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Abstract 10 

Accuracy of reservoir inflow forecasts is instrumental for maximizing the value of water 11 

resources and benefits gained through hydropower generation. Improving hourly reservoir 12 

inflow forecasts over a 24 hour lead-time is considered within the day-ahead (Elspot) market 13 

of the Nordic exchange market. A complementary modelling framework presents an approach 14 

for improving real-time forecasting without needing to modify the pre-existing forecasting 15 

model, but instead formulating an independent additive or complementary model that captures 16 

the structure the existing operational model may be missing. We present here application of this 17 

principle for issuing improved hourly inflow forecasts into hydropower reservoirs over 18 

extended lead-times, and the parameter estimation procedure reformulated to deal with bias, 19 

persistence and hetroscedasticity. The procedure presented comprises an error model added on 20 

top of an un-alterable constant parameter conceptual model, the models being demonstrated 21 

with reference to the 207 km2 Krinsvatn catchment in central Norway. The structure of the error 22 

model is established based on attributes of the residual time series from the conceptual model. 23 

Besides improving forecast skills of operational models, the approach estimates the uncertainty 24 

in the complementary model structure and produces probabilistic inflow forecasts that entrain 25 

suitable information for reducing uncertainty in the decision-making processes in hydropower 26 

systems operation. Deterministic and probabilistic evaluations revealed an overall significant 27 

improvement in forecast accuracy for lead-times up to 17 hours. Season based evaluations 28 

indicated that the improvement in inflow forecasts varies across seasons and inflow forecasts 29 



 2 

in autumn and spring are less successful with the 95% prediction interval bracketing less than 1 

95% of the observations for lead-times beyond 17 hours. 2 

 3 

1 Introduction 4 

Hydrologic models can deliver information useful for management of natural resources and 5 

natural hazards (Beven, 2009). They are important components of hydropower planning and 6 

operation schemes where it is essential to estimate future reservoir inflows and quantify the 7 

water available for power production on a daily basis. The identification and representation of 8 

the significant responses of hydrologic systems have been diverse among hydrologists. 9 

Different hydrologists have incorporated their perceptions of the functioning of hydrologic 10 

systems into their models and come up with several rival models; some of them process based 11 

and others data-based (for thorough reviews of the historic development of hydrologic 12 

modelling refer to Todini, 2007 and Beven, 2012). These models can be grouped in to two main 13 

classes, conceptual and data-driven models. 14 

Lumped conceptual hydrologic models are the most commonly used models in operational 15 

forecasting. Models of this class use sets of mathematical expressions to provide a simplified 16 

generalization of the complex natural processes of the hydrologic systems in the headwater 17 

areas of reservoirs. Application of such models conventionally requires estimating the model 18 

parameters by conditioning to observed hydrologic data. Unlike conceptual models, data-driven 19 

models establish mathematical relationship between input and output data without any explicit 20 

attempt to represent the physical processes of the hydrologic system. Reconciling the two 21 

modelling approaches and combining the advantages of both approaches (Todini, 2007), has 22 

produced some example applications in forecasting systems where the two modelling 23 

approaches are harmoniously used for improving reliability of hydrologic model outputs (e.g. 24 

Abebe and Price, 2003 and Solomatine and Shrestha, 2009).  25 

Usefulness of a model for operational prediction is determined by the level of accuracy to which 26 

the model reproduces observed hydrologic behaviour of the study area. In operational 27 

applications, evaluation of how well the models capture rainfall-runoff processes, especially 28 

the snow accumulation and melting process in cold regions, is important because the extent to 29 

which the models accurately reproduce the reservoir inflows can significantly influence the 30 

efficiency of the hydropower reservoir operation and subsequently the power price. Application 31 

of hydrologic models for reproducing historic records can suffer from inadequacy in model 32 



 3 

structure, incorrect model parameters, or erroneous data. Consequently, despite failing to 1 

reproduce the observed hydrographs exactly, they enable simulation of hydrologic 2 

characteristics of a study catchment to a fair degree of accuracy. It gets more challenging when 3 

using the models in the operational setup for forecasting the unknown future just based on the 4 

known past, which the model might not capture accurately. In the context of the Norwegian 5 

hydropower systems, being unable to predict future reservoir inflows accurately has negative 6 

consequences to the power producers. Norway’s energy producers have to pledge the amount 7 

of energy they produce for next 24 hours in the day-ahead market and if unable to provide the 8 

pledged amount of energy the chance of incurring losses is very high. Estimation of future 9 

reservoir inflows (be it long- or short-term) involves estimating the actual (initial) state of the 10 

basin, forecasting the basin inputs during the lead-time, and describing the water movement 11 

during the lead-time (Moll, 1983). Hence, the quality of a hydrologic forecast depends on the 12 

accuracy achieved and methodology selected in implementing each of these aspects.  13 

In this study, we intend to use conceptual and data-driven models complementarily. A 14 

conceptual model with calibrated model parameters is used as the fundamental model that 15 

approximately captures dominant hydrologic processes and forecasts behaviour of the 16 

catchment deterministically. A data-driven model is then formulated on the residuals, the 17 

difference between observations and predictions from the conceptual model. By studying the 18 

whole set of residuals and exploring the information they contain, important information that 19 

describes the inadequacies of the conceptual model can be extracted. In general, this kind of 20 

information can be used for improving either the conceptual model itself or the prediction skill 21 

of a forecasting system. Emulating the practice in most Norwegian hydropower reservoir 22 

operators, we stick to the latter purpose with the aim of enhancing the performance of a 23 

hydropower reservoir inflow forecasting system. According to Kachroo (1992), data-driven 24 

models defined on the residuals from a conceptual model can expose whether the conceptual 25 

model is adequate to identify essential relationships exhibited in the input-output data series. 26 

Data-driven models can establish the mathematical relationship that describes the persistence 27 

revealed in the residual time series, which is caused by failure of the conceptual model to 28 

capture all the physical processes exactly. Thus, in the operational sense, the data driven models 29 

can play a complementary role by adjusting output of the conceptual model whenever the 30 

conceptual model needs corrective adaptation (e.g. Serban and Askew, 1991 and  31 

World Meteorological Organization, 1992). 32 
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Several example applications can be found in the scientific literature on using conceptual and 1 

data driven models complementarily. For instance, Toth et al. (1999) compared performance 2 

improvements six ARIMA based error models brought to streamflow forecasts from a 3 

conceptual model to identify the best error model and data requirements. Shamseldin and 4 

O’Connor (2001) coupled a multi-layer neural network model on top of a conceptual rainfall-5 

runoff model to improve accuracy of stream flow forecasts without interfering with operation 6 

of the conceptual model. Similarly, Madsen and Skotner (2005) developed a procedure for 7 

improving operational flood forecasts by combining error models (linear and non-linear) and a 8 

general filtering technique. Xiong and O'Connor (2002) investigated performance of four error-9 

forecast models namely, the single autoregressive, the autoregressive threshold, the fuzzy 10 

autoregressive threshold and the artificial neural network updating models, for improving real-11 

time flow forecasts and compared their results. Likewise, Goswami et al. (2005) examined the 12 

forecasting skill of eight error-modelling based updating methods. A recent review on the 13 

application of error models and other data assimilation approaches for updating flow forecasts 14 

from conceptual models can be found in Liu et al. (2012). 15 

As reviewed above, the principle of complementing conceptual models with data-driven models 16 

has enjoyed applications in real-time hydrologic forecasting since the 1990s. The 17 

methodological contribution of the present work is reformulation of the parameter estimation 18 

procedure for the data-based model. We recognize that the bias, persistence and 19 

heteroscedasticity seen in the residuals from the conceptual model reflect structural inadequacy 20 

of the conceptual model to capture the catchment processes and, hence, are important in 21 

defining the manner the residual series is dealt with. Accordingly, we describe the reservoir 22 

inflows in a transformed space and present an iterative algorithm for estimating parameters of 23 

the data-driven model and the transformation parameters jointly.  24 

Two main features distinguish application aspects of the present paper from previous published 25 

works built on the same concept of complementing conceptual models with data driven models. 26 

Firstly, it attempts to provide hourly reservoir inflows of improved accuracy 24 hours ahead. 27 

The earlier papers mainly succeeded in improving forecasts for forecast lead-times up to six 28 

time steps or incorporated a scheme to update the forecast system at an interval of six time-29 

steps. Secondly, an attempt is made in what follows, to produce a probabilistic forecast by 30 

estimating the uncertainty of the error model, rather than only the deterministic estimate. This, 31 

thereby, enables forecast of an ensemble of reservoir inflows, thereby allowing a risk-based 32 



 5 

paradigm for hydropower generation being put to use. Reasons as to why hydrologic forecasts 1 

should be probabilistic, and the potential benefits therein are presented and explained in 2 

Krzysztofowicz (2001). Krzysztofowicz (1999) describes a methodology for probabilistic 3 

forecasting via a deterministic hydrologic model. Li et al. (2013) provide review of scientific 4 

papers that provide various regression and probabilistic approaches for assessing performance 5 

of hydrologic models during calibration and uncertainty assessment. Smith et al. (2012) 6 

demonstrate a good example of producing probabilistic forecasts based on deterministic 7 

forecast outputs. In this paper, the improvement levels achieved are evaluated deterministically 8 

using the same or similar metrics as past studies, and probabilistically using the containing ratio 9 

(Xiong et al., 2009), which is also referred to as reliability score (e.g. Renard et al., 2010). We 10 

here emphasise that taking into account uncertainties emanating from various recognized 11 

sources and describing the degree of reliability of the inflow forecasts has important benefits. 12 

According to Montanari and Brath (2004), the Bayesian forecasting system (BFS) and the 13 

generalized likelihood uncertainty estimation (GLUE) are the popular methods for inferring the 14 

uncertainty in hydrologic modelling. Yet, the scope of producing probabilistic inflow forecasts 15 

in this study is limited to attaching a certain probability to the deterministic forecasts so 16 

common in the Norwegian hydropower industry based on analysis of the statistical properties 17 

of the error series from the conceptual model, and assessing its degree of reliability. 18 

In the next section, the complementary model setup is formulated and the performance 19 

evaluation criteria are provided. An example application is presented in the subsequent section. 20 

This includes description of the study area and data used, findings from the evaluation of the 21 

complimentary setup and its components during calibration and validation, and results of 22 

forecasting skill assessment using deterministic and reliability metrics. Finally, concluding 23 

remarks are provided. 24 

2 Methodology 25 

2.1 The conceptual model setup 26 

The widely applied conceptual hydrologic model—HBV—(Bergström, 1995) is used in this 27 

study. The version used allows dividing the study catchment up to 10 elevation zones. A 28 

deterministic HBV model with already calibrated model parameter values was assumed to take 29 

the role of the operational hydrologic models Norwegian hydropower companies commonly 30 

use for forecasting reservoir inflows. In the operational setup, the air temperature and 31 
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precipitation input over the forecast lead-time are obtained from the Norwegian Meteorological 1 

Institute (www.met.no). As this study aims to improve hydrologic forecasts into the 2 

hydropower reservoirs by complementing the conceptual model by an error model, we assume 3 

that the predictions from the HBV model are made using as good quality input data as possible. 4 

Hence, the observed air temperature and precipitation data are used as input forecasts in 5 

hindcast. 6 

2.2 The complementary error model 7 

The error model aims at exploiting the bias, persistence and heteroscedasticity in the residuals 8 

and estimating the errors likely to occur in the forecast lead-time. Forecasting the error in the 9 

lead-time is regarded as a two-step process: off-line identification and estimation of the error 10 

model, and error predictions based on most recent information. 11 

2.2.1 Identification of the model structure 12 

An error model that captures the structures the processes model is missing should lead to a zero-13 

mean-homoscedastic residual series from the modelling framework. In order to identify the 14 

right structure and establish a parsimonious model that adequately describes the data, we 15 

diagnose the residuals and address the bias, persistence and heteroscedasticity the series might 16 

exhibit as follows. 17 

First and foremost, we transform the observed (Q ) and the predicted ( q̂ , from the conceptual 18 

model) inflows into z and ẑ , respectively. This way we deal with the heteroscedasticity seen 19 

in the residuals by making repeated use of Eq. 1 with the appropriate inflow term. 20 
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where   and  are the transformation parameters. 22 

The discrepancy ( ) between the observed and predicted inflow at time step ( t ) can be 23 

expressed as ˆ
t t tz z   . Analysis of whether the residuals are random or show some bias 24 

follows. Lest the mean of the residuals would be different from zero, the mean error ( e ) is 25 

subtracted from the error series ( ) to produce a zero-mean residual series ( t t ee    ). This 26 

is followed by assessment of the auto correlation function (acf) and partial autocorrelation 27 
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function (pacf), which are keys for identifying the order of Markovian dependence the residuals 1 

exhibit. We consider an autoregressive (AR) model structure (Eq. 2) to represent the persistence 2 

structure in the residual series. Comparative assessment of error models of different complexity 3 

would be an interesting work but is beyond the scope of this study. Xiong and O'Connor (2002) 4 

affirm that AR model’s longstanding popularity is deservedly right and further emphasize 5 

effectiveness of a very parsimonious model such as AR model for error forecasting. 6 

ˆ
p

t i t i

i

e a e             (2) 7 

where p  designates the length of the lag-time, and 
1 2, , , pa a a  are coefficients of the AR 8 

model. 9 

In order to provide improved hourly reservoir inflow forecasts over a 24 hours lead-time, the 10 

error-forecasting model takes the form of Eq. (3). In order to overcome lack of observed 11 

residuals encountered for forecast lead-time ( f ) longer than one-step ahead, it is necessary to 12 

utilize estimated errors as inputs (see Eq. 3). The number of estimated errors values to be used 13 

as inputs depends on the identified order of the AR model and can vary across the forecast lead-14 

times. 15 
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     (3) 16 

In its complete form, the error-corrected reservoir inflow forecast ( z ) from the complementary 17 

modelling framework can be given as 18 

 ˆˆ
t f t f e t fz z e  
             (4) 19 

2.2.2 Parameter Estimation 20 

Parameters of the AR model can be set to the corresponding Yule-Walker estimates of 21 

1 2, , , pa a a  given the autocorrelation function of the error series fulfils a form of linear 22 

difference equation. However, in practice, Eq. (2) can be treated as a linear regression and 23 
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parameters can be estimated by Least Squares method as demonstrated by Xiong and O’Connor 1 

(2002). An iterative algorithm suggested in Beven et al. (2008) is adopted for estimating the 2 

model parameters while optimizing transformation of the inflow data. Adoption of a 3 

methodology that amalgamates parameter estimation and Box-Cox (Box and Cox, 1964) 4 

inspired transformation of inflow is useful for taking into account the heteroscedastic residuals 5 

and obtaining a normally distributed residual series from the error model. The parameter and 6 

inflow transformation steps with a little modification from Beven et al. (2008) over the 7 

calibration period (1, ,T ) are as follows: 8 

1. Select values of , 0    and transform the reservoir inflows ( 1: 1:
ˆ ,T Tq Q ) to get                9 

( 1: 1:
ˆ ,T Tz z ) using Eq. 1. 10 

2. Calculate the residuals series from the transformed inflow data ( 1: 1: 1:
ˆ

T T Tz z   ). 11 

3. Perform an optimization for the error model parameters (
1 2, , , pa a a ) to minimize12 

 
2

1: 1:
ˆ

T T  , where ̂  represents the forecast from the error model which at a 13 

given observation time step ( t ) equals ( ˆ
e te  ). Thus, the observed ( ) and 14 

forecasted ( ̂ ) errors at a given observation time step ( t ) can be related as 15 

ˆ
t t t    , where t  is a random noise that describes the total uncertainty 16 

originating from various sources.  17 

4. Adjust ( ,  ) and repeat the optimization until the residuals of the error model 18 

appear homoscedastic. The t  term (step 3) is assumed to be unimodal, symmetric 19 

and unbounded random variable with a zero expected-mean and second moment 20 

given as 2 . 21 

2.3 Performance evaluation 22 

In addition to visual evaluation of the hydrographs, performance of the present procedure is 23 

robustly analysed using deterministic and reliability metrics. The root mean square error 24 

(RMSE), relative error ( RE ) and the Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 25 

1970) are employed to evaluate efficiency of the models during calibration and validation 26 

deterministically. Evaluations are made with respect to varying forecast lead-times and season 27 

wise as well. Among the three statistical performance criteria, the RE  (Eq. 5) measures the 28 
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relative error between the total observed and predicted inflow volume. For a good simulation the 1 

value of RE  is expected to be close to zero. Quantifying the relative error ( RE ) of the 2 

simulations/forecasts is important because it indicates how the inaccuracies affect a hydropower 3 

company’s ability to deliver the amount of energy it has pledged to provide to the energy 4 

market. Therefore, special attention is given to the less aggregate version of RE , which we 5 

hereon refer to as percentage volume error ( PVE ) and describe as follows. 6 

 ˆ
100%
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         (5) 7 

The PVE designates the relative error at each time step, which in reference to Eq. 5 can be 8 

obtained by omitting aggregation of the errors by summation. It indicates the magnitude of the 9 

errors as percentage of the observed inflows at each inflow time step. From hydropower systems 10 

operations point of view, the PVE enables evaluation of the forecast errors at each time step 11 

and assess implication on the power production capacity directly. The PVE analysis devised 12 

here divides the computed PVEs into six PVE classes (i.e. ≤ 10%, 10-20%, 20-30%, 30-40%, 13 

40-50% and >50%), and treats overestimates and underestimates separately. The number of 14 

times each of the six absolute PVE classes appeared in the set or subset of interest (i.e. 15 

hydrologic year or seasons) is constructed by keeping score of the PVE class into which each 16 

and every residual fell in. Then the fraction of time each PVE class occurred is divided to the 17 

total number of points in the given set/subset and is reported as a percentage. This is designated 18 

as a “PVE count”. Model performance assessment using PVE (during simulation and 19 

forecasting) mainly focuses on assessing the change in number the number of incidences in 20 

each PVE set, which in other words means the change in PVE counts. The PVE count/change 21 

in PVE count, along with the above-mentioned deterministic statistical criteria, is used for 22 

evaluating simulation and forecasting skill of the complementarily setup system (conceptual 23 

model + error model). As a metric for measuring relative improvement in forecasting skills, 24 

high PVE counts for the low PVE classes (e.g. ≤ 10%) is considered desirable quality. The 25 

justification is that, the penalty a power producer incurs when failing to deliver the pledged 26 

amount of power would be lesser if its forecasting system makes errors of lower PVE classes 27 

more frequently. 28 

Another useful metric used for assessing forecasting skill of the complementary setup is through 29 

uncertainty analysis. An interval forecast (Chatfield, 2000) can be constructed by specifying an 30 

upper and lower limit between which the future reservoir inflow is expected to lie with a certain 31 
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probability (1  ). The prediction interval for the inflow forecast are estimated using the 1 

Linear Regression Variance Estimator (LRVE) Shrestha and Solomatine (2006) describe. 2 

Xiong et al. (2009) outline several indices that can serve for describing the properties of 3 

prediction bounds of particular proability and for comparative study of prediction intervals 4 

resulting from different uncertainty assessment schemes. The indices characterise the prediction 5 

bound either by: the percentage of observations it contains, its band-width, or its symetery 6 

relative to the observation. According to Xiong et al. (2009), of all indeces the containing ratio 7 

(CR), which describes the percentage of observed inflows falling in the desired interval 8 

percentage, is the widely used metrics for assessing reliability of probabilistic forecasts. We 9 

adopt the CR for describing the reliability of the forecasts with the desired interval percentage 10 

of 95% ( 0.05  ). 11 
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3 Example application 13 

3.1 Study area and data 14 

The Krinsvatn catchment is located in Nord Trøndelag County in mid-north Norway. It 15 

comprises an area of 207 km2 and about 57% of the catchment is mountain area above 16 

timberline. The elevation ranges from 87 to 628 m above mean sea level and is drained by the 17 

Stjørna/Nord River. The dominant land use is forest covering 20.2% of the study site while 18 

marsh, lakes and farmlands cover about 9%, 6.7% and 0.4% of the catchment area, respectively. 19 

Figure 1 provides location and main characteristics of the study site, and the daily potential 20 

evapotranspiration values used. 21 

Observed hourly data of eleven water-years (2000/01 to 2010/11) was split into three sets used 22 

for warming-up (2000/01), calibrating (2001/02-2005/06) and validating (2006/07-2010/11) 23 

the conceptual and the error models alike. Observed precipitation and temperature data of two 24 

meteorological stations (i.e. Svar-Sliper and Mørre-Breivoll) in neighbouring catchments are 25 

used. Discharge data for the catchment is derived from water level records at the Krinsvatn 26 

gauge station. Beven (2001) outlines the advantages to direct use of water level information in 27 

hydrologic forecasting. Rating curve uncertainties and their influence on the accuracy of flood 28 

predictions have been documented very well (e.g. Sikorska et al. 2013; Aronica et al., 2006; 29 

Pappenberger et al. 2006; Petersen-Overleir et al. 2009). Krinsvatn is considered a stable 30 

discharge measurement site with few external influences, and the rating curve was updated in 31 
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2004. This study, however, considers the uncertainty of the rating-curve to be one of the factors 1 

contributing to the total error expressed in Eq. 2 and does not address it separately. 2 

3.2 HBV model for Krinsvatn catchment 3 

The catchment is divided into 10 elevation zones in the HBV model setup. Input data used are 4 

hourly areal precipitation, air temperature, and potential evapotranspiration. The model is run 5 

on an hourly time step for water years 2000/01 to 2005/06 with the last five water years being 6 

used for model calibration. Calibration is carried out using the shuffled complex evolution 7 

algorithm (Duan et al., 1993), with the NSE between the observed and predicted flows as an 8 

objective function. Description of the model parameters along the corresponding optimized 9 

values is provided in Table1. 10 

3.2.1 Overview of the conceptual model’s performance 11 

The simulation and observed reservoir inflow hydrographs shown in Fig. 2 indicate a certain 12 

level of agreement for most of the calibration and validation periods, which the statistical 13 

evaluations (Table 2) agree with. The overall hourly reservoir inflow predictions during 14 

calibration and validation show efficiency of NSE > 0.5 and RE < ±25%; even though 15 

simulations match observations better during calibration than validation. High NSE values (> 16 

0.8) during both calibration and validation reveal that the inflow simulations fit the observed 17 

hydrographs best in the winter seasons. Nevertheless, it is evident that model predictions in the 18 

validation period are prone to underestimation bias (RE > 0). Season wise assessment of the 19 

validation period reveals the conceptual model’s tendency to underestimate reservoir inflows 20 

in spring and summer considerably. In light of what the NSE and PBIS metrics suggest, the 21 

lower RMSE values (i.e. for instance summer season) do not reflect superior model 22 

performances. 23 

PVE counts of the six PVE classes (i.e. ≤10%, 10-20%, 20-30%, 30-40%, 40-50% and >50%) 24 

are computed on the residuals between observed and simulated reservoir inflows. The stacked-25 

columns of Fig. 3a&b show how frequently each of the six absolute PVE classes occurred over 26 

the calibration and validation period. The results reveal a large degree of discrepancy between 27 

observations and predictions during calibration and validation. Simulated inflows deviated from 28 

the corresponding observed values by a magnitude of more than ±10% in about 83.3% 29 

(calibration) and 88.6% (validation) of the respective simulation time steps. Huge difference 30 

between observations and simulations is noted in the summer season with absolute PVE of the 31 
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class >50% occurring in more than half of the simulation time steps throughout the calibration 1 

and validation periods. Winter simulations listed the highest level of occurrence of PVE of the 2 

class ≤±10% during both calibration and validation. Comparable to the results in Table 2, 3 

volume errors in winter simulations do not seem to be a serious problem, probably because the 4 

season is predominantly a snow accumulation rather than runoff generation period. Errors of 5 

the high absolute PVE classes scored high PVE counts in the spring and autumn seasons. 6 

Details of the extent to which the reservoir inflows are under- and over-estimated can be seen 7 

in Fig. 3c&d. The fraction of time the simulated inflows exhibited under- and over-estimation 8 

during calibration is 51.9% and 46.8%, respectively. In the validation period, the reservoir 9 

inflows are underestimated about 65.6% of the time compared to overestimation in 33.4% of 10 

the times. This is also revealed in the findings from statistical metrics in Table 2, which disclose 11 

the bias in the model. Yet, the results in Fig. 3 further reveal that the model predictions deviate 12 

from the observations at high discharges. For example, during the validation period 59.2% of 13 

the times observations exceeded the predictions by magnitudes more than 10%. Such 14 

information is useful because direct evaluation of observed and predicted values explains the 15 

implications of model performance on the planning and operation of a hydropower system 16 

better than an aggregated variance based statistic. From an operational management point of 17 

view, considerable underestimation of reservoir inflows can have both short- and long-term 18 

effects on the operation of a hydropower system. In the short-term, the company could be forced 19 

to release unvalued water especially when the reservoir water level is close to its maximum 20 

capacity. Hence, the high percentage of underestimations that occur in the autumn and spring 21 

seasons (during calibration and validation) should not be tolerated because the inflows in the 22 

autumn and spring seasons are very important. On the one hand, substantial overestimation of 23 

reservoir inflows can at least expose any Norwegian hydropower company to undesirable 24 

expense due to obligations to match the power supply it has failed to deliver by dealing with 25 

other producers in the intra-day physical market (Elbas). Although overestimation does not 26 

seem to be a pertinent issue, Fig. 3d unmasks that the inflows are overestimated by a magnitude 27 

>50% at least 10% of the time in all seasons. 28 

3.2.2 Residual analysis 29 

Following the example of Xu (2001), a Kolmogorov-Smirov test is applied to residuals of the 30 

conceptual model. The test revealed that the residuals are not normally distributed. The 31 
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maximum deviation between the theoretical and the sample lines is 0.130, which is larger than 1 

Kolmogorov-Smirov test statistic of 0.008 at significance level 0.05 . 2 

Presence of homoscedasticity in the residuals series is diagnosed visually by plotting the 3 

residuals versus the predicted reservoir inflows (Fig. 4a). With respect to the horizontal axis, 4 

the scattergram does not remain symmetric for the entire range of predicted inflows. The 5 

residuals show high variability and possible systematic bias when inflows are less than 3.5mm 6 

while the opposite is true when the inflows exceed 3.5mm. Inflows of magnitudes between 3.5 7 

and 5.5mm seem to be underestimated while overestimation is visible when the inflow rates are 8 

greater than 5.5mm. However, as can be seen from Fig. 2, inflows of magnitude up to 3mm 9 

represent reservoir inflows during the rise of the hydrographs including all peak inflows for all 10 

hydrologic years but 2005/2006 and 2010/2011. Hence, except for the possible systematic bias 11 

during low flows, the inference from the scatterplot is inconclusive to support or dismiss the 12 

issue of predominant underestimation revealed in the model performance evaluation. Moreover, 13 

hourly inflows of magnitudes higher than 3mm are rare and occurred about 0.1% of the times 14 

over the calibration and validation period. 15 

Plots of autocorrelation and partial autocorrelation functions of the residual time series (Fig. 16 

4b&c) indicate a strong time persistence structure in the error series. Rapid decaying of the 17 

partial autocorrelation function confirms the dominance of an autoregressive process, which 18 

the gradually decaying pattern of the autocorrelation function also suggests. Thus, in order to 19 

obtain a Gaussian series it is important to address issues of heteroscedasticity and serial 20 

correlation in the residual series. As the current study aims at utilising the persistent structure 21 

in the residuals for supplementing the forecasting system, the corrective action to be taken only 22 

aims at removing the heteroscedasticity. A successful way to do it is through transformation of 23 

the flow data (e.g. Engeland et al., 2005).  As outlined in the methodology section, the reservoir 24 

inflows (both observed and predicted) are transformed while estimating parameters of the error 25 

model. 26 

3.3 Structure and performance of the error model 27 

In accordance with the findings from the ACF and PACF plots discussed in section 3.3.2, AR 28 

models of up to order 3p   were investigated while estimating parameters of the error model. 29 

As outlined in section 2.2.2, coefficient of the AR(p) model and the transformation parameters 30 

were estimated by minimizing the sum of the squares of the offsets between the inflows 31 
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(observed and predicted) in the transformed space, and assessment of whether the subsequent 1 

residuals from the complementary modelling framework appear homoscedastic and exhibited 2 

correlation. The latter was assessed using the Kolmogorov-Smirov (KS) statistic as a relative 3 

quantitative measure followed by visual inspection of the residual plots, which led to the 4 

selection of an AR(1) model with transformation parameters 41.4   and 0.9  , bias 5 

correction 0.021e   and coefficient 1 0.97a  .  6 

Calibration efficiencies calculated for the error model using the RMSE, RE and NSE metrics 7 

are 0.096, -100% and 0.517, respectively. Corresponding values for the validation period are 8 

computed as 0.095, 20.3% and 0.630, respectively. NSE values for the calibration and 9 

validation periods imply ability of the error model to capture at least half of the discrepancies 10 

observed between observations and predictions from the conceptual model. The transformation 11 

reduced the maximum deviation between the theoretical and the sample lines slightly from 0.13 12 

to 0.10, yet the residuals are not normally distributed (i.e. Kolmogorov-Smirov statistic of 0.008 13 

at significance level of 0.05 ). This implies that the assumption the residuals from the 14 

complementary forecasting system would be Gaussian is far from being true. As the aim of this 15 

study is to utilize the error and complementary models additively, the extent to which the 16 

complementary setup boosted prediction ability in the forecasting mode is discussed in the next 17 

section. 18 

3.4 Forecasting skill of the complementary setup (deterministic assessment) 19 

Imitating operational application of forecasting models in the Norwegian hydropower system, 20 

reservoir inflows for the day-ahead market (Elspot) are estimated using the presented 21 

forecasting system. The system has to run once a day at an hourly time step, sometime before 22 

12 pm after retrieving the latest observations, and the inflow forecasts are issued for the next 23 

24 hourly time steps beginning from 12 o’clock noon. Overall performance of the 24 

complementary model in forecasting the reservoir inflows during the calibration and validation 25 

periods is first discussed and is followed by evaluation of its forecasting skill with respect to 26 

forecast lead-times. Evaluation of the forecast skill presented in this paper is based on 27 

assessment of forecasts made for the period between 2006/07 and 2010/11 as the datasets from 28 

2000/01 to 2005/06 are used for calibrating the system. 29 
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3.4.1 Overall performance 1 

Assessment of the overall forecasting skill of the complementary setup shows significant 2 

improvement in forecast accuracy. The RMSE and NSE statistical criteria computed between 3 

forecasted and observed inflows are 0.095 and 0.896, respectively. RMSE values for the 4 

autumn, winter, spring and summer forecasts are 0.094, 0.090, 0.132 and 0.044, respectively, 5 

and the corresponding NSE values are 0.904, 0.905, 0.859 and 0.873. 6 

Proving capability of the complementary setup to reduce the bias revealed in the simulation 7 

forecasts from the conceptual model, which was pointed out in the previous section, the 24 8 

hours lead-time forecasts exhibited low-level underestimation bias with RE equal to 3.8%. 9 

Degree of bias in the inflow forecasts differed seasonally. RE computed for each season in a 10 

decreasing order is, summer (-10.2%), spring (4.6%), autumn (2.9%) and winter (0.7%). The 11 

relatively higher bias in the spring and autumn forecasts can be related to runoff generation in 12 

the Krinsvatn catchment due to snow melting or occurrence of precipitation in the form of 13 

rainfall, which can affect the persistence structure in the residual series obtained from the 14 

conceptual model. 15 

Stacked-column plots in Fig. 5 display the occurrence level of each of the six PVE classes in 16 

the residual series between forecasts and observations. Visual comparison of stacked-column 17 

plots of Fig. 5 and Fig. 3 shows reduction in PVE count of the high PVE classes and increase 18 

in PVE counts of low PVE classes; e.g., PVE count for the PVE class >±50% decreased by 19 

about 15% while PVE count for the PVE class ≤±10% grew by about 50%. In order to assess 20 

this assertion, a further assessment is carried out by dividing the six PVE classes into two 21 

groups: low PVE (PVE ≤ ±10%) and high PVE (PVE > ±10%). Ratio between seasonal PVE 22 

counts of the low and high PVE classes is taken and comparison is made on two sets of residual 23 

series. These sets of residuals are, (1) residuals from the simulated forecasts (conceptual model), 24 

and (2) residuals from forecasts of the complementary setup. Results are presented in Table 3. 25 

Apart from confirming the success in reducing PVE counts of high PVE errors, the results 26 

indicate that equal level of success is not achieved in all four seasons. In relative terms, high 27 

PVE errors occur more often in the spring and summer forecasts. As pointed out earlier, this 28 

can be associated to the snowmelt and, to a certain degree, to rainfall incidents occurring in 29 

these seasons. 30 
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3.4.2 Forecast skill with respect to forecast-lead times 1 

Relative reductions in RMSE between forecasts from the complementary setup and the 2 

simulated forecasts from the conceptual model are computed. Detailed results for each season 3 

of the hydrologic years between 2006/07 and 2010/11 are presented in Table 4. The results are 4 

also summarized in terms of the minimum, mean and maximum relative RMSE reduction as 5 

shown in Fig. 6. Excluding forecasts in autumn and winter seasons of 2006/07, relative RMSE 6 

reductions are observed in forecasts of short and long lead-times. Of course, in all four seasons, 7 

the achieved level of improvement in forecast accuracy is high for short lead-times and 8 

diminishes gradually with increased lead-time. Results show that accuracy of the reservoir 9 

inflows in the spring and summer seasons are improved over the entire range of the forecast 10 

lead-time. Likewise, reduction in RMSE is observed for all autumn and winter inflow forecasts 11 

except for years 2006/07 and 2007/08, respectively.  12 

In order to get insight on the improvement level in a unit directly related to hydropower 13 

production, the change in PVE count of each PVE class is calculated. Change in PVE count of 14 

a given absolute PVE classes is the difference between the PVE counts for the complementary 15 

setup and that for the conceptual model. The results are summarized as shown in Fig. 7. The 16 

figure shows that the PVE count of high magnitude absolute PVE classes are reduced and the 17 

opposite is true for that of the smaller absolute PVE classes. For instance, regardless of the type 18 

of discrepancy (under- or over-estimation) noted, the change in PVE counts of the absolute 19 

PVE of the class >50% is negative. The negative sign implies less errors falling in this PVE 20 

class in the residual series from the complementary setup than those from the conceptual model. 21 

Similarly, the changes in PVE counts of the 20-30%, 30-40% and 40-50% absolute PVE classes 22 

indicate lowered fraction of occurrence of errors of these orders. In both cases of under- and 23 

over-estimation, absolute PVE of the class ≤10% occurred more frequently; for example, the 24 

fraction of time reservoir inflow forecasts of 1 hour lead-time deviated from the observations 25 

by a magnitude ≤10% increased by about 52.7 and 27.7% during under- and over-estimations. 26 

Overall, the plots show that the magnitude of discrepancy at each forecasting point is 27 

significantly reduced. The improvement level at each forecast lead-time is proportional to the 28 

vertical distance from the horizontal axis. It can be noted that, the vertical distance narrows 29 

down with increasing lead-time suggesting a declining improvement level with increased lead-30 

time. 31 
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Calculation of the relative RMSE reduction and the change in PVE counts agree that the 1 

forecast accuracy is improved through the complementary setup. The assessments further 2 

revealed that the degree of improvement weakens with increased forecast lead-time. However, 3 

the relative RMSE reduction computations indicate that in some occasions the simulated inflow 4 

forecasts stand out to be better. The relative RMSE reduction values for lead-times longer than 5 

20 hours (Table 4) show that complementing the conceptual model with an error model is 6 

counterproductive in autumn and winter seasons of years 2007/08 and 2006/07, respectively. 7 

3.5 Reliability of the inflow forecast 8 

Computation of the containing ratio (CR) for the entire forecast reveals that 96% of the 9 

observations are inside the 95% prediction interval. The inflow hydrographs (Fig. 8) confirm 10 

that most of the observed inflows are contained in the specified uncertainty bounds. 11 

The percentage of observation points falling within the 95% prediction interval varies from 12 

season to season and across hydrologic years (see Fig. 9a). All observed winter and summer 13 

inflows are bracketed in the 95% uncertainty bound at least 95% of the time. In general, the 14 

winter season is more of a snow accumulation period and a closer observation of the 15 

hydrographs (see Fig. 8) reveals that the summer hydrographs cover the recession and base flow 16 

portions of the annual hydrographs. Thus, better persistence structure and predictable 17 

discrepancies between simulated forecasts from the conceptual model and the observations. As 18 

Goswami et al. (2005) argue, the persistence structure in residual series primarily arises from 19 

the dynamic storage effects of a catchment system. 20 

The desired percentage of autumn observations is contained in the 95% prediction interval in 21 

the years 2006/07, 2008/09 and 2010/11. In the years 2007/08 and 2009/10, however, only 93 22 

and 94% of the observed autumn inflows are bracketed in the estimated 95% prediction 23 

intervals, respectively. Reliability score (CR) calculations for the spring season indicate that 24 

percentage of observation points falling in the desired prediction interval percentage are below 25 

95% except in the hydrologic years 2007/08 and 2008/09. Unlike winter and summer inflows, 26 

autumn and spring flows mostly cover portions of the hydrograph corresponding to the rising 27 

limb or high flow regime (see Fig. 8). While physical factors contributing to the increase in 28 

quick flow into the reservoir are precipitation incidents (in the form of rainfall) and melting of 29 

snow in the headwaters, comprehension of this concept and its encapsulation into the HBV 30 

model leaves control of the catchment response to two threshold values (TX and TS, see Table 31 
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1 for description). Employing such simple threshold values to govern initiation of the runoff 1 

generation process based on air temperature measurement at a given time-step obviously 2 

involves more sources of uncertainty (i.e. measurement, model structure and model 3 

parameters). For instance, we assume the input air temperature at a given time step is 4 

erroneously recorded to be higher than TX and/or TS due to measurement error. Subsequently, 5 

the model will partition the precipitation as rainfall and initiate melting of snow, which the 6 

observation does not reveal. This kind of misclassification of precipitation and/or 7 

misrepresentation of snow accumulation and melting processes can simply occur due to the 8 

error in the input temperature record. Because of this, the persistence in the errors between 9 

simulated forecasts from the conceptual model and the observations can get weaker. According 10 

to Goswami et al. (2005), some degree of persistence in the model input (i.e. rainfall) is another 11 

primary source of the persistence characteristic of observed flow series. Even though the least 12 

CR calculated for the autumn and spring seasons are by no means too bad (i.e. 93% and 90%, 13 

respectively), the requirement for reliability is for the uncertainty bound to contain as much 14 

fraction of observations as desired percentage of prediction interval; hence, the complementary 15 

setup presented seems to have struggled with it. 16 

The fraction of observed inflows bounded within the estimated prediction interval decreases 17 

with increased lead-time (Fig. 9b). Reliability score for lead-times up to 17 hours fulfil the 18 

requirement of containing 95% of the observations. For lead-times beyond 17 hours, the 19 

reliability declines and reaches 92% at forecasts lead-time of 24 hours. 20 

Findings from evaluation of the forecast skill of the complementary setup using deterministic 21 

and probabilistic metrics support each other. The present procedure is able to improve accuracy 22 

of reservoir inflow forecasts and the level of improvement decreases as the forecast lead-time 23 

increases. Deterministic evaluation of performance of the forecast system indicates that the 24 

concept of complementing the conceptual model with a simple error is not always effective. As 25 

discussed earlier, in some occasions the present method can get counterproductive in 26 

forecasting inflows when the forecast lead-time is beyond 20 hours. Similarly, detailed 27 

assessment of the reliability (Table 5) shows that the CR of the forecasting system can get below 28 

95% at forecast lead-times less than 17 hours; e.g. at forecast lead-time of 9 hours only 89% of 29 

the observed spring inflows of year 2006/07 are bracketed in the 95% prediction interval. 30 

 31 
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4 Concluding remarks 1 

In the present study, the forecasting system comprising additively setup conceptual and simple 2 

error model is presented. Parameters of the conceptual model were left unaltered, as are in most 3 

operational setups, and the data-driven model was arranged to forecast the corrective measures 4 

to be made to outputs of the conceptual models to provide more accurate inflow forecasts into 5 

hydropower reservoirs several hours ahead. 6 

Application to the Krinsvatn catchment revealed that the present procedure could effectively 7 

improve forecast accuracy over a 24 hours lead-time. This proves that the efficiency of a flow 8 

forecasting system can be enhanced by setting up a data-driven model to complement a 9 

conceptual model operating in the simulation mode. Furthermore, the current study reveals that 10 

analysing characteristics of the residuals from the conceptual model is important and 11 

heteroscedastic behaviour should be addressed before identifying and estimating parameters of 12 

the error model. Compared to past studies that applied data-driven and conceptual models in a 13 

complementary way, the present procedure is successful in providing acceptably accurate 14 

forecast for extended lead-times. It also outlines procedure for extracting useful information 15 

from the bias, the persistence and the heteroscedasticity the residual series from the conceptual 16 

model exhibited, although the assumption that the residuals from the modelling framework to 17 

be random failed to hold.  18 

Results also indicate that probabilistic forecasts can be obtained from deterministic models by 19 

constructing uncertainty of the complementary setup based on predictive uncertainty of the 20 

simple error model. The uncertainty bound seems to satisfy the reliability requirement when 21 

evaluated over the entire forecasting period. Its reliability with respect to forecast lead-time also 22 

appears satisfactory for lead-times up to 17 hours. Nevertheless, the season wise assessment 23 

revealed that the degree of reliability of the forecasts vary from season to season. Given that 24 

the error model essentially makes use of the persistence structure in the residuals from the 25 

conceptual model, the present procedure seems to be unable to capture transitions in the 26 

hydrograph errors from over- to under-estimation (and vice versa). On the one hand, it was 27 

unveiled that the degree of reliability of the forecasts decline with longer lead-times and the 28 

deterministic metrics (RMSE and PVE) confirmed the same.  29 

In order to address these challenges, a future development can be to explore methodologies for 30 

taking care of seasonal variability in the structure of the residual series. Updating the error 31 

models periodically can be one solution but care must be taken if the selected updating method 32 
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makes a Gaussian assumption. Another alternative would be to explore more complex 1 

stochastic models for the residuals, that use exogenous predictor variables either observed 2 

directly (much like the seasonal reservoir inflow forecasting models described in Sharma et al, 3 

2000), or using state variables simulated from the conceptual model (like the Hierarchical 4 

Mixtures of Experts framework in Marshall et al, 2006 and Jeremiah et al, 2013). Formulation 5 

of these models will also offer better insight into the deficiencies that exist within the HBV 6 

conceptual model, thereby allowing further improvement to reduce the structural errors present. 7 

Another interesting topic of future investigation is the intercomparison of the probabilistic 8 

forecasts presented in the current paper with the same from popular methods such as Bayesian 9 

forecasting system (BFS), the generalized likelihood uncertainty estimation (GLUE) and the 10 

Bayesian recursive estimation (BaRE). We believe this would enable identification of the most 11 

effective and reliable probabilistic forecasting method that can also be implemented in an 12 

operational setup.  13 
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Table 1 Model parameters and corresponding optimized values. 1 

Parameter Description Unit 
Optimized 

value 

Snow routine 

TX Threshold temperature for rain/snow [°C] 2.23 

CX Degree-day factor for snow melt (forest free part) [mm/d°C] 9.95 

CXF Degree-day factor for snow melt (forested part) [mm/d°C] 5.21 

TS Threshold for snow melt/freeze (forest free part) [°C] 0.73 

TSF Threshold for snow melt/freeze (forested part) [°C] -1.80 

CFR Refreeze coefficient [mm/d°C] 0.04 

LW Max relative portion liquid water in snow [-] 0.085 

Soil and evaporation routine 

FC Field capacity [mm] 306.87 

FCDEL Minimum soil moisture filling for POE [-] 0.31 

BETA Non-linearity in soil water retention [-] 3.84 

INFMAX Infiltration capacity [mm/h] 30.22 

Groundwater and response routine 

KUZ2 Outlet coefficient for quickest surface runoff [1/day] 1.65 

KUZ1 Outlet coefficient for quick surface runoff [1/day] 0.99 

KUZ Outlet coefficient for slow surface runoff [1/day] 0.42 

KLZ Outlet coefficient for groundwater runoff [1/day] 0.09 

PERC Constant percolation rate to groundwater storage [mm/day] 1.60 

UZ2 Threshold between quickest and quick surface runoff [mm] 122.34 

UZ1 Threshold between quick and slow surface runoff [mm] 49.97 

 2 
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Table 2 Summary of overall and seasonal performance of the conceptual model during the 1 

calibration (2001/02 to 2005/06) and validation (2006/07 to 2010/11) periods. 2 

Seasons 

Calibration period  Validation period 

RMSE [mm] RE [%] NSE [-]  RMSE [mm] RE [%] NSE [-] 

Overall 0.139 1 0.842  0.162 18.8 0.700 

Autumn 0.147 1.8 0.724  0.147 11.3 0.769 

Winter 0.182 -3.7 0.894  0.126 9.7 0.812 

Spring 0.131 -2.7 0.709  0.246 24.6 0.509 

Summer 0.073 28.2 0.641  0.079 38.2 0.592 

3 
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Table 3 Ratio between occurrence frequency of low PVE (≤10%) and high PVE (>10%) errors 1 

for the hydrologic years 2006/07-2010/11. 2 

Data set 

Overestimation Underestimation 

Aut. Win. Spr. Sum. Aut. Win. Spr. Sum. 

Simulated forecast (HBV model) 4.4 5.1 7.6 4.5 6.2 5.2 12.8 25.4 

Forecast (complementary setup) 1.1 1.2 1.5 2.0 0.9 0.5 1.1 1.3 

3 
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Table 4 Relative RMSE reductions (%) in reservoir inflows forecast as a function of forecast lead-time (* designates relative RMSE reduction 1 

of <0) 2 

Season 

/year 

Lead Time [hour] 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

A
u
tu

m
n
 

06/07 89.3 79.3 70.1 62.7 56.7 52.3 48.5 45 41.7 38.4 35 31.6 28.2 25.6 23.7 21.7 19.1 16.6 15.3 14.3 13.8 13 11.5 10.0 

07/08 91.6 84.4 78.6 73.5 67.6 62.2 58.0 53.8 50.7 48.0 44.8 41.4 38.8 36.3 33.8 30.7 26.3 19.5 10.9 3.3 * * * * 

08/09 93.9 87.9 81.7 76.7 71.0 65.9 62.1 58.5 54.1 49.2 44 39.4 35.7 32.3 28.8 25.7 23.2 70 18.4 16.7 15.3 14.1 12.7 11.5 

09/10 90.9 83.2 76.9 70.9 64.7 59.1 54.9 51.0 47.2 44.2 41.1 38.1 35.1 30.0 29.5 27.1 25.1 23.3 21.9 70.0 70.0 10.0 19.1 18.4 

10/11 92.1 84.9 78.7 67.7 62.4 57 53.9 51.2 47.5 44.8 42.4 40.3 38 35.8 33.9 30.0 29.4 26.2 23.1 30.0 17.2 14.7 12.7 10.9 

W
in

te
r 

06/07 94.2 87.9 82.2 75.6 60.5 49.3 42.8 36.3 31.3 26.3 21.4 17.5 12.9 9.0 6.7 4.6 2.5 1.3 1.0 0.0 * * * * 

07/08 91 81.9 73.3 66.2 59.9 54.1 49.2 44.8 40 36.1 33.3 30.8 28.1 25.4 23.2 90 19.5 17.5 15.6 15.5 16.5 17.5 18.1 18.4 

08/09 91.7 83.9 77.0 74.0 72.2 68.4 62.2 55.1 49.5 44.4 39.8 36 28.9 22.2 18.2 15.6 13.9 12.8 11.9 11.1 9.9 8.6 7.3 5.8 

09/10 94.9 91.4 87.3 83.5 80.3 78.8 76.7 72.7 65.9 58.1 51.8 46.9 43.4 40.2 37.7 35.5 33.7 32.2 30.9 29.4 27.8 26 24.1 22.2 

10/11 93.9 88.7 83.1 75.9 68.1 64.9 61.4 57.1 52.3 47 41.8 36.9 32.2 28.4 26 24.2 22.6 90 19.4 17.7 16 14.6 13 11.1 

S
p

ri
n
g
 

06/07 94.2 88.2 82.4 77 71.7 66.3 61.1 56.4 52.3 48.9 45.8 43.1 40.6 38.3 36 33.9 31.8 30 28.5 27.2 26.2 25.2 24.1 23.2 

07/08 96.6 93.3 89.8 86.2 82.6 79.0 75.6 72.8 70.4 68.4 66.6 64.9 63.1 61.3 59.4 57.6 55.8 54 52.5 51.1 49.7 48.4 47.1 46.0 



 29 

08/09 95 90.4 85.8 81.6 77.7 73.7 70.6 67.9 65.7 63.5 61.1 58.7 56.3 54 51.7 49.4 47 44.7 42.4 40.1 37.7 35.3 33.2 31.6 

09/10 93.9 87.7 81.7 76.0 70.6 64.9 59.3 54.4 50.6 47.4 44.8 42.5 40.4 38.5 36.8 35.2 33.9 32.8 30.0 31.3 30.5 29.7 29.0 28.3 

10/11 94.6 88.6 82.2 75.7 69.4 63.4 57.7 52.5 48.7 46.8 44.5 41.7 39.0 36.7 34.6 32.7 31.1 29.8 28.7 27.8 26.8 25.8 24.6 23.7 

S
u
m

m
er

 

06/07 94.8 90 85.7 82.8 80.1 76.3 72.6 69.7 67.4 66.0 65.1 63.7 60.1 58.2 56.3 54.2 51.6 49.6 47.6 44.9 42.2 39.5 36.8 34.4 

07/08 90.7 81.4 73.3 66.3 60.3 55.6 51.4 48.0 45.4 42.6 39.9 39.4 39.1 37.1 34.6 32.8 31.0 29.3 28.4 27.4 26.9 26.2 24.8 23.2 

08/09 97.2 94.4 91.6 89 85.1 78.2 69.2 60.3 52.9 47.1 41.6 36.7 32.5 28.8 25.4 22.7 50.0 18.6 17.1 15.9 14.6 13.3 12.4 11.9 

09/10 92.4 84.8 79.1 76.2 74.2 71.5 68.4 65.2 61.0 57.1 54.3 51.9 50.0 47.7 45.1 43.0 41.1 39.3 37.0 35.8 35.0 34.1 33.2 30.0 

10/11 94.2 88.7 82.9 76.4 69.7 64.4 59.3 54.3 49.8 45.8 42.5 39.8 37.2 35.1 33.1 31.5 30.0 28.6 27.5 27.0 26.5 25.9 25.5 25.0 

 1 

2 
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Table 5 Summary of seasonal containing ratio (95% prediction interval) during reservoir inflow forecasting (2006/07 to 2010/11) 1 

Season 

/year 

Lead Time [hour] 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

A
u
tu

m
n
 

06/07 99.9 99.9 97.8 97.8 97.8 97.8 97.8 97.8 97.8 97.8 96.7 94.5 94.5 93.4 93.4 93.4 93.4 90.1 90.1 91.2 90.1 90.1 89.0 89.0 

07/08 99.9 99.9 98.9 98.9 97.8 97.8 97.8 97.8 97.8 97.8 96.7 94.5 91.2 90.1 90.1 89 87.9 87.9 86.8 85.7 85.7 84.6 83.5 83.5 

08/09 99.9 99.9 99.9 99.9 99.9 98.9 98.9 95.6 95.6 95.6 95.6 95.6 95.6 95.6 95.6 95.6 94.5 93.4 93.4 93.4 92.3 92.3 91.2 90.1 

09/10 99.9 99.9 98.9 97.8 97.8 96.7 96.7 95.6 94.5 93.4 93.4 91.2 92.3 92.3 92.3 92.3 93.4 93.4 92.3 92.3 92.3 91.2 90.1 90.1 

10/11 99.9 99.9 99.9 98.9 98.9 97.8 98.9 98.9 97.8 96.7 95.6 95.6 95.6 95.6 95.6 95.6 95.6 94.5 93.4 93.4 93.4 92.3 92.3 91.2 

W
in

te
r 

06/07 99.9 99.9 99.9 99.9 97.8 96.7 96.7 95.6 95.6 95.6 95.6 95.6 94.4 94.4 93.3 93.3 92.2 92.2 92.2 92.2 91.1 91.1 91.1 90.0 

07/08 99.9 99.9 98.9 97.8 97.8 97.8 97.8 97.8 96.7 96.7 94.5 93.4 93.4 92.3 94.5 94.5 94.5 95.6 96.7 95.6 95.6 95.6 94.5 94.5 

08/09 99.9 99.9 99.9 99.9 98.9 98.9 98.9 97.8 97.8 97.8 97.8 97.8 97.8 95.6 95.6 95.6 95.6 94.4 94.4 94.4 94.4 94.4 95.6 95.6 

09/10 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 97.8 97.8 97.8 97.8 

10/11 99.9 99.9 99.9 99.9 98.9 96.7 96.7 96.7 96.7 96.7 96.7 96.7 96.7 95.6 95.6 96.7 95.6 95.6 95.6 95.6 94.4 94.4 94.4 94.4 

S
p

ri
n
g
 

06/07 99.9 99.9 98.9 98.9 97.8 95.7 94.6 93.5 89.1 89.1 89.1 89.1 90.2 88.0 88.0 88.0 88.0 88.0 87.0 85.9 84.8 84.8 84.8 83.7 

07/08 99.9 99.9 99.9 99.9 99.9 99.9 99.9 98.9 98.9 98.9 98.9 98.9 97.8 97.8 97.8 96.7 95.7 94.6 94.6 94.6 94.6 94.6 94.6 94.6 

08/09 99.9 99.9 98.9 98.9 98.9 98.9 97.8 97.8 97.8 96.7 96.7 96.7 96.7 96.7 96.7 96.7 95.7 95.7 95.7 93.5 93.5 93.5 93.5 92.4 

09/10 99.9 99.9 98.9 97.8 97.8 97.8 96.7 96.7 94.6 94.6 94.6 93.5 93.5 93.5 91.3 91.3 91.3 91.3 90.2 90.2 91.3 89.1 89.1 90.2 
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10/11 99.9 98.9 98.9 96.7 96.7 95.7 94.6 93.5 92.4 92.4 90.2 90.2 89.1 88 89.1 87 85.9 85.9 84.8 83.7 83.7 83.7 82.6 82.6 

S
u
m

m
er

 
06/07 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 98.9 98.9 98.9 98.9 98.9 98.9 97.8 97.8 97.8 97.8 97.8 

07/08 99.9 99.9 99.9 99.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 

08/09 99.9 99.9 99.9 99.9 99.9 99.9 99.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 

09/10 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 98.9 98.9 98.9 98.9 98.9 

10/11 99.9 99.9 99.9 99.9 98.9 98.9 98.9 98.9 98.9 97.8 96.7 96.7 96.7 96.7 96.7 96.7 96.7 96.7 96.7 95.7 95.7 95.7 95.7 95.7 

1 
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Figure 1. Location, characteristics and potential evapotranspiration estimates of the study 3 

catchment.  4 
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Figure 2. Observed and predicted reservoir inflow hydrographs during calibration (left column) 3 

and validation (right column) of the conceptual model.  4 
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Figure 3. Stacked-column plots of: (1) PVE counts of the six absolute PVE classes (≤10%, 10-3 

20%, 20-30%, 30-40%, 40-50% and >50%) during calibration (a) and validation (b); and (2) 4 

the fraction of times under- and over-estimation incidents corresponding to the six PVE classes 5 

occurred during calibration (c) and validation (d).  6 
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Figure 4. Plots of (a) residuals from the conceptual model as a function of predicted inflow 3 

during the calibration period, (b) autocorrelation function of the residuals, and (c) partial 4 

autocorrelation functions of the residuals.  5 
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Figure 5. Stacked-column plots of: (a) PVE counts of the six absolute PVE classes (≤10%, 10-3 

20%, 20-30%, 30-40%, 40-50% and >50%) observed in reservoir inflow forecasts from the 4 

complementary setup; and (b) the corresponding fraction of times under- and over-estimation 5 

incidents corresponding to the six PVE classes occurred. Hydrologic years 2006/07-2010/11.  6 
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Figure 6. Summary of relative seasonal RMSE reductions as a function of forecast lead-time 3 

(minimum, mean and maximum values computed from corresponding computations for 4 

hydrologic years 2006/07 - 2010/11).  5 
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Figure 7. Change in number of occurrence of the six absolute PVE classes (≤10%, 10-20%, 20-3 

30%, 30-40%, 40-50% and >50%) as a function of forecast lead-time: (a) overestimation and 4 

(b) underestimation.  5 
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Figure 8. Observed hydrograph (broken lines) and the 95% prediction bound  3 
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Figure 9. Reliability score (containing ratio-CR) for 95% prediction interval for: a) each 3 

season of every hydrologic year; and b) different forecast lead-times based on entire series. 4 


