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REPLY TO THE EDITOR MARKUS HRACHOWITZ

Editor’s Initial Decision: Consider submission after major revisions (05 Jan 2015) by Markus
Hrachowitz

Comments to the Author:
Dear authors,

As you have seen, both reviewers find the topic of your manuscript of general interest. Reviewer
#2, however, points out a striking similarity of a recent paper of your group. Unfortunately, upon
closer inspection, | fully agree with reviewer #2 and see the same problems with the current
paper as (s)he does. For these reasons the manuscript cannot be considered for publication in its
current state as it requires quite some substantial reworking.

In principle, | would be fine with receiving a substantially revised version of the manuscript that
(1) unambiguously identifies material directly taken from Timbe et al. (2014), (2) makes it clear
why in some cases only a selective choice of data, etc. from Timbe et al. (2014) was used, (3)
fully addresses in detail *all* reviewer comments and, most importantly, that (4) can be
considered as a standalone paper with a significant, new (i.e. not from Timbe et al., 2014)
scientific contribution. This additional scientific understanding, building on that previous paper,
needs to be identified and discussed in a much clearer and detailed way, so as to provide the
reader an unambiguous distinction between the two papers.

=> The authors like to express gratitude to the Editor and the reviewers for their constructive
remarks. The latter gave us the opportunity to improve the manuscript, more in particular to
accentuate the specific aspects of the presented research that makes the manuscript, although a
follow up of the research presented in Timbe et al. (2014), distinctly different. The manuscript
has been rewritten such that at least to our opinion the strongly revised version meets the
requirements of a standalone paper.

As you will observe, in accordance to suggestions from Referee#2 and the Editor, all sections of
the manuscript have been redesigned and completely overhauled. Now the paper focus
exclusively on the new findings from the current research. Besides, as we used data collected in a
previous research the references hereto, Timbe et al. (2014), have been implemented in the
revised version along the text and especially in the Material & Methods sections. In the same
line, tables, figures and formulas depicting data or methods that were already used and discussed
in previous research paper have been deleted. By doing that, the new version of the paper was
substantially shortened, but yet it presents in the format of a standalone paper the specific and
innovative aspects of the research the authors wanted to share with the scientific community, it is
assessment of the effect of sampling frequency of stable water isotopes on the results of lumped-
parameter models, with application to a baseflow dominated Ecuadorian tropical montane cloud
forest catchment. We believe that the results are fairly new and revealing and that the results at



one hand will inspire further research and at the other hand are beneficial for colleague
researchers interested in the hydrological analysis of Andean mountain basins.

An important change introduced in the current version is the differentiation of the current
experimental setup from the one used in Timbe et al. (2014). As part of these changes, the
reasoning for using selective data, lumped-models, and a slightly different time-series period for
the present research, as compared to the former research, is explained in detail.

Last but not least, by concentrating on the description of the current experimental setup and
corresponding specific results, a clearer discussion of the findings was performed, which
permitted to get rid of any ambiguity as compared to previous related findings from Timbe et al.
(2014).

We thank to the Editor for the useful remarks and for giving us the chance to prepare and upload
a fully revised version of the paper. (Please find below the version of the paper showing all the
changes performed).
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Abstract

is-Precipitation
event samples and weekly-based water samples from streams and soils, were collected in a tropical

montane cloud forest catchment for two years and analyzed for stable water isotopes in order to
infer-understand the effect of sampling frequency in the performance of three lumped-parameter
distribution functions: transit-time-distributionfunctions—and-to-define-themeantransittimes-

Exponential-Piston flow, Linear-Piston flow and Gamma; which were used to estimate mean

transit times of waters. Precipitation data, used as input function for the models, were aggregated

aggregated-to daily, weekly, bi-weekly, monthly and bi-monthly time-sealessampling resolutions;

while analyzed frequencies for outflows went from weekly to bi-monthly. By using different

scenarios involving diverse sampling frequencies,—+r-order-to-check-the-sensitivity-of temporal
samphihg-onr-model-predictions—The this study reveals that the effect of decreasing-lowering the

sampling frequency depends on the water type. For soil waters, with transit times in the order of
few weeks-te-menths, there was a clear trend of over predictions. In contrast, the trend efprediction

for stream waters, with-awhich have a more damped-dampened isotopic signal and mean transit

times in the order of 2 to 3 years, was less clear and depending-showed a dependence on the type

of model used. The trade-off to coarse data resolutions could potentially lead to misleading
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conclusions on how water actually moves through the catchment, while—at—the—same

thmenotwithstanding that these predictions ean—could reach better fitting efficiencies, lesser

uncertainties, errors and biases. For both water types an optimal sampling frequency seems to be

one or at most two weeks. The results of our analyses provide information for the planning {in

particularinterms-of-cost-benefit-and-timerequirements)-of future fieldwork in similar Andean or

other catchments.
1. Introduction

In catchment hydrology, Fhe-the application of tracersenvironmental isotopes as tracers, and
particularly envirenmental-stable water isotopes, was enhanced isetepes-have-become-valuable

{ ided-by the contributions of Maloszewski and Zuber (1982, 1993),

who described and applied the methodology of tracer dating in detail. In their approach; the routing

of water in a catchment was mathematically expressed by a lumped-lumped-parameter transit time

distribution function (TTD)—funetion,—commeonly—selved—bythe—convelution—methed. In this

method, fundamental conditions are the homogeneity of the system and steady--state conditions.

Although presently more complex models eensidering-time-variant-conditions-are being tested
(e.g., models dealing with time-variable conditions: Rinaldo et al., 2011; Botter et al., 2010, 2011),

the lumped model approaches are still widely used—H-provides since they provide basic inferences

of the water paths and the transit times of water (e.g., Mufioz-Villers and McDonnell, 2012;
Hrachowitz et al., 2009a; Kabeya et al., 2006; Maloszewski et al., 2006; McGuire and McDonnell,
2006; Rodgers et al., 2005; McGuire et al., 2002; Soulsby et al., 2000; Dewalle et al., 1997; Timbe
etal., 2014).

The insights on TTD and mean transit times (MTT) of streams, springs, groundwater or even soil

waters to be gained by the jointly application of lumped-parameter models and tracers tdeaHy.-the




© 00 N oo o1 A W N P

L o =
A W N P O

15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34

appheation-efH-umped-parameter-medels-also can serve as a starting point towards employing an

improved sampling campaign which integrates more sources of data; or other types of tracers (e.g.,
Kirchner et al., 2010; Stewart et al., 2010), not to mention a more accurate sampling length and
frequency. Along with the increase of their applicability, Given-this-background.the-widespread

1 - 3 an aram N an i Ihe

handling and processing of tracer data, and even the estimation of uncertainties of the inferred

results, this-type-of data-is becomlng a routine process in hydrologlc&l research (e.g., McGuire and
McDonnell, 2006).

. | : : e,

_Solutions, formerly based only on the best fit to a particular model, now frequently include a range
of behavioral or possible solutions (Weiler et al., 2003; VVaché and McDonnell, 2006; McGuire et
al., 2007; Hrachowitz et al., 2009z, 2010, 2013; Birkel et al., 2011; Capell et al., 2012; Mufioz-
Villers and McDonnell, 2012; Timbe et al., 2014). However, an appropriate sensitivity analysis of
the model parameters to factors such as the degree of temporal resolution of the input data used to
calibrate the-tracer--based lumped models is still uncommon as it is in traditional rainfall-runoff
modelling (McGuire and McDonnell, 2006).

Such an analysis is necessary; the predictions provided by steady-state approaches are simple

approximations of the real functioning of a catchment system, although only valid_in waters in

which time-invariant conditions are applicable (e.g., groundwater systems)—fer—groundwater
systems-or-median-conditions-ofwaters. Besides, Predictions-however—could-bevery-approximate

sthee-most steady-state analyses of published studies are based on relatively poor information in

terms of temporal and spatial variability of environmental tracers due-te-samphng-(Rinaldo et al.,
2011).-H-thisregard For instance, by using a conceptual-lumped model, Birkel et al. (2010) found
that isotope data of high temporal resolution isetepe-data-were beneficial—especiatty for model

conceptualization and calibration. That assertion was corroborated by Hrachowitz et al. (2011)

who, using a lumped-parameter model, found evidence of potential misleading insights fora-smal
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sampling frequency should be in accordance to the expected time scale of the transit or residence

time of the analyzed waters (McGuire and McDonnell, 2006)-{e-g--higherfrequencies-should-be
used-for-waters-with-shert-transit-times-than-forlongerones). However, in practice, this factor is

eften-constrained by logistical reasons, especially in remote catchments.

Most of the-avaHable-tracer studies looking for the TTD or MTT of a catchment are based on
weekly, bi-weekly, and less common on monthly data. Rare are samplings at higher time scales
than weekly (e.g., Kirchner et al., 2000; Birkel et al., 2010). Sometimes high temporal resolution
measurements are used for the analysis of rainfall-runoff events at smaller spatial scales, {e.g.,
hillslope}, in which the transit time of fast flows of the order of hours to few days is being searched
for. But for those cases, time-variant instead of steady—-state approaches are necessary (e.g.,
Heidbuchel et al., 2012; Rinaldo et al., 2011; Botter et al., 2011; Weiler et al., 2003; Barnes and
Bonell, 1996). In general, the temporal resolution of the data employed to infer hydrological
process understanding from lumped parameter models can influence the results, thereby making it
difficult to compare predictions from different studies (Hrachowitz et al., 2011).

To gain insights from the effect of the sampling frequency on the results of lumped--parameter
models, we collected stable-water—isetope-time--series_of stable water isotopes in a baseflow-
dominated Ecuadorian tropical montane cloud forest catchment. Data were aggregated into diverse
levels of temporal resolution in order to analyze their effect sensitivity-ef-thisresolution-on the
predictions from medelparameters-and-results{e-g—MTFHand-therespective FFD-of three widely

known lumped models, whose applicability was identified in a previous research (Timbe et al.

2014). The time sequence of this study consists of: around two years of high--resolution samples
of rainfall events, weekly grab samples of stream waters from the main river and its seven
tributaries, i the outlet of the catehment of the Rio San Francisco and seven tributaries, and bulk

water samples from six_representative soils sites..—ceHected-in-the-lowerpart-of-the-catchmentat

0-25-m-depth—norder—to—apphy-time-invariant-approaches; fer-For the analyzed waters, only
baseflow or average-conditionssteady-state conditions were considered.

The hypotheses on which this study is based are: 1) for the analyzed waters, Serme-some temporal

resolutions of input data could substantially influences the results of lumped parameter models

soptcered o e cn e weedores 0 this regard 2) a sensibility analysis of the sampling

resolution is essential as part of analyzing the suitability of a lumped-parameter model, similarities
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or divergences of results from diverse sampling trade-offs could provide insights on the degree of

reliability of a particular sampling frequency.

2. Materials and Methods
2.1 Study Area

The study area of the Rio San Francisco catchment (76.9 km?, Fig. 1) is located in the eastern

escarpments of the Andean mountains in south Ecuador. The local tropical climate is mainly

influenced by easterly trade winds and thus by the Atlantic circulation patterns (Beck et al., 2008a).

the-The mean annual temperature ranges from 15°C in the lower part of the study-areacatchment

(1,957 m a.s.l) to 10°C on the ridges (3,150 m a.s.l.}, with an altitudinal gradient of -0.57°C per
100-m. Annual precipitation ranges from 2,500 mm-to 4,000 mm in wet years.-Alargerainfat

intensities are low—in-general- (less than 10 mm h1-) and the relative humidity is high, up varies
from-85%-in-the-lower-parts-to 96% at the ridges.

present-to-a-lesser-degree-{Liesset-al—2009): The topography of the area has an altitudinal range

of 1,725 to 3,150 m a.s.l. and is characterized by steep valleys with an average slope of 63%.

and-Zamoera—Seven main tributaries feed the San Francisco River,: Fhaeitheir catchment areas

vary in size from 0.7 to 34.9 km? and in their land cover, constituted mainly by pristine forest and

and-3%-is-degraded-grasstand-covered-with-shrubs-(Goettlicher et al., 2009;-RPlesca-et-al—2012).

According Timbe et al. (2014), MTT of water in the surficial horizons is of the order of few weeks

to months. The stream waters of the river and its tributaries are perennial and baseflow-dominated.

Previous research accounted the groundwater contribution in 85% of the total runoff, characterized
by MTT of the order of 2 to 4 years (Timbe et al., 2014; Crespo et al., 2012). Fhe-mainriverand
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description of the physical, hydrological and land cover characteristics of the catchment and main

tributaries are given in Timbe et al. (2014), whereas additional information on the climate and

ecosystem gradients of the research area can be found in Bendix et al. (2008a), Fiedler and Beck
(2008) and Wilcke et al. (2008).

2.2 Hydremetric-measurementsSampling site selection and methodology

For the present study, the same field data used in Timbe et al. (2014) was employed. In

brief, for around two years and starting in mid-August 2010, samples for isotopic analyses (8180

and 5%H) were collected in the study catchment. Weekly-based dip samples were taken for stream

waters at every sub-catchment and main catchment outlets while volume-weighted samples for

soil waters were collected using wick-samplers located in soil sites covered with pastures and

forest (Fig. 1). As stream water samples represent an instantaneous condition in time, in order to

account for the baseflow conditions of the catchment, samples taken during extreme rainfall-runoff

events were discarded. Rainfall samples for isotopic analyses were taken after every rainfall event,

in the lower part of the catchment at 1,900 m a.s.l. The end of every event of rainfall was marked

by a time span of at least 30 min without rainfall. The isotopic variation of rainfall through the

catchment was inferred from the sampled point by using the altitudinal isotopic gradient of

—0.22%0 620, —1.12%o 8°H and 0.6%o deuterium excess per 100 m elevation gain, as estimated by

Windhorst et al. (2013) for the same investigated area. In this study only 680 was selected for

further analysis since 880 and 8?H showed a high linear correlation. The stable isotope signatures

are reported in per-mil value relative to the Vienna Standard Mean Ocean Water (VSMOW)

(Craig, 1961). The water isotopic composition was analyzed by wavelength-scanned cavity ring
down spectroscopy (WS-CRDS) with a precision of 0.1 %o for 880 and 0.5 %o, for &°H
(PicarroL1102-i, CA, US).

It should be noticed that while the aim of Timbe el al. (2014) was to identify the most

reliable TTD and to characterize the MTT for all the sampled sites (i.e. a total of 32 sites covering

waters from streams, soils and springs) based on the intercomparison of fitting efficiencies and

ranges of uncertainties provided by predictions of seven lumped-parameter models, for the present

research we focused on accounting the average trends of predictions as a results of using diverse
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sampling frequencies. In Timbe et al. (2014) a fixed weekly sampling frequency was used. To

avoid over-representation of a specific isotopic signal in the depiction of general predictive trends,

the number of analyzed stream waters was limited to the seven main nested sub-catchments:
Navidades (QON), Pastos (QP), Cruces (QC), Milagro (QM), Ramon (QR), Francisco Head (FH),
Zurita (QZ) and the main catchment outlet Planta (PL) (Fig. 1). Accordingly, only lumped models

were considered. Since differences between soil water sampling sites were bigger than on site

differences (Timbe et al., 2014) we limited in this study the number of soil depths from three to

one specific soil depth, more precisely at 0.25 m, resulting in a total of 6 sampling locations (A,

B, C, D, E, F)instead of 18 as performed in Timbe et al. (2014). In the latter research water samples

were collected at three depths, respective at 0.10, 0.25 and 0.40 m below surface.

Besides selecting only representative sampling locations, also a slight variance in the length

of the data set characterizes both studies. In the present study rainfall and stream waters were
analyzed for the period of the 1st of October 2010 till mid August 2012, while in Timbe et al.
(2014) the used data set stretched from mid-August 2010 till mid August 2012. The decision to

shorten in this study the time series by shifting the beginning of the study period to the last quarter

of 2010 was taken in order to homogenize the different time series for the aggregation into different

sampling frequencies (up to 3 months during tryouts) and to assure that divergences among

predictions are only due to the applied temporal resolutions. An additional reason of shortening

the time series is that the wick-samplers for the collection of soil water samples were installed after
October 2010 (Timbe et al., 2014).
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2.52.3 Lumped--parameter equation and distribution functions to infer-mean-_transit times

of water

For the calculation of the MTT, the lumped—-parameter approach was utilized. Fhe—-tumped
approachThis method considers the aquifer system as an integral unit, while the flow pattern is
assumed to be constant.
following-general-eguation:Particular for conservative tracers, the transport of a tracer through a
catchment can be mathematically expressed by the convolution integral equation for stable tracers
(Eq. 1), in which

(£ — C
AN S

[—2 (+ M a(+ TEAY: P (1)
L7 [ 7t ¢t LA Tac 7

Fal
J 1T \* =

rt
OUE N

rEq(bknewn-as-the-convelution-integral-equation- the tracer’s outflow composition Coyt at a
time t (time of exit) consists of the tracer’s input composition Cin that falls uniformly on the
catchment in a previous time step ¢’ (time of entry). Cout is lagged according to a TTD that rules

the tracer’s transit time (7).g{t-#5- This TTD is represented by the normalized distribution function

of the tracer g(z) injected instantaneously over an entire area.Fhefactor-expf-A#-+)/isused-to

A’
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Cout(®) = [ Cn (t = 1) g(x) dr (12)

combination-of-two-simple-medels-such-as-Based on findings from a previous research (Timbe et

al., 2014), for the stream waters of San Francisco, Exponential-Piston (EPM) and Gamma (GM)

models, were identified as reliable TTD in terms of providing predictions with high fitting

efficiencies and low uncertainty ranges; while Linear-Piston (LPM) and GM models were found

most appropriate for soil water data (a detailed description of the TTD models is shown in Timbe

et al., 2014). These models are widely known among the two-parameter TTD models the

v(Kirchner et al., 2000, 2001;
Maloszewski and Zuber, 1982; McGuire and McDonnell, 2006; Amin and Campana, 1996).; EPM

and LPM are defined by rand # (n explains the portion of contribution of each type of flow), while
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{e-g--stream-or-soH-water). The convolution method for the calibration of every model, describing

each sampled water and sampling frequency, was used. Input data for models consist on isotopic

time-series of rainfall, while the observed variation at each analyzed effluent (e.q., stream or soil

waters) were used for calibration. The used approach follows nearly the same methodology applied

in Timbe et al. (2014), with some slight modifications to allow the analysis of diverse sampling

resolutions. Briefly,

Fer-every-simulation -the goodness of fit_of every simulation, as defined by the Nash-Sutcliffe
Efficiency coefficient NSE (Nash and Sutcliffe, 1970), was calculated. -cemparing-predictions-to
observed—data—T0 automate and standardize the equation’s resolution, we repeated 10,000

simulations by randomly sampling using the Monte Carlo based Generalized Likelihood
Uncertainty Analysis-Estimation (GLUE) (Beven and Freer, 2001) method. Behavioral solutions,
for which were-selected-foreve e-based-on-a-lower- limit-dependent-on-the best- eached

for-every-case—n-our-caserthelower himitwas-establish-at 5%;-and-the-weighted quantiles between

0.05 and 0.95 (90% of the behavioral limits) were calculated, were selected for every prediction

based on a lower limit (5%) which were dependent on the best NSE reached for every case. From

these values, in order to ease inter-comparisons, fer-every-simulation-the magnitude of uncertainty
9
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for each predicted parameter was calculated by subtracting the lower behavioral limit from the

maximum one (4z, Ao, An). For the best predictions, the Root Mean Square Error (RMSE) and

the bias with respect to the mean (BIAS) were calculated to account for errors and deviations of

predictions. In both cases they were reported in per mil (%o) units.

In most simulations, the convergence of solutions towards one solution peak was clearly defined
within a predefined fixed range dependent on the type of model: z[0-10 yr], « [0.01-10], # [1-10].

tr-For _cases with more than one solution peak, in order to improve the convergence of z, we

restricted the behavioral solutions to the largest peak for the second model parameter (assumption

made by the authors). It should also be noticed that for the particular case of LPM, in order to easy

the interpretation of results and at the same time improve the convergence of z, the lower limit

value for # was set to 1 instead of 0.5 as it was in Timbe et al. (2014). The latter consideration was

performed after accounting the results from the referred study in which for most of the analyzed

soil water sites the best solutions provided by an LPM model were characterized by a # slightly

larger than 1.
” hat iFios 1 ” .

Similarly to Timbe et al. (2014) and other related studies (Hrachowitz et al., 2011; Muioz-Villers

and McDonnell, 2012) Fe-get-more-stableresults-an artificial warm up period was generated by
repeating measured isotopic rainfall time series in a loop. For our case, to quarantee stable results,

the warming-up period was set to 20 times. 6¥40-years-was-generated-byrepeating-measured-twe

26 2.5 Temporal resolution of data

As-explathed-earhier—sSolving the convolution method requires a fixed time step for the input
function Cin, which in turn will be the same time step resolution of the predicted output data Cout.
In order to check the effect of the time-temporal resolution of the-rput-datasampling on the
predictions, the simulations were performed by aggregating high--resolution samples of rainfall
(i.e., per event) into five levels of temporal resolution: daily, weekly, bi-weekly, monthly and bi-
monthly. For each data set, the isotopic composition for every event was weighted according to

the collected volume for the considered time span—therebw%ngumﬂksetem&srgm%m

. For time spans

corresponding to zero rainfall, the isotope signal of the antecedent time step was used. By using a
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predefined TTD function g(z), Eq. (1) could be solved and it became possible to derive the best
possible fit to the observed data for every outflow by varying the model parameters. Depending
on how we aggregated the data, two distinct scenarios were considered.

Scenario 1: For every sampled site, observed isotopic data series of rainfall and outflows:; stream
and soil waters, were aggregated into coarser levels of data resolution. Since the finest resolution
of outflow waters was weekly, we used this data resolution to calibrate models having daily rainfall
data sets as input. For weekly, bi-weekly, monthly and bi-monthly data sets, we used the
corresponding time step resolution. For stream water, due to the smooth variation between two
successive isotopic data, no volumetric weighting was applied, but a simple averaging of weekly

isotopic values—<{e-g--3 . For soil

water, volumetric weighting was applied.

Scenario 2: Diminishing the sampling resolution in both types of observed data at the same time
(rainfall and outflows), as performed in Scenarios 1, could lead to incomplete insights; if we
consider that coarse data resolutions, such as monthly or bi-monthly, could provide lesser
uncertainties or better simulation statistics than finer data resolutions (by the simple fact that less
data is involved in the analyses). In this regard, a second scenario was set up, in which only the
highest temporal resolution data of observed outflows (i.e. weekly) was considered for calibration;;
while the rainfall data used-as-irput-funections-for-the-diverse-tempeoralreselutions-were considered
the same as in Scenario 1. Results from this second scenario; facilitates to discern the adequacy of

a particular time resolution over another.

It should be noted that, given these considerations, the predictive results for daily and weekly time
resolutions are the same for both scenarios. For data resolutions larger than weekly, the
combination of two different levels of information in the same lumped predictive model (e.g.,
monthly data for the input function of rainfall and weekly for the observed outflows) was handled
through considering weekly time steps, although eriginathy-previously those rainfall values were
derived as volumetrically weighted rainfall data from bi-weekly, monthly or bi-monthly sampling

resolutions.

Analysis of these two scenarios provides a quantifiable effect of data resolution on parameter
estimation of the applied models. For comparative purposes among sampling trade-offs, fer-our
study—the finest analyzed temporal resolution (i.e., daily rainfall and weekly outflow data) was
considered as the main reference in order to define a particular result as lower or higher estimate.
In order to look for similarities, divergences and trends between predictions, results were visually

compared using Box-Whisker plots and the respective median (expressed in this text with a tilde

13
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on the top of a parameter symbol, e.g., T) for the grouped six soil water sites and the eight stream

water sites. Interpretation of the physical meaning of results considers that the MTT of water can

be adequately characterized by the-MT+efthe-tracer{ 7.
3. Results

3 For this study, as a result of the use of a slightly shorter time-series than those used in

Timbe et al. (2014), slight differences for model parameter predictions can be found when weekly-

based predictions are eontrastedcompared to the former published results.

3.1 Soil water (Table 1, Fig. 2)

3.1.1 Type 1 scenarios — varying resolution of rain and soil water isotope data-{(Fable-3,Fig-
4y

Median values of NSE for GM and LPM were rather similar;, ranging between 0.76 to 0.86.

Likewise, for both models the RMSE and BIAS were comparable between time resolutions.
Furthermore,

Using-the- GM-orLPM-the-best predictions of the-mean-transit-time-{z,) as defined by the NSE,

showed a clear increasing trend of this parameter versus a decreasing temporal sampling

resolution. For GM the median value of rvatuebetween sampled sites (i.e., {F) for the finest-daily
sampling resolution {i-e5-daily-rainfall-datafrom-here-on-alsoreferred-as-the reference-sampling
reselution)-was 4.7-66 weeks, while for weekly and bi-weekly resolutions data this value slightly

rose to 5.15 and 5.89 weeks;an-tncreaserespectively-of 10-5%and-26-4%. Considering coarser
data resolutions, as monthly or bi-monthly, the-ebtained-mean-transit-time-even-z even went up to

6.62 and 8.99 weeks,—eerresponding—to—a—421%and—92.9%inerease. The values and the
corresponding trend for LPM were similar to the one obtained using GM. For LPM 7 varied from
4.59 to 8.87 weeks using the finest and the coarsest time resolutions, respectively. In general,
GLUE--based uncertainties for zestimations, as defined by median values; (A7), were lower using
daily rather than coarser sampling resolutions. In this regard, larger differences were found for
LPM ranging from 1.44 weeks using daily data to 3.47 weeks using bi-monthly data; while for
GM the range of uncertainty varied from 1.83 to 2.06 weeks.

Estimations for GM’s a parameter; showed a similar median value for daily, weekly or bi-weekly
thme—resolutionssampling frequencies (& varied from 1.88 to 1.95), while the—parameterit was
overestimated-larger for coarser time resolutions; as for example the « value was 3.73 for monthly
and 4.55 for bi-monthly data. On-the-ether-hand—uUsing LPM, the variation of the median value
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of  enby-slightly changed among time resolutions (e.g., 7j varied from 1.02 for daily up to 1.14 for
bi-monthly data). However,fercoarserdata,-such-as-monthhy-or-bimenthly; results for particular

sites for coarser data, such as monthly or bi-monthly, showed larger values (e.g., for the A soil site
n varied from 1.02 for daily data to 1.40 for bi-monthly data). Median values of GLUE-based

uncertainties for these parameters did not show a clear trend or significant variation as a function
of the time resolution. In all cases Aa varied between 2.13 and 3.09 weeks, while 47 varied from
0.17 to 0.45 weeks.

As a typical case among soil water sites, results for every sampling resolution using the GM are

depicted in Fig. 5-3 showing respectively depictsresutts-of-the convergence of model parameters,

the simulated versus observed 5'80-seasenality, and the TTD-predicted-residence time-distribution
unction—using-t ﬁ Ld lution,

3.1.2 Type 2 scenarios — varying resolution of rain data and fixed resolution of soil water

isotope data{Fable4.Fig-—4)-

For both models, the NSE, RMSE and BIAS of the best predictions followed similar trends as for
type 1 scenarios. When compared to results from the reference sampling resolution, NSE values
were higher for weekly and bi-weekly input data. For instance, using GM; the median value of the
best NSEs was 0.81 for daily and 0.84 for both weekly and bi-weekly data. Monthly data sets
provided predictions with similar efficiencies than daily, while for bi-monthly data the median
value of NSE was 0.78, the lowest among all sampling resolutions of type 2 scenarios.

Compared to type 1 scenarios, predictions of parameter results and uncertainties among time

resolutions were more stable. Using GM, 7 for the finest and coarsest time resolutions varied
between 4.66 and 5.00 weeks, while arg-At showed extreme values between 1.83 and 2.06 weeks;
respeetively. The variation of a between sampling frequencies was also smaller: & was between
1.73 and 2.23, while Aa was similar to results from type 1 scenarios (e.g., smaller uncertainties
for finer than coarser resolution data sets: 2.99 for daily data-sets-and 4.25 for bi-monthly data).
However there were larger uncertainties for particular sites when loweearse resolution data sets
were used (e.g., the most extreme case was aceeunted-found for the A site where there was a Ao
increase from 2.83 using daily data to 18.82 using bi-monthly data). Using LPM the trends and
values were similar to the ones obtained with GM. Comparing the daily and bi-monthly time

resolutions ¢ varied from 4.59 to 4.68 weeks, and their respective At ranged from 1.44 to 1.66
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weeks. The median value for  was around 1 for all sampling frequencies. Although small for all

cases, An was larger for coarser than for finer time resolution data: 0.36 for daily up to 0.56 for bi-

monthly data.

3.2 Stream water (Table 2, Fig. 4)

3.2.1 Type 1 scenarios_— varying resolution of rain and stream water isotope data-{Fable-5;

Mestly-and-for-beth-medels-theRegardless of the used model, the best solutions —as-deseribed-by
thelrNSEs—showed an increasing trend from finer to coarser data resolutions. For GM, median
NSE values of 0.74 and 0.79 were reached using monthly and bi-monthly data while for daily data
it was 0.60. Analogously, RMSE values were smaller for coarse data resolutions.; mMedian RMSE
declined from 0.31%o for daily to 0.17%o for bi-monthly data. BIAS remained small for all cases,
with an average value of 0.04%. For EPM we obtained similar trends and values.

Using GM, parameter results revealed lower values of 7 for coarser time resolutions data when
compared to daily data resolution, e.g., T went from 2.10 yr for daily data to 1.23 yr for bi-monthly
data. Furthermore, a clear decreasing trend of uncertainty lengths was detected. In general Az was
smaller for coarser than for finer time resolution data, e.q.,~A=was 1.74 yr for daily data-whileand
0.58 yr for bi-monthly data. For Fhe-the GM’s « showed a trend to higher values proportional to
the decrease of sampling resolution: & was 0.63 for the reference while it reached a value of 0.93
for bi-monthly data. The median values of uncertainty lengths for this parameter (Aa) only slightly
increased from daily (0.14) to the coarsest data resolution (0.18). On the other hand, for the same
conditions but using EPM, zvalues only slightly increased with coarser time resolutions (7 varied
little from 2.71 to 3.03 yr between daily and bi-monthly data resolutions).; The variation of

whereas-A7 was also small between sampling frequencies.vary-tittle-with-samphngfrequeney-

Extreme At values were accounted for daily and bi-monthly data: 0.28 and 0.37 yr, respectively.

The parameter 7, as a median value among sites, depicted subtle smaller values for eearserlower

sampling frequencies. It decreased from 3.01 for daily data to 2.60 for bi-monthly ones. In general,
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Ay slightly decreased for coarser time resolutions: 4n dropped from 0.59 using daily to 0.46 using

bi-monthly data.

Results for particular sites; follow nearly the trends described by the median values for all analyzed
sites. Similarly; to the-results depicted in Fig. 5-3 for the soil site C2, Fig. -5 depicts the variation
in results for different data resolutions applied to the stream water of the main outlet of the
catchment (PL).

3.2.2 Type 2 scenarios_ — varying resolution of rain data and fixed resolution of stream water

isotope data-(Fable-6,Fig—6)-

Contrary to type 1 scenarios, the median NSE decreased for coarser temporal resolution data; e.q.
NSE for GM dropped from 0.60 using daily data to 0.44 using bi-monthly ones. The value of
RMSE and BIAS remained low amidst the temporal resolutions. Median RMSE was around
0.33%0 while the largest BIAS was 0.05%o. The trend of NSE values for EPM was similar to GM
although less sensitive to temporal resolution data. It declined from a median of 0.60 for daily data
to 0.54 for bi-monthly. RMSE and BIAS vyielded for GM and EPM were comparable.

Similar to soil waters, ang—for both models; the variation of parameter results among diverse
temporal+reselutionsampling frequencies—data was smaller than for the corresponding type 1
scenarios. When GM was used, T predictions varied from 2.10 yr for daily data to 1.70 yr for bi-

monthly. The largest estimated & was 0.71 (using bi-monthly data) which, was not far from elese
te-0-63a-value-the predicted value using daily data: 0.63, considering that the range of behavioral

solutions for this parameter was around 0.14 for every case. Uncertainty lengths-ranges for both

parameters betweenfor-the diverse temporal resolution data yielded similar average estimations:
At ~ 1.6 yr and Aa ~ 0.14. Also for the EPM model did the best solution parameters slightly vary
amongst data resolutions. For example, considering daily and bi-monthly dataresetutionssampling
frequencies 7 predictions varied from 2.71 to 2.81 yr and 7 from 3.01 to 2.81. Uncertainties for
both parameters were small and similar between time resolutions: A7 ranged from 0.28 to 0.30 yr
and An from 0.59 to 0.51.
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4. Discussion

Results indicate that in some cases, like the present one, it is not sufficient to assess the

supremacy of one model over another based only on their performance; instead, additional

knowledge on the conceptual functioning of the studied system is necessary. For instance in Timbe

et al. (2014), where a weekly time step was considered, EPM and LPM predictions showed lesser

uncertainty ranges (for stream and soil waters respectively) when compared to predictions

provided by a GM model, which in counterpart provided better fitting efficiencies for most of the

cases. The current results corroborate those previous findings. Further research is needed to

identify not only the best TTD in terms of statistical performance; meanwhile, the use of any of

the analyzed models cannot be discarded.

For studies dealing with coarse stable isotope data sets (e.g., monthly or bi-monthly),

considering the differences of the performances between data sets of diverse sampling resolutions,

the uncertainties associated to the predictions should be acknowledged and considered at the

moment of the evaluation of hypotheses associated to these results. Monthly sampling resolution

and monthly data is still frequently used in stable water isotope studies when either the effort or

the costs are too high to realize a higher sampling frequency (e.g., Goller et al., 2005; Rodgers et
al., 2005; Viville et al., 2006; Liu et al., 2007; Rock and Mayer 2007; Chen et al., 2012), which
goes in line with a large share of observation points of the Global Network of Isotopes in
Precipitation and Rivers (GNIP) of the .A.E.A.-W.M.O.

4.1 Sensitivity of model-parameter results to sampling frequency

In general, Forfor soil and stream waters, wefound-significant-differences-between-parameter
results-derived-from-higher-and-coarser-dataresolutions—Mmodel parameters for type 1 scenarios

(Tables 1 and 2, Figs. 2-5): 7, a and », -fertype-1-seenarios{Fables-3-and-5-Figs—4-A-showed
distinct values between results ebtaired-from finer and lower data resolutlonsdata—sueh—aerda#y—
i i . Keeping this
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finding in mind, whenever a high resolution isotope sampling is feasible, a sensitivity analysis

considering the effect of sampling frequency should be a common part of the workflow while
applying lumped--parameter models-te-estimate-the T FB-and-MTF. This practice would help to

build a broader data base on the sensitivity of lumped convolution modelling to sampling

frequencies, which might be useful to correct effects caused by coarse sampling frequencies.

Nevertheless-only-two-studies-could-be-found—In recent literature; which-deatonly two studies
dealing with this-the sampling frequency effect issue_could be found: Hrachowitz et al.; -(2010)

using the gamma distribution model and Birkel et al. (2010) through adding information from

tracers to a lumped-conceptual hydrological model.

For soil waters, wi

an
increasing trend of 7 predictions related to a decrease of sampling data frequency was clear for
GM and LPM. Using GM, medelbest predictions for o-predictions were similar for time resolutions

up to bi-weekly sampling (a ~ 1.9), but they were significantly higher for coarser data resolutions.:

Using the-gamma-distributionGM for stream waters, with-characteristic-MITT-in-the-erder-of 2-to

4-years-parameter predictions ferthe-main-catehmentoutletanditsseven-sub-catchmentsprovided
depicted a different trend than found for soil waters: —Predictions—for-7 yielded lower values for

decreasing input resolution data—{e-g-—median—=valuesfor-stream-water-sites-decreased-from-2-1
yr using the daily data to 1.2 yr using bimonthly data). ThisThe descending trend depicted for ¢
valdes-matched the increasing trend of o predictions;fer-which-the-median-ranged-from-0-63-for

daily-to-0.93-for bimenthlyreselutions. The trend depicted by our Fhese-results show-a-distinet
tendeneydiffers from than-the one obtained by Hrachowitz et al. (2011) who applied the same

distribution function and convolution method to chloride data in a headwater catchment in
Scotland.
tracer- In their case, a decreasing sampling frequency {(e—frem-weekly-to-bimenthly)}-went hand
in hand with a decreasing trend of a, which consequently :—from-0-689-for-weekhyto-0-276-for
bimonthlydatasets—TFhetatter—n—turn,—affected_the estimations for 7, —estimates—resulting in

systematically larger values

areund-0-6. Even though any further comparison of the two studies is difficult, as they represent
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two different hydrological systems and therefore favor different distribution functions and shape
parameters to describe the transport processes at hand, it can be seen that the MTTs greatly differ

in accordance with the chosen sampling frequency.

Considering the GLUE-based uncertainties derived from type 1 scenarios, results between soil and
stream waters were contrasting. For the-soil waters; the uncertainty magnitudes Az remained

similar {er-shghthytarger-with decreasing time resolution; while for stream waters they were

systematically shorter. By using type 2 scenarios (Tables 1 and 2, Figs. 2 and 4), Additional

where the same weekly
temporal resolution of observed data at outflows was kept for al-sampled-watersthe calibration of

models, additional insights on the degree of the mismatch of coarse data resolutions compared to

finer ones, were provided. For these cases, the NSE, RMSE and BIAS of the predictions were in

general poorer for eearser—datalow temporal resolutions, hinting towards a higher reliability of
finer resolution data sets. Besides the fact that parameter results derived from finer resolution data
sets were more similar between each other, they did not show marked trends of either over- or

underestimations as compared to using type 1 scenarios.

For our analyses, given the subtle divergence of results when using daily, weekly or even bi-
weekly sampling resolutions, we consider them as adequate for the estimation of MTT and TTD.
It should be noted that this finding is valid for- semi-steady-state conditions of watersgroundwater
systems-or-for-mean-conditions-of-sotwater. In this regard, the utility of the highest sampling

resolution, as daily or even sub-daily, could be noticeable when temporal dynamics are to be

considered. In this regard Birkel et al.; (2010) provided insights when dealing with the sampling
frequency as part of the evaluation of the performance of a lumped-conceptual flow-tracer model.
They ;-he-found that the use of daily isotope data from rainfall and stream water, when compared
to weekly or bi-weekly, besides providing higher fitting efficiencies, was beneficial for the
conceptualization and calibration of that model.

4.2 Comparison of distribution functions

Considering all the analyzed sampled frequencies, Aecording—according to NSE values, the
gammaGM distributionfunetion{GM)-performed slightly better than the other two models (Tables
31-62)—i-e—LM—for-soil-water—and-EPM—for-stream—water. However, using-the-GLUE-based
uncertainties were also larger for this model (Figs. 2 and 4)-appreach-forstream-water-the- GM
distribution function provided larger uncertainties than EPM (Fig. 6), hindering the clear

preference of one model over another. This finding goes in line with previous insights in the same
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research area (Timbe et al., 2014) in which a fixed weekly-based sampling frequency was used to
infer MTT and TTD.

between-the-tested-moedels-is-preferred—For soil waters LPM yielded similar 7 predictions than-to

those of GM, thereby justifying the use of linear functions such as LPM as a first approximation,

despite of presenting a simplification of the water movement of real systems. On the other hand,

GM was characterized by a delayed occurrence of the tracer’s peak signal (o ~ 2).-Hewever—a

For the case of stream waters, the comparison of predicted TTD shows that Cemparingpredicted

M-and-EPM-distribution-functions—in-the-caseo eam-water—shows-that- EPM traces a peak
signal delayed over time. We estimated # values between 2.15 and 3.23, the largest values we
found in related studies that used the same distribution function. Reported values are normally
lower than 2 (e.g., Hrachowitz et al., 2009a; Katsuyama et al., 2009; McGuire and McDonnell,
2006; Viville et al., 2006; Kabeya et al., 2006), indicating that a large portion of ‘old’ water is
released first to the river as depicted by the isotopic composition of the stream. At the contrary,
when analyzing the behavior of water flow as derived from the-gamma-distributionGM, the tracer
signal’s peak at the outflow occurs instantaneously, meaning that a considerable portion of the
event rainfall water rapidly contributes to discharge, as for instance via lateral flow from near-
surface deposits. Over time, the tracer signal decreases (for either EPM or GM), but once again

the implications are different for both models comparing their flow recessions. As shown in Fig:
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8;Timbe et al. (2014) for weekly data, the tracer signal decreases more rapidly for EPM than for

GM. Thus, depending on which distribution function is used, the interpretation is different. For
example, in water management using the EPM predictions one could argue that the effects of
contamination of water sources will not be immediately reflected in the river water and further that
its effect will be rather quickly disappearing. Contrary, inferences provided by a gamma
distribution would tell that pollutants in the catchment would have an instantaneous impact on the

river water and that the effect will sustain longer over time.

Considering a gamma distribution for our basin, z the-MTFbetween analyzed streams varied

between 1.62 and 4.16 years and o between 0.54 and 0.68, using finer sampling resolutions. This
range of « values is similar to findings from other tracers studies on stream water using spectral
analyses and high resolution samples of chloride. Kirchner et al. (2000) demonstrated using-the
spectral—analysis—methods,—that an o value of approximately 0.5 provides a more proper
representation of several stream waters in Wales. As stated by Soulsby et al. (2010) gamma
distributions with a < 1 are most suitable to represent non-linear processes. Similarly several other
studies found « values significantly smaller than 1 (McGuire et al., 2005; Hrachowitz et al., 2009z,
2010; Godsey et al., 2010; Kirchner et al., 2010; Speed et al., 2010; Birkel et al., 2012; Heidbuchel
et al., 2012; Mufioz-Villers and McDonnell, 2012). On the other hand, our results reported that
when coarser temporaltime resolutions were used (monthly or bi-monthly), the value of «

approached to 1,

medel-which could lead to erroneous deductions.
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characteristics although they could vield similar performances in terms of fitting efficiencies or

uncertainties (e.q., LPM versus GM), for our study catchment additional insights (e.q. tracer data

associated with different flow paths) are required in order to correctly unveil the prevailing TTD,

as solely relying on model performances could lead to misleading results. In this regard, studies at

smaller spatial scales using high sampling frequencies and time--variant conditions should be

performed in order to cover a wider spectral range of the different waters sources.

5. Conclusion

Environmental tracer data of rainfall, stream and soil water were collected in the San Francisco
catchment with the objective to delineate the reliability of transit time predictions as a function of
the input data resolution. The collected information was used to test the prediction accuracy of
commonly used lumped models with respect to sampling frequency. Compared to results from
coarse data sets, finer temporal resolutions provided more similar outputs. Overall, discrepancies
between predictions of diverse sampling frequencies point out that the assessment of the

convergence and sensitivity of model parameters is essential defining TTD through model

calibration-{(MeGuire-and-MeDonnel;-2006).

waters with —fer-dampened isotopic signals (i.e., stream waters),-a model preference-is-stit-not
clear,—besides—model-parameters seem to be mere-highly sensitive to sampling frequencies,

21



N

© 0O N o o1 B~ W

10
11
12

13

14
15
16
17
18

19

considerably increasing eenstderably-the risk of misinterpretation of the underlying processes;fer

The study clearly demonstrates that estimations of the TTDs for miere-catchments with similar

characteristics or located in the same region using different frequencies of data sampling provides

an additional source of uncertainty, which might hinder a correct model comparison and
misrepresentation of the water routing system. The present research also provides a better
framework for future samphing-strategiesrelated research in the San Francisco basin and similar

basins in the Andean mountain region. Based on the new insights presented in this manuscript

more elaborated sampling campaigns could be undertaken, which would contribute to a more

efficient management of the water resources of Andean and similar mountain basins—ta-partictar;
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Units Outlet Sub-catchment
PL FH QZ ON QR QP OM Qc

Drainage-area [km?} 76.9 349 112 9.8 47 34 13 07
Mean-slope %} 63 63 63 60 69 67 57 56
Hydrological-parameters
Baseflow P} 2520 2152 - 1044 - - 2418 2268

%] 85.2 80 - 80.8 - - 639 827
Land-use-
Forest 9] 68 67 2 65 80 63 90 22
Sub-parame P4t 2% 29 15 17 Lo e 9 10
Pasture/Bracken  [%] 9 3 12 16 2 26 1 67
Others 94} 2 1 1 2 0 1 o] 1



since? mashk  samples

Rainfall Manua“y@et—logsw ECSE 1900 99
Mainriver  Manually  Oct-10  Planta{outlet) PL 1725 104
Francisco-Head FH 1917 98

Zurita 0z 2047 103

Navidades oN 2050 104

Tributaries  Manually  Oct10  Ramon QR 1726 104
Pastos o 1925 103

Milagro QM 1878 104

Cruces OrR 1978 102

Pastos-alto A 2025 58
mewmm B 195 1
Pastos-bajo c 195 %

Bosgue-alto B 2000 @ X4
Femspsmmmmbswsesquemem E 190 8
Bosque-bajo F 185 53
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Table 1. Soil water simulation results using GM and LPM models considering scenarios 1 & 2

P Sc Str Sfs  Asv  Bom  Cew  Dew  Eem Fom  Xom Aev  Biew  Ciem  Diew  Eiem  Fiem  Xien
1&2 W W 533 497 375 748 702 467 515 569 453 379 629 611 449 5.11

— 1 Bw Bw 6.01 541 456 843 826 577 589 596 518 427 771 734 592  5.94
3 2 Bw W 550 499 388 767 721 481 525 580 488 364 688 689 481  5.34
= 1 M M 727 579 498 930 975 597 662 717 769 419 831 917 618  7.43
" 2 M W 557 501 395 775 724 449 529 577 472 386 673 688 446  5.25
1 Bm Bm 968 822 755 974 1058 829 8.99 1102 887 887 875 817 1160 8.87

2 Bm W 538 416 269 646 637 463 500 499 392 283 562 647 437  4.68

1&2 D W 205 162 168 203 158 198 183 164 143 167 112 125 144  1.44
1&2 W W 208 192 169 217 195 189 193 175 127 152 143 152 175 @ 152

Z 1 Bw Bw 184 216 175 239 227 206 211 155 222 200 104 093 177  1.66
8 2 Bw W 211 204 179 207 207 197 206 145 135 161 100 131 173  1.A4Q
i 1 M M 162 193 149 240 255 182 187 160 148 307 159 165 143  1.60
< 2 M w 187 191 177 252 205 181 189 153 166 181 089 141 174  1.60
1 Bm Bm 187 241 195 217 244 167 206 349 373 353 331 345 334 347

2 Bm W 174 230 193 220 184 180 189 135 172 204 160 179 128  1.66

1&2 D W 151 176 159 211 364 266 194 102 101 102 100 107 117 1.0
1&2 W W 164 172 171 204 276 221 188 107 101 107 103 100 1.03 1.0

, 1 Bw Bw 18 197 311 193 237 178 195 101 103 102 108 102 119  1.03
2 Bw W 170 161 153 176 232 183 173 108 108 102 105 106 1.08  1.07

i 1 M M 391 475 506 273 232 355 373 116 122 100 101 112 1.02  1.07
2 M W 185 238 226 187 231 219 223 106 104 108 100 106 1.02 1.0

1 Bm Bm 450 486 619 458 394 452 455 140 115 112 108 103 151  1.14

2 Bm W 231 142 137 191 371 165 178 107 103 117 103 126 1.04  1.06

1&2 D W 283 302 295 270 564 672 299 017 036 037 027 039 059  0.36
1&2 W W 169 265 369 176 353 356 3.09 009 034 051 023 045 039  0.37

: 1 Bw Bw 198 296 489 151 211 214 213 016 018 116 012 044 017  0.17
S 2 Bw W 190 241 405 140 259 347 250 024 034 054 018 025 039  0.29
i 1 M M 286 407 326 192 123 351  3.06 030 026 039 021 021 027 0.27
< 2 M W 242 539 635 169 280 595 410 029 073 116 017 025 092 0.1
1 Bm Bm 192 401 628 211 194 338 275 046 048 045 044 044 044 045

2 Bm W 188 241 245 331 909 519 425 064 042 118 047 092 041  0.56

1&2 D W 069 076 086 083 078 088 081 070 076 085 082 078 0.88  0.80
1&2 W W 074 081 089 087 082 094 084 074 080 088 084 081 092  0.83

1 Bw Bw 081 084 090 088 079 091 086 081 081 090 083 078 0.87  0.82

EI 2 Bw W 073 08 089 08 082 093 084 073 080 088 082 082 090 0.8
2 1 M M 078 088 087 080 064 092 084 077 087 084 072 058 0.89 0.81
2 M W 068 08 08 079 076 091 081 068 082 087 077 075 0.89  0.80

1 Bm Bm 066 083 083 087 076 082 083 067 078 073 085 070 079  0.76

2 Bm W 064 071 077 084 079 081 078 069 070 075 082 079 0.83 0.77

1&2 D W 185 165 128 106 136 110 132 181 165 135 110 135 110  1.35
1&2 W W 167 146 114 093 124 079 119 167 150 121 103 126 0.87  1.23

3 1 Bw Bw 136 141 105 089 131 086 118 136 151 108 102 133 1.05  1.20
o 2 Bw W 171 143 112 096 122 085 117 171 152 122 109 125 1.00 1.24
2 1 M M 129 104 113 107 159 078 110 132 109 128 126 172 094 @ 1.27
o 2 M W 188 142 121 119 144 096 131 188 142 125 124 146 103  1.33
1 Bm Bm 142 111 128 080 120 105 116 142 125 160 086 135 113  1.30

2 Bm W 200 184 167 104 134 137 152 185 187 175 109 134 130 1.54

1&2 D w 0.34 0.03 -0.06 0.10 -0.09 0.23 0.07 0.22 0.00 -0.15 0.03 -0.06 0.11 0.02
1&2 w w 0.21 -0.06 -0.28 -0.02 -0.14 0.14 -0.04 -0.04 -0.03 -0.10 0.11 -0.03 -0.02 -0.0:

= 1 Bw Bw -0.01 -0.20 -0.39 -0.11 -0.20 -0.07 -0.16 -0.07 -0.01 0.03 0.07 0.00 0.08 0.02
(a\; 2 Bw w 0.16 -0.14  -0.20 0.00 0.01 0.10 0.01 -0.03 -0.03 0.03 0.04 -0.02 0.09 0.00
< 1 M M -0.17 -0.30 -0.07 -0.24 -0.13 -0.16 -0.16 0.05 -0.07 0.07 0.08 0.12 -0.05 0.06
@ 2 M w 0.07 -0.28 -0.32 -0.22 0.03 0.13 -0.10 -0.04 -0.14 -0.09 0.00 -0.01 -0.05 -0.0¢
1 Bm Bm 0.11 -0.09 -0.13 -0.07 -0.05 -0.08  -0.08 0.03 -0.07 -0.17 -0.01 0.03 -0.05  -0.0:

2 Bm W 0.43 0.23 0.10 0.00 0.07 0.36 0.17 -0.04 -0.04 0.07 0.00 -0.07 -0.04 -0.0

P = Parameter; Sc = Scenario; Sfr & Sfs = Sampling frequency of rainfall and soil water data: D = Daily, W = Weekly, Bw = Bi-
weekly, M = Monthly, Bm = Bi-monthly; A, B and C = pasture soil water sites located at 2025, 1975 and 1925 ma.s.l .; D, E and
F = soil water sites located at 2000, 1900 and 1825 m a.s.l. The subscript of the names of the soil site are related to the lumped
model used: GM = Gamma, LPM = Linear Piston Flow; X= median of results of soil sites per sampling frequency; t and At =
tracer’s mean transit time (best match) and its corresponding uncertainty range length; o and A, for GM (or n and A, for LPM) =
best matching result for the second lumped parameter and corresponding uncertainty range length; NSE = Nash-Sutcliffe Efficiency
of best match; RMSE = Root Mean Square Error; BIAS = Bias with respect to the mean.
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Parameter Sf  PlLev FHem OGCem OMom OQNewv QPev QRev QZom  Xowm Plepm FHepv QCepm OMepv ONepv QPepv QRepm OZerm Xerm

Aq-0FAy 2 015 019 010 045 047 043 o011 017 045 057 055 030 064 055 036 048 053 054

oot 3 031 034 046 635 0627 0649 0633 0626 029 034 036 016 038 028 019 030 026 029

[Poo] 3 009 006 004 010 067 06064 0609 007 007 000 000 000 000 000 000 -0:01 000 000
5
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Table 2. Stream water simulation results using GM and EPM models considering scenarios 1 & 2

P Sc Str Sfs  PLem FHom Com OMow  ONew QPom  QRem  QZow  Xem Plepw  FHepw  QCeom OMeem  ONesw  QPepw QRepw QZeem Xeew
3 2 Bw w 194 169 426 19 171 375 313 222 209 278 289 379 277 288 355 300 29 293
& 1 M M 152 160 359 157 139 240 238 161 161 303 323 489 3.00 305 382 328 321 322
" 2 M w 250 245 558 255 212 543 381 275  2.65 285 204 275 2.79 287 356  3.06 296  2.86
2 Bm w 158 141 353 163 144 291 271 177 170 270 267 341 2.63 277 335 286 290 281

1&2 D w 162 144 169 212 136 196 180 189 174 025 026 036 0.25 026 043 031 031 028
1&2 W w 143 125 159 152 130 194 184 166 156 027 031 052 0.29 030 050 032 033 032

3 2 Bw W 158 137 158 161 144 18 163 171 159 029 033 049 0.28 0.33 050 036 037 035
ﬁ 1 M M 099 096 195 105 077 1.63 161 101  1.03 035 038 064 0.34 0.32 055 048 036 037
< 2 M W 208 236 141 213 202 171 198 247 205 028 037 056 0.26 0.25 033 028 028 028
2 Bm W 105 077 118 117 093 139 147 109 113 027 030 048 0.23 0.26 046 031 030 030

1&2 D w 0.57 0.68 0.63 0.55 0.67 0.63 0.54 0.62 0.63 3.14 3.10 2.15 3.23 3.09 2.23 2.79 2.93 3.01
1&2 w w 0.63 0.73 0.65 0.60 0.70 0.67 0.60 0.68 0.66 2.97 2.89 2.05 2.92 2.89 214 2.66 2.63 2.77

2 Bw w 0.62 0.71 0.66 0.60 0.69 0.68 0.60 0.67 0.66 2.85 2.76 191 2.86 217 2.06 247 2.60 2.68

S 1 M M 0.79 0.87 0.78 0.77 0.88 0.88 0.74 0.87 0.83 2.73 2.46 2.37 217 2.69 2.00 2.26 2.48 2.47
® 2 M w 0.56 0.62 0.60 0.53 0.63 0.60 0.54 0.59 0.60 2.75 178 1.46 2.85 217 2.03 242 2.62 2.52
2 Bm W 0.65 0.73 0.70 0.64 0.73 0.75 0.64 0.72 0.71 3.05 3.17 211 3.20 2.95 2.18 2.67 2.67 2.81

1&2 D w 0.16 0.20 0.09 0.14 0.19 0.11 0.10 0.15 0.14 0.68 0.60 0.27 0.69 0.59 0.35 0.45 0.60 0.59
1&2 w w 0.15 0.19 0.10 0.15 0.17 0.13 0.11 0.17 0.15 0.57 0.55 0.30 0.64 0.55 0.36 0.48 0.53 0.54

< 2 Bw w 0.14 0.19 0.09 0.15 0.17 0.13 0.11 0.16 0.15 0.54 0.51 0.29 0.56 0.55 0.29 0.43 0.52 0.51
S 1 M M 0.19 0.21 0.14 0.18 0.20 0.22 0.16 0.22 0.19 0.50 0.43 0.41 0.48 0.43 0.27 0.40 0.41 0.42
3 2 M w 0.13 0.17 0.07 0.13 0.17 0.07 0.08 0.16 0.13 0.52 0.24 0.13 0.52 0.43 0.24 0.35 0.39 0.37
2 Bm W 0.13 0.15 0.09 0.14 0.15 0.12 011 0.15 0.14 0.69 0.62 0.32 0.62 0.52 0.37 0.50 0.50 0.51

1&2 D w 0.63 0.56 0.59 0.60 0.70 0.57 0.50 0.63 0.60 0.59 0.55 0.62 0.54 0.66 0.61 0.49 0.63 0.60
1&2 w w 0.60 0.58 0.58 0.57 0.66 0.56 0.46 0.60 0.58 0.59 0.56 0.62 0.54 0.64 0.61 0.54 0.62 0.60

EI 2 Bw w 0.59 0.56 0.56 0.56 0.65 0.53 0.45 0.60 0.56 0.55 0.52 0.58 0.51 0.61 0.56 0.51 0.59 0.56
2 1 M M 0.71 0.60 0.73 0.75 0.79 0.76 0.72 0.79 0.74 0.65 0.58 0.83 0.66 0.77 0.74 0.70 0.77 0.72
2 M w 0.58 0.49 0.54 0.56 0.62 0.53 0.51 0.58 0.55 0.49 0.50 0.53 0.46 0.57 0.53 0.47 0.55 0.51

2 Bm w 0.47 0.47 36 0.43 0.52 0.36 0.34 0.45 0.44 0.56 0.53 0.56 0.52 0.57 0.51 0.49 0.54 0.54
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Table 2 (Continued)

l

P Sc Str Sfs Plow FHem OCou OMou ONew OPsu  OQRew  QZou  Xom Plepm  FHepv  QCerv OMepv ONepw  QPeewt QReemt QZerm Xepw
1&2 D W 033 035 0.9 0.38 027 022 034 028 031 0.35 0.35 0.19 0.40 0.29 0.21 0.34 0.28 0.32
1&2 W W 035 034 0.20 0.39 029 022 036 030 032 0.35 0.35 0.19 0.40 0.30 0.21 0.33 0.29 0.31

= 1 Bw Bw 031 034 0.6 0.35 027 019 033 026  0.29 0.34 0.36 0.16 0.38 0.28 0.19 0.30 0.26 0.29

o 2 Bw W 035 035 0.20 0.39 030 023 036 030 032 0.37 0.37 0.20 0.41 0.31 0.22 0.34 0.30 0.33

g 1 M M 026 029 0.3 0.25 021 014 020 018  0.20 0.29 0.30 0.11 0.28 0.22 0.14 0.21 0.19 0.21

o 2 M W 036 038 021 0.39 031 023 034 030 032 0.39 0.37 0.21 0.44 0.33 0.23 0.36 0.31 0.34

1 Bm Bm 022 023 012 0.21 019 011 015 044 017 0.22 0.23 0.12 0.21 0.19 0.11 0.16 0.14 0.17

2 Bm W 040 038 0.24 0.45 035 027 040 035 0.36 0.37 0.36 0.20 0.41 0.33 0.23 0.35 0.32 0.34
1&2 D w 0.05 0.02 0.03 0.06 0.02 002 0.06 0.03 0.3 0.02 0.01 0.00 0.01 0.00 0.01 0.02 0.00 0.01
1&2 w w 0.09 0.04 0.05 0.10 0.05 004  0.08 0.06 0.5 0.01 0.00 0.00 0.02 0.00 0.01 0.00 0.01 0.00

3 1 Bw Bw 0.09 0.06 0.04 0.10 0.07 004 0.09 007 007 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 0.00

i 2 Bw w 0.09 0.04 0.04 0.10 0.05 003 0.08 0.05 0.5 0.00 0.01 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00

< 1 M M 0.07 0.03 0.04 0.08 0.03 0.02 0.07 0.03 0.03 0.00 -0.01 0.00 0.00 -0.01 0.00 0.00 0.00 0.00

@ 2 M w 0.04 -0.02 0.01 0.04 -0.02 0.00 0.03 0.00 0.00 -0.01 -0.02 -0.06 -0.01 -0.02 -0.05 -0.02 -0.02 -0.02

1 Bm Bm 0.05 0.02 0.03 0.06 002 001 005 001 0.3 -0.01  0.00 0.00 0.00 0.00 0.00 0.01 0.00  0.00
2 Bm W 0.15 0.11 0.10 0.15 0.11 0.09 0.13 0.11 0.11 0.01 -0.01 0.02 0.00 0.00 0.02 0.02 0.00 0.00

P = Parameter; Sc = Scenario; Sfr and Sfs = Sampling frequency of rainfall and stream water data: D = Daily, W = Weekly, BW = Bi-weekly, M = Monthly, BM = Bi-monthly. Acronyms for stream water are
defined in Figure 1 and the subscripts for stream water sites stands for the lumped model used: GM = Gamma, EPM = Exponential Piston Flow. X = median of the results of stream water sites per sampling
frequency; T and At = tracer’s mean transit time (best match) and its corresponding uncertainty range length; a. and Ao for GM (or n and A, for EPM) = the best matching result for the second lumped parameter and
corresponding uncertainty range length; NSE = Nash-Sutcliffe Efficiency of best match; RMSE = Root Mean Square Error; BIAS = Bias with respect to the mean.
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Fig. 1. San Francisco catchment with sampling locations and delineation of corresponding

drainage area. Names and acronyms are showed in bold. Framed image shows the zoomed
area of the lower part of the catchment.
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Fig. 42. Comparison of predictions for soil water sites using GM and LPM lumped models.
Subscript in the model name stands for the type of scenario: Scl = Aggregation of sampling
frequency in the rainfall and also in the effluent, Sc2 = Aggregation of sampling frequency
only in rainfall data. alues-1-5Acronyms in the X axis of all plots stands for five types of
data resolution: +-D = Daily, 2W = Weekly; 3-Bw = Bi-weekly, 4M = Monthly and 5-Bm =
Bi-monthly. Box-plots markers correspond to quartiles and median values (-). The length of
Whiskers is limited to 1.5 times the width of the box and values located further away below
the first quartile or above the third quartile are considered extreme ones (©0).

47



QOWoo ~No ok Wi =

(e Y
N

[EEN
w

;J':i:‘|rr' LR e e e 0 T I I 1

0 5 10 150 10 15 20 giq/10 21111 8111 2112 8112 0 5 10 15 20 25
T [weeks] o [-] Date [m/d/yy] Transit time [weeks]

5

Fig. 53. Predicted results for the soil water site C using the GM lumped model. Results are
ranged from top to bottom according to the data resolution: daily (top), weekly, bi-weekly,
monthly and bi-monthly (bottom). Left column shows dotty plots for the model parameters (t
and a) according to NSE using Monte Carlo random simulations (GLUE approach). Red line
shows the feasible range of behavioral solutions of model parameters as a 5 % of the top best
prediction (red diamond). Center column shows the measured (black filled circles) and
simulated 880 (the black line and the shaded area represent the best possible solution and its
range of variation according to the 5-95% of weighted quantiles derived from the confidence
limits of behavioral solutions shown in the left column. Right column: soil water residence
time distribution function corresponding to the best NSE; gray shaded area in each plot
corresponds to the range of possible shapes of the distribution function.

48



— 0.75
0.5

~0.25
— 0.75

— 0.5
— 0.25

sH8a0

EPM,

GM,

10
08 —
06 -
04

10
— 0.75
—0.25
~ 0.75

EPM,

GM,

[-] by Jo [-] Y [-13sN AR S [o2%] svig

T}
10
@« ~ «© ~ v =
e o o o o o oo o <
| I | I | [ I I
T T 1 T T 1 T T T 1
(=T e] <t [= e ] < o w o o
o o o o b e
S @
0
0
@ % @ 9 - S
o o o o o =] o o o T
L1 1 1 I N | [ I I |
1T 11 1T T 1 T 1T T 1
o «© ~ o © ~t o o 0
o o o o b .
S 3

D W Bw M Bm

D WBw M Bm

49

D WBw M Bm

D W Bw M Bm




QOWoo~NoOoTh,WwWN -

N
[N

10

T [yr]
[8,]

NSE [-]
o
~

RMSE [%o]
o
= o o
o o i o o

i BIAS [%0]
o

<
-
[$)]

GM,

EPM,

I

0

~0.15

Fig. 64
models. The subscript in the model name stands for the type of scenario: Scl = Aggregation
of sampling frequency in the rainfall and also in the effluent, Sc2 = Aggregation of sampling
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5-Bm = Bi-monthly. Box-plots markers correspond to quartiles and median values are shown
(). The length of Whiskers is limited to 1.5 times the width of the box and values located
further away below the first quartile or above the third quartile are considered extreme ones
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Fig. #5. Predicted results for the stream water site PL using the GM lumped model. Results
are ranged from top to bottom according to the data resolution: daily (top), weekly, bi-weekly,
monthly and bi-monthly (bottom). Left column shows dotty plots for the model parameters (t
and a) according to NSE using Monte Carlo random simulations (GLUE approach). Red line
shows the feasible range of behavioral solutions of model parameters as a 5 % of the top best
prediction (red diamond). Center column shows the measured (black filled circles) and
simulated 880 (the black line and the shaded area represent the best possible solution and its
range of variation according to the 5-95% of weighted quantiles derived from the confidence
limits of behavioral solutions shown in the left column. Right column: soil water residence
time distribution function corresponding to the best NSE; gray shaded area in each plot
corresponds to the range of possible shapes of the distribution function.
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