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Dear Editor - dear Dr. Toth, 

First of all, we would like to thank you for inviting us to resubmit our manuscript subject to 

major revision, and also for extending the deadline for resubmitting the revised version. 

Two anonymous reviewers provided important comments and suggestion, which pointed out 

issues we overlooked in the original manuscript, and a number of other issues that needed 

further clarifications. We have significantly revised the original manuscript based on the 

excellent inputs reviewers gave us and your suggestions, which have helped improve the 

quality of the manuscript. In accordance with your recommendations, the contribution of our 

work for the advance in real-time flow forecasting and application thereof for hydropower 

operations has been explained better in the revised manuscript. All section of the original 

manuscript have either been expanded, rewritten, restructured or seen some omissions.  

Even though we replied to all main comments in the interactive discussion, the comments 

from the reviewers, our responses to the issues raised, and the changes in the manuscript 

(depending on how we took up the issues raised) are illustrated in the following. 

 

Referee #1 

Major comments: 

1. The authors claim that the described complementary conceptual and data-driven (error) models is a 

new approach. However, as stated in Lines 4-5, Page 12067, “Several example applications can be 

found in the scientific literature on using conceptual and data driven models complementarily”, 

similar works have been found in the previous studies. Furthermore, the HBV model for conceptual 

model and autoregressive (AR) model for error model are both very mature models in hydrology. 

Therefore it is hard to find the new contribution or improvement in this paper. 

We agree with referee #1 that complementary use of conceptual and data driven models is not new 

to the hydrology community. As referee #1 correctly pointed out, we have cited and reviewed the 

pioneering works since the 1990s that applied a similar principle. We appreciate this comment as it 

persuades us of the need to highlight the application aspect and methodological contribution of the 

present work. In this regard, the paper presents application of the principles of complementary 

modelling for forecasting inflows into hydropower reservoirs over extended lead times. The new 

approach we present in the paper deals with the structure the conceptual model fails to capture. It 

should be noted that earlier works that apply complementary modelling often deal with the bias and 

persistence structure in the residual series. This paper, however, recognizes that heteroscedasticity 

seen in the residuals from the conceptual model reflects the failure in the perceptual model, and is 

important in defining the manner the residual series is dealt with. Accordingly, as outlined in section 

2.1.2 of the discussion paper (P12069-P12072), the present study examines the bias, persistence and 

heteroscedasticity in the residuals and employs an iterative algorithm for estimating parameters of 

the AR model as well as the transformation parameters. This point has been reflected at many places 

in the revised manuscript. 
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Revised Manuscript, Section (Abstract), Page 1 (Line 14-23): 

A complementary modelling framework presents an approach for improving real-time forecasting without 

needing to modify the pre-existing forecasting model, but instead formulating an independent additive or 

complementary model that captures the structure the existing operational model may be missing. We present 

here application of this principle for issuing improved hourly inflow forecasts into hydropower reservoirs over 

extended lead-times, and the parameter estimation procedure reformulated to deal with bias, persistence and 

hetroscedasticity. The procedure presented comprises an error model added on top of an un-alterable constant 

parameter conceptual model, the models being demonstrated with reference to the 207 km2 Krinsvatn 

catchment in central Norway. The structure of the error model is established based on attributes of the residual 

time series from the conceptual model. 

 

Revised Manuscript, Section 1, Page 4 (Line 16-24): 

As reviewed above, the principle of complementing conceptual models with data-driven models has enjoyed 

applications in real-time hydrologic forecasting since the 1990s. The methodological contribution of the 

present work is reformulation of the parameter estimation procedure for the data-based model. We recognize 

that the bias, persistence and heteroscedasticity seen in the residuals from the conceptual model reflect 

structural inadequacy of the conceptual model to capture the catchment processes and, hence, are important in 

defining the manner the residual series is dealt with. Accordingly, we describe the reservoir inflows in a 

transformed space and present an iterative algorithm for estimating parameters of the data-driven model and 

the transformation parameters jointly.  

 

2. Actually, there are many error models at present, e.g. autoregressive model, autoregressive 

threshold model, fuzzy autoregressive threshold model, ARIMA based error models and artificial 

neural network models, and so on. This paper selected the autoregressive model to describe the error 

processes. The reason or additional statement should be given to be clear to the readers. More error 

models should be used and compared to obtain more reasonable and high accuracy results. 

The suggestion by referee #1 to conduct comparative assessment of different error models would be 

an interesting work. Conclusions from previous research works (reviewed in the discussion paper: 

P12067 L10-L19) that investigated performance of 4 to 8 error-forecast models influenced the 

selection of the error model. Xiong and O'Connor (2002), in particular, affirm that AR model’s 

longstanding popularity is deservedly right and further emphasize effectiveness of a very 

parsimonious model such as AR model for error forecasting. We have attempted to reflect this in the 

methodology section and discussion of the results in the revised manuscript. 

Revised Manuscript, Section 2, Page 6 (Line 26-27) – Page 7 (Line 1-9): 

This is followed by assessment of the auto correlation function (acf) and partial autocorrelation function (pacf), 

which are keys for identifying the order of Markovian dependence the residuals exhibit. We consider an 

autoregressive (AR) model structure (Eq. 2) to represent the persistence structure in the residual series. 

Comparative assessment of error models of different complexity would be an interesting work but is beyond 

the scope of this study. Xiong and O'Connor (2002) affirm that AR model’s longstanding popularity is 

deservedly right and further emphasize effectiveness of a very parsimonious model such as AR model for error 

forecasting. 

ˆ
p

t i t i

i

e a e            (1) 

where p  designates the length of the lag-time, and 
1 2, , , pa a a  are coefficients of the AR model. 
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Revised Manuscript, Section 3, Page 13 (Line 28-31) – Page 14 (Line 1-6): 

In accordance with the findings from the ACF and PACF plots discussed in section 3.3.2, AR models of up to 

order 3p   were investigated while estimating parameters of the error model. As outlined in section 2.2.2, 

coefficient of the AR(p) model and the transformation parameters were estimated by minimizing the sum of 

the squares of the offsets between the inflows (observed and predicted) in the transformed space, and 

assessment of whether the subsequent residuals from the complementary modelling framework appear 

homoscedastic and exhibited correlation. The latter was assessed using the Kolmogorov-Smirov (KS) statistic 

as a relative quantitative measure followed by visual inspection of the residual plots, which led to the selection 

of an AR(1) model with transformation parameters 41.4   and 0.9  , bias correction 0.021e   and 

coefficient 1 0.97a  .  

 

3. This paper attempted to produce probabilistic inflow forecasts through a complementary modelling 

framework. However, it is known to all that the Bayesian forecasting system (BFS) and generalized 

likelihood uncertainty estimation (GLUE) may be the two most popular and widely used frameworks 

to produce probabilistic inflow forecasts. Comparisons of the results of the proposed method and the 

two methods mentioned above are necessary to verify whether the proposed method are more 

effective and reliable or not? 

It is true that the Bayesian forecasting system (BFS), the generalized likelihood uncertainty 

estimation (GLUE) and the Bayesian recursive estimation (BaRE) are popular methods for producing 

probabilistic forecasts. In this study, the probabilistic inflow forecasts were produced based on 

deterministic forecasts, in which we attempted to mimic the operational forecasting method 

employed in the Norwegian hydropower industry. As demonstrated by Smith et al. (2012), 

performance of the probabilistic forecasts was assessed based on the fraction of observations 

contained in a given confidence interval (see Table A1 and Fig. A1) and comparison with a 

deterministic metric (see Table A2). We believe that this assessment is adequate to evaluate the 

probabilistic forecasts for the present purpose but agree with referee #1 that intercomparison of the 

probabilistic forecasts using this and the above mentioned techniques would lead to identifying the 

more effective and reliable method, and would be an interesting topic for further analysis. This is 

reflected in the introduction and concluding remarks sections of the revised manuscript. 

Revised Manuscript, Section 1, Page 5 (Line 10-18): 

We here emphasise that taking into account uncertainties emanating from various recognized sources and 

describing the degree of reliability of the inflow forecasts has important benefits. According to Montanari and 

Brath (2004), the Bayesian forecasting system (BFS) and the generalized likelihood uncertainty estimation 

(GLUE) are the popular methods for inferring the uncertainty in hydrologic modelling. Yet, the scope of 

producing probabilistic inflow forecasts in this study is limited to attaching a certain probability to the 

deterministic forecasts so common in the Norwegian hydropower industry based on analysis of the statistical 

properties of the error series from the conceptual model, and assessing its degree of reliability. 

 

Revised Manuscript, Section 4, Page 20 (Line 8-13): 

Another interesting topic of future investigation is the intercomparison of the probabilistic forecasts presented 

in the current paper with the same from popular methods such as Bayesian forecasting system (BFS), the 

generalized likelihood uncertainty estimation (GLUE) and the Bayesian recursive estimation (BaRE). We 

believe this would enable identification of the most effective and reliable probabilistic forecasting method that 

can also be implemented in an operational setup.  
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Table A1. Fraction of observations bracketed in the 95 % prediction interval for selected forecast 

lead-times. 

Autumn  Winter 

2 6 9 12 18 24  2 6 9 12 18 24 

99.9 97.8 97.8 94.5 90.1 89 06/07 99.9 96.7 95.6 95.6 92.2 90 

99.9 97.8 97.8 94.5 87.9 83.5 07/08 99.9 97.8 96.7 93.4 95.6 94.5 

99.9 98.9 95.6 95.6 93.4 90.1 08/09 99.9 98.9 97.8 97.8 94.4 95.6 

99.9 96.7 94.5 91.2 93.4 90.1 09/10 99.9 99.9 99.9 98.9 98.9 97.8 

99.9 97.8 97.8 95.6 94.5 91.2 10/11 99.9 96.7 96.7 96.7 95.6 94.4 

Spring  Summer 

2 6 9 12 18 24  2 6 9 12 18 24 

99.9 95.7 89.1 89.1 88 83.7 06/07 99.9 99.9 99.9 99.9 98.9 97.8 

99.9 99.9 98.9 98.9 94.6 94.6 07/08 99.9 98.9 98.9 98.9 98.9 98.9 

99.9 98.9 97.8 96.7 95.7 92.4 08/09 99.9 99.9 98.9 98.9 98.9 98.9 

99.9 97.8 94.6 93.5 91.3 90.2 09/10 99.9 99.9 99.9 99.9 99.9 98.9 

98.9 95.7 92.4 90.2 85.9 82.6 10/11 99.9 98.9 98.9 96.7 96.7 95.7 

 

 

 
Figure A1. Screenshot of Table 3 from Smith et al. 2012. 
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Table A2. Relative RMSE reductions (%) in the inflows forecast for selected forecast lead-time (* 

designates relative RMSE reduction of <0). 

Autumn  Winter 

2 6 9 12 18 24  2 6 9 12 18 24 

79.3 52.3 41.7 31.6 16.6 10 06/07 87.9 49.3 31.3 17.5 1.3 * 

84.4 62.2 50.7 41.4 19.5 * 07/08 81.9 54.1 40 30.8 17.5 18.4 

87.9 65.9 54.1 39.4 70 11.5 08/09 83.9 68.4 49.5 36 12.8 5.8 

83.2 59.1 47.2 38.1 23.3 18.4 09/10 91.4 78.8 65.9 46.9 32.2 22.2 

84.9 57 47.5 40.3 26.2 10.9 10/11 88.7 64.9 52.3 36.9 90 11.1 

Spring  Summer 

2 6 9 12 18 24  2 6 9 12 18 24 

88.2 66.3 52.3 43.1 30 23.2 06/07 90 76.3 67.4 63.7 49.6 34.4 

93.3 79 70.4 64.9 54 46 07/08 81.4 55.6 45.4 39.4 29.3 23.2 

90.4 73.7 65.7 58.7 44.7 31.6 08/09 94.4 78.2 52.9 36.7 18.6 11.9 

87.7 64.9 50.6 42.5 32.8 28.3 09/10 84.8 71.5 61 51.9 39.3 30 

88.6 63.4 48.7 41.7 29.8 23.7 10/11 88.7 64.4 49.8 39.8 28.6 25 

 

 

Minor comments: 

1. As shown in Fig. 8, the unit of inflow should be transformed to international unit “m3/s”. 

We agree with reviewer #1 that the inflow hydrographs can be provided in the international unit 

(m3.s-1). As we attempted to explain in the discussion paper, the reason we expressed the inflows in 

mm.h-1 (both Fig. 2 & 8) is to emphasize the direct use of the water level records. Beven (2001) 

outlines the advantages associated to using the water level information. Moreover, we also believe 

the mm.h-1 unit enables associating the hydrographs with the water level in the hydropower reservoirs 

to easily communicate the uncertainty in the power production scheduling, which heavily relies in 

quantifying the inflow into the reservoir. 

 

2. Some indexes in the following references can help identify and evaluate the quality of prediction 

interval, such as the percentage of coverage (POC), the average relative width (ARW) etc. […] 

We thank reviewer #1 for the suggested references. The percentage of coverage (POC), which is the 

same as the reliability score we used in the original manuscript and Xiong et al. (2009) refer to as the 

containing ratio (CR) has been used. We have given further description in the revised manuscript. 

Revised Manuscript, Section 2, Page 10 (Line 3-11): 

Xiong et al. (2009) outline several indices that can serve for describing the properties of prediction bounds of 

particular probability and for comparative study of prediction intervals resulting from different uncertainty 

assessment schemes. The indices characterise the prediction bound either by: the percentage of observations it 

contains, its band-width, or its symmetry relative to the observation. According to Xiong et al. (2009), of all 

indices the containing ratio (CR), which describes the percentage of observed inflows falling in the desired 

interval percentage, is the widely used metrics for assessing reliability of probabilistic forecasts. We adopt the 

CR for describing the reliability of the forecasts with the desired interval percentage of 95% ( 0.05  ). 
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3. Relative error (RE) is suggested to be used in the conceptual model during the calibration and 

validation period (Table 2). The value of RE is expected to be close to zero for a good simulation of 

the total volume of the observed runoff series, defined as […] 

We thank reviewer #1 for the suggested references. We have replaced the percentage bias (PBIAS) 

metric used in the original manuscript with the Relative error (RE). 

Revised Manuscript, Section 2, Page 8 (Line 27-28) – Page 9 (Line 1-7): 

Evaluations are made with respect to varying forecast lead-times and season wise as well. Among the three 

statistical performance criteria, the RE  (Eq. 5) measures the relative error between the total observed and 

predicted inflow volume. For a good simulation the value of RE  is expected to be close to zero. Quantifying 

the relative error ( RE ) of the simulations/forecasts is important because it indicates how the inaccuracies affect 

a hydropower company’s ability to deliver the amount of energy it has pledged to provide to the energy market. 

Therefore, special attention is given to the less aggregate version of RE , which we hereon refer to as 

percentage volume error ( PVE ) and describe as follows. 

 ˆ
100%

t t

t

z z
RE

z


 



         (2) 

 

Referee #2 

Major comments: 

1. Lack of scientific innovation as a methodology paper. I couldn’t consider the proposed 

complementary modelling framework as a new approach because inflow forecasting has been done 

by applying error models to base hydrologic model simulations for more than 20 years. There is 

nothing new on error model structure, hydrologic model calibration or the way to combine two 

models. I am aware there is a paragraph on Page 12067 attempting to describe two innovations of 

this work: forecasting with a lead-time up to 24 hr and enabled probabilistic forecasting. The length 

of lead-time depends on the need of the application, and it is not part of innovation. The probabilistic 

forecasting directly derived from error models have been already considered intensively in most 

previous work. 

We agree with referee #2 that the point raised was not clear in the discussion paper. This comment 

has been incorporated, please see the response of comment no. 1 (referee #1). 

 

2. (a) Lack of assumption validation as an application paper. To warrant a successful application, the 

model assumption should be examined under scrutiny. For example, the ACF and PACF plots based 

on the forecast error in the transformed space (instead of in the original space) should be provided. 

[…] The normality of the residuals (after appropriate transformation) in the AR(1) model should be 

also validated. 

We thank referee #2 for raising these issues. We employed techniques of visual inspection (of the 

residual, ACF and PACF plots) and statistical test (Kolmogorov-Smirov test) for validating the 

model assumptions. Omission of the residual, ACF and PACF plots corresponding to the residuals 

in the transformed space was in an effort to shorten the discussion paper to the present length. Yet, 

in line with the above comments, we believe the discussions on the Kolmogorov-Smirov test 

provided on P12076 (L24-L26) and P12078 (L6-L8) and the remark therein on the normality of the 

residuals are noteworthy. As can be seen in Fig. A1(a), the residuals show better variability over the 

entire range of predicted inflow in the transformed space. Similarly, comparison of the ACF and 
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PACF plots of Fig. A1 and Fig. 4 (discussion paper) reveals the extent to which the serial correlation 

in the residual series reduced. This has been reflected in the revised manuscript. 

Revised Manuscript, Section 3, Page 14 (Line 11-15): 

The transformation reduced the maximum deviation between the theoretical and the sample lines slightly from 

0.13 to 0.10, yet the residuals are not normally distributed (i.e. Kolmogorov-Smirov statistic of 0.008 at 

significance level of 0.05  ). This implies that the assumption the residuals from the complementary 

forecasting system would be Gaussian is far from being true. 

 

Figure A1. Plots of (a) the residuals as a function of predicted inflow (in the transformed space), 

(b) autocorrelation function of the residuals, and (c) partial autocorrelation functions of the 

residuals. 

 

2. (b) I doubt that an AR(1) model is sufficient to account for the strong persistence in the hourly time 

series. 

We agree with referee #2 that the ACF and PACF plots of Fig. 4 (discussion paper) suggest AR 

model of order higher than one. Though not described in the discussion paper, the selection of AR(1) 

model was based on thorough assessment of AR(1), AR(2) and AR(3) models. The selection of the 

error model is intrinsic element of the error-model calibration process outlined in the “Parameter 

estimation” subsection of section 2.1.2. In accordance with step 3 (P12072 L1), first and foremost 

we calibrated several AR models of up to order p = 3 by minimizing the sum of the squares of the 

offsets between the inflows (observed and predicted) in the transformed space. Subsequently, we 

assessed whether the residuals of the complementary modelling framework appear homoscedastic 

and exhibited correlation. This assessment was carried out using the Kolmogorov-Smirov (KS) 

statistic followed by visual inspection of the residual plots. The KS statistic served as a relative 

a) 

 

 

 

 

b) 

 

 

 

 

c) 
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measure of the difference between the distributions of the residuals from a number of AR model 

setups (see Table A3). These issues is better described in the revised paper. 

Revised Manuscript, Section 3, Page 13 (Line 28-31) – Page 14 (Line 1-6): 

In accordance with the findings from the ACF and PACF plots discussed in section 3.3.2, AR models of up to 

order 3p   were investigated while estimating parameters of the error model. As outlined in section 2.2.2, 

coefficient of the AR(p) model and the transformation parameters were estimated by minimizing the sum of 

the squares of the offsets between the inflows (observed and predicted) in the transformed space, and 

assessment of whether the subsequent residuals from the complementary modelling framework appear 

homoscedastic and exhibited correlation. The latter was assessed using the Kolmogorov-Smirov (KS) statistic 

as a relative quantitative measure followed by visual inspection of the residual plots, which led to the selection 

of an AR(1) model with transformation parameters 41.4   and 0.9  , bias correction 0.021e   and 

coefficient 1 0.97a  .  

 

Table A3: Example of comparison made to AR models of different orders 

 AR(1) AR(2) AR(3) 

Box-Cox 0.9   

41.4   

0.2417   

40.89   

0.0013   

70.47   

AR coefficients 
1 0.97a   

1 0.586a   

2 0.406a   

1 2.15a   

2 1.26a    

3 0.087a   

KS statistic 0.1000 0.2578 0.2092 

 

3. (a) I can’t see whether the AR model is applied to transformed or original data. From Equations (2) 

and (3), it seems to apply to the inflow without transformation. If so, I don’t know why the Box-Cox 

transform is mentioned in the section related to “Parameter estimation”. 

The AR model is applied to the transformed data. We described this better in the revised manuscript 

by rewriting most of section 2.  

Revised Manuscript, Section 2, Page 6 (Line 18-27) – Page 7 (Line 1-19): 

First and foremost, we transform the observed ( Q ) and the predicted ( q̂
,
 from the conceptual model) inflows 

into z and ẑ , respectively. This way we deal with the heteroscedasticity seen in the residuals by making 

repeated use of Eq. 1 with the appropriate inflow term. 

  

 

1ˆ
ˆ
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0
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t

t
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        (3)

where   and   are the transformation parameters. 

The discrepancy (  ) between the observed and predicted inflow at time step ( t ) can be expressed as 

ˆ
t t tz z   . Analysis of whether the residuals are random or show some bias follows. Lest the mean of the 

residuals would be different from zero, the mean error ( e ) is subtracted from the error series (  ) to produce 

a zero-mean residual series ( t t ee    ). This is followed by assessment of the auto correlation function (acf) 

and partial autocorrelation function (pacf), which are keys for identifying the order of Markovian dependence 

the residuals exhibit. We consider an autoregressive (AR) model structure (Eq. 2) to represent the persistence 

structure in the residual series. Comparative assessment of error models of different complexity would be an 

interesting work but is beyond the scope of this study. Xiong and O'Connor (2002) affirm that AR model’s 
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longstanding popularity is deservedly right and further emphasize effectiveness of a very parsimonious model 

such as AR model for error forecasting. 

ˆ
p

t i t i

i

e a e             (4) 

where p  designates the length of the lag-time, and 
1 2, , , pa a a  are coefficients of the AR model. 

In order to provide improved hourly reservoir inflow forecasts over a 24 hours lead-time, the error-forecasting 

model takes the form of Eq. (3). In order to overcome lack of observed residuals encountered for forecast lead-

time ( f ) longer than one-step ahead, it is necessary to utilize estimated errors as inputs (see Eq. 3). The number 

of estimated errors values to be used as inputs depends on the identified order of the AR model and can vary 

across the forecast lead-times. 
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      (5) 

In its complete form, the error-corrected reservoir inflow forecast ( z ) from the complementary modelling 

framework can be given as 

 ˆˆ
t f t f e t fz z e  
             (6) 

 

Revised Manuscript, Section 2, Page 8 (Line 6-21): 

The parameter and inflow transformation steps with a little modification from Beven et al. (2008) over the 

calibration period (1, ,T ) are as follows: 

        1. Select values of , 0    and transform the reservoir inflows (
1: 1:

ˆ ,T Tq Q ) to get ( 1: 1:ˆ ,T Tz z ) using Eq. 1. 

        2. Calculate the residuals series from the transformed inflow data ( 1: 1: 1:ˆT T Tz z   ). 

        3. Perform an optimization for the error model parameters (
1 2, , , pa a a ) to minimize  

2

1: 1:
ˆ

T T  , 

where ̂  represents the forecast from the error model which at a given observation time step ( t ) 

equals ( ˆ
e te  ). Thus, the observed (  ) and forecasted ( ̂ ) errors at a given observation time step (

t ) can be related as ˆ
t t t    , where 

t  is a random noise that describes the total uncertainty 

originating from various sources. 

        4. Adjust ( ,  ) and repeat the optimization until the residuals of the error model appear homoscedastic. 

The 
t  term (step 3) is assumed to be unimodal, symmetric and unbounded random variable with a 

zero expected-mean and second moment given as 2 . 

3. (b) Some notations are not used consistently and cause confusion. For example, 
t  is differently 

defined in Equation (2) and in the last line of Page 12071. 

As rightly pointed out by reviewer #2, 
t  denotes the error between the observed and predicted 

inflows before and after transformation (Eq. 2 and P12071 L22, respectively). This comment has 

been incorporated, please see the response of comment no. 3 (a). We thank the reviewer for the 

careful observation and apologies for the oversight. 

 

3. (c) I am not sure why 
t̂  instead of 

te  is used in Equation (5). 
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Equation 5 provides the simulated error designated as
t̂ . This comment has been incorporated, 

please see the response of comment no. 3 (a). We thank the reviewer for the careful observation and 

apologies for the oversight. 

 

4. The estimation of the transformation parameters described on Pages 12071-12072 is incorrect. My 

understanding is that the authors attempt to minimise the sum of forecast error in the transformed 

space (not really sure because of unclear notations). I suggest that the transformation parameters 

are estimated by a likelihood approach. 

We agree with reviewer #2 that estimation of the transformation parameters can be carried out by a 

likelihood approach. However, we do not concur the opinion that the procedure outlined in the 

discussion paper is incorrect. As demonstrated by Beven et al. (2008), the procedure we adopted 

provides another way for selecting and estimating parameters of an AR model while dealing with the 

heteroscedasticity the data exhibits at the same time. We accept that clearing the confusion related 

to the mathematical notations will benefit the manuscript very well, and is incorporated in the revised 

version (please see the response of comment no. 3 (a)). 

Minor comments: 

1.  Page 12073 Line 12: Can you explain the confidence interval given in Equation (6)? I am sure that 

it is not only unnecessary but also incorrect. 

A prediction interval of 95% is considered in the study. We estimated the prediction interval using 

the Linear Regression Variance Estimator (LRVE). We have cited a paper that thoroughly deals with 

this issue in the revised manuscript. 

Revised Manuscript, Section 2, Page 9 (Line 30-31) – Page 10 (Line 1-2): 

An interval forecast (Chatfield, 2000) can be constructed by specifying an upper and lower limit between which 

the future reservoir inflow is expected to lie with a certain probability (1  ). The prediction interval for the 

inflow forecast are estimated using the Linear Regression Variance Estimator (LRVE) Shrestha and Solomatine 

(2006) describe. 

 

2. Page 12068 Line 15: “a concluding remark” should be “concluding remarks” 

We thank the reviewer for the careful observation and apologies for the oversight. We have corrected 

the mistake. 

 

3. Page 12096 Figure 4(a): the unit of y-axis should be mm/h. 

We thank the reviewer for the careful observation and apologies for the oversight. We have corrected 

the mistake. 

 

We would be happy to answer any further question! 

Best regards, 

Ashenafi S Gragne (corresponding author) 
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Abstract 10 

Accuracy of reservoir inflow forecasts is instrumental for maximizing the value of water 11 

resources and benefits gained through hydropower generation. Improving hourly reservoir 12 

inflow forecasts over a 24 hour lead-time is considered within the day-ahead (Elspot) market 13 

of the Nordic exchange market. We present here a new A complementary modelling framework 14 

presents an approach for issuing hourly reservoir inflow forecasts that aims to improve on 15 

existing forecasting models that are in place operationally, improving real-time forecasting 16 

without needing to modify the pre-existing approachforecasting model, but instead formulating 17 

an independent additive or complementary model that is independent and captures the structure 18 

the existing operational model may be missing. Besides improving forecast skillsWe present 19 

here application of operational models, the approach estimates the uncertainty in the 20 

complementary model structure and produces probabilisticthis principle for issuing improved 21 

hourly inflow forecasts that entrain suitable information for reducing uncertainty in the 22 

decision-making processes ininto hydropower systems operationreservoirs over extended lead-23 

times, and the parameter estimation procedure reformulated to deal with bias, persistence and 24 

hetroscedasticity. The procedure presented comprises an error model added on top of an un-25 

alterable constant parameter conceptual model, the models being demonstrated with reference 26 

to the 207 km2 Krinsvatn catchment in central Norway. The structure of the error model is 27 

established based on attributes of the residual time series from the conceptual model. Besides 28 

improving forecast skills of operational models, the approach estimates the uncertainty in the 29 

complementary model structure and produces probabilistic inflow forecasts that entrain suitable 30 
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information for reducing uncertainty in the decision-making processes in hydropower systems 1 

operation. Deterministic and probabilistic evaluations revealed an overall significant 2 

improvement in forecast accuracy for lead-times up to 17 hours. Season based evaluations 3 

indicated that the improvement in inflow forecasts varies across seasons and inflow forecasts 4 

in autumn and spring are less successful with the 95% prediction interval bracketing less than 5 

95% of the observations for lead-times beyond 17 hours. 6 

 7 

1 Introduction 8 

Hydrologic models can deliver information useful for management of natural resources and 9 

natural hazards (Beven, 2009). They are important components of hydropower planning and 10 

operation schemes where it is essential to estimate future reservoir inflows and quantify the 11 

water available for power production on a daily basis. The identification and representation of 12 

the significant responses of hydrologic systems have been diverse among hydrologists. 13 

Different hydrologists have incorporated their perceptions of the functioning of hydrologic 14 

systems into their models and come up with several rival models; some of them process based 15 

and others data-based (for thorough reviews of the historic development of hydrologic 16 

modelling refer to Todini, 2007 and Beven, 2012). These models can be grouped in to two main 17 

classes, conceptual and data-driven models. 18 

Lumped conceptual hydrologic models are the most commonly used models in operational 19 

forecasting. Models of this class use sets of mathematical expressions to provide a simplified 20 

generalization of the complex natural processes of the hydrologic systems in the headwater 21 

areas of reservoirs. Application of such models conventionally requires estimating the model 22 

parameters by conditioning to observed hydrologic data. Unlike conceptual models, data-driven 23 

models establish mathematical relationship between input and output data without any explicit 24 

attempt to represent the physical processes of the hydrologic system. Reconciling the two 25 

modelling approaches and combining the advantages of both approaches (Todini, 2007), has 26 

produced some example applications in forecasting systems where the two modelling 27 

approaches are harmoniously used for improving reliability of hydrologic model outputs (e.g. 28 

Abebe and Price, 2003 and Solomatine and Shrestha, 2009).  29 

Usefulness of a model for operational prediction is determined by the level of accuracy to which 30 

the model reproduces observed hydrologic behaviour of the study area. In operational 31 

applications, evaluation of how well the models capture rainfall-runoff processes, especially 32 
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the snow accumulation and melting process in cold regions, is important because the extent to 1 

which the models accurately reproduce the reservoir inflows can significantly influence the 2 

efficiency of the hydropower reservoir operation and subsequently the power price. Application 3 

of hydrologic models for reproducing historic records can suffer from inadequacy in model 4 

structure, incorrect model parameters, or erroneous data. Consequently, despite failing to 5 

reproduce the observed hydrographs exactly, they enable simulation of hydrologic 6 

characteristics of a study catchment to a fair degree of accuracy. It gets more challenging when 7 

using the models in the operational setup for forecasting the unknown future just based on the 8 

known past, which the model might not capture accurately. In the context of the Norwegian 9 

hydropower systems, being unable to predict future reservoir inflows accurately has negative 10 

consequences to the power producers. Norway’s energy producers have to pledge the amount 11 

of energy they produce for next 24 hours in the day-ahead market and if unable to provide the 12 

pledged amount of energy the chance of incurring losses is very high. Estimation of future 13 

reservoir inflows (be it long- or short-term) involves estimating the actual (initial) state of the 14 

basin, forecasting the basin inputs during the lead-time, and describing the water movement 15 

during the lead-time (Moll, 1983). Hence, the quality of a hydrologic forecast depends on the 16 

accuracy achieved and methodology selected in implementing each of these aspects.  17 

In this study, we intend to use conceptual and data-driven models complementarily. A 18 

conceptual model with calibrated model parameters is used as the fundamental model that 19 

approximately captures dominant hydrologic processes and forecasts behaviour of the 20 

catchment deterministically. A data-driven model is then formulated on the residuals, the 21 

difference between observations and predictions from the conceptual model. By studying the 22 

whole set of residuals and exploring the information they contain, important information that 23 

describes the inadequacies of the conceptual model can be extracted. In general, this kind of 24 

information can be used for improving either the conceptual model itself or the prediction skill 25 

of a forecasting system. Emulating the practice in most Norwegian hydropower reservoir 26 

operators, we stick to the latter purpose with the aim of enhancing the performance of a 27 

hydropower reservoir inflow forecasting system. According to Kachroo (1992), data-driven 28 

models defined on the residuals from a conceptual model can expose whether the conceptual 29 

model is adequate to identify essential relationships exhibited in the input-output data series. 30 

Data-driven models can establish the mathematical relationship that describes the persistence 31 

revealed in the residual time series, which is caused by failure of the conceptual model to 32 

capture all the physical processes exactly. Thus, in the operational sense, the data driven models 33 
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can play a complementary role by adjusting output of the conceptual model whenever the 1 

conceptual model needs corrective adaptation (e.g. Serban and Askew, 1991 and  2 

World Meteorological Organization, 1992). 3 

Several example applications can be found in the scientific literature on using conceptual and 4 

data driven models complementarily. For instance, Toth et al. (1999) compared performance 5 

improvements six ARIMA based error models brought to streamflow forecasts from a 6 

conceptual model to identify the best error model and data requirements. Shamseldin and 7 

O’Connor (2001) coupled a multi-layer neural network model on top of a conceptual rainfall-8 

runoff model to improve accuracy of stream flow forecasts without interfering with operation 9 

of the conceptual model. Similarly, Madsen and Skotner (2005) developed a procedure for 10 

improving operational flood forecasts by combining error models (linear and non-linear) and a 11 

general filtering technique. Xiong and O'Connor (2002) investigated performance of four error-12 

forecast models namely, the single autoregressive, the autoregressive threshold, the fuzzy 13 

autoregressive threshold and the artificial neural network updating models, for improving real-14 

time flow forecasts and compared their results. Likewise, Goswami et al. (2005) examined the 15 

forecasting skill of eight error-modelling based updating methods. A recent review on the 16 

application of error models and other data assimilation approaches for updating flow forecasts 17 

from conceptual models can be found in Liu et al. (2012). 18 

As reviewed above, the principle of complementing conceptual models with data-driven models 19 

has enjoyed applications in real-time hydrologic forecasting since the 1990s. The 20 

methodological contribution of the present work is reformulation of the parameter estimation 21 

procedure for the data-based model. We recognize that the bias, persistence and 22 

heteroscedasticity seen in the residuals from the conceptual model reflect structural inadequacy 23 

of the conceptual model to capture the catchment processes and, hence, are important in 24 

defining the manner the residual series is dealt with. Accordingly, we describe the reservoir 25 

inflows in a transformed space and present an iterative algorithm for estimating parameters of 26 

the data-driven model and the transformation parameters jointly.  27 

Two main features distinguish application aspects of the present paper from previous published 28 

works built on the same concept of complementing conceptual models with data driven models. 29 

Firstly, it attempts to provide hourly reservoir inflows of improved accuracy 24 hours ahead. 30 

The earlier papers mainly succeeded in improving forecasts for forecast lead-times up to six 31 

time steps or incorporated a scheme to update the forecast system at an interval of six time-32 
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steps. Secondly, an attempt is made in what follows, to produce a probabilistic forecast by 1 

estimating the uncertainty of the error model, rather than only the deterministic estimate. This, 2 

thereby, enables forecast of an ensemble of reservoir inflows, thereby allowing a risk-based 3 

paradigm for hydropower generation being put to use. Reasons as to why hydrologic forecasts 4 

should be probabilistic, and the potential benefits therein are presented and explained in 5 

Krzysztofowicz (2001). Krzysztofowicz (1999) describes a methodology for probabilistic 6 

forecasting via a deterministic hydrologic model. Li et al. (2013) provide review of scientific 7 

papers that provide various regression and probabilistic approaches for assessing performance 8 

of hydrologic models during calibration and uncertainty assessment. Smith et al. (2012) 9 

demonstrate a good example of producing probabilistic forecasts based on deterministic 10 

forecast outputs. Hence, inIn this paper, the improvement levels achieved are evaluated 11 

deterministically using the same or similar metrics as past studies, and probabilistically using 12 

the containing ratio (Xiong et al., 2009), which is also referred to as reliability metrics 13 

introduced byscore (e.g. Renard et al. (., 2010). We here emphasise that taking into account 14 

uncertainties emanating from various recognized sources and attaching the degree of reliability 15 

to the inflow forecasts has important benefitsdescribing the degree of reliability of the inflow 16 

forecasts has important benefits. According to Montanari and Brath (2004), the Bayesian 17 

forecasting system (BFS) and the generalized likelihood uncertainty estimation (GLUE) are the 18 

popular methods for inferring the uncertainty in hydrologic modelling. Yet, the scope of 19 

producing probabilistic inflow forecasts in this study is limited to attaching a certain probability 20 

to the deterministic forecasts so common in the Norwegian hydropower industry based on 21 

analysis of the statistical properties of the error series from the conceptual model, and assessing 22 

its degree of reliability. 23 

In the next section, the complementary model setup is formulated and the performance 24 

evaluation criteria are provided. An example application is presented in the subsequent section. 25 

This includes description of the study area and data used, findings from the evaluation of the 26 

complimentary setup and its components during calibration and validation, and results of 27 

forecasting skill assessment using deterministic and reliability metrics. Finally, a concluding 28 

remark isremarks are provided. 29 
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2 Methodology 1 

2.1 Model setup 2 

The conceptual and data driven models are coupled in a complementary fashion as shown in 3 

Eq. (1).  4 

ˆ ˆˆ
t t tQ q   .          (1) 5 

where Q̂  is the overall predicted runoff, q̂  is runoff prediction from the conceptual model, and 6 

̂  is error prediction from the complementary error model. 7 

In the traditional setup, the discrepancy ( ) between the reservoir inflow observed at a given 8 

gauging station (Q ) and the prediction from the conceptual model ( q̂ ) at time ( t ) can be 9 

expressed as 10 

ˆ
t t tQ q   .          (2) 11 

This t  term comprises all error due to uncertainties in flow measurement, structure and 12 

parameters of the conceptual model, etc. 13 

2.1.12.1 The conceptual model setup 14 

The widely applied conceptual hydrologic model—HBV—(Bergström, 1995) is used in this 15 

study. The version used allows dividing the study catchment up to 10 elevation zones. A 16 

deterministic HBV model with already calibrated model parameter values was assumed to take 17 

the role of the operational hydrologic models Norwegian hydropower companies commonly 18 

use for forecasting reservoir inflows. In the operational setup, the air temperature and 19 

precipitation input over the forecast lead-time are obtained from the Norwegian Meteorological 20 

Institute (www.met.no). As this study aims to improve hydrologic forecasts into the 21 

hydropower reservoirs by complementing the conceptual model by an error model, we assume 22 

that the predictions from the HBV model are made using as good quality input data as possible. 23 

Hence, the observed air temperature and precipitation data are used as input forecasts in 24 

hindcast. 25 
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2.1.22.2 The complementary error model 1 

The error model aims at exploiting the bias, persistence and heteroscedasticity in the residuals 2 

and estimating the errors likely to occur in the forecast lead-time. Forecasting the error in the 3 

lead-time is regarded as a two-step process: off-line identification and estimation of the error 4 

model, and error predictions based on most recent information. 5 

2.2.1 Identification of the model structure 6 

Because theAn error model that captures the structures the processes model is fitmissing should 7 

lead to a zero-mean-homoscedastic residual series from the modelling framework. In order to 8 

identify the right structure and establish a parsimonious model that adequately describes the 9 

data, we diagnose the residuals of the conceptual modeland address the bias, persistence and 10 

heteroscedasticity the series might exhibit as follows. 11 

First and foremost, we transform the observed ( t -Eq. 2), diagnosingQ ) and the predicted ( q̂ , 12 

from the conceptual model) inflows into z and ẑ , respectively. This way we deal with the 13 

heteroscedasticity seen in the residuals is a necessary firstby making repeated use of Eq. 1 with 14 

the appropriate inflow term. 15 
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        (1) 16 

where   and  are the transformation parameters. 17 

The discrepancy ( ) between the observed and predicted inflow at time step. Analysing  ( t ) 18 

can be expressed as ˆ
t t tz z   . Analysis of whether the residuals of the HBV model are random 19 

or show some bias, leads to identifying a parsimonious model that describes the data adequately. 20 

follows. Lest the mean of the residuals from the conceptual model would be different from zero, 21 

the mean error ( e ) is subtracted from the error series (from the conceptual model) ( ) to 22 

produce a zero-mean residual series ( t t ee    ). In addition to evaluating the bias,This is 23 

followed by assessment of the auto correlation function (acf) and partial autocorrelation 24 

function (pacf)), which are keys for identification of identifying the order of Markovian 25 

dependence the residuals exhibit. An We consider an autoregressive (AR) model structure (Eq. 26 

2) to represent the persistence structure in the residual series. Comparative assessment of error 27 
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 8 

models of different complexity would be an interesting work but is beyond the scope of this 1 

study. Xiong and O'Connor (2002) affirm that AR model’s longstanding popularity is 2 

deservedly right and further emphasize effectiveness of a very parsimonious model such as AR 3 

model structure is considered (Eq. 3).for error forecasting. 4 

ˆ
p

t i t i t

i

e a e   .         (3) 5 

ˆ
p

t i t i

i

e a e             (2) 6 

where p  designates the length of the lag-time, and 
1 2, , , pa a a  are coefficients of the AR 7 

model, and t  is a random error describing the total uncertainty that originate from various 8 

sources. 9 

In order to provide improved hourly reservoir inflow forecasts over a 24 hours lead-time, the 10 

error-forecasting model takes the form of Eq. (43). In order to overcome lack of observed 11 

residuals encountered for forecast lead-time ( f ) longer than one-step ahead, it is necessary to 12 

utilize estimated errors as inputs (see Eq. 43). The number of estimated errors values to be used 13 

as inputs depends on the identified order of the AR model and can vary across the forecast lead-14 

times. 15 
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In its complete form, the predicted error in simulation mode-corrected reservoir inflow forecast 1 

( z ) from the complementary modelling framework can be given as 2 

1

ˆ
p

t e i t i t

i

a e  



   .        (5) 3 

The noise term t  in the presented forecasting system is assumed unimodal, symmetric and 4 

unbounded random variable. The expected mean value of the noise term is further assumed to 5 

be zero and the second moment is given as 2 . 6 

 ˆˆ
t f t f e t fz z e  
             (4) 7 

2.2.2 Parameter Estimation 8 

Parameters of the AR model can be set to the corresponding Yule-Walker estimates of 9 

1 2, , , pa a a  given the autocorrelation function of the error series fulfils a form of linear 10 

difference equation. However, in practice, Eq. (32) can be treated as a linear regression and 11 

parameters can be estimated by Least Squares method as demonstrated by Xiong and O’Connor 12 

(2002). An iterative algorithm suggested in Beven et al. (2008) is adopted for estimating the 13 

model parameters while optimizing transformation of the inflow data. Adoption of a 14 

methodology that amalgamates parameter estimation and Box-Cox (Box and Cox, 1964) 15 

inspired transformation of inflow is useful for taking into account the heteroscedastic residuals 16 

and obtaining a normally distributed residual series from the error model. The parameter and 17 

inflow transformation steps with a little modification from Beven et al. (2008)(2008) over the 18 

calibration period (1, ,T ) are as follows: 19 

1. Select values of , 0    and transform the predicted reservoir inflow ˆ
tq  using 20 
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2.1.Similarly transform the observed reservoir inflow tQ inflows ( 1: 1:
ˆ ,T Tq Q ) to get tz .               22 

( 1: 1:
ˆ ,T Tz z ) using Eq. 1. 23 
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3.2.Calculate the residuals series from the transformed inflow data ( t t tz z  1 

1: 1: 1:
ˆ

T T Tz z   ). 2 

3. Perform an optimization for the error model parameters to minimize  
2

ˆ
t tt
  . 3 

Perform an optimization for the error model parameters (
1 2, , , pa a a ) to minimize4 

 
2

1: 1:
ˆ

T T  , where ̂  represents the forecast from the error model which at a 5 

given observation time step ( t ) equals ( ˆ
e te  ). Thus, the observed ( ) and 6 

forecasted ( ̂ ) errors at a given observation time step ( t ) can be related as 7 

ˆ
t t t    , where t  is a random noise that describes the total uncertainty 8 

originating from various sources.  9 

4. Adjust ( ,  ) and repeat the optimization until the residuals of the error model 10 

appear homoscedastic. The t  term (step 3) is assumed to be unimodal, symmetric 11 

and unbounded random variable with a zero expected-mean and second moment 12 

given as 2 . 13 

2.22.3 Performance evaluation 14 

In addition to visual evaluation of the hydrographs, performance of the present procedure is 15 

robustly analysed using deterministic and reliability metrics. The root mean square error 16 

(RMSE), percentage bias (PBIAS)relative error ( RE ) and the Nash-Sutcliffe efficiency (NSE) 17 

(Nash and Sutcliffe, 1970) are employed to evaluate efficiency of the models during calibration 18 

and validation deterministically. Evaluations are made with respect to varying forecast lead-19 

times and season wise as well. Among the three statistical performance criteria, the PBIAS RE  20 

(Eq. 5) measures percentage of the volumerelative error (PVE) between the total observed and 21 

model predictions, which makes it an interesting metrics from hydropower systems operations 22 

point of view.predicted inflow volume. For a good simulation the value of RE  is expected to be 23 

close to zero. Quantifying PVEthe relative error ( RE ) of the simulations/forecasts is important 24 

because it indicates how the inaccuracies affect a hydropower company’s ability to deliver the 25 

amount of energy it has pledged to provide to the energy market. Therefore, special attention is 26 
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given to the PVEless aggregate version of RE , which we hereon refer to as percentage volume 1 

error ( PVE ) and describe as follows. 2 

PVE values indicate
 ˆ

100%
t t

t

z z
RE

z


 



      3 

   (5) 4 

The PVE designates the relative error at each time step, which in reference to Eq. 5 can be 5 

obtained by omitting aggregation of the errors by summation. It indicates the magnitude of the 6 

errors as percentage of the observed inflows. In this study, the PVEs are calculated at every 7 

time step by dividing the residual to the observed at each inflow. time step. From hydropower 8 

systems operations point of view, the PVE enables evaluation of the forecast errors at each time 9 

step and assess implication on the power production capacity directly. The PVE analysis 10 

devised here divides the computed PVEs into six PVE classes (i.e. ≤ 10%, 10-20%, 20-30%, 11 

30-40%, 40-50% and >50%), and treats overestimates and underestimates separately. The 12 

number of times each of the six absolute PVE classes appeared in the set or subset of interest 13 

(i.e. hydrologic year or seasons) is constructed by keeping score of the PVE class into which 14 

each and every residual fell in. Then the fraction of time each PVE class occurred is divided to 15 

the total number of points in the given set/subset and is reported as a percentage. This is 16 

designated as a “PVE count”. Model performance assessment using PVE (during simulation 17 

and forecasting) mainly focuses on assessing the change in number the number of incidences 18 

in each PVE set, which in other words means the change in PVE counts. The PVE count/change 19 

in PVE count, along with the above-mentioned deterministic statistical criteria, is used for 20 

evaluating simulation and forecasting skill of the complementarily setup system (conceptual 21 

model + error model). As a metric for measuring relative improvement in forecasting skills, 22 

high PVE counts for the low PVE classes (e.g. ≤ 10%) is considered desirable quality. The 23 

justification is that, the penalty a power producer incurs when failing to deliver the pledged 24 

amount of power would be lesser if its forecasting system makes errors of lower PVE classes 25 

more frequently. 26 

Another useful metric used for assessing forecasting skill of the complementary setup is through 27 

uncertainty analysis. This necessitates constructingAn interval forecast (Chatfield, 2000) can 28 

be constructed by specifying an upper and lower limit between which the future reservoir inflow 29 

is expected to lie with a certain probability (1  ). The prediction interval for the inflow 30 
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forecast are estimated using the Linear Regression Variance Estimator (LRVE) Shrestha and 1 

Solomatine (2006) describe. Xiong et al. (2009) outline several indices that can serve for 2 

describing the properties of prediction bounds of particular proability and for comparative study 3 

of prediction intervals resulting from different uncertainty in the forecasting system by 4 

estimating the (1  ) prediction confidence interval of the error model using Eq. (6), and 5 

measuringassessment schemes. The indices characterise the reliability as describedprediction 6 

bound either by (Renard et al. 2010). The reliability metrics assesses the probabilistic 7 

performance of the forecast system by quantifying: the percentage of observations it contains, 8 

its band-width, or its symetery relative to the observation. According to Xiong et al. (2009), of 9 

all indeces the containing ratio (CR), which describes the percentage of observed inflows falling 10 

in any desired interval percentage. The the desired interval percentage, in this study, is defined 11 

asis the widely used metrics for assessing reliability of probabilistic forecasts. We adopt the CR 12 

for describing the reliability of the forecasts with the desired interval percentage of 95%.% (13 

0.05  ). 14 
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where  1 2,n p


 
is the  -level quantile of t -distribution with n p  degrees of freedom, p  is 16 

order of the AR model. 17 

 18 

3 Example application 19 

3.1 Study area and data 20 

The Krinsvatn catchment is located in Nord Trøndelag County in mid-north Norway. It 21 

comprises an area of 207 km2 and about 57% of the catchment is mountain area above 22 

timberline. The elevation ranges from 87 to 628 m above mean sea level and is drained by the 23 

Stjørna/Nord River. The dominant land use is forest covering 20.2% of the study site while 24 

marsh, lakes and farmlands cover about 9%, 6.7% and 0.4% of the catchment area, respectively. 25 

Figure 1 provides location and main characteristics of the study site, and the daily potential 26 

evapotranspiration values used. 27 
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Observed hourly data of eleven water-years (2000/01 to 2010/11) was split into three sets used 1 

for warming-up (2000/01), calibrating (2001/02-2005/06) and validating (2006/07-2010/11) 2 

the conceptual and the error models alike. Observed precipitation and temperature data of two 3 

meteorological stations (i.e. Svar-Sliper and Mørre-Breivoll) in neighbouring catchments are 4 

used. Discharge data for the catchment is derived from water level records at the Krinsvatn 5 

gauge station. Beven (2001) outlines the advantages to direct use of water level information in 6 

hydrologic forecasting. Rating curve uncertainties and their influence on the accuracy of flood 7 

predictions have been documented very well (e.g. Sikorska et al. 2013; Aronica et al., 2006; 8 

Pappenberger et al. 2006; Petersen-Overleir et al. 2009). Krinsvatn is considered a stable 9 

discharge measurement site with few external influences, and the rating curve was updated in 10 

2004. This study, however, considers the uncertainty of the rating-curve to be one of the factors 11 

contributing to the total error expressed in Eq. 2 and does not address it separately. 12 

3.2 HBV model for Krinsvatn catchment 13 

The catchment is divided into 10 elevation zones in the HBV model setup. Input data used are 14 

hourly areal precipitation, air temperature, and potential evapotranspiration. The model is run 15 

on an hourly time step for water years 2000/01 to 2005/06 with the last five water years being 16 

used for model calibration. Calibration is carried out using the shuffled complex evolution 17 

algorithm (Duan et al., 1993), with the NSE between the observed and predicted flows as an 18 

objective function. Description of the model parameters along the corresponding optimized 19 

values is provided in Table1. 20 

3.2.1 Overview of the conceptual model’s performance 21 

The simulation and observed reservoir inflow hydrographs shown in Fig. 2 indicate a certain 22 

level of agreement for most of the calibration and validation periods, which the statistical 23 

evaluations (Table 2) agree with. The overall hourly reservoir inflow predictions during 24 

calibration and validation show efficiency of NSE > 0.5 and PBIASRE < ±25%; even though 25 

simulations match observations better during calibration than validation. High NSE values (> 26 

0.8) during both calibration and validation reveal that the inflow simulations fit the observed 27 

hydrographs best in the winter seasons. Nevertheless, it is evident that model predictions in the 28 

validation period are prone to underestimation bias (PBIASRE > 0). Season wise assessment of 29 

the validation period reveals the conceptual model’s tendency to underestimate reservoir 30 

inflows in spring and summer considerably. In light of what the NSE and PBIS metrics suggest, 31 
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the lower RMSE values (i.e. for instance summer season) do not reflect superior model 1 

performances. 2 

PVE counts of the six PVE classes (i.e. ≤10%, 10-20%, 20-30%, 30-40%, 40-50% and >50%) 3 

are computed on the residuals between observed and simulated reservoir inflows. The stacked-4 

columns of Fig. 3a&b show how frequently each of the six absolute PVE classes occurred over 5 

the calibration and validation period. The results reveal a large degree of discrepancy between 6 

observations and predictions during calibration and validation. Simulated inflows deviated from 7 

the corresponding observed values by a magnitude of more than ±10% in about 83.3% 8 

(calibration) and 88.6% (validation) of the respective simulation time steps. Huge difference 9 

between observations and simulations is noted in the summer season with absolute PVE of the 10 

class >50% occurring in more than half of the simulation time steps throughout the calibration 11 

and validation periods. Winter simulations listed the highest level of occurrence of PVE of the 12 

class ≤±10% during both calibration and validation. Comparable to the results in Table 2, 13 

volume errors in winter simulations do not seem to be a serious problem, probably because the 14 

season is predominantly a snow accumulation rather than runoff generation period. Errors of 15 

the high absolute PVE classes scored high PVE counts in the spring and autumn seasons. 16 

Details of the extent to which the reservoir inflows are under- and over-estimated can be seen 17 

in Fig. 3c&d. The fraction of time the simulated inflows exhibited under- and over-estimation 18 

during calibration is 51.9% and 46.8%, respectively. In the validation period, the reservoir 19 

inflows are underestimated about 65.6% of the time compared to overestimation in 33.4% of 20 

the times. This is also revealed in the findings from statistical metrics in Table 2, which disclose 21 

the bias in the model. Yet, the results in Fig. 3 further reveal that the model predictions deviate 22 

from the observations at high discharges. For example, during the validation period 59.2% of 23 

the times observations exceeded the predictions by magnitudes more than 10%. Such 24 

information is useful because direct evaluation of observed and predicted values explains the 25 

implications of model performance on the planning and operation of a hydropower system 26 

better than an aggregated variance based statistic. From an operational management point of 27 

view, considerable underestimation of reservoir inflows can have both short- and long-term 28 

effects on the operation of a hydropower system. In the short-term, the company could be forced 29 

to release unvalued water especially when the reservoir water level is close to its maximum 30 

capacity. Hence, the high percentage of underestimations that occur in the autumn and spring 31 

seasons (during calibration and validation) should not be tolerated because the inflows in the 32 
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autumn and spring seasons are very important. On the one hand, substantial overestimation of 1 

reservoir inflows can at least expose any Norwegian hydropower company to undesirable 2 

expense due to obligations to match the power supply it has failed to deliver by dealing with 3 

other producers in the intra-day physical market (Elbas). Although overestimation does not 4 

seem to be a pertinent issue, Fig. 3d unmasks that the inflows are overestimated by a magnitude 5 

>50% at least 10% of the time in all seasons. 6 

3.2.2 Residual analysis 7 

Following the example of Xu (2001), a Kolmogorov-Smirov test is applied to residuals of the 8 

conceptual model. The test revealed that the residuals are not normally distributed. The 9 

maximum deviation between the theoretical and the sample lines is 0.130, which is larger than 10 

Kolmogorov-Smirov test statistic of 0.008 at significance level 0.05 . 11 

Presence of homoscedasticity in the residuals series is diagnosed visually by plotting the 12 

residuals versus the predicted reservoir inflows (Fig. 4a). With respect to the horizontal axis, 13 

the scattergram does not remain symmetric for the entire range of predicted inflows. The 14 

residuals show high variability and possible systematic bias when inflows are less than 3.5mm 15 

while the opposite is true when the inflows exceed 3.5mm. Inflows of magnitudes between 3.5 16 

and 5.5mm seem to be underestimated while overestimation is visible when the inflow rates are 17 

greater than 5.5mm. However, as can be seen from Fig. 2, inflows of magnitude up to 3mm 18 

represent reservoir inflows during the rise of the hydrographs including all peak inflows for all 19 

hydrologic years but 2005/2006 and 2010/2011. Hence, except for the possible systematic bias 20 

during low flows, the inference from the scatterplot is inconclusive to support or dismiss the 21 

issue of predominant underestimation revealed in the model performance evaluation. Moreover, 22 

hourly inflows of magnitudes higher than 3mm are rare and occurred about 0.1% of the times 23 

over the calibration and validation period. 24 

Plots of autocorrelation and partial autocorrelation functions of the residual time series (Fig. 25 

4b&c) indicate a strong time persistence structure in the error series. Rapid decaying of the 26 

partial autocorrelation function confirms the dominance of an autoregressive process, which 27 

the gradually decaying pattern of the autocorrelation function also suggests. Thus, in order to 28 

obtain a Gaussian series it is important to address issues of heteroscedasticity and serial 29 

correlation in the residual series. As the current study aims at utilising the persistent structure 30 

in the residuals for supplementing the forecasting system, the corrective action to be taken only 31 
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aims at removing the heteroscedasticity. A successful way to do it is through transformation of 1 

the flow data (e.g. Engeland et al., 2005).  As outlined in the methodology section, the reservoir 2 

inflows (both observed and predicted) are transformed while estimating parameters of the error 3 

model. 4 

3.3 Structure and performance of the error model 5 

The In accordance with the findings from the ACF and PACF plots discussed in section 3.3.2, 6 

AR models of up to order 3p   were investigated while estimating parameters of the error 7 

model. As outlined in section 2.2.2, coefficient of the AR(p) model and the transformation 8 

parameters were estimated by minimizing the sum of the squares of the offsets between the 9 

inflows (observed and predicted inflows are) in the transformed using 41.4  , and 0.9  . 10 

An AR model with order 1p   is fitted to thespace, and assessment of whether the subsequent 11 

residuals series. In accordance with the parameter estimation strategy outlined, values of from 12 

the complementary modelling framework appear homoscedastic and exhibited correlation. The 13 

latter was assessed using the Kolmogorov-Smirov (KS) statistic as a relative quantitative 14 

measure followed by visual inspection of the residual plots, which led to the selection of an 15 

AR(1) model with transformation parameters 41.4   and 0.9  , bias correction 0.021e   16 

and 0.97a   are obtained. coefficient 1 0.97a  .  17 

Calibration efficiencies calculated for the error model using the RMSE, PBIASRE and NSE 18 

metrics are 0.096, -100% and 0.517, respectively. Corresponding values for the validation 19 

period are computed as 0.095, 20.3% and 0.630, respectively. NSE values for the calibration 20 

and validation periods imply ability of the error model to capture at least half of the 21 

discrepancies observed between observations and predictions from the conceptual model. The 22 

transformation reduced the maximum deviation between the theoretical and the sample lines 23 

slightly from 0.13 to 0.10, yet the residuals are not normally distributed (i.e. Kolmogorov-24 

Smirov statistic of 0.008 at significance level of 0.05 ). This implies that the assumption 25 

the residuals from the complementary forecasting system would be Gaussian is far from being 26 

true. As the aim of this study is to utilize the error and complementary models additively, the 27 

extent to which the complementary setup boosted prediction ability in the forecasting mode is 28 

discussed in the next section. 29 

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed
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3.4 Forecasting skill of the complementary setup (deterministic assessment) 1 

Imitating operational application of forecasting models in the Norwegian hydropower system, 2 

reservoir inflows for the day-ahead market (Elspot) are estimated using the presented 3 

forecasting system. The system has to run once a day at an hourly time step, sometime before 4 

12 pm after retrieving the latest observations, and the inflow forecasts are issued for the next 5 

24 hourly time steps beginning from 12 o’clock noon. Overall performance of the 6 

complementary model in forecasting the reservoir inflows during the calibration and validation 7 

periods is first discussed and is followed by evaluation of its forecasting skill with respect to 8 

forecast lead-times. Evaluation of the forecast skill presented in this paper is based on 9 

assessment of forecasts made for the period between 2006/07 and 2010/11 as the datasets from 10 

2000/01 to 2005/06 are used for calibrating the system. 11 

3.4.1 Overall performance 12 

Assessment of the overall forecasting skill of the complementary setup shows significant 13 

improvement in forecast accuracy. The RMSE and NSE statistical criteria computed between 14 

forecasted and observed inflows are 0.095 and 0.896, respectively. RMSE values for the 15 

autumn, winter, spring and summer forecasts are 0.094, 0.090, 0.132 and 0.044, respectively, 16 

and the corresponding NSE values are 0.904, 0.905, 0.859 and 0.873. 17 

Proving capability of the complementary setup to reduce the bias revealed in the simulation 18 

forecasts from the conceptual model, which was pointed out in the previous section, the 24 19 

hours lead-time forecasts exhibited low-level underestimation bias with PBIASRE equal to 20 

3.8%. Degree of bias in the inflow forecasts differed seasonally. PBIASRE computed for each 21 

season in a decreasing order is, summer (-10.2%), spring (4.6%), autumn (2.9%) and winter 22 

(0.7%). The relatively higher bias in the spring and autumn forecasts can be related to runoff 23 

generation in the Krinsvatn catchment due to snow melting or occurrence of precipitation in the 24 

form of rainfall, which can affect the persistence structure in the residual series obtained from 25 

the conceptual model. 26 

Stacked-column plots in Fig. 5 display the occurrence level of each of the six PVE classes in 27 

the residual series between forecasts and observations. Visual comparison of stacked-column 28 

plots of Fig. 5 and Fig. 3 shows reduction in PVE count of the high PVE classes and increase 29 

in PVE counts of low PVE classes; e.g., PVE count for the PVE class >±50% decreased by 30 

about 15% while PVE count for the PVE class ≤±10% grew by about 50%. In order to assess 31 
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this assertion, a further assessment is carried out by dividing the six PVE classes into two 1 

groups: low PVE (PVE ≤ ±10%) and high PVE (PVE > ±10%). Ratio between seasonal PVE 2 

counts of the low and high PVE classes is taken and comparison is made on two sets of residual 3 

series. These sets of residuals are, (1) residuals from the simulated forecasts (conceptual model), 4 

and (2) residuals from forecasts of the complementary setup. Results are presented in Table 3. 5 

Apart from confirming the success in reducing PVE counts of high PVE errors, the results 6 

indicate that equal level of success is not achieved in all four seasons. In relative terms, high 7 

PVE errors occur more often in the spring and summer forecasts. As pointed out earlier, this 8 

can be associated to the snowmelt and, to a certain degree, to rainfall incidents occurring in 9 

these seasons. 10 

3.4.2 Forecast skill with respect to forecast-lead times 11 

Relative reductions in RMSE between forecasts from the complementary setup and the 12 

simulated forecasts from the conceptual model are computed. Detailed results for each season 13 

of the hydrologic years between 2006/07 and 2010/11 are presented in Table 4. The results are 14 

also summarized in terms of the minimum, mean and maximum relative RMSE reduction as 15 

shown in Fig. 6. Excluding forecasts in autumn and winter seasons of 2006/07, relative RMSE 16 

reductions are observed in forecasts of short and long lead-times. Of course, in all four seasons, 17 

the achieved level of improvement in forecast accuracy is high for short lead-times and 18 

diminishes gradually with increased lead-time. Results show that accuracy of the reservoir 19 

inflows in the spring and summer seasons are improved over the entire range of the forecast 20 

lead-time. Likewise, reduction in RMSE is observed for all autumn and winter inflow forecasts 21 

except for years 2006/07 and 2007/08, respectively.  22 

In order to get insight on the improvement level in a unit directly related to hydropower 23 

production, the change in PVE count of each PVE class is calculated. Change in PVE count of 24 

a given absolute PVE classes is the difference between the PVE counts for the complementary 25 

setup and that for the conceptual model. The results are summarized as shown in Fig. 7. The 26 

figure shows that the PVE count of high magnitude absolute PVE classes are reduced and the 27 

opposite is true for that of the smaller absolute PVE classes. For instance, regardless of the type 28 

of discrepancy (under- or over-estimation) noted, the change in PVE counts of the absolute 29 

PVE of the class >50% is negative. The negative sign implies less errors falling in this PVE 30 

class in the residual series from the complementary setup than those from the conceptual model. 31 

Similarly, the changes in PVE counts of the 20-30%, 30-40% and 40-50% absolute PVE classes 32 
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indicate lowered fraction of occurrence of errors of these orders. In both cases of under- and 1 

over-estimation, absolute PVE of the class ≤10% occurred more frequently; for example, the 2 

fraction of time reservoir inflow forecasts of 1 hour lead-time deviated from the observations 3 

by a magnitude ≤10% increased by about 52.7 and 27.7% during under- and over-estimations. 4 

Overall, the plots show that the magnitude of discrepancy at each forecasting point is 5 

significantly reduced. The improvement level at each forecast lead-time is proportional to the 6 

vertical distance from the horizontal axis. It can be noted that, the vertical distance narrows 7 

down with increasing lead-time suggesting a declining improvement level with increased lead-8 

time. 9 

Calculation of the relative RMSE reduction and the change in PVE counts agree that the 10 

forecast accuracy is improved through the complementary setup. The assessments further 11 

revealed that the degree of improvement weakens with increased forecast lead-time. However, 12 

the relative RMSE reduction computations indicate that in some occasions the simulated inflow 13 

forecasts stand out to be better. The relative RMSE reduction values for lead-times longer than 14 

20 hours (Table 4) show that complementing the conceptual model with an error model is 15 

counterproductive in autumn and winter seasons of years 2007/08 and 2006/07, respectively. 16 

3.5 Reliability of the inflow forecast 17 

Computation of the reliability scorecontaining ratio (CR) for the entire forecast reveals that 96% 18 

of the observations are inside the 95% prediction interval. The inflow hydrographs (Fig. 8) 19 

confirm that most of the observed inflows are contained in the specified uncertainty bounds. 20 

The percentage of observation points falling within the 95% prediction interval varies from 21 

season to season and across hydrologic years (see Fig. 9a). All observed winter and summer 22 

inflows are bracketed in the 95% uncertainty bound at least 95% of the time. In general, the 23 

winter season is more of a snow accumulation period and a closer observation of the 24 

hydrographs (see Fig. 8) reveals that the summer hydrographs cover the recession and base flow 25 

portions of the annual hydrographs. Thus, better persistence structure and predictable 26 

discrepancies between simulated forecasts from the conceptual model and the observations. As 27 

Goswami et al. (2005) argue, the persistence structure in residual series primarily arises from 28 

the dynamic storage effects of a catchment system. 29 

The desired percentage of autumn observations is contained in the 95% prediction interval in 30 

the years 2006/07, 2008/09 and 2010/11. In the years 2007/08 and 2009/10, however, only 93 31 
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and 94% of the observed autumn inflows are bracketed in the estimated 95% prediction 1 

intervals, respectively. Reliability score (CR) calculations for the spring season indicate that 2 

percentage of observation points falling in the desired prediction interval percentage are below 3 

95% except in the hydrologic years 2007/08 and 2008/09. Unlike winter and summer inflows, 4 

autumn and spring flows mostly cover portions of the hydrograph corresponding to the rising 5 

limb or high flow regime (see Fig. 8). While physical factors contributing to the increase in 6 

quick flow into the reservoir are precipitation incidents (in the form of rainfall) and melting of 7 

snow in the headwaters, comprehension of this concept and its encapsulation into the HBV 8 

model leaves control of the catchment response to two threshold values (TX and TS, see Table 9 

1 for description). Employing such simple threshold values to govern initiation of the runoff 10 

generation process based on air temperature measurement at a given time-step obviously 11 

involves more sources of uncertainty (i.e. measurement, model structure and model 12 

parameters). For instance, we assume the input air temperature at a given time step is 13 

erroneously recorded to be higher than TX and/or TS due to measurement error. Subsequently, 14 

the model will partition the precipitation as rainfall and initiate melting of snow, which the 15 

observation does not reveal. This kind of misclassification of precipitation and/or 16 

misrepresentation of snow accumulation and melting processes can simply occur due to the 17 

error in the input temperature record. Because of this, the persistence in the errors between 18 

simulated forecasts from the conceptual model and the observations can get weaker. According 19 

to Goswami et al. (2005), some degree of persistence in the model input (i.e. rainfall) is another 20 

primary source of the persistence characteristic of observed flow series. Even though the least 21 

reliability scoreCR calculated for the autumn and spring seasons are by no means too bad (i.e. 22 

93% and 90%, respectively), the requirement for reliability is for the uncertainty bound to 23 

contain as much fraction of observations as desired percentage of prediction interval; hence, 24 

the complementary setup presented seems to have struggled with it. 25 

The fraction of observed inflows bounded within the estimated prediction interval decreases 26 

with increased lead-time (Fig. 9b). Reliability score for lead-times up to 17 hours fulfil the 27 

requirement of containing 95% of the observations. For lead-times beyond 17 hours, the 28 

reliability declines and reaches 92% at forecasts lead-time of 24 hours. 29 

Findings from evaluation of the forecast skill of the complementary setup using deterministic 30 

and probabilistic metrics support each other. The present procedure is able to improve accuracy 31 

of reservoir inflow forecasts and the level of improvement decreases as the forecast lead-time 32 
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increases. Deterministic evaluation of performance of the forecast system indicates that the 1 

concept of complementing the conceptual model with a simple error is not always effective. As 2 

discussed earlier, in some occasions the present method can get counterproductive in 3 

forecasting inflows when the forecast lead-time is beyond 20 hours. Similarly, detailed 4 

assessment of the reliability (Table 5) shows that the reliability scoreCR of the forecasting 5 

system can get below 95% at forecast lead-times less than 17 hours; e.g. at forecast lead-time 6 

of 9 hours only 89% of the observed spring inflows of year 2006/07 are bracketed in the 95% 7 

prediction interval. 8 

 9 

4 Concluding remarks 10 

In the present study, the forecasting system comprising additively setup conceptual and simple 11 

error model is presented. Parameters of the conceptual model were left unaltered, as are in most 12 

operational setups, and the data-driven model was arranged to forecast the corrective measures 13 

to be made to outputs of the conceptual models to provide more accurate inflow forecasts into 14 

hydropower reservoirs several hours ahead. 15 

Application to the Krinsvatn catchment revealed that the present procedure could effectively 16 

improve forecast accuracy over a 24 hours lead-time. This proves that the efficiency of a flow 17 

forecasting system can be enhanced by setting up a data-driven model to complement a 18 

conceptual model operating in the simulation mode. Furthermore, the current study reveals that 19 

analysing characteristics of the residuals from the conceptual model is important and 20 

heteroscedastic behaviour should be addressed before identifying and estimating parameters of 21 

the error model. Compared to past studies that applied data-driven and conceptual models in a 22 

complementary way, the present procedure is successful in providing acceptably accurate 23 

forecast for extended lead-times. It also outlines procedure for extracting useful information 24 

from the bias, the persistence and the heteroscedasticity the residual series from the conceptual 25 

model exhibited, although the assumption that the residuals from the modelling framework to 26 

be random failed to hold.  27 

Results also indicate that probabilistic forecasts can be obtained from deterministic models by 28 

constructing uncertainty of the complementary setup based on predictive uncertainty of the 29 

simple error model. The uncertainty bound seems to satisfy the reliability requirement when 30 

evaluated over the entire forecasting period. Its reliability with respect to forecast lead-time also 31 

appears satisfactory for lead-times up to 17 hours. Nevertheless, the season wise assessment 32 
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revealed that the degree of reliability of the forecasts vary from season to season. Given that 1 

the error model essentially makes use of the persistence structure in the residuals from the 2 

conceptual model, the present procedure seems to be unable to capture transitions in the 3 

hydrograph errors from over- to under-estimation (and vice versa). On the one hand, it was 4 

unveiled that the degree of reliability of the forecasts decline with longer lead-times and the 5 

deterministic metrics (RMSE and PVE) confirmed the same.  6 

In order to address these challenges, a future development can be to explore methodologies for 7 

taking care of seasonal variability in the structure of the residual series. Updating the error 8 

models periodically can be one solution but care must be taken if the selected updating method 9 

makes a Gaussian assumption. Another alternative would be to explore more complex 10 

stochastic models for the residuals, that use exogenous predictor variables either observed 11 

directly (much like the seasonal reservoir inflow forecasting models described in Sharma et al, 12 

2000), or using state variables simulated from the conceptual model (like the Hierarchical 13 

Mixtures of Experts framework in Marshall et al, 2006 and Jeremiah et al, 2013). Formulation 14 

of these models will also offer better insight into the deficiencies that exist within the HBV 15 

conceptual model, thereby allowing further improvement to reduce the structural errors present. 16 

Another interesting topic of future investigation is the intercomparison of the probabilistic 17 

forecasts presented in the current paper with the same from popular methods such as Bayesian 18 

forecasting system (BFS), the generalized likelihood uncertainty estimation (GLUE) and the 19 

Bayesian recursive estimation (BaRE). We believe this would enable identification of the most 20 

effective and reliable probabilistic forecasting method that can also be implemented in an 21 

operational setup.  22 
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Table 1 Model parameters and corresponding optimized values. 1 

Parameter Description Unit 
Optimized 

value 

Snow routine 

TX Threshold temperature for rain/snow [°C] 2.23 

CX Degree-day factor for snow melt (forest free part) [mm/d°C] 9.95 

CXF Degree-day factor for snow melt (forested part) [mm/d°C] 5.21 

TS Threshold for snow melt/freeze (forest free part) [°C] 0.73 

TSF Threshold for snow melt/freeze (forested part) [°C] -1.80 

CFR Refreeze coefficient [mm/d°C] 0.04 

LW Max relative portion liquid water in snow [-] 0.085 

Soil and evaporation routine 

FC Field capacity [mm] 306.87 

FCDEL Minimum soil moisture filling for POE [-] 0.31 

BETA Non-linearity in soil water retention [-] 3.84 

INFMAX Infiltration capacity [mm/h] 30.22 

Groundwater and response routine 

KUZ2 Outlet coefficient for quickest surface runoff [1/day] 1.65 

KUZ1 Outlet coefficient for quick surface runoff [1/day] 0.99 

KUZ Outlet coefficient for slow surface runoff [1/day] 0.42 

KLZ Outlet coefficient for groundwater runoff [1/day] 0.09 

PERC Constant percolation rate to groundwater storage [mm/day] 1.60 

UZ2 Threshold between quickest and quick surface runoff [mm] 122.34 

UZ1 Threshold between quick and slow surface runoff [mm] 49.97 

 2 
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Table 2 Summary of overall and seasonal performance of the conceptual model during the 1 

calibration (2001/02 to 2005/06) and validation (2006/07 to 2010/11) periods. 2 

Seasons 

Calibration period  Validation period 

RMSE [mm] 
PBIASRE 

[%] 
NSE [-] 

 
RMSE [mm] 

PBIASRE 

[%] 
NSE [-] 

Overall 0.139 1 0.842  0.162 18.8 0.700 

Autumn 0.147 1.8 0.724  0.147 11.3 0.769 

Winter 0.182 -3.7 0.894  0.126 9.7 0.812 

Spring 0.131 -2.7 0.709  0.246 24.6 0.509 

Summer 0.073 28.2 0.641  0.079 38.2 0.592 

3 
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Table 3 Ratio between occurrence frequency of low PVE (≤10%) and high PVE (>10%) errors 1 

for the hydrologic years 2006/07-2010/11. 2 

Data set 

Overestimation Underestimation 

Aut. Win. Spr. Sum. Aut. Win. Spr. Sum. 

Simulated forecast (HBV model) 4.4 5.1 7.6 4.5 6.2 5.2 12.8 25.4 

Forecast (complementary setup) 1.1 1.2 1.5 2.0 0.9 0.5 1.1 1.3 

3 
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Table 4 Relative RMSE reductions (%) in reservoir inflows forecast as a function of forecast lead-time (* designates relative RMSE reduction 1 

of <0) 2 

Season 

/year 

Lead Time [hour] 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

A
u
tu

m
n
 

06/07 89.3 79.3 70.1 62.7 56.7 52.3 48.5 45 41.7 38.4 35 31.6 28.2 25.6 23.7 21.7 19.1 16.6 15.3 14.3 13.8 13 11.5 10.0 

07/08 91.6 84.4 78.6 73.5 67.6 62.2 58.0 53.8 50.7 48.0 44.8 41.4 38.8 36.3 33.8 30.7 26.3 19.5 10.9 3.3 * * * * 

08/09 93.9 87.9 81.7 76.7 71.0 65.9 62.1 58.5 54.1 49.2 44 39.4 35.7 32.3 28.8 25.7 23.2 70 18.4 16.7 15.3 14.1 12.7 11.5 

09/10 90.9 83.2 76.9 70.9 64.7 59.1 54.9 51.0 47.2 44.2 41.1 38.1 35.1 30.0 29.5 27.1 25.1 23.3 21.9 70.0 70.0 10.0 19.1 18.4 

10/11 92.1 84.9 78.7 67.7 62.4 57 53.9 51.2 47.5 44.8 42.4 40.3 38 35.8 33.9 30.0 29.4 26.2 23.1 30.0 17.2 14.7 12.7 10.9 

W
in

te
r 

06/07 94.2 87.9 82.2 75.6 60.5 49.3 42.8 36.3 31.3 26.3 21.4 17.5 12.9 9.0 6.7 4.6 2.5 1.3 1.0 0.0 * * * * 

07/08 91 81.9 73.3 66.2 59.9 54.1 49.2 44.8 40 36.1 33.3 30.8 28.1 25.4 23.2 90 19.5 17.5 15.6 15.5 16.5 17.5 18.1 18.4 

08/09 91.7 83.9 77.0 74.0 72.2 68.4 62.2 55.1 49.5 44.4 39.8 36 28.9 22.2 18.2 15.6 13.9 12.8 11.9 11.1 9.9 8.6 7.3 5.8 

09/10 94.9 91.4 87.3 83.5 80.3 78.8 76.7 72.7 65.9 58.1 51.8 46.9 43.4 40.2 37.7 35.5 33.7 32.2 30.9 29.4 27.8 26 24.1 22.2 

10/11 93.9 88.7 83.1 75.9 68.1 64.9 61.4 57.1 52.3 47 41.8 36.9 32.2 28.4 26 24.2 22.6 90 19.4 17.7 16 14.6 13 11.1 

S
p

ri
n

g
 

06/07 94.2 88.2 82.4 77 71.7 66.3 61.1 56.4 52.3 48.9 45.8 43.1 40.6 38.3 36 33.9 31.8 30 28.5 27.2 26.2 25.2 24.1 23.2 

07/08 96.6 93.3 89.8 86.2 82.6 79.0 75.6 72.8 70.4 68.4 66.6 64.9 63.1 61.3 59.4 57.6 55.8 54 52.5 51.1 49.7 48.4 47.1 46.0 
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08/09 95 90.4 85.8 81.6 77.7 73.7 70.6 67.9 65.7 63.5 61.1 58.7 56.3 54 51.7 49.4 47 44.7 42.4 40.1 37.7 35.3 33.2 31.6 

09/10 93.9 87.7 81.7 76.0 70.6 64.9 59.3 54.4 50.6 47.4 44.8 42.5 40.4 38.5 36.8 35.2 33.9 32.8 30.0 31.3 30.5 29.7 29.0 28.3 

10/11 94.6 88.6 82.2 75.7 69.4 63.4 57.7 52.5 48.7 46.8 44.5 41.7 39.0 36.7 34.6 32.7 31.1 29.8 28.7 27.8 26.8 25.8 24.6 23.7 

S
u
m

m
er

 

06/07 94.8 90 85.7 82.8 80.1 76.3 72.6 69.7 67.4 66.0 65.1 63.7 60.1 58.2 56.3 54.2 51.6 49.6 47.6 44.9 42.2 39.5 36.8 34.4 

07/08 90.7 81.4 73.3 66.3 60.3 55.6 51.4 48.0 45.4 42.6 39.9 39.4 39.1 37.1 34.6 32.8 31.0 29.3 28.4 27.4 26.9 26.2 24.8 23.2 

08/09 97.2 94.4 91.6 89 85.1 78.2 69.2 60.3 52.9 47.1 41.6 36.7 32.5 28.8 25.4 22.7 50.0 18.6 17.1 15.9 14.6 13.3 12.4 11.9 

09/10 92.4 84.8 79.1 76.2 74.2 71.5 68.4 65.2 61.0 57.1 54.3 51.9 50.0 47.7 45.1 43.0 41.1 39.3 37.0 35.8 35.0 34.1 33.2 30.0 

10/11 94.2 88.7 82.9 76.4 69.7 64.4 59.3 54.3 49.8 45.8 42.5 39.8 37.2 35.1 33.1 31.5 30.0 28.6 27.5 27.0 26.5 25.9 25.5 25.0 

 1 

2 
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Table 5 Summary of seasonal reliability resultscontaining ratio (95% prediction interval) during reservoir inflow forecasting (2006/07 to 1 

2010/11) 2 

Season 

/year 

Lead Time [hour] 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

A
u
tu

m
n
 

06/07 99.9 99.9 97.8 97.8 97.8 97.8 97.8 97.8 97.8 97.8 96.7 94.5 94.5 93.4 93.4 93.4 93.4 90.1 90.1 91.2 90.1 90.1 89.0 89.0 

07/08 99.9 99.9 98.9 98.9 97.8 97.8 97.8 97.8 97.8 97.8 96.7 94.5 91.2 90.1 90.1 89 87.9 87.9 86.8 85.7 85.7 84.6 83.5 83.5 

08/09 99.9 99.9 99.9 99.9 99.9 98.9 98.9 95.6 95.6 95.6 95.6 95.6 95.6 95.6 95.6 95.6 94.5 93.4 93.4 93.4 92.3 92.3 91.2 90.1 

09/10 99.9 99.9 98.9 97.8 97.8 96.7 96.7 95.6 94.5 93.4 93.4 91.2 92.3 92.3 92.3 92.3 93.4 93.4 92.3 92.3 92.3 91.2 90.1 90.1 

10/11 99.9 99.9 99.9 98.9 98.9 97.8 98.9 98.9 97.8 96.7 95.6 95.6 95.6 95.6 95.6 95.6 95.6 94.5 93.4 93.4 93.4 92.3 92.3 91.2 

W
in

te
r 

06/07 99.9 99.9 99.9 99.9 97.8 96.7 96.7 95.6 95.6 95.6 95.6 95.6 94.4 94.4 93.3 93.3 92.2 92.2 92.2 92.2 91.1 91.1 91.1 90.0 

07/08 99.9 99.9 98.9 97.8 97.8 97.8 97.8 97.8 96.7 96.7 94.5 93.4 93.4 92.3 94.5 94.5 94.5 95.6 96.7 95.6 95.6 95.6 94.5 94.5 

08/09 99.9 99.9 99.9 99.9 98.9 98.9 98.9 97.8 97.8 97.8 97.8 97.8 97.8 95.6 95.6 95.6 95.6 94.4 94.4 94.4 94.4 94.4 95.6 95.6 

09/10 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 97.8 97.8 97.8 97.8 

10/11 99.9 99.9 99.9 99.9 98.9 96.7 96.7 96.7 96.7 96.7 96.7 96.7 96.7 95.6 95.6 96.7 95.6 95.6 95.6 95.6 94.4 94.4 94.4 94.4 

S
p

ri
n

g
 

06/07 99.9 99.9 98.9 98.9 97.8 95.7 94.6 93.5 89.1 89.1 89.1 89.1 90.2 88.0 88.0 88.0 88.0 88.0 87.0 85.9 84.8 84.8 84.8 83.7 

07/08 99.9 99.9 99.9 99.9 99.9 99.9 99.9 98.9 98.9 98.9 98.9 98.9 97.8 97.8 97.8 96.7 95.7 94.6 94.6 94.6 94.6 94.6 94.6 94.6 

08/09 99.9 99.9 98.9 98.9 98.9 98.9 97.8 97.8 97.8 96.7 96.7 96.7 96.7 96.7 96.7 96.7 95.7 95.7 95.7 93.5 93.5 93.5 93.5 92.4 
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09/10 99.9 99.9 98.9 97.8 97.8 97.8 96.7 96.7 94.6 94.6 94.6 93.5 93.5 93.5 91.3 91.3 91.3 91.3 90.2 90.2 91.3 89.1 89.1 90.2 

10/11 99.9 98.9 98.9 96.7 96.7 95.7 94.6 93.5 92.4 92.4 90.2 90.2 89.1 88 89.1 87 85.9 85.9 84.8 83.7 83.7 83.7 82.6 82.6 

S
u
m

m
er

 

06/07 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 98.9 98.9 98.9 98.9 98.9 98.9 97.8 97.8 97.8 97.8 97.8 

07/08 99.9 99.9 99.9 99.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 

08/09 99.9 99.9 99.9 99.9 99.9 99.9 99.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 

09/10 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 98.9 98.9 98.9 98.9 98.9 

10/11 99.9 99.9 99.9 99.9 98.9 98.9 98.9 98.9 98.9 97.8 96.7 96.7 96.7 96.7 96.7 96.7 96.7 96.7 96.7 95.7 95.7 95.7 95.7 95.7 

1 
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 1 

 2 

Figure 1. Location, characteristics and potential evapotranspiration estimates of the study 3 

catchment.  4 
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Figure 2. Observed and predicted reservoir inflow hydrographs during calibration (left column) 3 

and validation (right column) of the conceptual model.  4 
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Figure 3. Stacked-column plots of: (1) PVE counts of the six absolute PVE classes (≤10%, 10-3 

20%, 20-30%, 30-40%, 40-50% and >50%) during calibration (a) and validation (b); and (2) 4 

the fraction of times under- and over-estimation incidents corresponding to the six PVE classes 5 

occurred during calibration (c) and validation (d).  6 
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 1 
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Figure 4. Plots of (a) residuals from the conceptual model as a function of predicted inflow 3 

during the calibration period, (b) autocorrelation function of the residuals, and (c) partial 4 

autocorrelation functions of the residuals.  5 
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 1 

 2 

Figure 5. Stacked-column plots of: (a) PVE counts of the six absolute PVE classes (≤10%, 10-3 

20%, 20-30%, 30-40%, 40-50% and >50%) observed in reservoir inflow forecasts from the 4 

complementary setup; and (b) the corresponding fraction of times under- and over-estimation 5 

incidents corresponding to the six PVE classes occurred. Hydrologic years 2006/07-2010/11.  6 
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Figure 6. Summary of relative seasonal RMSE reductions as a function of forecast lead-time 3 

(minimum, mean and maximum values computed from corresponding computations for 4 

hydrologic years 2006/07 - 2010/11).  5 
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Figure 7. Change in number of occurrence of the six absolute PVE classes (≤10%, 10-20%, 20-1 

30%, 30-40%, 40-50% and >50%) as a function of forecast lead-time: (a) overestimation and 2 

(b) underestimation.  3 
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 1 

 2 

Figure 8. Observed hydrograph (broken lines) and the 95% prediction bound  3 
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Figure 9. Reliability score (containing ratio-CR) for 95% prediction interval for: a) each 3 

season of every hydrologic year; and b) different forecast lead-times based on entire series. 4 
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