend of this parameter versus a decreasing temporal sampling 15 

resolution. For GM the median value of  valuebetween sampled sites (i.e., (�̃�) for the finest daily 16 

sampling resolution (i.e., daily rainfall data, from here on also referred as the reference sampling 17 

resolution) was 4.7 66 weeks, while for weekly and bi-weekly resolutions data this value slightly 18 

rose to 5.15 and 5.89 weeks, an increase respectively of 10.5% and 26.4%. Considering coarser 19 

data resolutions, as monthly or bi-monthly, the obtained mean transit time even  even went up to 20 

6.62 and 8.99 weeks, corresponding to a 42.1% and 92.9% increase. The values and the 21 

corresponding trend for LPM were similar to the one obtained using GM. For LPM �̃� varied from 22 

4.59 to 8.87 weeks using the finest and the coarsest time resolutions, respectively. In general, 23 

GLUE- based uncertainties for  estimations, as defined by median values, (Δ�̃�), were lower using 24 

daily rather than coarser sampling resolutions. In this regard, larger differences were found for 25 

LPM ranging from 1.44 weeks using daily data to 3.47 weeks using bi-monthly data; while for 26 

GM the range of uncertainty varied from 1.83 to 2.06 weeks. 27 

Estimations for GM’s α parameter, showed a similar median value for daily, weekly or bi-weekly 28 

time resolutionssampling frequencies (�̃� varied from 1.88 to 1.95), while the parameterit was 29 

overestimated larger for coarser time resolutions; as for example the α value was 3.73 for monthly 30 

and 4.55 for bi-monthly data. On the other hand, uUsing LPM, the variation of the median value 31 
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of η only slightly changed among time resolutions (e.g., �̃� varied from 1.02 for daily up to 1.14 for 1 

bi-monthly data). However, for coarser data, such as monthly or bimonthly, results for particular 2 

sites for coarser data, such as monthly or bi-monthly, showed larger values (e.g., for the A soil site 3 

η varied from 1.02 for daily data to 1.40 for bi-monthly data). Median values of GLUE-based 4 

uncertainties for these parameters did not show a clear trend or significant variation as a function 5 

of the time resolution. In all cases 𝛥�̃� varied between 2.13 and 3.09 weeks, while 𝛥�̃� varied from 6 

0.17 to 0.45 weeks. 7 

Median values of NSE for GM and LPM were rather similar; ranging between 0.76 to 0.86. 8 

Likewise, for both models the RMSE and BIAS were comparable between time resolutions. 9 

As a typical case among soil water sites, results for every sampling resolution using the GM are 10 

depicted in Fig. 5 3 showing respectively depicts results of the convergence of model parameters, 11 

the simulated versus observed 18O seasonality, and the TTD predicted residence time distribution 12 

function, using the GM for every temporal data resolution. 13 

3.1.2 Type 2 scenarios – varying resolution of rain data and fixed resolution of soil water 14 

isotope data(Table 4, Fig. 4).  15 

For both models, the NSE, RMSE and BIAS of the best predictions followed similar trends as for 16 

type 1 scenarios. When compared to results from the reference sampling resolution, NSE values 17 

were higher for weekly and bi-weekly input data. For instance, using GM, the median value of the 18 

best NSEs was 0.81 for daily and 0.84 for both weekly and bi-weekly data. Monthly data sets 19 

provided predictions with similar efficiencies than daily, while for bi-monthly data the median 20 

value of NSE was 0.78, the lowest among all sampling resolutions of type 2 scenarios. 21 

Compared to type 1 scenarios, predictions of parameter results and uncertainties among time 22 

resolutions were more stable. Using GM, �̃� for the finest and coarsest time resolutions varied 23 

between 4.66 and 5.00 weeks, while and 𝛥�̃� showed extreme values between 1.83 and 2.06 weeks, 24 

respectively. The variation of α between sampling frequencies was also smaller: �̃� was between 25 

1.73 and 2.23, while 𝛥�̃� was similar to results from type 1 scenarios (e.g., smaller uncertainties 26 

for finer than coarser resolution data sets: 2.99 for daily data sets and 4.25 for bi-monthly data). 27 

However there were larger uncertainties for particular sites when lowcoarse resolution data sets 28 

were used (e.g., the most extreme case was accounted found for the A site where there was a α 29 

increase from 2.83 using daily data to 18.82 using bi-monthly data). Using LPM the trends and 30 

values were similar to the ones obtained with GM. Comparing the daily and bi-monthly time 31 

resolutions �̃� varied from 4.59 to 4.68 weeks, and their respective 𝛥�̃� ranged from 1.44 to 1.66 32 
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weeks. The median value for η was around 1 for all sampling frequencies. Although small for all 1 

cases, 𝛥�̃� was larger for coarser than for finer time resolution data: 0.36 for daily up to 0.56 for bi-2 

monthly data. 3 

For both models, the NSE, RMSE and BIAS of the best predictions followed similar trends as for 4 

type 1 scenarios. When compared to results from the reference sampling resolution, NSE values 5 

were higher for weekly and biweekly input data. For instance, using GM, the median value of the 6 

best NSEs was 0.81 for daily and 0.84 for both weekly and biweekly data. Monthly data sets 7 

provided predictions with similar efficiencies, while for bimonthly data the median value of NSE 8 

was 0.78, the lowest among all sampling resolutions of type 2 scenarios. 9 

3.2 Stream water (Table 2, Fig. 4) 10 

3.2.1 Type 1 scenarios – varying resolution of rain and stream water isotope data (Table 5, 11 

Fig. 6).  12 

Mostly and for both models theRegardless of the used model, the best solutions , as described by 13 

their NSEs, showed an increasing trend from finer to coarser data resolutions. For GM, median 14 

NSE values of 0.74 and 0.79 were reached using monthly and bi-monthly data while for daily data 15 

it was 0.60. Analogously, RMSE values were smaller for coarse data resolutions., mMedian RMSE 16 

declined from 0.31‰ for daily to 0.17‰ for bi-monthly data. BIAS remained small for all cases, 17 

with an average value of 0.04%. For EPM we obtained similar trends and values. 18 

Using GM, parameter results revealed lower values of  for coarser time resolutions data when 19 

compared to daily data resolution, e.g., �̃� went from 2.10 yr for daily data to 1.23 yr for bi-monthly 20 

data. Furthermore, a clear decreasing trend of uncertainty lengths was detected. In general  was 21 

smaller for coarser than for finer time resolution data, e.g.,: 𝛥�̃� was 1.74 yr for daily data whileand 22 

0.58 yr for bi-monthly data. For The the GM’s α showed a trend to higher values proportional to 23 

the decrease of sampling resolution: �̃� was 0.63 for the reference while it reached a value of 0.93 24 

for bi-monthly data. The median values of uncertainty lengths for this parameter (𝛥�̃�) only slightly 25 

increased from daily (0.14) to the coarsest data resolution (0.18). On the other hand, for the same 26 

conditions but using EPM,  values only slightly increased with coarser time resolutions (�̃� varied 27 

little from 2.71 to 3.03 yr between daily and bi-monthly data resolutions)., The variation of 28 

whereas  was also small between sampling frequencies.vary little with sampling frequency. 29 

Extreme 𝛥�̃� values were accounted for daily and bi-monthly data: 0.28 and 0.37 yr, respectively. 30 

The parameter η, as a median value among sites, depicted subtle smaller values for coarser lower 31 

sampling frequencies. It decreased from 3.01 for daily data to 2.60 for bi-monthly ones. In general, 32 
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η slightly decreased for coarser time resolutions: 𝛥�̃� dropped from 0.59 using daily to 0.46 using 1 

bi-monthly data. 2 

Mostly and for both models the best solutions, as described by their NSEs, showed an increasing 3 

trend from finer to coarser data resolutions. For GM, median NSE values of 0.74 and 0.79 were 4 

reached using monthly and bimonthly data while for daily data it was 0.60. Analogously RMSE 5 

values were smaller for coarse data resolutions, median RMSE declined from 0.31‰ for daily to 6 

0.17‰ for bimonthly data. BIAS remained small for all cases, with an average value of 0.04%. 7 

For EPM we obtained similar trends and values. 8 

Results for particular sites, follow nearly the trends described by the median values for all analyzed 9 

sites. Similarly, to the results depicted in Fig. 5 3 for the soil site C2, Fig. 7 5 depicts the variation 10 

in results for different data resolutions applied to the stream water of the main outlet of the 11 

catchment (PL). 12 

3.2.2 Type 2 scenarios  – varying resolution of rain data and fixed resolution of stream water 13 

isotope data (Table 6, Fig. 6).  14 

Contrary to type 1 scenarios, the median NSE decreased for coarser temporal resolution data; e.g. 15 

NSE for GM dropped from 0.60 using daily data to 0.44 using bi-monthly ones. The value of 16 

RMSE and BIAS remained low amidst the temporal resolutions. Median RMSE was around 17 

0.33‰ while the largest BIAS was 0.05‰. The trend of NSE values for EPM was similar to GM, 18 

although less sensitive to temporal resolution data. It declined from a median of 0.60 for daily data 19 

to 0.54 for bi-monthly. RMSE and BIAS yielded for GM and EPM were comparable. 20 

Similar to soil waters, and for both models, the variation of parameter results among diverse 21 

temporal resolutionsampling frequencies data was smaller than for the corresponding type 1 22 

scenarios. When GM was used, �̃� predictions varied from 2.10 yr for daily data to 1.70 yr for bi-23 

monthly. The largest estimated �̃� was 0.71 (using bi-monthly data) which, was not far from close 24 

to 0.63, a value the predicted value using daily data: 0.63, considering that the range of behavioral 25 

solutions for this parameter was around 0.14 for every case. Uncertainty lengths ranges for both 26 

parameters betweenfor the diverse temporal resolution data yielded similar average estimations: 27 

𝛥�̃�  1.6 yr and 𝛥�̃�  0.14. Also for the EPM model did the best solution parameters slightly vary 28 

amongst data resolutions. For example, considering daily and bi-monthly data resolutionssampling 29 

frequencies �̃� predictions varied from 2.71 to 2.81 yr and �̃� from 3.01 to 2.81. Uncertainties for 30 

both parameters were small and similar between time resolutions: 𝛥�̃� ranged from 0.28 to 0.30 yr 31 

and 𝛥�̃� from 0.59 to 0.51. 32 
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Contrary to type 1 scenarios, the median NSE decreased for coarser temporal resolution data; e.g. 1 

NSE for GM dropped from 0.60 using daily data to 0.44 using bimonthly ones. The value of RMSE 2 

and BIAS remained low amidst the temporal resolutions. Median RMSE was around 0.33‰ while 3 

the BIAS was 0.05‰. The trend of NSE values for EPM was similar to GM, although less sensitive 4 

to temporal resolution data. It declined from a median of 0.60 for daily data to 0.54 for bimonthly. 5 

RMSE and BIAS yielded for GM and EPM were comparable. 6 

4. Discussion 7 

 Results indicate that in some cases, like the present one, it is not sufficient to assess the 8 

supremacy of one model over another based only on their performance; instead, additional 9 

knowledge on the conceptual functioning of the studied system is necessary. For instance in Timbe 10 

et al. (2014), where a weekly time step was considered, EPM and LPM predictions showed lesser 11 

uncertainty ranges (for stream and soil waters respectively) when compared to predictions 12 

provided by a GM model, which in counterpart provided better fitting efficiencies for most of the 13 

cases. The current results corroborate those previous findings. Further research is needed to 14 

identify not only the best TTD in terms of statistical performance; meanwhile, the use of any of 15 

the analyzed models cannot be discarded. 16 

 For studies dealing with coarse stable isotope data sets (e.g., monthly or bi-monthly), 17 

considering the differences of the performances between data sets of diverse sampling resolutions, 18 

the uncertainties associated to the predictions should be acknowledged and considered at the 19 

moment of the evaluation of hypotheses associated to these results. Monthly sampling resolution 20 

and monthly data is still frequently used in stable water isotope studies when either the effort or 21 

the costs are too high to realize a higher sampling frequency (e.g., Goller et al., 2005; Rodgers et 22 

al., 2005; Viville et al., 2006; Liu et al., 2007; Rock and Mayer 2007; Chen et al., 2012), which 23 

goes in line with a large share of observation points of the Global Network of Isotopes in 24 

Precipitation and Rivers (GNIP) of the I.A.E.A.-W.M.O. 25 

  26 

4.1 Sensitivity of model-parameter results to sampling frequency 27 

In general, For for soil and stream waters, we found significant differences between parameter 28 

results derived from higher and coarser data resolutions. Mmodel parameters for type 1 scenarios 29 

(Tables 1 and 2, Figs. 2-5): , α and η,  for type 1 scenarios (Tables 3 and 5, Figs. 4-7) showed 30 

distinct values between results obtained from finer and lower data resolutions data, such as daily, 31 

weekly or biweekly, and coarser data resolutions, such as monthly or bimonthly. Keeping this 32 
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finding in mind, whenever a high resolution isotope sampling is feasible, a sensitivity analysis 1 

considering the effect of sampling frequency should be a common part of the workflow while 2 

applying lumped- parameter models to estimate the TTD and MTT. This practice would help to 3 

build a broader data base on the sensitivity of lumped convolution modelling to sampling 4 

frequencies, which might be useful to correct effects caused by coarse sampling frequencies. 5 

Nevertheless only two studies could be found iIn recent literature, which dealonly two studies 6 

dealing with this the sampling frequency effect issue could be found: Hrachowitz et al.,  (2010) 7 

using the gamma distribution model and Birkel et al. (2010) through adding information from 8 

tracers to a lumped-conceptual hydrological model. 9 

For soil waters, with characteristic mean transit times of the order of a few weeks to months, an 10 

increasing trend of  predictions related to a decrease of sampling data frequency was clear for 11 

GM and LPM. Using GM, modelbest predictions for α predictions were similar for time resolutions 12 

up to bi-weekly sampling (α  1.9), but they were significantly higher for coarser data resolutions.: 13 

median values were 3.73 and 4.75 for monthly and bimonthly data, respectively. 14 

Using the gamma distributionGM for stream waters, with characteristic MTT in the order of 2 to 15 

4 years, parameter predictions for the main catchment outlet and its seven sub-catchments provided 16 

depicted a different trend than found for soil waters: . Predictions for  yielded lower values for 17 

decreasing input resolution data (e.g., median  values for stream water sites decreased from 2.1 18 

yr using the daily data to 1.2 yr using bimonthly data). ThisThe descending trend depicted for  19 

values matched the increasing trend of α predictions, for which the median ranged from 0.63 for 20 

daily to 0.93 for bimonthly resolutions. The trend depicted by our These results show a distinct 21 

tendencydiffers from than the one obtained by Hrachowitz et al. (2011) who applied the same 22 

distribution function and convolution method to chloride data in a headwater catchment in 23 

Scotland. using the same distribution function and convolution method, and using chloride as 24 

tracer. In their case, a decreasing sampling frequency (i.e., from weekly to bimonthly) went hand 25 

in hand with a decreasing trend of α, which consequently : from 0.689 for weekly to 0.276 for 26 

bimonthly datasets. The latter in turn, affected the estimations for ,  estimates resulting in 27 

systematically larger values, from 216 to 881 days. The best prediction of  for the headwater 28 

catchment analyzed by Hrachowitz et al. (2011) (in the referred study the results obtained with the 29 

highest resolution available—weekly—, were considered as the reference solution) indicated 30 

stream waters with short MTT, around 0.59 yr, and a characteristic α value around 0.5, while in 31 

our case the best predictions of  for all stream waters were larger than 2 yr and α values varied 32 

around 0.6. Even though any further comparison of the two studies is difficult, as they represent 33 
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two different hydrological systems and therefore favor different distribution functions and shape 1 

parameters to describe the transport processes at hand, it can be seen that the MTTs greatly differ 2 

in accordance with the chosen sampling frequency. 3 

Considering the GLUE-based uncertainties derived from type 1 scenarios, results between soil and 4 

stream waters were contrasting. For the soil waters, the uncertainty magnitudes  remained 5 

similar (or slightly larger) with decreasing time resolution, while for stream waters they were 6 

systematically shorter. By using type 2 scenarios (Tables 1 and 2, Figs. 2 and 4), Additional 7 

insights on the degree of the mismatch of coarser data resolutions compared to finer ones, were 8 

provided when using type 2 scenarios (Tables 4 and 6, Figs. 4 and 5), where the same weekly 9 

temporal resolution of observed data at outflows was kept for all sampled watersthe calibration of 10 

models, additional insights on the degree of the mismatch of coarse data resolutions compared to 11 

finer ones, were provided. For these cases, the NSE, RMSE and BIAS of the predictions were in 12 

general poorer for coarser datalow temporal resolutions, hinting towards a higher reliability of 13 

finer resolution data sets. Besides the fact that parameter results derived from finer resolution data 14 

sets were more similar between each other, they did not show marked trends of either over- or 15 

underestimations as compared to using type 1 scenarios. 16 

For our analyses, given the subtle divergence of results when using daily, weekly or even bi-17 

weekly sampling resolutions, we consider them as adequate for the estimation of MTT and TTD. 18 

It should be noted that this finding is valid for  semi-steady-state conditions of watersgroundwater 19 

systems or for mean conditions of soil water. In this regard, the utility of the highest sampling 20 

resolution, as daily or even sub-daily, could be noticeable when temporal dynamics are to be 21 

considered. In this regard Birkel et al., (2010) provided insights when dealing with the sampling 22 

frequency as part of the evaluation of the performance of a lumped-conceptual flow-tracer model. 23 

They , he found that the use of daily isotope data from rainfall and stream water, when compared 24 

to weekly or bi-weekly, besides providing higher fitting efficiencies, was beneficial for the 25 

conceptualization and calibration of that model. 26 

4.2 Comparison of distribution functions 27 

Considering all the analyzed sampled frequencies, According according to NSE values, the 28 

gammaGM distribution function (GM) performed slightly better than the other two models (Tables 29 

31-62), i.e. LM for soil water and EPM for stream water. However, using the GLUE-based 30 

uncertainties were also larger for this model (Figs. 2 and 4) approach for stream water the GM 31 

distribution function provided larger uncertainties than EPM (Fig. 6), hindering the clear 32 

preference of one model over another. This finding goes in line with previous insights in the same 33 
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research area (Timbe et al., 2014) in which a fixed weekly-based sampling frequency was used to 1 

infer MTT and TTD.The magnitude of uncertainties (i.e., behavioral solutions) could be a normal 2 

consequence of the highly damped isotopic signal of analyzed outflows, a common characteristic 3 

of all our stream water samples. 4 

For stream waters, regardless of the data resolution set used, EPM showed lesser sensitiveness 5 

than GM when accounting for model parameter variations, which derived in MTT predictions 6 

more similar between sampling sites (Tables 5 and 6, Fig. 6). We should take these predictions 7 

with care since this behavior could also be the result of using a simple model or inadequate data 8 

sets, that are not sufficiently sensitive to distinguish between various TTD (McGuire and 9 

McDonnell, 2006; McGuire et al., 2005; Kirchner et al., 2000). 10 

As lumped-model parameters are averaged metrics, a comparison of distribution functions 11 

between the tested models is preferred. For soil waters LPM yielded similar  predictions than to 12 

those of GM, thereby justifying the use of linear functions such as LPM as a first approximation, 13 

despite of presenting a simplification of the water movement of real systems. On the other hand, 14 

GM was characterized by a delayed occurrence of the tracer’s peak signal (α  2). However, a 15 

simple look at both distribution functions demonstrates that the gamma distribution function can 16 

provide more detailed information on how and when the tracer’s signal increases/decreases and 17 

when the peak occurs. This is in line with the non-linearity of most processes in watersheds 18 

(Phillips, 2003; McDonnell, 2003). Notwithstanding, linear functions such as LPM are often used 19 

as a first approximation, despite presenting a simplification of the water movement of real systems 20 

(Fig. 8). 21 

For the case of stream waters, the comparison of predicted TTD shows that Comparing predicted 22 

GM and EPM distribution functions in the case of stream water, shows that EPM traces a peak 23 

signal delayed over time. We estimated η values between 2.15 and 3.23, the largest values we 24 

found in related studies that used the same distribution function. Reported values are normally 25 

lower than 2 (e.g., Hrachowitz et al., 2009a; Katsuyama et al., 2009; McGuire and McDonnell, 26 

2006; Viville et al., 2006; Kabeya et al., 2006), indicating that a large portion of ‘old’ water is 27 

released first to the river as depicted by the isotopic composition of the stream. At the contrary, 28 

when analyzing the behavior of water flow as derived from the gamma distributionGM, the tracer 29 

signal’s peak at the outflow occurs instantaneously, meaning that a considerable portion of the 30 

event rainfall water rapidly contributes to discharge, as for instance via lateral flow from near-31 

surface deposits. Over time, the tracer signal decreases (for either EPM or GM), but once again 32 

the implications are different for both models comparing their flow recessions. As shown in Fig. 33 
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8,Timbe et al. (2014) for weekly data, the tracer signal decreases more rapidly for EPM than for 1 

GM. Thus, depending on which distribution function is used, the interpretation is different. For 2 

example, in water management using the EPM predictions one could argue that the effects of 3 

contamination of water sources will not be immediately reflected in the river water and further that 4 

its effect will be rather quickly disappearing. Contrary, inferences provided by a gamma 5 

distribution would tell that pollutants in the catchment would have an instantaneous impact on the 6 

river water and that the effect will sustain longer over time. 7 

The adequacy of using a gamma distribution to represent a real system has been widely assumed 8 

and discussed (e.g., Kirchner et al., 2001, 2010; Schumer et al., 2003; Hrachowitz et al., 2009a, 9 

2009b, 2010, 2011; Soulsby et al., 2009, 2010; Dunn et al., 2010; Godsey et al., 2010; Speed et 10 

al., 2010; Maher, 2011; Birkel et al., 2012; Capell et al., 2012; Heidbüchel et al., 2012; McGrane 11 

et al., 2014) since the bench mark paper published by Kirchner et al. (2000) in which they used 12 

chloride based tracers and spectral methods with high frequency sampling. As stated by Kirchner 13 

et al. (2010), the gamma distribution accounts in a more complete way the spectral range of waters 14 

with larger and shorter distribution functions. This results in a more realistic description of the 15 

distribution of water, when compared to other two-parameter and linear distribution functions. 16 

Corroborating these findings, Stewart et al. (2010) discovered that when using tritium isotopes the 17 

flow recessions are significantly longer than they are predicted using 18O or 2H isotopes. 18 

Considering a gamma distribution for our basin,  the MTT between analyzed streams varied 19 

between 1.62 and 4.16 years and α between 0.54 and 0.68, using finer sampling resolutions. This 20 

range of α values is similar to findings from other tracers studies on stream water using spectral 21 

analyses and high resolution samples of chloride. Kirchner et al. (2000) demonstrated , using the 22 

spectral analysis methods, that an α value of approximately 0.5 provides a more proper 23 

representation of several stream waters in Wales. As stated by Soulsby et al. (2010) gamma 24 

distributions with α < 1 are most suitable to represent non-linear processes. Similarly several other 25 

studies found α values significantly smaller than 1 (McGuire et al., 2005; Hrachowitz et al., 2009a, 26 

2010; Godsey et al., 2010; Kirchner et al., 2010; Speed et al., 2010; Birkel et al., 2012; Heidbüchel 27 

et al., 2012; Muñoz-Villers and McDonnell, 2012). On the other hand, our results reported that 28 

when coarser temporaltime resolutions were used (monthly or bi-monthly), the value of α 29 

approached to 1,. Given an α = 1, the GM model yields equivalent predictions as a pure exponential 30 

model, which could lead to erroneous deductions. 31 

At shorter time scales, as for soil waters in comparison to the previously discussed stream water, 32 

the gamma distribution function was characterized by a delayed occurrence of the tracer’s peak (α 33 
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 2). For soil waters, although similar insights in terms of  could have been inferred from other 1 

models, the linear distribution function of the TTD seems to oversimplifies the water flow 2 

processes in the catchment (Fig. 8). 3 

Differences between trends for shorter (i.e., soil waters) and longer MTT (as for stream water) 4 

seem to be related to the shape of the MTT distribution function, when considering a gamma 5 

distribution for instance, for α ≤ 1 the tracer’s peak signal occurs at the beginning while for α > 1 6 

it is delayed in time, which indicates different processes for each water type (Dunn et al., 2010). 7 

For our study catchment, considering that NSE are high for all models and that TTD does not seem 8 

to influence their performance but greatly influences the predicted MTT, additional insights need 9 

be explored in order to unveil the correct TTD-function as solely relying on model performances 10 

could lead to misleading results.Bearing in mind that each TTD describes different flow 11 

characteristics although they could yield similar performances in terms of fitting efficiencies or 12 

uncertainties (e.g., LPM versus GM), for our study catchment additional insights (e.g. tracer data 13 

associated with different flow paths) are required in order to correctly unveil the prevailing TTD, 14 

as solely relying on model performances could lead to misleading results. In this regard, studies at 15 

smaller spatial scales using high sampling frequencies and time- variant conditions should be 16 

performed in order to cover a wider spectral range of the different waters sources. 17 

 18 

5. Conclusion 19 

Environmental tracer data of rainfall, stream and soil water were collected in the San Francisco 20 

catchment with the objective to delineate the reliability of transit time predictions as a function of 21 

the input data resolution. The collected information was used to test the prediction accuracy of 22 

commonly used lumped models with respect to sampling frequency. Compared to results from 23 

coarse data sets, finer temporal resolutions provided more similar outputs. Overall, discrepancies 24 

between predictions of diverse sampling frequencies point out that the assessment of the 25 

convergence and sensitivity of model parameters is essential defining TTD through model 26 

calibration (McGuire and McDonnell, 2006). 27 

The question arises which distribution function should be used that best depicts the processes of 28 

the analyzed waters. In this regard, for soil water the gamma distribution not only provides the 29 

highest goodness of fit but also more realistic and meaningful predictions; although Especially for 30 

waters with  for dampened isotopic signals (i.e., stream waters), a model preference is still not 31 

clear, besides model parameters seem to be more highly sensitive to sampling frequencies, 32 
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considerably increasing considerably the risk of misinterpretation of the underlying processes, for 1 

these cases more research is still needed in order to account the more reliable distribution function. 2 

The study clearly demonstrates that estimations of the TTDs for micro-catchments with similar 3 

characteristics or located in the same region using different frequencies of data sampling provides 4 

an additional source of uncertainty, which might hinder a correct model comparison and 5 

misrepresentation of the water routing system. The present research also provides a better 6 

framework for future sampling strategiesrelated research in the San Francisco basin and similar 7 

basins in the Andean mountain region. Based on the new insights presented in this manuscript 8 

more elaborated sampling campaigns could be undertaken, which would contribute to a more 9 

efficient management of the water resources of Andean and similar mountain basins. In particular, 10 

the performance of steady state modeling approaches can be considerably improved increasing the 11 

sampling frequency, offering an indirect way to account for the time-variable conditions. 12 
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Table 1. Characteristics of the San Francisco catchment and tributaries. 1 

Parameter Units 
Outlet   Sub-catchment 

PL   FH QZ QN QR QP QM QC 

Catchment physical characteristics 

Drainage area [km2] 76.9 

 

34.9 11.2 9.8 4.7 3.4 1.3 0.7 

Mean elevation [m a.s.l.] 2,531 

 

2,615 2,615 2,591 2,472 2,447 2,274 2,290 

Altitude  [m] 1,325 

 

1,133 991 975 1,424 975 772 516 

Mean slope [%] 63 

 

63 63 60 69 67 57 56 

Hydrological parameters 

Discharge [mm] 2,959 

 

2,691 - 1,291 - - 3,315 2,742 

Baseflow [mm] 2,520 

 

2,152 - 1,044 - - 2,118 2,268 

 

[%] 85.2 

 

80 - 80.8 - - 63.9 82.7 

Land use  

Forest [%] 68 

 

67 72 65 80 63 90 22 

Sub-páramo [%] 21 

 

29 15 17 18 10 9 10 

Pasture/Bracken [%] 9 

 

3 12 16 2 26 1 67 

Others [%] 2 

 

1 1 2 0 1 0 1 

Legend: PL = Planta (catchment outlet), FH = Francisco Head, QZ = Zurita, QN = Navidades, QR = Ramon, QP = Pastos, QM = 2 
Milagro, QC = Cruces   3 
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Table 2. Applied sampling strategy in the San Francisco catchment. 1 

Sample type 
Collection 

method 

Sampled 

since a 
Site name Site code 

Altitude 

m a.s.l. 

Number of 

samples 

Rainfall Manually Oct-10 
Estación San 

Francisco 
ECSF 1,900 99 

Main river Manually Oct-10 Planta (outlet) PL 1,725 104 

Tributaries Manually Oct-10 

Francisco Head FH 1,917 98 

Zurita QZ 2,047 103 

Navidades QN 2,050 104 

Ramon QR 1,726 104 

Pastos QP 1,925 103 

Milagro QM 1,878 104 

Cruces QR 1,978 102 

Pastures soil 

water 

Wick-

sampler b Nov-10 

Pastos alto  A 2,025 58 

Pastos medio  B 1,975 70 

Pastos bajo C 1,925 71 

Forest soil water 
Wick-

sampler b Sep-10 

Bosque alto  D 2,000 74 

Bosque medio  E 1,900 80 

Bosque bajo F 1,825 53 

a Sampling campaign was completed mid-August 2012. 
b All wick-samplers are located at a depth of 0.25 m below surface. 

 2 

3 
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Table 3. Soil water simulation results using GM and LPM models considering type 1 scenarios. 1 

Parameter Sf AGM BGM CGM DGM EGM FGM 𝐗GM   ALPM BLPM CLPM DLPM ELPM FLPM 𝐗LPM 

 

[weeks] 

1 4.82 4.50 3.42 6.93 6.74 4.44 4.66 

 

4.58 4.61 3.23 5.99 6.14 4.36 4.59 

2 5.33 4.97 3.75 7.48 7.02 4.67 5.15 

 

5.69 4.53 3.79 6.29 6.11 4.49 5.11 

3 6.01 5.41 4.56 8.43 8.26 5.77 5.89 

 

5.96 5.18 4.27 7.71 7.34 5.92 5.94 

4 7.27 5.79 4.98 9.30 9.75 5.97 6.62 

 

7.17 7.69 4.19 8.31 9.17 6.18 7.43 

5 9.68 8.22 7.55 9.74 10.58 8.29 8.99   11.02 8.87 8.87 8.75 8.17 11.60 8.87 

 

[weeks] 

 

1 2.05 1.62 1.68 2.03 1.58 1.98 1.83 

 

1.64 1.43 1.67 1.12 1.25 1.44 1.44 

2 2.08 1.92 1.69 2.17 1.95 1.89 1.93 

 

1.75 1.27 1.52 1.43 1.52 1.75 1.52 

3 1.84 2.16 1.75 2.39 2.27 2.06 2.11 

 

1.55 2.22 2.00 1.04 0.93 1.77 1.66 

4 1.62 1.93 1.49 2.40 2.55 1.82 1.87 

 

1.60 1.48 3.07 1.59 1.65 1.43 1.60 

5 1.87 2.41 1.95 2.17 2.44 1.67 2.06   3.49 3.73 3.53 3.31 3.45 3.34 3.47 

α or η  

[-] 

 

1 1.51 1.76 1.59 2.11 3.64 2.66 1.94 

 

1.02 1.01 1.02 1.00 1.07 1.17 1.02 

2 1.64 1.72 1.71 2.04 2.76 2.21 1.88 

 

1.07 1.01 1.07 1.03 1.00 1.03 1.03 

3 1.85 1.97 3.11 1.93 2.37 1.78 1.95 

 

1.01 1.03 1.02 1.08 1.02 1.19 1.03 

4 3.91 4.75 5.06 2.73 2.32 3.55 3.73 

 

1.16 1.22 1.00 1.01 1.12 1.02 1.07 

5 4.50 4.86 6.19 4.58 3.94 4.52 4.55   1.40 1.15 1.12 1.08 1.03 1.51 1.14 

α or η 

[-] 

 

1 2.83 3.02 2.95 2.70 5.64 6.72 2.99 

 

0.17 0.36 0.37 0.27 0.39 0.59 0.36 

2 1.69 2.65 3.69 1.76 3.53 3.56 3.09 

 

0.09 0.34 0.51 0.23 0.45 0.39 0.37 

3 1.98 2.96 4.89 1.51 2.11 2.14 2.13 

 

0.16 0.18 1.16 0.12 0.14 0.17 0.17 

4 2.86 4.07 3.26 1.92 1.23 3.51 3.06 

 

0.30 0.26 0.39 0.21 0.21 0.27 0.27 

5 1.92 4.01 6.28 2.11 1.94 3.38 2.75   0.46 0.48 0.45 0.44 0.44 0.44 0.45 

NSE 

[-] 

 

1 0.69 0.76 0.86 0.83 0.78 0.88 0.81 

 

0.70 0.76 0.85 0.82 0.78 0.88 0.80 

2 0.74 0.81 0.89 0.87 0.82 0.94 0.84 

 

0.74 0.80 0.88 0.84 0.81 0.92 0.83 

3 0.81 0.84 0.90 0.88 0.79 0.91 0.86 

 

0.81 0.81 0.90 0.83 0.78 0.87 0.82 

4 0.78 0.88 0.87 0.80 0.64 0.92 0.84 

 

0.77 0.87 0.84 0.72 0.58 0.89 0.81 

5 0.66 0.83 0.83 0.87 0.76 0.82 0.83   0.67 0.78 0.73 0.85 0.70 0.79 0.76 

RMSE 

[‰] 

 

1 1.85 1.65 1.28 1.06 1.36 1.10 1.32 

 

1.81 1.65 1.35 1.10 1.35 1.10 1.35 

2 1.67 1.46 1.14 0.93 1.24 0.79 1.19 

 

1.67 1.50 1.21 1.03 1.26 0.87 1.23 

3 1.36 1.41 1.05 0.89 1.31 0.86 1.18 

 

1.36 1.51 1.08 1.02 1.33 1.05 1.20 

4 1.29 1.04 1.13 1.07 1.59 0.78 1.10 

 

1.32 1.09 1.28 1.26 1.72 0.94 1.27 

5 1.42 1.11 1.28 0.80 1.20 1.05 1.16   1.42 1.25 1.60 0.86 1.35 1.13 1.30 
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BIAS 

[‰] 

 

1 0.34 0.03 -0.06 0.10 -0.09 0.23 0.07 

 

0.22 0.00 -0.15 0.03 -0.06 0.11 0.02 

2 0.21 -0.06 -0.28 -0.02 -0.14 0.14 -0.04 

 

-0.04 -0.03 -0.10 0.11 -0.03 -0.02 -0.03 

3 -0.01 -0.20 -0.39 -0.11 -0.20 -0.07 -0.16 

 

-0.07 -0.01 0.03 0.07 0.00 0.08 0.02 

4 -0.17 -0.30 -0.07 -0.24 -0.13 -0.16 -0.16 

 

0.05 -0.07 0.07 0.08 0.12 -0.05 0.06 

5 0.11 -0.09 -0.13 -0.07 -0.05 -0.08 -0.08   0.03 -0.07 -0.17 -0.01 0.03 -0.05 -0.03 

Sf = Sampling frequency or time resolution of data: 1 = daily data for rainfall and weekly data for soil water, 2 = weekly data for 1 
rainfall and soil water, 3 = biweekly data for rainfall and soil water, 4 = monthly data for rainfall and soil water, 5 = bimonthly 2 
data for rainfall and soil water; A, B and C = pasture soil water sites located at 2025, 1975 and 1925 m a.s.l.; D-F = soil water 3 
sites located at 2000, 1900 and 1825 m a.s.l. The subscript of the names of the soil site are related to the lumped model used: GM 4 
= Gamma, LPM = Linear Piston Flow; X̃= median of  results of soil sites per sampling frequency;  and  = tracer’s mean 5 
transit time (best match) and its corresponding uncertainty range length; α and α for GM (or η and η for LPM) = best matching 6 
result for the second lumped parameter and corresponding uncertainty range length; NSE = Nash-Sutcliffe Efficiency of best 7 
match; RMSE = Root Mean Square Error. 8 

 9 
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Table 4. Soil water simulation results using GM and LPM models considering type 2 scenarios. 1 

Parameter Sr AGM BGM CGM DGM EGM FGM 𝐗GM   ALPM BLPM CLPM DLPM ELPM FLPM 𝐗LPM 

 

[weeks] 

1 4.82 4.50 3.42 6.93 6.74 4.44 4.66 

 

4.58 4.61 3.23 5.99 6.14 4.36 4.59 

2 5.33 4.97 3.75 7.48 7.02 4.67 5.15 

 

5.69 4.53 3.79 6.29 6.11 4.49 5.11 

3 5.50 4.99 3.88 7.67 7.21 4.81 5.25 

 

5.80 4.88 3.64 6.88 6.89 4.81 5.34 

4 5.57 5.01 3.95 7.75 7.24 4.49 5.29 

 

5.77 4.72 3.86 6.73 6.88 4.46 5.25 

5 5.38 4.16 2.69 6.46 6.37 4.63 5.00   4.99 3.92 2.83 5.62 6.17 4.37 4.68 

 

[weeks] 

 

1 2.05 1.62 1.68 2.03 1.58 1.98 1.83 

 

1.64 1.43 1.67 1.12 1.25 1.44 1.44 

2 2.08 1.92 1.69 2.17 1.95 1.89 1.93 

 

1.75 1.27 1.52 1.43 1.52 1.75 1.52 

3 2.11 2.04 1.79 2.07 2.07 1.97 2.06 

 

1.45 1.35 1.61 1.00 1.31 1.73 1.40 

4 1.87 1.91 1.77 2.52 2.05 1.81 1.89 

 

1.53 1.66 1.81 0.89 1.41 1.74 1.60 

5 1.74 2.30 1.93 2.20 1.84 1.80 1.89   1.35 1.72 2.04 1.60 1.79 1.28 1.66 

α or η  

[-] 

 

1 1.51 1.76 1.59 2.11 3.64 2.66 1.94 

 

1.02 1.01 1.02 1.00 1.07 1.17 1.02 

2 1.64 1.72 1.71 2.04 2.76 2.21 1.88 

 

1.07 1.01 1.07 1.03 1.00 1.03 1.03 

3 1.70 1.61 1.53 1.76 2.32 1.83 1.73 

 

1.08 1.08 1.02 1.05 1.06 1.08 1.07 

4 1.85 2.38 2.26 1.87 2.31 2.19 2.23 

 

1.06 1.04 1.08 1.00 1.06 1.02 1.05 

5 2.31 1.42 1.37 1.91 3.71 1.65 1.78   1.07 1.03 1.17 1.03 1.26 1.04 1.06 

α or η 

[-] 

 

1 2.83 3.02 2.95 2.70 5.64 6.72 2.99 

 

0.17 0.36 0.37 0.27 0.39 0.59 0.36 

2 1.69 2.65 3.69 1.76 3.53 3.56 3.09 

 

0.09 0.34 0.51 0.23 0.45 0.39 0.37 

3 1.90 2.41 4.05 1.40 2.59 3.47 2.50 

 

0.24 0.34 0.54 0.18 0.25 0.39 0.29 

4 2.42 5.39 6.35 1.69 2.80 5.95 4.10 

 

0.29 0.73 1.16 0.17 0.25 0.92 0.51 

5 18.82 2.41 2.45 3.31 9.09 5.19 4.25   0.64 0.42 1.18 0.47 0.92 0.41 0.56 

NSE 

[-] 

 

1 0.69 0.76 0.86 0.83 0.78 0.88 0.81 

 

0.70 0.76 0.85 0.82 0.78 0.88 0.80 

2 0.74 0.81 0.89 0.87 0.82 0.94 0.84 

 

0.74 0.80 0.88 0.84 0.81 0.92 0.83 

3 0.73 0.82 0.89 0.86 0.82 0.93 0.84 

 

0.73 0.80 0.88 0.82 0.82 0.90 0.82 

4 0.68 0.82 0.88 0.79 0.76 0.91 0.81 

 

0.68 0.82 0.87 0.77 0.75 0.89 0.80 

5 0.64 0.71 0.77 0.84 0.79 0.81 0.78   0.69 0.70 0.75 0.82 0.79 0.83 0.77 

RMSE 

[‰] 

 

1 1.85 1.65 1.28 1.06 1.36 1.10 1.32 

 

1.81 1.65 1.35 1.10 1.35 1.10 1.35 

2 1.67 1.46 1.14 0.93 1.24 0.79 1.19 

 

1.67 1.50 1.21 1.03 1.26 0.87 1.23 

3 1.71 1.43 1.12 0.96 1.22 0.85 1.17 

 

1.71 1.52 1.22 1.09 1.25 1.00 1.24 

4 1.88 1.42 1.21 1.19 1.44 0.96 1.31 

 

1.88 1.42 1.25 1.24 1.46 1.03 1.33 

5 2.00 1.84 1.67 1.04 1.34 1.37 1.52   1.85 1.87 1.75 1.09 1.34 1.30 1.54 
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BIAS 

[‰] 

 

1 0.34 0.03 -0.06 0.10 -0.09 0.23 0.07 

 

0.22 0.00 -0.15 0.03 -0.06 0.11 0.02 

2 0.21 -0.06 -0.28 -0.02 -0.14 0.14 -0.04 

 

-0.04 -0.03 -0.10 0.11 -0.03 -0.02 -0.03 

3 0.16 -0.14 -0.20 0.00 0.01 0.10 0.01 

 

-0.03 -0.03 0.03 0.04 -0.02 0.09 0.00 

4 0.07 -0.28 -0.32 -0.22 0.03 0.13 -0.10 

 

-0.04 -0.14 -0.09 0.00 -0.01 -0.05 -0.05 

5 0.43 0.23 0.10 0.00 0.07 0.36 0.17   -0.04 -0.04 0.07 0.00 -0.07 -0.04 -0.04 

Sf = Sampling frequency or time resolution of data: 1 = daily data for rainfall and weekly data for soil water, 2 = weekly data for 1 
rainfall and soil water, 3 = biweekly data for rainfall and weekly data for soil water, 4 = monthly data for rainfall and weekly data 2 
for soil water, 5 = bimonthly data for rainfall and weekly data for soil water; A, B and C = pasture soil water sites located at 3 
2025, 1975 and 1925 m a.s.l.; D-F = soil water sites located at 2000, 1900 and 1825 m a.s.l. The subscript of the names of the soil 4 
site are related to the lumped model used: GM = Gamma, LPM = Linear Piston Flow; X̃ = median of  results of soil sites per 5 
sampling frequency;  and  = tracer’s mean transit time (best match) and its corresponding uncertainty range length; α and α 6 
for GM (or η and η for LPM) = best matching result for the second lumped parameter and corresponding uncertainty range 7 
length; NSE = Nash-Sutcliffe Efficiency of best match; RMSE = Root Mean Square Error. 8 

 9 

 10 

 11 

 12 
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Table 1. Soil water simulation results using GM and LPM models considering scenarios 1 & 2 1 

P Sc SfR SfS AGM BGM CGM DGM EGM FGM �̃�GM 

 

ALPM BLPM CLPM DLPM ELPM FLPM �̃�LPM 
τ 

[w
ee

k
s]

 

1 & 2 D W 4.82 4.50 3.42 6.93 6.74 4.44 4.66 

 

4.58 4.61 3.23 5.99 6.14 4.36 4.59 

1 & 2 W W 5.33 4.97 3.75 7.48 7.02 4.67 5.15 

 

5.69 4.53 3.79 6.29 6.11 4.49 5.11 

1 Bw Bw 6.01 5.41 4.56 8.43 8.26 5.77 5.89 

 

5.96 5.18 4.27 7.71 7.34 5.92 5.94 

2 Bw W 5.50 4.99 3.88 7.67 7.21 4.81 5.25 

 

5.80 4.88 3.64 6.88 6.89 4.81 5.34 

1 M M 7.27 5.79 4.98 9.30 9.75 5.97 6.62 

 

7.17 7.69 4.19 8.31 9.17 6.18 7.43 

2 M W 5.57 5.01 3.95 7.75 7.24 4.49 5.29 

 

5.77 4.72 3.86 6.73 6.88 4.46 5.25 

1 Bm Bm 9.68 8.22 7.55 9.74 10.58 8.29 8.99 

 

11.02 8.87 8.87 8.75 8.17 11.60 8.87 

2 Bm W 5.38 4.16 2.69 6.46 6.37 4.63 5.00 

 

4.99 3.92 2.83 5.62 6.17 4.37 4.68 

Δ
τ 

[w
ee

k
s]

 

1 & 2 D W 2.05 1.62 1.68 2.03 1.58 1.98 1.83 

 

1.64 1.43 1.67 1.12 1.25 1.44 1.44 

1 & 2 W W 2.08 1.92 1.69 2.17 1.95 1.89 1.93 

 

1.75 1.27 1.52 1.43 1.52 1.75 1.52 

1 Bw Bw 1.84 2.16 1.75 2.39 2.27 2.06 2.11 

 

1.55 2.22 2.00 1.04 0.93 1.77 1.66 

2 Bw W 2.11 2.04 1.79 2.07 2.07 1.97 2.06 

 

1.45 1.35 1.61 1.00 1.31 1.73 1.40 

1 M M 1.62 1.93 1.49 2.40 2.55 1.82 1.87 

 

1.60 1.48 3.07 1.59 1.65 1.43 1.60 

2 M W 1.87 1.91 1.77 2.52 2.05 1.81 1.89 

 

1.53 1.66 1.81 0.89 1.41 1.74 1.60 

1 Bm Bm 1.87 2.41 1.95 2.17 2.44 1.67 2.06 

 

3.49 3.73 3.53 3.31 3.45 3.34 3.47 

2 Bm W 1.74 2.30 1.93 2.20 1.84 1.80 1.89 

 

1.35 1.72 2.04 1.60 1.79 1.28 1.66 

α
 o

r 
η

 [
-]

 

1 & 2 D W 1.51 1.76 1.59 2.11 3.64 2.66 1.94 

 
1.02 1.01 1.02 1.00 1.07 1.17 1.02 

1 & 2 W W 1.64 1.72 1.71 2.04 2.76 2.21 1.88 

 
1.07 1.01 1.07 1.03 1.00 1.03 1.03 

1 Bw Bw 1.85 1.97 3.11 1.93 2.37 1.78 1.95 

 
1.01 1.03 1.02 1.08 1.02 1.19 1.03 

2 Bw W 1.70 1.61 1.53 1.76 2.32 1.83 1.73 

 
1.08 1.08 1.02 1.05 1.06 1.08 1.07 

1 M M 3.91 4.75 5.06 2.73 2.32 3.55 3.73 

 
1.16 1.22 1.00 1.01 1.12 1.02 1.07 

2 M W 1.85 2.38 2.26 1.87 2.31 2.19 2.23 

 
1.06 1.04 1.08 1.00 1.06 1.02 1.05 

1 Bm Bm 4.50 4.86 6.19 4.58 3.94 4.52 4.55 

 
1.40 1.15 1.12 1.08 1.03 1.51 1.14 

2 Bm W 2.31 1.42 1.37 1.91 3.71 1.65 1.78 

 
1.07 1.03 1.17 1.03 1.26 1.04 1.06 

Δ
α

 o
r 

Δ
η

 [
-]

 

1 & 2 D W 2.83 3.02 2.95 2.70 5.64 6.72 2.99 

 
0.17 0.36 0.37 0.27 0.39 0.59 0.36 

1 & 2 W W 1.69 2.65 3.69 1.76 3.53 3.56 3.09 

 
0.09 0.34 0.51 0.23 0.45 0.39 0.37 

1 Bw Bw 1.98 2.96 4.89 1.51 2.11 2.14 2.13 

 
0.16 0.18 1.16 0.12 0.14 0.17 0.17 

2 Bw W 1.90 2.41 4.05 1.40 2.59 3.47 2.50 

 
0.24 0.34 0.54 0.18 0.25 0.39 0.29 

1 M M 2.86 4.07 3.26 1.92 1.23 3.51 3.06 

 
0.30 0.26 0.39 0.21 0.21 0.27 0.27 

2 M W 2.42 5.39 6.35 1.69 2.80 5.95 4.10 

 
0.29 0.73 1.16 0.17 0.25 0.92 0.51 

1 Bm Bm 1.92 4.01 6.28 2.11 1.94 3.38 2.75 

 
0.46 0.48 0.45 0.44 0.44 0.44 0.45 

2 Bm W 18.82 2.41 2.45 3.31 9.09 5.19 4.25 

 
0.64 0.42 1.18 0.47 0.92 0.41 0.56 

N
S

E
 [

-]
 

1 & 2 D W 0.69 0.76 0.86 0.83 0.78 0.88 0.81 

 

0.70 0.76 0.85 0.82 0.78 0.88 0.80 

1 & 2 W W 0.74 0.81 0.89 0.87 0.82 0.94 0.84 

 

0.74 0.80 0.88 0.84 0.81 0.92 0.83 

1 Bw Bw 0.81 0.84 0.90 0.88 0.79 0.91 0.86 

 

0.81 0.81 0.90 0.83 0.78 0.87 0.82 

2 Bw W 0.73 0.82 0.89 0.86 0.82 0.93 0.84 

 

0.73 0.80 0.88 0.82 0.82 0.90 0.82 

1 M M 0.78 0.88 0.87 0.80 0.64 0.92 0.84 

 

0.77 0.87 0.84 0.72 0.58 0.89 0.81 

2 M W 0.68 0.82 0.88 0.79 0.76 0.91 0.81 

 

0.68 0.82 0.87 0.77 0.75 0.89 0.80 

1 Bm Bm 0.66 0.83 0.83 0.87 0.76 0.82 0.83 

 

0.67 0.78 0.73 0.85 0.70 0.79 0.76 

2 Bm W 0.64 0.71 0.77 0.84 0.79 0.81 0.78 

 

0.69 0.70 0.75 0.82 0.79 0.83 0.77 

R
M

S
E

 [
‰

] 

1 & 2 D W 1.85 1.65 1.28 1.06 1.36 1.10 1.32 

 

1.81 1.65 1.35 1.10 1.35 1.10 1.35 

1 & 2 W W 1.67 1.46 1.14 0.93 1.24 0.79 1.19 

 

1.67 1.50 1.21 1.03 1.26 0.87 1.23 

1 Bw Bw 1.36 1.41 1.05 0.89 1.31 0.86 1.18 

 

1.36 1.51 1.08 1.02 1.33 1.05 1.20 

2 Bw W 1.71 1.43 1.12 0.96 1.22 0.85 1.17 

 

1.71 1.52 1.22 1.09 1.25 1.00 1.24 

1 M M 1.29 1.04 1.13 1.07 1.59 0.78 1.10 

 

1.32 1.09 1.28 1.26 1.72 0.94 1.27 

2 M W 1.88 1.42 1.21 1.19 1.44 0.96 1.31 

 

1.88 1.42 1.25 1.24 1.46 1.03 1.33 

1 Bm Bm 1.42 1.11 1.28 0.80 1.20 1.05 1.16 

 

1.42 1.25 1.60 0.86 1.35 1.13 1.30 

2 Bm W 2.00 1.84 1.67 1.04 1.34 1.37 1.52 

 

1.85 1.87 1.75 1.09 1.34 1.30 1.54 

B
IA

S
 [

‰
] 

1 & 2 D W 0.34 0.03 -0.06 0.10 -0.09 0.23 0.07 

 

0.22 0.00 -0.15 0.03 -0.06 0.11 0.02 

1 & 2 W W 0.21 -0.06 -0.28 -0.02 -0.14 0.14 -0.04 

 

-0.04 -0.03 -0.10 0.11 -0.03 -0.02 -0.03 

1 Bw Bw -0.01 -0.20 -0.39 -0.11 -0.20 -0.07 -0.16 

 

-0.07 -0.01 0.03 0.07 0.00 0.08 0.02 

2 Bw W 0.16 -0.14 -0.20 0.00 0.01 0.10 0.01 

 

-0.03 -0.03 0.03 0.04 -0.02 0.09 0.00 

1 M M -0.17 -0.30 -0.07 -0.24 -0.13 -0.16 -0.16 

 

0.05 -0.07 0.07 0.08 0.12 -0.05 0.06 

2 M W 0.07 -0.28 -0.32 -0.22 0.03 0.13 -0.10 

 

-0.04 -0.14 -0.09 0.00 -0.01 -0.05 -0.05 

1 Bm Bm 0.11 -0.09 -0.13 -0.07 -0.05 -0.08 -0.08 

 

0.03 -0.07 -0.17 -0.01 0.03 -0.05 -0.03 

2 Bm W 0.43 0.23 0.10 0.00 0.07 0.36 0.17 

 

-0.04 -0.04 0.07 0.00 -0.07 -0.04 -0.04 

P = Parameter; Sc = Scenario; SfR & SfS = Sampling frequency of rainfall and soil water data: D = Daily, W = Weekly, Bw = Bi-2 
weekly, M = Monthly, Bm = Bi-monthly; A, B and C = pasture soil water sites located at 2025, 1975 and 1925 m a.s.l .; D, E and 3 
F = soil water sites located at 2000, 1900 and 1825 m a.s.l. The subscript of the names of the soil site are related to the lumped 4 
model used: GM = Gamma, LPM = Linear Piston Flow; X̃= median of  results of soil sites per sampling frequency;  and  = 5 
tracer’s mean transit time (best match) and its corresponding uncertainty range length; α and α for GM (or η and η for LPM) = 6 
best matching result for the second lumped parameter and corresponding uncertainty range length; NSE = Nash-Sutcliffe Efficiency 7 
of best match; RMSE = Root Mean Square Error; BIAS = Bias with respect to the mean. 8 
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Table 5. Stream water simulation results using GM and EPM models considering type 1 scenarios. 1 

Parameter Sf PLGM FHGM QCGM QMGM QNGM QPGM QRGM QZGM 𝐗GM   PLEPM FHEPM QCEPM QMEPM QNEPM QPEPM QREPM QZEPM 𝐗EPM 

 
[yr] 

1 1.98 1.62 4.16 1.99 1.56 3.91 3.13 2.22 2.10 

 

2.61 2.68 3.33 2.59 2.67 3.24 2.76 2.74 2.71 

2 1.86 1.58 4.20 1.88 1.65 3.68 3.13 2.05 1.97 

 

2.72 2.81 3.52 2.74 2.82 3.41 2.89 2.94 2.86 

3 1.55 1.34 4.07 1.40 1.43 3.12 2.36 1.61 1.58 

 

2.78 2.87 3.68 2.70 2.86 3.53 2.95 2.89 2.88 

4 1.52 1.60 3.59 1.57 1.39 2.40 2.38 1.61 1.61 

 

3.03 3.23 4.89 3.00 3.05 3.82 3.28 3.21 3.22 

5 1.16 1.23 2.22 1.08 1.24 1.95 1.63 1.23 1.23   2.90 2.94 5.56 2.82 3.01 3.68 3.19 3.06 3.03 

 

[yr] 

 

1 1.62 1.44 1.69 2.12 1.36 1.96 1.80 1.89 1.74 

 

0.25 0.26 0.36 0.25 0.26 0.43 0.31 0.31 0.28 

2 1.43 1.25 1.59 1.52 1.30 1.94 1.84 1.66 1.56 

 

0.27 0.31 0.52 0.29 0.30 0.50 0.32 0.33 0.32 

3 1.13 0.92 1.48 1.18 0.92 1.81 1.62 1.12 1.16 

 

0.29 0.31 0.58 0.28 0.32 0.51 0.31 0.31 0.31 

4 0.99 0.96 1.95 1.05 0.77 1.63 1.61 1.01 1.03 

 

0.35 0.38 0.64 0.34 0.32 0.55 0.48 0.36 0.37 

5 0.51 0.62 1.14 0.53 0.52 0.93 0.88 0.55 0.58   0.30 0.36 0.62 0.30 0.34 0.62 0.45 0.38 0.37 

α or η  

[-] 

 

1 0.57 0.68 0.63 0.55 0.67 0.63 0.54 0.62 0.63 

 

3.14 3.10 2.15 3.23 3.09 2.23 2.79 2.93 3.01 

2 0.63 0.73 0.65 0.60 0.70 0.67 0.60 0.68 0.66 

 

2.97 2.89 2.05 2.92 2.89 2.14 2.66 2.63 2.77 

3 0.70 0.79 0.68 0.68 0.76 0.74 0.67 0.74 0.72 

 

2.96 2.91 1.96 3.14 2.81 2.09 2.59 2.75 2.78 

4 0.79 0.87 0.78 0.77 0.88 0.88 0.74 0.87 0.83 

 

2.73 2.46 2.37 2.77 2.69 2.00 2.26 2.48 2.47 

5 0.93 0.93 0.93 0.92 0.98 0.98 0.88 0.99 0.93   2.73 2.65 2.94 2.87 2.56 1.99 2.35 2.50 2.60 

α or η 

[-] 

 

1 0.16 0.20 0.09 0.14 0.19 0.11 0.10 0.15 0.14 

 

0.68 0.60 0.27 0.69 0.59 0.35 0.45 0.60 0.59 

2 0.15 0.19 0.10 0.15 0.17 0.13 0.11 0.17 0.15 

 

0.57 0.55 0.30 0.64 0.55 0.36 0.48 0.53 0.54 

3 0.16 0.21 0.09 0.16 0.19 0.16 0.13 0.18 0.16 

 

0.58 0.58 0.28 0.64 0.54 0.32 0.45 0.48 0.51 

4 0.19 0.21 0.14 0.18 0.20 0.22 0.16 0.22 0.19 

 

0.50 0.43 0.41 0.48 0.43 0.27 0.40 0.41 0.42 

5 0.18 0.16 0.18 0.18 0.19 0.20 0.15 0.19 0.18   0.48 0.54 0.60 0.53 0.45 0.32 0.42 0.44 0.46 

NSE 

[-] 

 

1 0.63 0.56 0.59 0.60 0.70 0.57 0.50 0.63 0.60 

 

0.59 0.55 0.62 0.54 0.66 0.61 0.49 0.63 0.60 

2 0.60 0.58 0.58 0.57 0.66 0.56 0.46 0.60 0.58 

 

0.59 0.56 0.62 0.54 0.64 0.61 0.54 0.62 0.60 

3 0.68 0.62 0.66 0.67 0.72 0.63 0.54 0.71 0.66 

 

0.62 0.57 0.67 0.60 0.69 0.64 0.62 0.70 0.63 

4 0.71 0.60 0.73 0.75 0.79 0.76 0.72 0.79 0.74 

 

0.65 0.58 0.83 0.66 0.77 0.74 0.70 0.77 0.72 

5 0.76 0.73 0.78 0.80 0.78 0.80 0.81 0.85 0.79   0.75 0.72 0.77 0.78 0.78 0.80 0.78 0.85 0.78 

RMSE 

[‰] 

 

1 0.33 0.35 0.19 0.38 0.27 0.22 0.34 0.28 0.31 

 

0.35 0.35 0.19 0.40 0.29 0.21 0.34 0.28 0.32 

2 0.35 0.34 0.20 0.39 0.29 0.22 0.36 0.30 0.32 

 

0.35 0.35 0.19 0.40 0.30 0.21 0.33 0.29 0.31 

3 0.31 0.34 0.16 0.35 0.27 0.19 0.33 0.26 0.29 

 

0.34 0.36 0.16 0.38 0.28 0.19 0.30 0.26 0.29 

4 0.26 0.29 0.13 0.25 0.21 0.14 0.20 0.18 0.20 

 

0.29 0.30 0.11 0.28 0.22 0.14 0.21 0.19 0.21 

5 0.22 0.23 0.12 0.21 0.19 0.11 0.15 0.14 0.17   0.22 0.23 0.12 0.21 0.19 0.11 0.16 0.14 0.17 

BIAS 

[‰] 

 

1 0.05 0.02 0.03 0.06 0.02 0.02 0.06 0.03 0.03 

 

0.02 0.01 0.00 0.01 0.00 0.01 0.02 0.00 0.01 

2 0.09 0.04 0.05 0.10 0.05 0.04 0.08 0.06 0.05 

 

0.01 0.00 0.00 0.02 0.00 0.01 0.00 0.01 0.00 

3 0.09 0.06 0.04 0.10 0.07 0.04 0.09 0.07 0.07 

 

0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 

4 0.07 0.03 0.04 0.08 0.03 0.02 0.07 0.03 0.03 

 

0.00 -0.01 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 

5 0.05 0.02 0.03 0.06 0.02 0.01 0.05 0.01 0.03   -0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 

Sf = Sampling frequency or time resolution of data: 1 = daily frequency for rainfall and weekly for stream water, 2 = weekly frequency for rainfall and stream water, 3 = biweekly frequency for rainfall and stream 2 
water, 4 = monthly frequency for rainfall and stream water, 5 = bimonthly frequency for rainfall and stream water. Acronyms for stream water are defined in Figure 1 and the subscripts for stream water sites stands 3 
for the lumped model used: GM = Gamma, EPM = Exponential Piston Flow. X̃ = median of the results of stream water sites per sampling frequency;  and  = tracer’s mean transit time (best match) and its 4 
corresponding uncertainty range length; α and α for GM (or η and η for EPM) = the best matching result for the second lumped parameter and corresponding uncertainty range length; NSE = Nash-Sutcliffe 5 
Efficiency of best match; RMSE = Root Mean Square Error. 6 
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Table 6. Stream water simulation results using GM and EPM models considering type 2 scenarios. 1 

Parameter Tr PLGM FHGM QCGM QMGM QNGM QPGM QRGM QZGM 𝐗GM   PLEPM FHEPM QCEPM QMEPM QNEPM QPEPM QREPM QZEPM 𝐗EPM 

 
[yr] 

1 1.98 1.62 4.16 1.99 1.56 3.91 3.13 2.22 2.10 

 

2.61 2.68 3.33 2.59 2.67 3.24 2.76 2.74 2.71 

2 1.86 1.58 4.20 1.88 1.65 3.68 3.13 2.05 1.97 

 

2.72 2.81 3.52 2.74 2.82 3.41 2.89 2.94 2.86 

3 1.94 1.69 4.26 1.96 1.71 3.75 3.13 2.22 2.09 

 

2.78 2.89 3.79 2.77 2.88 3.55 3.00 2.96 2.93 

4 2.50 2.45 5.58 2.55 2.12 5.43 3.81 2.75 2.65 

 

2.85 2.04 2.75 2.79 2.87 3.56 3.06 2.96 2.86 

5 1.58 1.41 3.53 1.63 1.44 2.91 2.71 1.77 1.70   2.70 2.67 3.41 2.63 2.77 3.35 2.86 2.90 2.81 

 

[yr] 

 

1 1.62 1.44 1.69 2.12 1.36 1.96 1.80 1.89 1.74 

 

0.25 0.26 0.36 0.25 0.26 0.43 0.31 0.31 0.28 

2 1.43 1.25 1.59 1.52 1.30 1.94 1.84 1.66 1.56 

 

0.27 0.31 0.52 0.29 0.30 0.50 0.32 0.33 0.32 

3 1.58 1.37 1.58 1.61 1.44 1.86 1.63 1.71 1.59 

 

0.29 0.33 0.49 0.28 0.33 0.50 0.36 0.37 0.35 

4 2.08 2.36 1.41 2.13 2.02 1.71 1.98 2.47 2.05 

 

0.28 0.37 0.56 0.26 0.25 0.33 0.28 0.28 0.28 

5 1.05 0.77 1.18 1.17 0.93 1.39 1.47 1.09 1.13   0.27 0.30 0.48 0.23 0.26 0.46 0.31 0.30 0.30 

α or η  

[-] 

 

1 0.57 0.68 0.63 0.55 0.67 0.63 0.54 0.62 0.63 

 

3.14 3.10 2.15 3.23 3.09 2.23 2.79 2.93 3.01 

2 0.63 0.73 0.65 0.60 0.70 0.67 0.60 0.68 0.66 

 

2.97 2.89 2.05 2.92 2.89 2.14 2.66 2.63 2.77 

3 0.62 0.71 0.66 0.60 0.69 0.68 0.60 0.67 0.66 

 

2.85 2.76 1.91 2.86 2.77 2.06 2.47 2.60 2.68 

4 0.56 0.62 0.60 0.53 0.63 0.60 0.54 0.59 0.60 

 

2.75 1.78 1.46 2.85 2.77 2.03 2.42 2.62 2.52 

5 0.65 0.73 0.70 0.64 0.73 0.75 0.64 0.72 0.71   3.05 3.17 2.11 3.20 2.95 2.18 2.67 2.67 2.81 

α or η 

[-] 

 

1 0.16 0.20 0.09 0.14 0.19 0.11 0.10 0.15 0.14 

 

0.68 0.60 0.27 0.69 0.59 0.35 0.45 0.60 0.59 

2 0.15 0.19 0.10 0.15 0.17 0.13 0.11 0.17 0.15 

 

0.57 0.55 0.30 0.64 0.55 0.36 0.48 0.53 0.54 

3 0.14 0.19 0.09 0.15 0.17 0.13 0.11 0.16 0.15 

 

0.54 0.51 0.29 0.56 0.55 0.29 0.43 0.52 0.51 

4 0.13 0.17 0.07 0.13 0.17 0.07 0.08 0.16 0.13 

 

0.52 0.24 0.13 0.52 0.43 0.24 0.35 0.39 0.37 

5 0.13 0.15 0.09 0.14 0.15 0.12 0.11 0.15 0.14   0.69 0.62 0.32 0.62 0.52 0.37 0.50 0.50 0.51 

NSE 

[-] 

 

1 0.63 0.56 0.59 0.60 0.70 0.57 0.50 0.63 0.60 

 

0.59 0.55 0.62 0.54 0.66 0.61 0.49 0.63 0.60 

2 0.60 0.58 0.58 0.57 0.66 0.56 0.46 0.60 0.58 

 

0.59 0.56 0.62 0.54 0.64 0.61 0.54 0.62 0.60 

3 0.59 0.56 0.56 0.56 0.65 0.53 0.45 0.60 0.56 

 

0.55 0.52 0.58 0.51 0.61 0.56 0.51 0.59 0.56 

4 0.58 0.49 0.54 0.56 0.62 0.53 0.51 0.58 0.55 

 

0.49 0.50 0.53 0.46 0.57 0.53 0.47 0.55 0.51 

5 0.47 0.47 0.36 0.43 0.52 0.36 0.34 0.45 0.44   0.56 0.53 0.56 0.52 0.57 0.51 0.49 0.54 0.54 

RMSE 

[‰] 

 

1 0.33 0.35 0.19 0.38 0.27 0.22 0.34 0.28 0.31 

 

0.35 0.35 0.19 0.40 0.29 0.21 0.34 0.28 0.32 

2 0.35 0.34 0.20 0.39 0.29 0.22 0.36 0.30 0.32 

 

0.35 0.35 0.19 0.40 0.30 0.21 0.33 0.29 0.31 

3 0.35 0.35 0.20 0.39 0.30 0.23 0.36 0.30 0.32 

 

0.37 0.37 0.20 0.41 0.31 0.22 0.34 0.30 0.33 

4 0.36 0.38 0.21 0.39 0.31 0.23 0.34 0.30 0.32 

 

0.39 0.37 0.21 0.44 0.33 0.23 0.36 0.31 0.34 

5 0.40 0.38 0.24 0.45 0.35 0.27 0.40 0.35 0.36   0.37 0.36 0.20 0.41 0.33 0.23 0.35 0.32 0.34 

BIAS 

[‰] 

 

1 0.05 0.02 0.03 0.06 0.02 0.02 0.06 0.03 0.03 

 

0.02 0.01 0.00 0.01 0.00 0.01 0.02 0.00 0.01 

2 0.09 0.04 0.05 0.10 0.05 0.04 0.08 0.06 0.05 

 

0.01 0.00 0.00 0.02 0.00 0.01 0.00 0.01 0.00 

3 0.09 0.04 0.04 0.10 0.05 0.03 0.08 0.05 0.05 

 

0.00 0.01 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00 

4 0.04 -0.02 0.01 0.04 -0.02 0.00 0.03 0.00 0.00 

 

-0.01 -0.02 -0.06 -0.01 -0.02 -0.05 -0.02 -0.02 -0.02 

5 0.15 0.11 0.10 0.15 0.11 0.09 0.13 0.11 0.11   0.01 -0.01 0.02 0.00 0.00 0.02 0.02 0.00 0.00 

Sf = Sampling frequency or time resolution of data: 1 = daily frequency for rainfall and weekly for stream water, 2 = weekly frequency for rainfall and stream water, 3 = biweekly frequency for rainfall and weekly 2 
frequency for stream water, 4 = monthly frequency for rainfall and weekly frequency for stream water, 5 = bimonthly frequency for rainfall and weekly frequency for stream water. Acronyms for stream water are 3 
defined in Figure 1 and the subscripts for stream water sites stands for the lumped model used: GM = Gamma, EPM = Exponential Piston Flow. X̃ = median of the results of stream water sites per sampling 4 
frequency;  and  = tracer’s mean transit time (best match) and its corresponding uncertainty range length; α and α for GM (or η and η for EPM) = the best matching result for the second lumped parameter and 5 
corresponding uncertainty range length; NSE = Nash-Sutcliffe Efficiency of best match; RMSE = Root Mean Square Error. 6 
 7 
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Table 2. Stream water simulation results using GM and EPM models considering scenarios 1 & 2 1 

P Sc SfR SfS PLGM FHGM QCGM QMGM QNGM QPGM QRGM QZGM �̃�GM 
 

PLEPM FHEPM QCEPM QMEPM QNEPM QPEPM QREPM QZEPM �̃�EPM 

τ 
[w

ee
k

s]
 

1 & 2 D W 1.98 1.62 4.16 1.99 1.56 3.91 3.13 2.22 2.10 

 

2.61 2.68 3.33 2.59 2.67 3.24 2.76 2.74 2.71 

1 & 2 W W 1.86 1.58 4.20 1.88 1.65 3.68 3.13 2.05 1.97 

 

2.72 2.81 3.52 2.74 2.82 3.41 2.89 2.94 2.86 

1 Bw Bw 1.55 1.34 4.07 1.40 1.43 3.12 2.36 1.61 1.58 

 

2.78 2.87 3.68 2.70 2.86 3.53 2.95 2.89 2.88 

2 Bw W 1.94 1.69 4.26 1.96 1.71 3.75 3.13 2.22 2.09 

 

2.78 2.89 3.79 2.77 2.88 3.55 3.00 2.96 2.93 

1 M M 1.52 1.60 3.59 1.57 1.39 2.40 2.38 1.61 1.61 

 

3.03 3.23 4.89 3.00 3.05 3.82 3.28 3.21 3.22 

2 M W 2.50 2.45 5.58 2.55 2.12 5.43 3.81 2.75 2.65 

 

2.85 2.04 2.75 2.79 2.87 3.56 3.06 2.96 2.86 

1 Bm Bm 1.16 1.23 2.22 1.08 1.24 1.95 1.63 1.23 1.23 

 

2.90 2.94 5.56 2.82 3.01 3.68 3.19 3.06 3.03 

2 Bm W 1.58 1.41 3.53 1.63 1.44 2.91 2.71 1.77 1.70 

 

2.70 2.67 3.41 2.63 2.77 3.35 2.86 2.90 2.81 

Δ
τ 

[w
ee

k
s]

 

1 & 2 D W 1.62 1.44 1.69 2.12 1.36 1.96 1.80 1.89 1.74 

 

0.25 0.26 0.36 0.25 0.26 0.43 0.31 0.31 0.28 

1 & 2 W W 1.43 1.25 1.59 1.52 1.30 1.94 1.84 1.66 1.56 

 

0.27 0.31 0.52 0.29 0.30 0.50 0.32 0.33 0.32 

1 Bw Bw 1.13 0.92 1.48 1.18 0.92 1.81 1.62 1.12 1.16 

 

0.29 0.31 0.58 0.28 0.32 0.51 0.31 0.31 0.31 

2 Bw W 1.58 1.37 1.58 1.61 1.44 1.86 1.63 1.71 1.59 

 

0.29 0.33 0.49 0.28 0.33 0.50 0.36 0.37 0.35 

1 M M 0.99 0.96 1.95 1.05 0.77 1.63 1.61 1.01 1.03 

 

0.35 0.38 0.64 0.34 0.32 0.55 0.48 0.36 0.37 

2 M W 2.08 2.36 1.41 2.13 2.02 1.71 1.98 2.47 2.05 

 

0.28 0.37 0.56 0.26 0.25 0.33 0.28 0.28 0.28 

1 Bm Bm 0.51 0.62 1.14 0.53 0.52 0.93 0.88 0.55 0.58 

 

0.30 0.36 0.62 0.30 0.34 0.62 0.45 0.38 0.37 

2 Bm W 1.05 0.77 1.18 1.17 0.93 1.39 1.47 1.09 1.13 

 

0.27 0.30 0.48 0.23 0.26 0.46 0.31 0.30 0.30 

α
 o

r 
η

 [
-]

 

1 & 2 D W 0.57 0.68 0.63 0.55 0.67 0.63 0.54 0.62 0.63 

 
3.14 3.10 2.15 3.23 3.09 2.23 2.79 2.93 3.01 

1 & 2 W W 0.63 0.73 0.65 0.60 0.70 0.67 0.60 0.68 0.66 

 
2.97 2.89 2.05 2.92 2.89 2.14 2.66 2.63 2.77 

1 Bw Bw 0.70 0.79 0.68 0.68 0.76 0.74 0.67 0.74 0.72 

 
2.96 2.91 1.96 3.14 2.81 2.09 2.59 2.75 2.78 

2 Bw W 0.62 0.71 0.66 0.60 0.69 0.68 0.60 0.67 0.66 

 

2.85 2.76 1.91 2.86 2.77 2.06 2.47 2.60 2.68 

1 M M 0.79 0.87 0.78 0.77 0.88 0.88 0.74 0.87 0.83 

 
2.73 2.46 2.37 2.77 2.69 2.00 2.26 2.48 2.47 

2 M W 0.56 0.62 0.60 0.53 0.63 0.60 0.54 0.59 0.60 

 
2.75 1.78 1.46 2.85 2.77 2.03 2.42 2.62 2.52 

1 Bm Bm 0.93 0.93 0.93 0.92 0.98 0.98 0.88 0.99 0.93 

 
2.73 2.65 2.94 2.87 2.56 1.99 2.35 2.50 2.60 

2 Bm W 0.65 0.73 0.70 0.64 0.73 0.75 0.64 0.72 0.71 

 
3.05 3.17 2.11 3.20 2.95 2.18 2.67 2.67 2.81 

Δ
α

 o
r 

Δ
η

 [
-]

 

1 & 2 D W 0.16 0.20 0.09 0.14 0.19 0.11 0.10 0.15 0.14 

 
0.68 0.60 0.27 0.69 0.59 0.35 0.45 0.60 0.59 

1 & 2 W W 0.15 0.19 0.10 0.15 0.17 0.13 0.11 0.17 0.15 

 
0.57 0.55 0.30 0.64 0.55 0.36 0.48 0.53 0.54 

1 Bw Bw 0.16 0.21 0.09 0.16 0.19 0.16 0.13 0.18 0.16 

 
0.58 0.58 0.28 0.64 0.54 0.32 0.45 0.48 0.51 

2 Bw W 0.14 0.19 0.09 0.15 0.17 0.13 0.11 0.16 0.15 

 
0.54 0.51 0.29 0.56 0.55 0.29 0.43 0.52 0.51 

1 M M 0.19 0.21 0.14 0.18 0.20 0.22 0.16 0.22 0.19 

 
0.50 0.43 0.41 0.48 0.43 0.27 0.40 0.41 0.42 

2 M W 0.13 0.17 0.07 0.13 0.17 0.07 0.08 0.16 0.13 

 
0.52 0.24 0.13 0.52 0.43 0.24 0.35 0.39 0.37 

1 Bm Bm 0.18 0.16 0.18 0.18 0.19 0.20 0.15 0.19 0.18 

 

0.48 0.54 0.60 0.53 0.45 0.32 0.42 0.44 0.46 

2 Bm W 0.13 0.15 0.09 0.14 0.15 0.12 0.11 0.15 0.14 

 
0.69 0.62 0.32 0.62 0.52 0.37 0.50 0.50 0.51 

N
S

E
 [

-]
 

1 & 2 D W 0.63 0.56 0.59 0.60 0.70 0.57 0.50 0.63 0.60 

 

0.59 0.55 0.62 0.54 0.66 0.61 0.49 0.63 0.60 

1 & 2 W W 0.60 0.58 0.58 0.57 0.66 0.56 0.46 0.60 0.58 

 

0.59 0.56 0.62 0.54 0.64 0.61 0.54 0.62 0.60 

1 Bw Bw 0.68 0.62 0.66 0.67 0.72 0.63 0.54 0.71 0.66 

 

0.62 0.57 0.67 0.60 0.69 0.64 0.62 0.70 0.63 

2 Bw W 0.59 0.56 0.56 0.56 0.65 0.53 0.45 0.60 0.56 

 

0.55 0.52 0.58 0.51 0.61 0.56 0.51 0.59 0.56 

1 M M 0.71 0.60 0.73 0.75 0.79 0.76 0.72 0.79 0.74 

 

0.65 0.58 0.83 0.66 0.77 0.74 0.70 0.77 0.72 

2 M W 0.58 0.49 0.54 0.56 0.62 0.53 0.51 0.58 0.55 

 

0.49 0.50 0.53 0.46 0.57 0.53 0.47 0.55 0.51 

1 Bm Bm 0.76 0.73 0.78 0.80 0.78 0.80 0.81 0.85 0.79 

 

0.75 0.72 0.77 0.78 0.78 0.80 0.78 0.85 0.78 

2 Bm W 0.47 0.47 0.36 0.43 0.52 0.36 0.34 0.45 0.44 

 

0.56 0.53 0.56 0.52 0.57 0.51 0.49 0.54 0.54 

 2 
 3 
 4 
 5 
 6 
 7 
 8 
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Table 2 (Continued) 1 
 2 
 3 
 4 

P Sc SfR SfS PLGM FHGM QCGM QMGM QNGM QPGM QRGM QZGM �̃�GM 
 

PLEPM FHEPM QCEPM QMEPM QNEPM QPEPM QREPM QZEPM �̃�EPM 

R
M

S
E

 [
‰

] 
1 & 2 D W 0.33 0.35 0.19 0.38 0.27 0.22 0.34 0.28 0.31 

 

0.35 0.35 0.19 0.40 0.29 0.21 0.34 0.28 0.32 

1 & 2 W W 0.35 0.34 0.20 0.39 0.29 0.22 0.36 0.30 0.32 

 

0.35 0.35 0.19 0.40 0.30 0.21 0.33 0.29 0.31 

1 Bw Bw 0.31 0.34 0.16 0.35 0.27 0.19 0.33 0.26 0.29 

 

0.34 0.36 0.16 0.38 0.28 0.19 0.30 0.26 0.29 

2 Bw W 0.35 0.35 0.20 0.39 0.30 0.23 0.36 0.30 0.32 

 

0.37 0.37 0.20 0.41 0.31 0.22 0.34 0.30 0.33 

1 M M 0.26 0.29 0.13 0.25 0.21 0.14 0.20 0.18 0.20 

 

0.29 0.30 0.11 0.28 0.22 0.14 0.21 0.19 0.21 

2 M W 0.36 0.38 0.21 0.39 0.31 0.23 0.34 0.30 0.32 

 

0.39 0.37 0.21 0.44 0.33 0.23 0.36 0.31 0.34 

1 Bm Bm 0.22 0.23 0.12 0.21 0.19 0.11 0.15 0.14 0.17 

 

0.22 0.23 0.12 0.21 0.19 0.11 0.16 0.14 0.17 

2 Bm W 0.40 0.38 0.24 0.45 0.35 0.27 0.40 0.35 0.36 

 

0.37 0.36 0.20 0.41 0.33 0.23 0.35 0.32 0.34 

B
IA

S
 [

‰
] 

1 & 2 D W 0.05 0.02 0.03 0.06 0.02 0.02 0.06 0.03 0.03 

 
0.02 0.01 0.00 0.01 0.00 0.01 0.02 0.00 0.01 

1 & 2 W W 0.09 0.04 0.05 0.10 0.05 0.04 0.08 0.06 0.05 

 
0.01 0.00 0.00 0.02 0.00 0.01 0.00 0.01 0.00 

1 Bw Bw 0.09 0.06 0.04 0.10 0.07 0.04 0.09 0.07 0.07 

 
0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 

2 Bw W 0.09 0.04 0.04 0.10 0.05 0.03 0.08 0.05 0.05 

 
0.00 0.01 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00 

1 M M 0.07 0.03 0.04 0.08 0.03 0.02 0.07 0.03 0.03 

 
0.00 -0.01 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 

2 M W 0.04 -0.02 0.01 0.04 -0.02 0.00 0.03 0.00 0.00 

 
-0.01 -0.02 -0.06 -0.01 -0.02 -0.05 -0.02 -0.02 -0.02 

1 Bm Bm 0.05 0.02 0.03 0.06 0.02 0.01 0.05 0.01 0.03 

 
-0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 

2 Bm W 0.15 0.11 0.10 0.15 0.11 0.09 0.13 0.11 0.11 

 
0.01 -0.01 0.02 0.00 0.00 0.02 0.02 0.00 0.00 

 5 
P = Parameter; Sc = Scenario; SfR and SfS = Sampling frequency of rainfall and stream water data: D = Daily, W = Weekly, BW = Bi-weekly, M = Monthly, BM = Bi-monthly. Acronyms for stream water are 6 
defined in Figure 1 and the subscripts for stream water sites stands for the lumped model used: GM = Gamma, EPM = Exponential Piston Flow. X̃ = median of the results of stream water sites per sampling 7 
frequency;  and  = tracer’s mean transit time (best match) and its corresponding uncertainty range length; α and α for GM (or η and η for EPM) = the best matching result for the second lumped parameter and 8 
corresponding uncertainty range length; NSE = Nash-Sutcliffe Efficiency of best match; RMSE = Root Mean Square Error; BIAS = Bias with respect to the mean. 9 
 10 

 11 
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 1 

Fig. 1. San Francisco catchment with sampling locations and delineation of corresponding 2 

drainage area. Names and acronyms are showed in bold. Framed image shows the zoomed 3 

area of the lower part of the catchment. 4 
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 1 

Fig. 2. (a) Rainfall time series for ECSF meteorological station, hourly discharge and 2 

baseflow at the catchment outlet (PL); (b) weekly δ18O and δ2H of stream water at PL for 3 

baseflow and high flow conditions; and (c) light blue dots indicate δ18O and δ2H signatures. 4 
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 1 

Fig. 3. Data aggregation of observed δ18O signatures of rainfall at ECSF (1900 m a.s.l.) into 2 

five levels of temporal data resolutions. Estimates were weighted according to the 3 

corresponding measured volume for every sample relative to the total volume of the time 4 

span. 5 

 6 
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 1 

Fig. 42. Comparison of predictions for soil water sites using GM and LPM lumped models. 2 

Subscript in the model name stands for the type of scenario: Sc1 = Aggregation of sampling 3 

frequency in the rainfall and also in the effluent, Sc2 = Aggregation of sampling frequency 4 

only in rainfall data. Values 1-5Acronyms in the X axis of all plots stands for five types of 5 

data resolution: 1 D = Daily, 2 W = Weekly; 3 Bw = Bi-weekly, 4 M = Monthly and 5 Bm = 6 

Bi-monthly. Box-plots markers correspond to quartiles and median values (-). The length of 7 

Whiskers is limited to 1.5 times the width of the box and values located further away below 8 

the first quartile or above the third quartile are considered extreme ones (○). 9 
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 1 

Fig. 53. Predicted results for the soil water site C using the GM lumped model. Results are 2 

ranged from top to bottom according to the data resolution: daily (top), weekly, bi-weekly, 3 

monthly and bi-monthly (bottom). Left column shows dotty plots for the model parameters ( 4 

and α) according to NSE using Monte Carlo random simulations (GLUE approach). Red line 5 

shows the feasible range of behavioral solutions of model parameters as a 5 % of the top best 6 

prediction (red diamond). Center column shows the measured (black filled circles) and 7 

simulated 18O (the black line and the shaded area represent the best possible solution and its 8 

range of variation according to the 5-95% of weighted quantiles derived from the confidence 9 

limits of behavioral solutions shown in the left column. Right column:  soil water residence 10 

time distribution function corresponding to the best NSE; gray shaded area in each plot 11 

corresponds to the range of possible shapes of the distribution function. 12 
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 1 

Fig. 64. Comparison of predictions for stream water sites using the GM and EPM lumped 2 

models. The subscript in the model name stands for the type of scenario: Sc1 = Aggregation 3 

of sampling frequency in the rainfall and also in the effluent, Sc2 = Aggregation of sampling 4 

frequency only in rainfall data. Values 1-5Acronyms in the X axis of all plots stands for five 5 

types of data resolution: 1 D = Daily, 2 W = Weekly; 3 Bw = Bi-weekly, 4 M = Monthly and 6 

5 Bm = Bi-monthly. Box-plots markers correspond to quartiles and median values are shown 7 

(-). The length of Whiskers is limited to 1.5 times the width of the box and values located 8 

further away below the first quartile or above the third quartile are considered extreme ones 9 

(○). 10 
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 1 

Fig. 75. Predicted results for the stream water site PL using the GM lumped model. Results 2 

are ranged from top to bottom according to the data resolution: daily (top), weekly, bi-weekly, 3 

monthly and bi-monthly (bottom). Left column shows dotty plots for the model parameters ( 4 

and α) according to NSE using Monte Carlo random simulations (GLUE approach). Red line 5 

shows the feasible range of behavioral solutions of model parameters as a 5 % of the top best 6 

prediction (red diamond). Center column shows the measured (black filled circles) and 7 

simulated 18O (the black line and the shaded area represent the best possible solution and its 8 

range of variation according to the 5-95% of weighted quantiles derived from the confidence 9 

limits of behavioral solutions shown in the left column. Right column:  soil water residence 10 

time distribution function corresponding to the best NSE; gray shaded area in each plot 11 

corresponds to the range of possible shapes of the distribution function. 12 
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 1 

Fig. 8. Distribution functions depicted as Probability and Cumulative Density Functions (PDF 2 

and CDF) of two characteristic sampling sites: C soil water site to the left and PL stream 3 

water site to the right, using two lumped models for each case. 4 

 5 


