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 8 
Abstract The use of lumped, conceptual models in hydrological impact studies requires placing more emphasis on the 9 
uncertainty arising from deficiencies and/or ambiguities in the model structure. This study provides an opportunity to 10 
combine a multiple-hypothesis framework with a multi-criteria assessment scheme to reduce structural uncertainty in the 11 
conceptual modeling of a meso-scale Andean catchment (1515 km²) over a 30-year period (1982‒2011). The modeling 12 
process was decomposed into six model-building decisions related to the following aspects of the system behavior: snow 13 
accumulation and melt, runoff generation, redistribution and delay of water fluxes, and natural storage effects. Each of these 14 
decisions was provided with a set of alternative modeling options, resulting in a total of 72 competing model structures. 15 
These structures were calibrated using the concept of Pareto optimality with three criteria pertaining to streamflow 16 
simulations and one to the seasonal dynamics of snow processes. The results were analyzed in the four-dimensional space of 17 
performance measures using a fuzzy c-means clustering technique and a differential split sample test, leading to identify 14 18 
equally acceptable model hypotheses. A filtering approach was then applied to these best-performing structures in order to 19 
minimize the overall uncertainty envelope while maximizing the number of enclosed observations. This led to retain 8 model 20 
hypotheses as a representation of the minimum structural uncertainty that could be obtained with this modeling framework. 21 
Future work to better consider model predictive uncertainty should include a proper assessment of parameter equifinality and 22 
data errors, as well as the testing of new or refined hypotheses to allow for the use of additional auxiliary observations. 23 
 24 

1. INTRODUCTION 25 

Conceptual catchment models based on the combination of several schematic stores are popular 26 
tools in flood forecasting and water resources management (e.g. Jakeman and Letcher, 2003; Xu and 27 
Singh, 2004). The main rationale behind this success lies in the fact that relatively simple structures 28 
with low data and computer requirements generally outweigh the performance of far more complex 29 
physically-based models (e.g. Michaud and Sorooshian, 1994; Refsgaard and Knudsen, 1996; 30 
Kokkonen and Jakeman, 2001). Also, most water management decisions are made at operational 31 
scales having much more to do with catchment-scale administrative considerations than with our 32 
understanding of fine-scale processes. As a result, conceptual models are being increasingly used to 33 
evaluate the potential impacts of climate change on hydrological systems (e.g. Minville et al., 2008; 34 
Ruelland et al., 2012) and freshwater availability (e.g. Milano et al., 2013; Collet et al., 2013). 35 

This modeling strategy, however, is regularly criticized for oversimplifying the physics of 36 
catchments and leading to unreliable simulations when conditions shift beyond the range of prior 37 
experience. Part of the problem comes from the fact that model structures are usually specified a 38 
priori, based on preconceived opinions about how systems work, which in general leads to an 39 
excessive dependence on the calibration process. More than a lack of physical background, this 40 
practice reveals a misunderstanding about how such models should be based on physics (Kirchner, 41 
2006; Blöschl and Montanari, 2010). Hydrological systems are not structureless things composed of 42 
randomly distributed elements, but rather self-organizing systems characterized by the emergence of 43 
macroscale patterns and structures (Dooge, 1986; Sivapalan, 2006; Ehret et al., 2014). As such, the 44 
reductionist idea that catchments can be understood by merely aggregating (upscaling) fine-scale 45 
mechanistic laws is generally misleading (Dooge, 1997; McDonnell et al., 2007). Self-organization at 46 
the catchment scale means that new hydrologic relationships with fewer degrees of freedom have to be 47 
envisioned (e.g. McMillan, 2012a). Yet, finding simplicity in complexity does not imply that simple 48 
models available in the literature can be used as ready-made engineering tools with little or no 49 
consideration for the specific features of each catchment (Wainwright and Mulligan, 2004; Savenije, 50 
2009). As underlined by Kirchner (2006), it is important to ensure that the “right answers” are 51 
obtained for the “right reasons”. In the case of poorly-defined systems where physically-oriented 52 
interpretations can only be sought a posteriori to check for the model realism, this requires placing 53 
more emphasis on the uncertainty arising from deficiencies and/or ambiguities in the model structure 54 
than is currently done in most hydrological impact studies. 55 
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Structural uncertainty can be described in terms of inadequacy and non-uniqueness. Model 56 
inadequacy arises from the many simplifying assumptions and epistemic errors made in the selection 57 
of which processes to represent and how to represent them. It reflects the extent to which a given 58 
model differs from the real system it is intended to represent. In practice, this results in the failure to 59 
capture all relevant aspects of the system behavior within a single model structure or parameter set. A 60 
common way of addressing this source of uncertainty is to adopt a top-down approach to model-61 
building (Jothityangkoon et al., 2001; Sivapalan et al., 2003), in which different models of increasing 62 
complexity are tested to determine the adequate level of process representation. Where fluxes and state 63 
variables are made explicit, alternative data sources (other than streamflow) such as groundwater 64 
levels (Seibert, 2000; Seibert and McDonnell, 2002), tracer samples (Son and Sivapalan, 2007; Birkel 65 
et al., 2010; Capell et al., 2012) or snow measurements (Clark et al., 2006; Parajka and Blöschl, 2008), 66 
can also be used to improve the internal consistency of model structures. Additional criteria can then 67 
be introduced in relation to these auxiliary data or to specific aspects of the hydrograph (driven vs. 68 
nondriven components, rising limb, recession limbs...). In this perspective, multi-criteria evaluation 69 
techniques based on the concept of Pareto-optimality provide an interesting way to both reduce and 70 
quantify structural inadequacy (Gupta et al., 1998; Boyle et al., 2000; Efstratiadis and Koutsoyiannis, 71 
2010). A parameter set is said to be Pareto-optimal if it cannot be improved upon without degrading at 72 
least one of the objective criteria. In general, meaningful information on the origin of model 73 
deficiencies can be derived from the mapping of Pareto-optimal solutions in the space of performance 74 
measures (often called the Pareto front) and used to discriminate between several rival structures (Lee 75 
et al., 2011). Further, the Pareto set of solutions obtained with a given model is commonly used to 76 
generate simulation envelopes (hereafter called 'Pareto-envelopes' for brevity's sake) representing the 77 
uncertainty associated with structural errors (i.e. model inadequacy). 78 

Non-uniqueness refers to the existence of many different model structures (and parameter sets) 79 
giving equally acceptable fits to the observed data. Structural inadequacy and the limited (and often 80 
uncertain) information of the available data make it highly unlikely to identify a single, unambiguous 81 
representation of how a system works. There may be, for instance, many different possible 82 
representations of flow pathways yielding the same integral signal (e.g. streamflow) at the catchment 83 
outlet (Schaefliet al., 2011). Non-uniqueness in model identification has also been widely described in 84 
terms of equifinality (Beven, 1993 and 2006) and may be viewed as a special case of a more general 85 
epistemological issue known as the “underdetermination” problem. Over the past decade, these 86 
considerations have encouraged a shift in focus toward more flexible modeling tools based on the 87 
concept of multiple working hypotheses (Buytaert and Beven, 2011; Clark et al., 2011). A number of 88 
modular frameworks have been proposed, in which model components (i.e. individual hypotheses) can 89 
be assembled and connected in many ways to build a variety of alternative model structures (i.e. 90 
overall hypotheses). Recent examples of such modular modeling frameworks (MMF) include the 91 
Imperial College Rainfall-Runoff Modeling Toolbox (RRMT) (Wagener et al., 2002), the Framework 92 
for Understanding Structural Errors (FUSE) (Clark et al., 2008) and the SUPERFLEX modeling 93 
environment (Fenicia et al., 2011). Clark et al. (2011) suggested that this approach to model 94 
identification represents a valuable alternative to “most practical applications of the top-down 95 
approach”, which “seldom consider competing process representations of equivalent complexity”. 96 
Compared to current multimodel strategies, MMF also provide the possibility to better scrutinize the 97 
effect of each individual hypothesis (i.e. model component), provided that the model decomposition is 98 
sufficiently fine-grained. Finally, Clark et al. (2011) argued that ensembles of competing model 99 
structures obtained from MMF (both of equal and varying complexity) can also be used to quantify the 100 
structural uncertainty arising because of system non-identifiability (i.e. model non-uniqueness). So far, 101 
however, this method has mostly been applied to relatively small (<500 km2) and humid catchments of 102 
the Northern Hemisphere (Krueger et al., 2010; Smith and Marshall, 2010; Staudinger et al., 2011; 103 
Kavetski and Fenicia, 2011; McMillan et al., 2012b; Coxon et al., 2013), with less attention being 104 
given to larger scales of interest (>1000 km2) and semi-arid regions (e.g. Clark et al., 2008). Moreover, 105 
several of these studies have insisted on the need for multiple criteria related to different aspects of the 106 
system’s behavior in order to improve the usefulness of MMF. Yet, most of the time these additional 107 
criteria or signatures were not used to guide model development or constrain calibration but rather as 108 
posterior diagnostics in validation (see Kavetski and Fenicia, 2011). Thus, the potential benefits of 109 
using the concept of Pareto-efficiency to constrain model development and help differentiate between 110 
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numerous competing hypotheses remain largely unexplored in the current literature devoted to MMF. 111 
Also, very few studies have included alternative conceptual representations of snow processes in their 112 
modular frameworks (e.g. Smith and Marshall, 2010), even though snowmelt may have played a 113 
significant role in several cases (Clark et al., 2008; Staudinger et al., 2011). 114 

Addressing these issues is of particular importance in the case of arid to semi-arid Andean 115 
catchments such as those found around 30°S. The Norte Chico region of Chile, in particular, has been 116 
identified as being highly vulnerable to climate change impacts in a number of recent reports (IPCC, 117 
2013) and studies (e.g. Souvignet et al., 2010; Young et al., 2010). Yet, very few catchments in this 118 
region have been studied intensively enough to provide reliable model simulations, often with no 119 
estimation of the surrounding uncertainty (Souvignet, 2007; Ruelland et al., 2011; Vicuña et al., 2011; 120 
Hublart et al., 2013). This study is the first step of a larger research project, whose final aim is to 121 
assess the capacity to meet current and future irrigation water requirements in a mesoscale catchment 122 
of the Norte Chico region. The objective here is to provide a set of reasonable model structures that 123 
can be used for the hydrological modeling of the catchment. To achieve this goal, a MMF was 124 
developed and combined with a multi-criteria optimization framework using streamflow and satellite-125 
based snow cover data. 126 
 127 

2. STUDY AREA 128 
 129 
2.1. General site description 130 

The Claro River Catchment is a semi-arid, mountainous catchment located in the northeastern part 131 
of the Coquimbo region, in north-central Chile (Fig. 1). It drains an area of approximately 1515 km², 132 
characterized by high elevations ranging from 820 m a.s.l. at the basin outlet (Rivadavia) to over 5500 133 
m a.s.l. in the Andes Cordillera. The topography is dominated by a series of generally north-trending, 134 
fault-bounded mountain blocks interspersed with a few steep-sided valleys.  135 

The underlying bedrock consists almost entirely of granitic rocks ranging in age from 136 
Pennsylvanian to Oligocene and locally weathered to saprolite. Above 3000 m a.m.s.l., repeated 137 
glaciations and the continuous action of frost and thaw throughout the year have caused an intense 138 
shattering of the exposed rocks (Caviedes and Paskoff, 1975), leaving a landscape of bare rock and 139 
screes almost devoid of soil. 140 

The valley-fill material consists of mostly unconsolidated Quaternary alluvial sediments mantled 141 
by generally thin soils (< 1 m) of sandy to sandy-loam texture. Vineyards and orchards cover most of 142 
the valley floors and lower hill slopes but account for less than 1% of the total catchment area. Most of 143 
the annual precipitation, however, occurs as snow during the winter months, leading to an entire 144 
dependence on surface-water resources to satisfy crop water needs during the summer. Irrigation water 145 
abstractions occur at multiple locations along the river’s course depending on both historical water 146 
rights and water availability. By contrast, natural vegetation outside the valleys is extremely sparse and 147 
composed mainly of subshrubs (e.g. Adesmia echinus) and cushion plants (e.g. Laretia acaulis, 148 
Azorella compacta) with very low transpiration rates (Squeo et al., 1993). The Claro River originates 149 
from a number of small tributaries flowing either permanently or seasonally in the mountains. 150 

 151 

2.2. Hydro-climatic data 152 

In order to represent the hydro-climate variability of the catchment, a 30-year period (1982–2011) 153 
was chosen according to data availability and quality. Precipitation and temperature data were 154 
interpolated based on respectively 12 and 8 stations (Fig. 1) using the inverse distance weighted 155 
method on a 5km x 5km grid. Since very few measurements were available outside the river valleys, 156 
elevation effects on precipitation and temperature distribution were considered using the SRTM digital 157 
elevation model (Fig. 1). In a previous study, Ruelland et al. (2014) examined the sensitivity of the 158 
GR4j hydrological model to different ways of interpolating climate forcing on this basin. Their results 159 
showed that a dataset based on a constant lapse rate of 6.5°C/km for temperature and no elevation 160 
effects for precipitation provided slightly better simulations of the discharge over the last 30 years. 161 
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However, since the current study also seeks to reproduce the seasonal dynamics of snow accumulation 162 
and melt, it was decided to rely on a mean monthly orographic gradient estimated from the 163 
precipitation observed series (Fig. 1). Potential evapotranspiration (PE) was computed using the 164 
following formula proposed by Oudin et al. (2005): 165 

 166 

 PE ൌ
Rୣ
λߩ

ൈ
T  ଶܭ
ଵܭ

if T  ଶܭ  0 else PE ൌ 0 (1)

 167 
where PE is the rate of potential evapotranspiration (mm.d-1), Re is the extraterrestrial radiation (MJ.m-168 
2.d-1), λ is the latent heat flux (2.45 MJ.kg-1), ߩ	is the density of water (kg.m-3), T is the mean daily air 169 
temperature (°C) and K1 and K2 are fitted parameters (for more details on the values of K1 and K2, see 170 
Hublart et al. (2014)).. Water abstractions for irrigation were estimated using information on historical 171 
water allocations provided by the Chilean authorities. Because these abstractions are likely to 172 
influence the hydrological behavior of the catchment during recession and low-flow periods, they were 173 
added back to the gauged streamflow in Rivadavia before calibrating the models. In addition to 174 
streamflow data, remotely-sensed data from the MODerate resolution Imaging Spectroradiometer 175 
(MODIS) sensor were used to estimate the seasonal dynamics of snow accumulation and melt 176 
processes over a 9-year period (2003–2011). Daily snow cover products retrieved from NASA's Terra 177 
(MOD10A1) and Aqua (MYD10A1) satellites were combined into a single, composite 500-m 178 
resolution product to reduce the effect of swath gaps and cloud obscuration. The remaining data voids 179 
were subsequently filled using a linear temporal interpolation method. 180 

 181 
2.3. Hydrological functioning of the catchment 182 

 183 
2.3.1.  Precipitation variability 184 

 Among the primary factors that control the hydrological functioning of the catchment is the high 185 
seasonality of precipitation patterns. Precipitation occurs mainly between June and August when the 186 
South Pacific High reaches its northernmost position. Most of the annual precipitation falls as snow at 187 
high elevations, where it accumulates in seasonal snow packs that are gradually released from October 188 
to April. The El Niño Southern Oscillation (ENSO) represents the largest source of climate variability 189 
at the interannual timescale (e.g. Montecinos and Aceituno, 2003). Anomalously wet (dry) years in the 190 
region are generally associated with warm (cold) El Niño (La Niña) episodes and a simultaneous 191 
weakening (strengthening) of the South Pacific High. It is worth noting, however, that some very wet 192 
years in the catchment can also coincide with neutral to weak La Niña conditions, as in 1984, while 193 
several years of below-normal precipitation may not exhibit clear La Niña characteristics (Verbist et 194 
al., 2010; Jourde et al., 2011). These anomalies may be due to other modes of climate variability 195 
affecting the Pacific basin on longer timescales. The Interdecadal Pacific Oscillation (IPO), in 196 
particular, has been shown to modulate the influence of ENSO-related events according to cycles of 197 
between 15 and 30 years (Quintana and Aceituno, 2012). Recent shifts in the IPO phase occurred in 198 
1977 and 1998 and may be responsible for the highest frequency of humid years during the 1980s and 199 
the early 1990s when compared to the late 1990s and the 2000s. 200 

2.3.2.  Catchment-scale water balance and dominant processes 201 

Notwithstanding this significant climate variability, a rough estimate of the catchment water 202 
balance can be given for the period 2003–2011 using the data presented in the previous subsection and 203 
additional information available in the literature. Spatially averaged precipitation ranges from a low of 204 
80 mm in 2010 to an estimated high of 190 mm in 2008. Evapotranspiration from non-cultivated areas 205 
is sufficiently low to be reasonably neglected at the basin scale (Kalthoff et al., 2006). By contrast, 206 
water losses from the cultivated portions of the basin are likely to be around 10 mm.yr-1 (Hublart et al., 207 
2014). At high elevations, sublimation plays a much greater role than evapotranspiration. Mean annual 208 
sublimation rates over two glaciers located in similar, neighbouring catchments have been estimated to 209 
be about 1 mm.d-1 (see e.g. MacDonell et al., 2013). Thus, a first estimate of the annual water loss 210 
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associated with snow sublimation can be made by multiplying, for each day of the period, the 211 
proportion of the catchment covered with snow by an average rate of 1 mm.d-1. This leads to a mean 212 
annual loss of 70 mm between 2003 and 2011. Note that this value is of the same order of magnitude 213 
as those obtained by Favier et al. (2009) using the Weather Research and Forecasting regional-scale 214 
climate model. Mean annual discharge per unit area varies from a minimum of 20 mm in 2010 to a 215 
maximum of 140 mm in 2003. Interestingly, runoff coefficients exceed 100% during several years of 216 
the period (in 2003, 2006, 2007 and 2009), indicating either an underestimation of precipitation at high 217 
elevations, as suggested by Favier et al. (2009), or a delayed contribution of groundwater to surface 218 
flow from one year to another (Jourde et al., 2011).  219 

Groundwater movement in the catchment is mainly from the mountain blocks toward the valleys 220 
and then northward along the riverbed. In the mountains, groundwater flow and storage are controlled 221 
primarily by the presence of secondary permeability in the form of joints and fractures (Strauch et al., 222 
2006). The unconfined valley-fill aquifers are replenished by mountain front recharge along the valley 223 
margins and by infiltration through the channel bed along the losing river reaches (Jourde et al., 2011). 224 
Their hydraulic conductivity and saturated thickness range from about 10 m.d-1 and 40 m respectively 225 
in the upper part of the catchment to more than 30 m.d-1 and 60 m respectively at the outlet 226 
(CAZALAC, 2006), allowing a rapid transfer of water to the hydraulically connected surface streams. 227 
Pourrier et al. (2014) studied flow processes and dynamics in the headwaters of the neighbouring 228 
Turbio River catchment; yet very little remains currently known about the emergent processes taking 229 
place at the catchment scale. 230 

 231 
3. METHODS 232 

 233 
3.1. Multiple-hypothesis modeling framework 234 

In order to evaluate various numerical representations of the catchment functioning, a multiple-235 
hypothesis modeling framework inspired by previous studies in literature was developed. All the 236 
models built within this framework are lumped hypotheses run at a daily time step. The modeling 237 
process was decomposed into three modules and six model-building decisions. Each module deals 238 
with a different aspect of the precipitation–runoff relationship through one or more decisions (Fig. 2): 239 
snow accumulation (A) and melt (B), runoff generation (C), redistribution (D) and delay (E) of water 240 
fluxes, and natural storage effects (F). Each of these decisions is provided with a set of alternative 241 
modeling options, which are named by concatenating the following elements: first a capital letter from 242 
A to F referring to the decision being addressed, then a number from 1 to 3 to distinguish between 243 
several competing architectures and, finally, a lower case letter from a to c to indicate different 244 
parameterizations of the same architecture. Model hypotheses are named by concatenating the names 245 
of the six modeling options used to build them (see Table 4). The models designed within this 246 
framework share the same overall structure (based on the same series of decisions) but differ in their 247 
specific formulations within each decision. 248 

The model-building decisions can be divided into two broad categories. The first pertains to the 249 
production of fluxes from conceptual stores (decisions B, C and F). The second concerns the 250 
allocation and transmission of these fluxes using the typical junction elements and lag functions 251 
(decisions A, D and E) described in Fenicia et al. (2011). Junction elements can be defined as “zero-252 
state” model components used to combine several fluxes into a single one (option D2) or split a single 253 
flux into two or more fluxes (options A1 and D3). Lag functions are used to reflect the travel time 254 
(delay) required to convey water from one conceptual store to another or from one or more conceptual 255 
stores to the basin outlet. They usually consist of convolution operators (option E2), although 256 
conceptual stores may also do the trick. Modeling options in which water fluxes are left unchanged are 257 
labelled as “No operation” options in Fig. 2. Water fluxes and state variables are named using generic 258 
names (from Q1 to Q6 and from S1 to S4, respectively) to ensure a perfect modularity of the 259 
framework. Further details on the alternative options provided for each decision are given in the 260 
following subsections. Note that some combinations of modeling options were clearly incompatible 261 
with one another (options C1 and C2, for instance, cannot work with option D2). As a result, these 262 
combinations were removed from the framework. 263 
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Another important feature of this modular framework is the systematic smoothing of all model 264 
thresholds using infinitely differentiable approximants, as recommended by Kavetski and Kuczera 265 
(2007) and Fenicia et al. (2011). The purpose here is twofold: first, to facilitate the calibration process 266 
by removing any unnecessary (and potentially detrimental) discontinuities from the gradients of the 267 
objective functions; and second, to provide a more realistic description of hydrological processes 268 
across the catchment (Moore, 2007). 269 
 270 

3.1.1. Snow accumulation and melt (decisions A and B)  271 

Snow accumulation and melt components deal with the representation of snow processes at the 272 
catchment scale. All modeling options rely on a single conceptual store to accumulate snow during the 273 
winter months and release water during the melt season. Decision A refers to the partitioning of 274 
precipitation into rain, snow or a mixture of rain and snow. Decision B refers to the representation of 275 
snowmelt processes. Option A1 is the only hypothesis implemented to evaluate the relative abundance 276 
of rain and snow. A logistic distribution is used in this option instead of usual temperature thresholds 277 
to implicitly account for spatial variations in rain/snow partitioning over the catchment. In contrast, 278 
three modeling options drawing upon the temperature-index approach (Hock, 2003) are available for 279 
the evaluation of snowmelt rates (options B1a, B1b, B1c). Option B1a relies on a constant melt factor 280 
while options B1b and B1c allow for temporal variability in the melt factor to reflect seasonal changes 281 
in the energy available for melt. A recent example of option B1c can be found in Clark et al. (2009). 282 
Option B1b has been previously applied by Schreider et al. (1997) but at the grid cell scale. Finally, it 283 
is worth noting that a smoothing kernel proposed by (Kavetski and Kuczera, 2007) was introduced in 284 
the state equation of the snow reservoir to ignore residual snow remaining in the reservoir outside the 285 
snowmelt season. 286 

 287 
3.1.2.  Runoff generation (decision C) 288 

Runoff generation components determine how much of a rainfall or snowmelt event is 289 
available for runoff, lost through evapotranspiration or temporarily stored in soils and surface 290 
depressions. Many models rely on a conceptual store to keep track of the catchment moisture status 291 
and generate runoff as a function of both current and antecedent precipitation. Here, an assortment of 292 
four commonly used methods is available. Option C1 is the only one in which no moisture accounting 293 
store is required to estimate the contributing rainfall or snowmelt (see Fig. 3). Actual 294 
evapotranspiration then represents the only process involved in the production of runoff from 295 
precipitation or snowmelt. The remaining options make use of moisture accounting stores and 296 
distribution functions (see Table 1) to estimate the proportion of the basin generating runoff. An 297 
important distinction is made between option C2, in which runoff generation occurs only during 298 
rainfall or snowmelt events, and option C3, in which a leakage from the moisture accounting store 299 
remains possible even after rainfall or snowmelt has ceased. Examples of these two moisture 300 
accounting options can be found, respectively, in the HBV (e.g. Seibert and Vis, 2012) and PDM 301 
(Moore, 2007) rainfall-runoff models. Alternative distribution functions are available in the literature, 302 
for instance in the GR4j (Perrin et al., 2003) and FLEX (Fenicia et al., 2008b) models, but the 303 
rationale behind their use remains the same. Actual evapotranspiration is computed from the estimated 304 
PE using either a constant coefficient (option C1) or a function of the catchment moisture status 305 
(options C2 and C3). 306 

3.1.3.  Runoff transformation and routing (decisions D to F) 307 

Runoff transformation components account for all the retention and translation processes 308 
occurring as water moves through the catchment. In practice, junction elements (decision D) and lag 309 
functions (decision E) are typically combined with one or more conceptual stores (decision F) to 310 
represent the effects of different flow pathways on the runoff process (both timing and volume). 311 
Additional elements in the form of lag functions or conceptual stores can also be used to reflect water 312 
routing in the channel network. However, in this study channel routing elements were considered 313 
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useless at a daily time step. All the modeling options available for decision F consist of two stores. 314 
These can be arranged in parallel (options F1a and F1b), in series (options F2a and F2b), or in a 315 
combination of both (options F3a and F3b). In each case, one of the stores has a nonlinear behavior 316 
while the other reacts linearly. Two types of nonlinear response are provided: one that relies on 317 
smoothed thresholds and different storage coefficients (options F1b, F2b and F3b), and the other that 318 
relies on power laws (options F1a, F2a and F3a). Options F1a and F1b are based on the classical 319 
parallel transfer function used in many conceptual models, such as the PDM (Moore, 2007) and 320 
IHACRES (Jakeman et al., 1993) models, where one store stands for a relatively quick catchment 321 
response and the other for a slower response. The structure of options F3a and F3b is very close to the 322 
response routine of the HBV model (e.g. Seibert and Vis, 2012). Note that some combinations of 323 
modeling options were deemed unacceptable and thus not considered (e.g. D3–E1–F1a or D3–E1–324 
F1b). 325 

 326 
 327 

3.2. Multi-objective optimization 328 
 329 

3.2.1.  Principle 330 

In optimization problems with at least two conflicting objectives, a set of solutions rather than 331 
a unique one exists because of the trade-offs between these objectives. A Pareto-optimal solution is 332 
achieved when it cannot be improved upon without degrading at least one of its objective criteria. The 333 
set of Pareto-optimal solutions for a given model is often called the “Pareto set” and the set of criteria 334 
corresponding to this Pareto set is usually referred to as the “Pareto front”. 335 
 336 

3.2.2.  The NSGA–II algorithm 337 

The Non-dominated Sorted Genetic Algorithm II (NSGA–II) (Deb, 2002) was selected to 338 
calibrate the models implemented within the multiple-hypothesis framework. This algorithm has been 339 
used successfully in a number of recent hydrological studies (see e.g. Khu and Madsen, 2005; Bekele 340 
and Nicklow, 2007; De Vos and Rientjes, 2007; Fenicia et al., 2008a; Shafii and De Smedt, 2009) and 341 
has the advantage of not needing any additional parameter (other than those common to all genetic 342 
algorithms, i.e. the initial population and the number of generations). Its most distinctive features are 343 
the use of a binary tournament selection, a simulated binary crossover and a polynomial mutation 344 
operator. For brevity’s sake, the detailed instructions of the algorithm and the conditions of its 345 
application to rainfall-runoff modeling cannot be discussed further here. Instead, the reader is referred 346 
to the aforementioned literature.   347 
 348 

3.2.3.  Simulation periods and assessment criteria 349 

The simulation period was divided into a rather dry calibration period (1997–2011) and a 350 
relatively humid validation period (1982–1996). These two periods were chosen based on data 351 
availability to represent contrasted climate conditions: the two periods are separated by a shift in the 352 
IPO index, as explained in Sect 2.3.1.  353 

Four criteria were chosen to evaluate the models built within the multiple-hypothesis 354 
framework. The first three of them are common to both calibration and validation periods while the 355 
fourth criterion differs between the two. 356 

The first criterion (NSE) is the related to the estimation of high flows and draws upon the Nash-357 
Sutcliffe Efficiency metric: 358 

 Crit1 ൌ 1 െ NSE ൌ ൫Q୭ୠୱ
ୢ െ Qୱ୧୫

ୢ ൯
ଶ

ୢୀଵ
 ൫Q୭ୠୱ

ୢ െ Q୭ୠୱതതതതതത൯
ଶ

ୢୀଵ
൘  (2)

Where Q୭ୠୱ
ୢ 	and Qୱ୧୫

ୢ  are the observed and simulated discharges for day d, and N is the number of 359 
days with available observations. 360 
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The second criterion (NSE୪୭) is related to the estimation of low flows and draws upon a modified, log 361 

version of the first criterion: 362 

 Crit2 ൌ 1 െ NSE୪୭ ൌ ቀlog൫Q୭ୠୱ
ୢ ൯ െ log൫Qୱ୧୫

ୢ ൯ቁ
ଶ

ୢୀଵ
 ቀlog൫Q୭ୠୱ

ୢ ൯ െ logሺQ୭ୠୱതതതതതതሻቁ
ଶ

ୢୀଵ
൘  (3)

The third criterion quantifies the mean annual volume error (VE) made in the estimation of the water 363 
balance of the catchment: 364 

 Crit3 ൌ VE ൌ ൫หV୭ୠୱ
୷ െ Vୱ୧୫

୷ ห V୭ୠୱ
୷ൗ ൯

౯౨౩

୷ୀଵ
N୷ୣୟ୰ୱൗ  (4)

Where V୭ୠୱ
୷ 	and Vୱ୧୫

୷  are the observed and simulated volumes for year y, and N୷ୣୟ୰ୱ is the number of 365 

years of the simulation period. 366 

The fourth criterion (Crit4) differs between the two simulation periods. In calibration, snow-covered 367 
areas (SCA) estimated from the MODIS data were used to evaluate the consistency of snow-368 
accounting modeling options in terms of snow presence or absence at the catchment scale. The 369 
objective was to quantify the error made in simulating the seasonal dynamics of snow accumulation, 370 
storage and melt processes. Following Parajka and Blöschl (2008), the snow error (SE) was defined as 371 
the total number of days when the snow-accounting store of options B1a, B1b and B1c disagreed with 372 
the MODIS data as to whether snow was present in the basin (Fig. 4). The number of days with 373 
simulation errors is eventually divided by the total number of days with available MODIS data to 374 
express SE as a percentage. 375 

In validation, a cumulated volume error was used to replace the snow error criterion that could not be 376 
computed due to a lack of remotely-sensed data over this period: 377 
 378 

 Crit4 ൌ VEେ ൌ ቤ V୭ୠୱ
୷

౯౨౩

୷ୀଵ
െ Vୱ୧୫

୷
౯౨౩

୷ୀଵ
ቤ  V୭ୠୱ

୷
౯౨౩

୷ୀଵ
൘  (5)

 379 

3.3. Model selection, model analysis and ensemble modeling 380 

Finally, a total of 72 model structures were implemented and tested within the multi-objective and 381 
multiple-hypothesis frameworks. In addition to their names and for purposes of simplicity, these 72 382 
model hypotheses are given a number from 1 to 72 corresponding to their order of appearance in the 383 
simulation process (see e.g. Sect 4.1.). 384 

Model hypotheses can be thought of as points x in the space of performance measures. One 385 
possible way to locate these points in space is to consider that each coordinate ሺݔሻୀଵ…ସ of x is given 386 
by the best performance obtained along the Pareto front of model x with respect to the ith criterion 387 
described in Sect 3.3.2. A clustering technique based on the fuzzy c-means algorithm (Bezdek et al., 388 
1983) and the initialization procedure developed by Chiu (1994) was chosen to explore this multi-389 
objective space and identify natural groupings among model hypotheses. To facilitate comparison 390 
between calibration and validation, the clustering operations were repeated independently for each 391 
period. The whole experiment, from model building to multi-objective optimization and cluster 392 
identification, was repeated several times to ensure that the final composition of the clusters remains 393 
the same. 394 

Once the composition of each cluster was established, it was possible to identify a set of ‘best-395 
performing’ clusters for each simulation period, i.e. a set of clusters with the smallest Euclidian 396 
distances to the origin of the objective space. The model structures of these ‘best-performing’ clusters 397 
can be regarded as equally acceptable representations of the system. An important indicator of 398 
structural uncertainty is the extent to which the simulation bounds derived from the Pareto sets of 399 
these models reproduce the various features of the observed hydrograph. The overall uncertainty 400 
envelope should be wide enough to include a large proportion of the observed discharge but not so 401 
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wide that its representation of the various aspects of the hydrograph (rising limb, peak discharge, 402 
falling limb, baseflow) becomes meaningless. In this study, priority was given to maintaining at its 403 
lowest value the number of outlying observations before searching for the best combination of models 404 
which minimized the envelope area. This was achieved iteratively through the following steps: 405 
 406 

1. Start with an initial ensemble composed of the ܰ௫  models identified as members of the 407 
best-performing clusters in both calibration and validation (i.e. models which fail the 408 
validation test are ruled out). 409 

2. From now on, consider only the calibration period. 410 
Add up the ܰ௫ individual simulation envelopes that can be obtained from the Pareto sets of 411 
the ܰ௫ models (hereafter referred to as the ‘Pareto-envelopes’). 412 

3. Estimate the maximum number of observations enclosed within the resulting overall envelope, 413 

୭ܰୠୱሺܰ୫ୟ୶ሻ, and calculate the area of this envelope, ܽ݁ݎܣሺܰ୫ୟ୶ሻ. 414 
4. For ݇ ൌ 1 to ܰ௫ 415 

a. Identify the ൬
ܰ௫

ܰ௫ െ ݇൰ possible combinations of ܰ୫ୟ୶ models taken ܰ௫ െ ݇ at a time. 416 

b. For each of these combinations 417 
- Add up the individual Pareto-envelopes of the ܰ௫ െ ݇  models and calculate the 418 

number of observations enclosed within the bounds of the resulting overall envelope, 419 

୭ܰୠୱሺܰ୫ୟ୶ െ ݇ሻ. 420 
- If ୭ܰୠୱሺܰ୫ୟ୶ െ ݇ሻ ൌ ୭ܰୠୱሺܰ୫ୟ୶ሻ 421 

If ܽ݁ݎܣሺܰ୫ୟ୶ െ ݇ሻ ൏ ሺܰ୫ୟ୶ܽ݁ݎܣ െ ݇  1ሻ 422 
Accept the current combination. 423 

If ୭ܰୠୱሺܰ୫ୟ୶ െ ݇ሻ ൏ ୭ܰୠୱሺܰ୫ୟ୶ሻ 424 
Reject the current combination. 425 

c. If all the possible combinations of ܰ୫ୟ୶ െ ݇ models are rejected, break the loop. The final 426 
ensemble of models to consider is the last accepted combination of ܰ୫ୟ୶ െ ݇  1 models. 427 

 428 

4. RESULTS 429 
 430 

4.1. Model hypotheses evaluation 431 
 432 

4.1.1.  Cluster analysis 433 

The 72 model hypotheses can be grouped into 5 clusters in calibration and 6 in validation. Table 3 434 
displays the coordinates of the cluster centroids and gives, for each cluster, the number of points with 435 
membership values above 50%. Figure 5 shows the projections of these clusters onto three possible 436 
two-dimensional (2D) subspaces of the objective space (the three other subspaces being omitted for 437 
brevity's sake). Each cluster is given a rank (from 1 to 5 or 6) reflecting its distance from the origin of 438 
the coordinate system. As is evident from both Fig. 5 and Table 3, most of the best-performing 439 
structures can be found in Cluster 1. This is particularly clear in the planes defined by the high-flow 440 
(Crit1) and low-flow (Crit2) criteria (Figure 5), where all clusters tend to line up along a diagonal axis 441 
(dashed line). In contrast, a small trade-off between Cluster 1 and Cluster 2 can be observed in 442 
calibration in the plane defined by the high-flow (Crit1) and volume error (Crit3) criteria: models from 443 
Cluster 2 (respectively Cluster 1) tend to perform slightly better than those from Cluster 1 444 
(respectively Cluster 2) with respect to Crit3 (respectively Crit1). However, this trade-off disappears 445 
in validation. Similar comments can be made about the other 2D subspaces (not shown here). In the 446 
following analysis, Cluster 1 will be considered as the only best-performing cluster. This cluster 447 
encompasses 24 members in calibration as against 15 in validation, indicating that several model 448 
structures do not pass the validation test (namely models no. 30, 32, 49, 52, 53, 55, 66, 67, 69 and 72, 449 
as shown in Table 4). 450 

Several observations can be made regarding the composition of Cluster 1 in both simulation 451 
periods. As can be seen from the values listed in Table 4, it is not possible to pick out a single, 452 
unambiguous model hypothesis that would perform better than the others with respect to all criteria. 453 
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On the one hand, there appears to be several equally acceptable structures for each individual criterion. 454 
Models no. 22 (A1–B1a–C3–D2–E1–F2b), 46 (A1–B1b–C3–D2–E1–F2b) and 54 (A1–B1c–C1–D3–455 
E2–F1b), for instance, yield very similar values of the high-flow criterion (Crit1), despite some 456 
differences in their modeling options. This illustrates the equifinality of model structures in 457 
reproducing one aspect of the system behavior. On the other hand, some structures seem more 458 
appropriate to the simulation of high flows or snow dynamics while others appear to be better at 459 
reproducing low flows or estimating the annual water balance of the catchment. This indicates trade-460 
offs between model structures in reproducing several aspects of the system behavior. It is however 461 
possible to identify some recurring patterns among the modeling options present in (or absent from) 462 
Cluster 1 in both periods. First, option B1c is the most represented snowmelt-accounting hypothesis, 463 
despite an increase in the number of alternative options (B1a, B1b) in validation. More strikingly, 464 
option C2 is totally absent from Cluster 1 in both periods. Single-flux combinations (C1–D1 and C3–465 
D2) and their splitting counterparts (C1–D3 and C3–D1) tend to be equally well-represented, thus 466 
providing evidence of significant equifinality among these conceptual representations. Finally, runoff 467 
transformation options based on a threshold-like behavior (F1b, F2b and F3b) account for 75% of 468 
model hypotheses in calibration and over 90% in validation. In particular, option F3a turns out to be 469 
completely absent from Cluster 1 in both periods while models based on option F2a (no. 49, 55, 67 470 
and 69) fail the validation test. On the opposite, option F2b is particularly well-represented. 471 

 472 
4.1.2.  Pareto analysis 473 

 In general, valuable insight can be gained from the mapping of Pareto fronts in the space of 474 
performance measures. While a full description of all the Pareto fronts obtained in calibration is not 475 
possible here due to space limitations, two model hypotheses are used to illustrate this point. Figure 6 476 
shows the Pareto-optimal solutions of models no. 49 (A1–B1c–C1–D1–E1–F2a) and 50 (A1–B1c–477 
C1–D1–E1–F2b) plotted in two dimensions for different combinations of two of the four objective 478 
functions used in calibration. Note that these two models differ only in their runoff transformation 479 
options (F2a vs. F2b) so that the comparison can be made in a controlled way. Trade-offs between the 480 
high-flow (Crit1) and low-flow (Crit2) criteria are clearly more important with option F2a (Fig. 6a) 481 
than with option F2b (Fig. 6b). This means that option F2a is less efficient in reproducing 482 
simultaneously high and low flows and explains why this option disappears from Cluster 1 in 483 
validation. By contrast, the other pairs of criteria (Crit1–Crit3, Crit1–Crit4) displayed in Fig. 6 appear 484 
to be less useful in differentiating between the two models. 485 

Further insight into the structural strengths and weaknesses of model hypotheses can be 486 
obtained by determining how parameter values vary along the Pareto fronts of the models. A large 487 
'Pareto range' in some parameters indicates structural deficiencies in the corresponding model 488 
components (see e.g. Gupta et al., 1998) or a lower sensitivity of model outputs to those parameters 489 
(Engeland et al., 2006). For purposes of clarity, Fig. 7 focuses on eight illustrative structures identified 490 
as members of Custer 1 in calibration. The models are paired in such a way that two models of the 491 
same pair differ in only one modeling option. Thus, the effects of potential interactions between model 492 
constituents are more likely to be detected. Parameter values are normalized using the lower and upper 493 
limits given in Table 2 so that all of them lie between 0 and 1. Different colors are used to indicate the 494 
parameter sets associated with the smallest high-flow (in black), low-flow (in red), volume (in blue) 495 
and snow (in green) errors. To what extent these colored solutions converge toward the same 496 
parameter values or diverge from each other determines the level of parameter identifiability of each 497 
model hypothesis. As regards snow-accounting options, a distinction can be made between snow 498 
accumulation paramaters ( ௌܶ	and ݉ௌ), whose ranges of variation appear to be large in all cases, and 499 
snowmelt parameters ( ெܶ , ெ݂ ଵݎ ,  ଶ, ଵ݂, ଶ݂), whose levels of identifiability depend on interactions 500ݎ ,
with the other model components. In Fig. 7a, the Pareto range of snowmelt parameters decreases in 501 
width when moving from option B1a to B1b and using the combination of options C3–D2–E1. Yet 502 
changing this combination into C3–D1–E2 has the opposite effect (Fig. 7b): parameter uncertainty 503 
now decreases when moving from option B1b to B1a. As regards runoff transformation parameters (504 ,ߙ 

ܰ, ܭଶ, ܭଷ, ߜ, ܵ and ܭସ), the black and red solutions are closer to each other when options F2b (Fig. 505 
7a, 7b and 7c) and F1b (Fig. 7d) are used. By contrast, options F2a (Fig. 7c) and F1a (Fig. 7d) require 506 
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very different parameter sets to adequately simulate both low and high flows. Again, this suggests that 507 
runoff transformation options based on a threshold-like behavior may be more consistent with the 508 
observed data than those based on a power law relationship. It should be noted, however, that 509 
relatively large Pareto ranges in some runoff transformation parameters (e.g. ܭଶ and ܭଷ) may still be 510 
required to obtain small volume and snow errors at the same time as high low-flow and high-flow 511 
performances (e.g. models no. 44 and 54). Interestingly, the black, red and blue solutions of models 512 
no. 49, 50, 53 and 54 also converge towards the same low values of parameter ܭ  (evapotranspiration 513 
coefficient) independently of runoff transformation options. 514 
Drawing any conclusion at this stage about the links between parameter identifiability and model 515 
performance might be somewhat hazardous. Other examples (not shown here) show that a model 516 
structure may have highly identifiable parameter values in calibration and yet not be suited to the 517 
conditions prevailing in validation. Also, a reduction of parameter uncertainty as is the case with 518 
options F2b and F1b often comes with a greater number of parameters. 519 
 Finally, a better understanding of the reasons why some models, or modeling options, work 520 
better than others is provided by the simulation bounds (or Pareto-envelopes) derived from the Pareto 521 
sets of these models. Figure 8 shows the Pareto-envelopes of the SWE internal state variable obtained 522 
with three competing model hypotheses (no. 6, 30 and 54) differing only in their snowmelt-accounting 523 
options (respectively B1a, B1b and B1c). Note that only the last two of these models (30, 54) belong 524 
to Cluster 1 in calibration (see Table 4). Simulated snow accumulation starts later than expected with 525 
all modeling options (B1a, B1b and B1c). As will be further discussed in Sect 5.2., this is likely to 526 
indicate systematic errors in the input precipitation and/or MODIS-based SCA data. On the whole, the 527 
envelope widths suggest a reduction in the uncertainty associated with the prediction of snow seasonal 528 
dynamics when moving from option B1a to option B1c. This is consistent with the mean annual snow 529 
errors reported in Table 4, which are significantly lower with option B1c independently of the other 530 
model options. It must be acknowledged, however, that even this option (B1c) fails to capture the 531 
seasonal dynamics of snow accumulation and melt during several years of the period. The release of 532 
water from the snow-accounting store of model no. 54 continues well after the end of the observed 533 
snowmelt season in 2008, 2009, 2010 and 2011. On the contrary, the simulated snowmelt season tends 534 
to end sooner than expected with model no. 30 in 2003, 2004, 2005 and 2006. In that case, options 535 
B1b and B1c appear to be somewhat complementary. 536 

 537 
 538 

4.2. Representation of structural uncertainties 539 

This Section deals with the identification and use of an ensemble of equally acceptable model 540 
structures to quantify and represent the uncertainty arising from the system non-identifiability. Figure 541 
9 shows the overall uncertainty envelope obtained with the 8 model structures whose combination 542 
minimizes the envelope area in calibration while holding constant the number of outlying observations 543 
(see Sect 3.3.). Over 82% of discharge observations are captured by the envelope in both simulation 544 
periods. Interestingly, this number exceeds the best Npar value obtained in calibration with the 545 
individual Pareto-envelopes (see Table 4), which shows how necessary it is to consider an ensemble of 546 
model structures. In validation, however, a better combination could be identified since several models 547 
of Cluster 1 display significantly higher Npar values (Table 4). On the whole, the comparison of the 548 
observed hydrograph with the simulation bounds of the envelope shows a good match of rising limbs 549 
and peak discharges in both simulation periods, but a less accurate fit of falling limbs during at least 550 
one major (in 1987–88) and two minor (in 2005–06 and 2007–08) events. The slower recession of the 551 
observed hydrograph might indicate a delayed contribution of one or more catchment compartments 552 
that cannot be described by any of the modeling options available in the multiple-hypothesis 553 
framework. 554 

 555 
 556 

5. DISCUSSION & CONCLUSION 557 
 558 
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This study aimed at reducing structural uncertainty in the modeling of a semi-arid Andean catchment 559 
where lumped conceptual models remain largely under-used. To overcome the current lack of 560 
information on model adequacy in this catchment, a modular modeling framework (MMF) relying on 561 
six model-building decisions was developed to generate 72 competing model structures. Four 562 
assessment criteria were then chosen to calibrate and evaluate these models over a 30-year period 563 
using the concept of Pareto-optimality. This strategy was designed to characterize both the parameter 564 
uncertainty arising from each model's structural deficiencies (i.e. model inadequacy) and the 565 
ambiguity associated with the choice of model components (i.e. model non-uniqueness). Finally, a 566 
clustering approach was taken to identify natural groupings in the multi-objective space. Overall, the 567 
greatest source of uncertainty was found in the connection between runoff generation and runoff 568 
transformation components (decisions D and E). However, the results also showed a significant drop 569 
in the number of plausible representations of the system. After validation, 14 model structures among 570 
the 24 identified in calibration as the best-performing ones were finally considered as equally 571 
acceptable. 572 

Interestingly, both rejected and accepted hypotheses appeared closely related to particular types of 573 
snowmelt-accounting (decision B), runoff generation (decision C) and runoff transformation (decision 574 
D) modeling options, suggesting possible links to some physical features of the catchment. For 575 
instance, the frequent occurrence of option C1 and the absence of option C2 among the set of best-576 
performing structures indicate that moisture-accounting components may not be essential to the 577 
conceptual modeling of this catchment. Most of the land cover is, indeed, dominated by barren to 578 
sparsely vegetated exposed rocks, boulders and rubble with poor soil development outside the valleys. 579 
This setting may also explain the relatively low values of parameter KC obtained with the black, red 580 
and blue solutions shown in Fig. 6. Likewise, the frequency of options F2a and F2b in the best-581 
performing cluster suggests that the catchment actually behaves as a ‘serial’ system. The overall 582 
organization of fluxes in the catchment, from high elevations toward the valleys and then northward to 583 
the outlet, can be conceptualized as a series of two hydraulically connected reservoirs: one standing 584 
for the granitic mountain blocks (upstream reservoir) and the other for the alluvial valleys 585 
(downstream reservoir). Similar results were also obtained for smaller catchments in Luxembourg 586 
characterized by relatively impervious bedrocks and lateral water flows (Fenicia et al., 2014). The 587 
results also provided some evidence of a strong threshold behavior at the catchment scale (options 588 
F1b, F2b and F3b) compared to the smoother power laws of options F1a, F2a and F3a. However, 589 
further research would be needed to track the origin of this behavior, which might be related at some 590 
point to connectivity levels in the fractured and till-mantled areas of the mountain blocks. As regards 591 
snowmelt, the frequent occurrence of option B1c in the best-performing cluster in calibration may 592 
indicate a need to account for processes which the degree-day method implemented in option B1a does 593 
not fully capture. In semi-arid central Andes (29–30°S), small zenith angles and a thin, dry and cloud-594 
free atmosphere during most of the year make incoming shortwave radiation the most important 595 
source of seasonal variations in the energy available for melt (e.g. Pellicciotti et al., 2008; Abermann 596 
et al., 2013). While this dominant source of energy cannot be accounted for by temperature alone, the 597 
seasonal timing of snowmelt is also expected to show a greater year-to-year stability, which may 598 
explain the relative success of option B1c when compared to option B1b. Of course, these 599 
hypothesized relationships between some physical characteristics of the catchment and specific 600 
modeling options need to be further qualified. Differentiating between physically adequate and purely 601 
numerical solutions will always seem somewhat hazardous in the case of lumped conceptual models. 602 
For instance, a small number of models among those identified as the best-performing ones also rely 603 
on parallel (F1a, F1b) and intermediate (F3b) runoff transformation options. Also, the relative 604 
proportions of snowmelt-accounting options B1a, B1b and B1c, appears much more balanced in 605 
validation, where no snow error criterion could be applied, than in calibration. Although this was not 606 
our objective in this paper, comparative studies including several similar or contrasted catchments 607 
would be required to better understand how different model structures relate to different physical 608 
settings. Such understanding is of primary importance to the choice of conceptual models in climate 609 
change impact studies. 610 

Another important issue related to model identification is the extent to which the 'principle of 611 
parsimony' can be applied to differentiate between a large number of model hypotheses. Many authors 612 
rightly consider that a maximum of 5 to 6 parameters should be accepted in calibration when using a 613 
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single objective function. Efstratiadis and Koutsoyiannis (2010) extended this empirical rule to the 614 
case of multi-objective schemes by allowing « a ratio of about 1:5 to 1:6 between the number of 615 
criteria and the number of parameters to optimize ». For a multi-objective scheme based on four 616 
criteria (as in the present study), this leads to consider 20 to 24-parameter models as still being 617 
parsimonious. This will certainly seem unreasonable to many modelers because, as Efstratiadis and 618 
Koutsoyiannis (2010) also pointed out, the various criteria used are generally not independent of each 619 
other. In our case, for instance, the information added by the low-flow criterion may not be so 620 
different from that already introduced by the high-flow criterion. By contrast, the snow criterion tends 621 
to add new information on the snow-related parameters. From this perspective, it is noteworthy that 622 
most rejected hypotheses among the 24 identified in calibration as members of Cluster 1 had more 623 
than 11 free parameters, with only one having 9 parameters. The principle of parsimony, however, 624 
cannot be used to further discriminate between the remaining 14 best-performing hypotheses. For 625 
instance, model no. 54 (12 parameters) performs better than model no. 2 (9 parameters) with respect to 626 
the high-flow criterion. 627 

Eventually, the number of models used to represent structural uncertainty was reduced by 628 
searching for which minimal set of models maximized the number of observations covered by the 629 
ensemble of Pareto-envelopes. It is important to make clear that model inadequacy and non-630 
uniqueness were evaluated here in non-probabilistic terms. In particular, the Pareto-envelopes derived 631 
for each model structure quantify only the uncertainty arising from the trade-offs between competing 632 
criteria and do not have a predefined statistical meaning (Engeland et al., 2006). Consequently, the 633 
overall simulation bounds shown in Figure 8 cannot be easily interpreted as ‘confidence bands’. 634 
Although discussing the adequacy of non-probabilistic approaches to structural uncertainty was far 635 
beyond the scope of this study, it is interesting to analyze the reasons why between 15% and 20% of 636 
the observations remained outside the overall simulated envelope in both calibration and validation. 637 
To a large extent, this lack of performance can be attributed either to an insufficient coverage of the 638 
hypothesis and objective spaces or to uncertainties in the precipitation and streamflow data that were 639 
overlooked in this study. 640 

First, the choice of Pareto-optimality to characterize structural uncertainty can be criticized for 641 
leading to the rejection of many behavioral parameter sets (i.e. being close to, but not part of, the 642 
Pareto front) that might have been Pareto-optimal with different performance measures, calibration 643 
data or input errors (e.g. Freer et al., 2003; Beven, 2006). Also, this concept should not be confused 644 
with that of equifinality. Both notions agree that it is not possible to identify a single, best solution to 645 
the calibration problem and that multiple parameters sets should be retained to give a proper account 646 
of model uncertainty. However, the Pareto set of solutions represents the minimum parameter 647 
uncertainty that can be achieved when several criteria are considered simultaneously with no a priori 648 
preference for one over the others (Gupta et al., 2003). By contrast, two parameter sets are said to be 649 
equifinal (in a statistical sense) if they can be regarded as equally acceptable with respect to a given 650 
model outcome. For a proper assessment of parameter equifinality, more probabilistic approaches 651 
should be taken (Madsen, 2000; Huisman et al., 2010). In the context of multiple-hypothesis testing, a 652 
meticulous selection of the assessment criteria is also critical to avoid rejecting some modeling options 653 
for the wrong reasons. For instance, the snow error criterion was shown to have a great influence on 654 
the identification of snow-accounting components, as much more ambiguity between the various 655 
available options was observed during the validation period when this criterion could not be used. 656 
Also, like any other multiple-hypothesis framework, the MMF developed in this study suffers from an 657 
insufficient coverage of the hypothesis space (Gupta et al., 2012). The parameterization of 658 
evapotranspiration, for example, was not considered as an independent model-building decision. Only 659 
one formula was applied to calculate potential evapotranspiration and the possibility to retrieve actual 660 
evapotranspiration from downstream water stores was not provided. Likewise, the runoff 661 
transformation process was described using only two water stores, of which only one was assumed to 662 
have a nonlinear behavior. Future work to improve the conceptual modeling of the Claro River 663 
catchment should include the testing of new or refined hypotheses to allow for the use of additional 664 
auxiliary data (e.g. observed snow heights, irrigation water-use). 665 

More fundamentally, our ability to discriminate among the competing model hypotheses was 666 
constrained by inevitable errors in the input and output data sets. In particular, the comparison of 667 
simulated SWE levels and MODIS-based SCA estimates revealed some uncertainty in the estimation 668 
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of precipitation inputs and confirmed previous results obtained by Favier et al. (2009). Some 669 
precipitation events occurring in the early winter may not be captured by the gauging network (< 3200 670 
m a.s.l.) used for the interpolation of precipitation across the catchment. These errors may add to 671 
systematic volume errors caused by wind, wetting and evaporation losses at the gauge level, leading to 672 
an overall underestimation of precipitation, as indicated by the rough estimate of the catchment-scale 673 
water balance given in Sect 2. It was also possible to highlight some errors in the streamflow data. The 674 
observed streamflow was ‘naturalized’ by simply adding back the estimated historical water 675 
abstractions (Sect. 2.2). When applied on a daily basis, this process inevitably adds some uncertainty 676 
to streamflow values because a significant part of surface-water abstractions actually return to the river 677 
system within a few days due to conveyance and field losses. In general, ignoring these return flows 678 
would lead to overestimating daily natural flows. In this paper, however, the actual water withdrawals 679 
were not known with precision but only as percentages of the nominal water rights – these percentages 680 
being fixed on a monthly basis by the authorities to account for variations in water availability. The 681 
combined impact of streamflow and precipitation errors on the assessment of structural uncertainty 682 
thus remained unknown. Further research is currently underway to integrate the effects of water 683 
abstractions and crop water-use in the hydrological modeling process (Hublart et al., 2015; see also 684 
Kiptala et al., 2014 for another approach). From a multiple-hypothesis perspective, the modeling of 685 
irrigation water-use should be regarded as a testable model component in its own right.  686 
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TABLES & CAPTIONS 947 

 948 

Table 1.   Constitutive equations of fluxes between the various components of the modeling options described in 949 
Fig. 2. Parameter (in italic) significations and units are detailed in Table 2. P: catchment-averaged daily 950 
precipitation; Rain: rain fraction of precipitation P; Snow: snow fraction of precipitation P; T: catchment-951 
averaged daily temperature; PE: catchment-averaged daily potential evapotranspiration; AE: catchment-averaged 952 
daily actual evapotranspiration; S୨, j ∈ ሾ1,5ሿ: state variables of the conceptual stores; Q୨, j ∈ ሾ1,5ሿ: water fluxes 953 
between the model components). 954 

Options Constitutive equations  Options Constitutive equations 

A1 

 
Snow ൌ P ሺ1  expሾሺT െ Tୗሻ mୗ⁄ ሿሻ⁄ Rain

ൌ P െ Snow 
 

 C3 Qଵ ൌ ሺMelt  Rainሻሾ1 െ ሺ1 െ Sଵ ܵ⁄ ሻሿ 
Qଶ ൌ  ଵSଵܭ

B1a, 
B1b, B1c 

 
Melt ൌ MFሺTഥ െ logሾ1  expሺെTഥሻሿሻ 
with Tഥ ൌ ሺT െ ெܶሻ m⁄  and m ൌ 0.1°C 
 

 D1 Qଷ ൌ Qଶ and Qସ ൌ Qଵ 
or Qଷ ൌ Qଵ 

B1a 
 
MF ൌ ெ݂m 
 

 D2 Qଷ ൌ Qଵ  Qଶ 

B1b 

 
MF ൌ ଵݎ   ଶTଷݎ
with Tଷ the mean temperature of the last 30 
days 
 

  
D3 

 
Qଷ ൌ ሺ1 െ  ሻQଵߙ
Qସ ൌ αQଵ 

B1c 
 
MF ൌ ଵ݂  ଶ݂sinሺ0.551π  2πd 366⁄ ሻ 
 

 E1 

 
Q୨,୪ୟ ൌ Qଶ 
with ݆ ∈ ሼ3,4ሽ 
 

C1 AE ൌ minሺMelt  Rain,  PEሻ  E2ܭ	

 

Q୨,୪ୟሺtሻ ൌ ωሺiሻQ୨ሺt െ i  1ሻ
ே್

୧ୀଵ
 

with ωሺiሻ ൌ  2udu ܰ
ଶ⁄୧

୧ିଵ  
 

C2, C3 AE ൌ PE	minሺ1, Sଵ ܵ⁄ ሻ  F1a, F2a, 
F3a 

 
Qହ ൌ ଶSଶܭ

ଵାఋ 
Q ൌ  ଷSଷܭ

 

C1 Qଵ ൌ Melt  Rain  
F1b, 

F2b, F3b 
 

 
Qହ ൌ ସSଶܭ  ଶሺSଶതതതܭ െ logሾ1  expሺെSଶതതതሻሿሻ 
Q ൌ  ଷSଷܭ
with Sଶതതത ൌ ሺSଶ െ ܵሻ mେ⁄  and mେ ൌ 0.1 mmିଵ 
 

C2 Qଵ ൌ ሺMelt  RainሻሺSଵ ܵ⁄ ሻఉ  
 

F3a, F3b 
 

Q ൌ  Sଶܦ
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Table 2.   Parameters used in the various modeling options with their signification and initial sampling. (*) The 956 
possible values for KC were limited to a maximum of 0.5 to reflect the extreme aridity of the catchment. 957 
 958 
Parameter Options Signification Units Initial range 

ௌܶ A1 Rain / snow partitioning temperature 
threshold 

°C -10 – 10 

݉ௌ A1 Rain / snow partitioning smoothing 
parameter 

– 0.01 – 3 

ெܶ B1a, B1b, B1c Snowmelt temperature threshold °C -10 – 10 

ெ݂ B1a Constant melt factor °C.mm-1 0 – 10 

 ଵ B1b Coefficient for computation of theݎ
variable melt factor 

°C.mm-1 1 – 5 

 ଶ B1b Coefficient for computation of theݎ
variable melt factor 

°C.mm-1 1 – 5 

ଵ݂ B1c Coefficient for computation of the 
variable melt factor 

°C.mm-1 1 – 5 

ଶ݂ B1c Coefficient for computation of the 
variable melt factor 

°C.mm-1 1 – 5 

 (*)  C1 Evapotranspiration coefficient – 0.05 – 0.5ܭ	

ܵ C2, C3 Maximum storage capacity of the 
moisture-accounting store 

mm 10 – 100 

 ߚ C2 Shape parameter – 0.1 – 3 

ܾ  C3 Shape parameter of Pareto distribution – 0.1 – 3 

 ଵܭ C3 Infiltration coefficient d-1 0.001 – 0.7 

 D3 Splitting parameter – 0.1 – 0.9 ߙ

ܰ E2 Number of time steps in the lag routine – 1 – 6 

 ଶ F1a to F3b Storage coefficient d-1 0.01 – 0.99ܭ

 ଷ F1a to F3b Storage coefficient d-1 0.001 – 0.01 (F1a, F1b, F3a, F3b)ܭ
0.001 – 0.1 (F2a, F2b)

 F1a, F2a, F3a Power law parameter of the non-linear ߜ
store in the runoff transformation module 

– 0 – 1 

ܵ F1b, F2b, F3b Threshold parameter of the non-linear 
store in the runoff transformation module 

mm 10 – 300 

 F3a, F3b Recharge coefficient d-1 0.001 – 0.5 ܦ

 ସ F1b, F2b, F3b Storage coefficient d-1 0.001 – 0.01ܭ
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Table 3.   Coordinates of the cluster centroids in the four-dimensional (4D) space of performance measures. The 960 
number of models with membership values > 50% (N50%) is given for each cluster. 961 
 962 

Calibration period (1997–2011) 

Cluster no. Crit1 (1-NSE) Crit2 (1-NSElog) Crit3 (VEM) (%) Crit4 (SE) (%) N50% 

1 0.15 0.25 10 9 24 
2 0.23 0.30 10 10 24 
3 0.49 0.58 23 11 10 
4 0.60 0.62 25 16 13 
5 0.92 0.97 33 20 1 
      

Validation period (1982–1996) 

Cluster no. Crit1 (1-NSE) Crit2 (1-NSElog) Crit3 (VEM) (%) Crit4 (VEC) (%) N50% 

1 0.24 0.21 14 3 15 
2 0.32 0.29 15 4 25 
3 0.38 0.31 15 5 8 
4 0.51 0.42 25 23 8 
5 0.61 0.44 27 27 11 
6 0.61 0.51 30 33 5 
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Table 4.   Detailed composition of Clusters 1 in calibration and validation. The tables indicate the numbers and 964 
the names of the models as well as their number of parameters NP. For each criterion only the best performance 965 
value obtained along the Pareto front is given. Npar (%) represents the proportion of observations enclosed within 966 
the simulation bounds of each Pareto set of solutions. Asterisks are used to indicate the models which are not in 967 
the best-performing group (Cluster 1) either in calibration or in validation. 968 
 969 

Calibration period (1997–2011) 

Model no. Model name (options) NP NSE NSElog VEM (%) SE (%) NPar (%) 

2 A1–B1a–C1–D1–E1–F2b 9 0.87 0.76 10.6 11.2 76.0 
4 A1–B1a–C1–D1–E1–F3b 10 0.84 0.77 10.4 11.2 53.2 
8 A1–B1a–C1–D3–E2–F2b 11 0.83 0.75 11.7 11.1 76.5 

20 A1–B1a–C3–D1–E2–F2b 12 0.83 0.76 10.0 11.4 60.0 
22 A1–B1a–C3–D2–E1–F2b 11 0.90 0.77 10.4 11.2 64.1 
26 A1–B1b–C1–D1–E1–F2b 10 0.87 0.77 10.1 11.5 58.4 

30 (*) A1–B1b–C1–D3–E2–F1b 12 0.84 0.70 9.8 11.4 69.6 
32 (*) A1–B1b–C1–D3–E2–F2b 12 0.83 0.71 11.1 11.4 68.4 

44 A1–B1b–C3–D1–E2–F2b 13 0.89 0.77 10.6 11.4 63.4 
46 A1–B1b–C3–D2–E1–F2b 12 0.90 0.76 10.7 11.4 45.4 

49 (*) A1–B1c–C1–D1–E1–F2a 9 0.82 0.73 10.9 7.0 67.0 
50 A1–B1c–C1–D1–E1–F2b 10 0.86 0.77 10.4 7.0 67.4 

52 (*) A1–B1c–C1–D1–E1–F3b 11 0.85 0.72 8.8 8.1 65.7 
53 (*) A1–B1c–C1–D3–E2–F1a 11 0.79 0.76 10.8 7.0 63.8 

54 A1–B1c–C1–D3–E2–F1b 12 0.90 0.78 11.5 7.5 55.7 
55 (*) A1–B1c-C1-D3–E2–F2a 11 0.80 0.73 10.7 7.0 54.5 

56 A1–B1c–C1–D3–E2–F2b 12 0.85 0.75 10.8 7.6 76.3 
65 A1–B1c–C3–D1–E2–F1a 12 0.83 0.78 8.0 7.7 65.0 

66 (*) A1–B1c–C3–D1–E2–F1b 13 0.81 0.77 9.6 6.8 63.5 
67 (*) A1–B1c–C3–D1–E2–F2a 12 0.81 0.75 10.7 7.0 73.7 

68 A1–B1c–C3–D1–E2–F2b 13 0.85 0.74 10.6 6.8 74.5 
69 (*) A1–B1c–C3–D2–E1–F2a 11 0.82 0.73 10.6 7.0 51.8 

70 A1–B1c–C3–D2–E1–F2b 12 0.87 0.76 10.7 7.5 76.4 
72 (*) A1–B1c–C3–D2–E1–F3b 13 0.81 0.71 9.8 7.1 69.0 

 970 
 971 

Validation period (1982–1996) 

Model no. Model name NP NSE NSElog VEM (%) VEC (%) NPar (%) 

2 A1–B1a–C1–D1–E1–F2b 9 0.75 0.78 13.3 2.7 87.1 
4 A1–B1a–C1–D1–E1–F3b 10 0.73 0.80 14.1 3.8 50.0 
8 A1–B1a–C1–D3–E2–F2b 11 0.75 0.76 14.5 5.8 84.8 

20 A1–B1a–C3–D1–E2–F2b 12 0.72 0.77 13.7 3.7 58.4 
22 A1–B1a–C3–D2–E1–F2b 11 0.76 0.78 12.3 3.3 75.3 
26 A1–B1b–C1–D1–E1–F2b 10 0.74 0.78 12.9 3.5 70.2 

42 (*) A1–B1b–C3–D1–E2–F1b 13 0.73 0.75 15.6 3.3 62.7 
44 A1–B1b–C3–D1–E2–F2b 13 0.74 0.79 13.0 4.1 69.3 
46 A1–B1b-C3–D2–E1–F2b 12 0.76 0.77 15.2 3.4 48.4 
50 A1–B1c–C1–D1–E1–F2b 10 0.78 0.81 13.9 2.5 73.1 
54 A1–B1c–C1–D3–E2–F1b 12 0.77 0.78 15.3 3.5 60.8 
56 A1–B1c–C1–D3–E2–F2b 12 0.75 0.77 13.2 4.5 81.3 
65 A1–B1c–C3–D1–E2–F1a 12 0.74 0.80 13.8 3.6 73.0 
68 A1–B1c–C3–D1–E2–F2b 13 0.77 0.74 13.5 3.7 78.7 
70 A1–B1c–C3–D2–E1–F2b 12 0.73 0.78 14.2 3.4 79.4 
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