Hydrol. Earth Syst. Sci. Discuss., 11, 1203–1252, 2014 www.hydrol-earth-syst-sci-discuss.net/11/1203/2014/ doi:10.5194/hessd-11-1203-2014 © Author(s) 2014. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Hydrology and Earth System Sciences (HESS). Please refer to the corresponding final paper in HESS if available.

Horizontal soil water potential heterogeneity: simplifying approaches for crop water dynamics models

V. Couvreur^{1,3}, J. Vanderborght², L. Beff¹, and M. Javaux^{1,2}

¹Earth and Life Institute, Université catholique de Louvain, Croix du Sud, 2, bte L7.05.02, 1348 Louvain-la-Neuve, Belgium
 ²Institute of Bio- und Geosciences, IBG-3: Agrosphere, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
 ³Department of Land, Air and Water Resources, University of California, Department of Land, Air and Water Resources, University of California, Department of Land, Air and Water Resources, University of California, Department of Land, Air and Water Resources, University of California, Department of Land, Air and Water Resources, University of California, Department of Land, Air and Water Resources, University of California, Department of Land, Air and Water Resources, University of California, Department of Land, Air and Water Resources, University of California, Department of Land, Air and Water Resources, University of California, Department of Land, Air and Water Resources, University of California, Department of Land, Air and Water Resources, University of California, Department of Land, Air and Water Resources, University of California, Department of Land, Air and Water Resources, University of California, Department Of Land, Air and Water Resources, University of California, Department Of Land, Air and Water Resources, University of California, Department Of Land, Air and Water Resources, University of California, Department Of Land, Air and Water Resources, University of California, Department Of Land, Air and Water Resources, University of California, Department Of Land, Air and Water Resources, University of California, Department Of Land, Air and Water Resources, University of California, Department Of Land, Air and Water Resources, University of California, Department Of Land, Air and Water Resources, University of California, Department Of Land, Air and Water Resources, University of California, Department Of Land, Air and Mater Resources, University of California, Department Of Land, Air and Mater Resources, University of Cali

Davis, CA 95616, USA

Received: 2 January 2014 - Accepted: 13 January 2014 - Published: 23 January 2014

Correspondence to: V. Couvreur (vcouvreur@ucdavis.edu)

Published by Copernicus Publications on behalf of the European Geosciences Union.

Abstract

Soil water potential (SWP) is known to affect plant water status, and even though observations demonstrate that SWP distribution around roots may limit plant water availability, its horizontal heterogeneity within the root zone is often neglected in hydrological

- ⁵ models. As motive, using a horizontal discretisation significantly larger than one centimetre is often essential for computing time considerations, especially for large scale hydrodynamics models. In this paper, we simulate soil and root system hydrodynamics at the centimetre scale and evaluate approaches to upscale variables and parameters related to root water uptake (RWU) for two crop systems: a densely seeded crop with
- an average uniform distribution of roots in the horizontal direction (winter wheat) and a wide-row crop with lateral variations in root density (maize). In a first approach, the upscaled water potential at soil–root interfaces was assumed to equal the bulk SWP of the upscaled soil element. Using this assumption, the 3-D high resolution model could be accurately upscaled to a 2-D model for maize and a 1-D model for wheat. The accu-
- racy of the upscaled models generally increased with soil hydraulic conductivity, lateral homogeneity of root distribution, and low transpiration rate. The link between horizontal upscaling and an implicit assumption on soil water redistribution was demonstrated in quantitative terms, and explained upscaling accuracy. In a second approach, the soil-root interface water potential was estimated by using a constant rate analytical
- solution of the axisymmetric soil water flow towards individual roots. In addition to the theoretical model properties, effective properties were tested in order to account for unfulfilled assumptions of the analytical solution: non-uniform lateral root distributions and transient RWU rates. Significant improvements were however only noticed for winter wheat, for which the first approach was already satisfying. This study confirms that
- the use of 1-D spatial discretisation to represent soil-plant water dynamics is a worthy choice for densely seeded crops. For wide-row crops, e.g. maize, further theoretical developments that better account for horizontal SWP heterogeneity might be needed in order to properly predict soil-plant hydrodynamics in 1-D.

1 Introduction

5

Even though soil water potential (SWP) is known to affect plant water status, and more specifically plant actual transpiration rate (T_{act}), its horizontal variability within the root zone is neglected in many hydrological models, because of computational efficiency considerations and limitations in the actual monitoring of SWP with high spatial resolution (Beff et al., 2013).

In first generation land surface schemes, the soil compartment was considered as a spatially homogeneous bucket, filled by precipitation and emptied by evapotranspiration (Manabe, 1969). This approach to plant water availability is considered as a "bulk approach", since the total amount of water in the soil bucket defines its water potential, independently of how water is distributed in the compartment. Later, a vertical discretisation of soil in multiple layers was considered. Root water uptake rates were proportional to relative root length densities and were affected by the water potential in each soil layer (Feddes et al., 1976). This approach allowed explicitly considering

- ¹⁵ vertical capillary water fluxes in the soil and root distribution to evaluate plant water availability. However, the relation between the uptake and local water availability that is used in these models does either not consider the connectivity of the root system or uses rather ad hoc approaches to account for compensation of uptake from regions with a higher water availability (Javaux et al., 2013). Recent developments of models overlightly accounting for three dimensional (2 D) SWR betarageneity and water flow in
- explicitly accounting for three-dimensional (3-D) SWP heterogeneity and water flow in the root system's hydraulic architecture (HA) (Doussan et al., 2006; Javaux et al., 2008) allowed investigating how plant water availability could be inferred from root system hydraulic properties and SWP distribution.

Based on the HA approach, a physically-based macroscopic root water uptake (RWU) model, whose three plant-scale parameters can be derived from root segmentscale hydraulic parameters distributed along root system architectures of any complexity, was developed by Couvreur et al. (2012). Since this model provides a 3-D solution of water flow from soil–root interfaces to plant collar, it needs to operate coupled to a 3-D

"centimetre-scale" soil water flow model, which drastically increases the computational effort for soil-plant water flow simulations.

In the literature, one can find two contrasting conjectures that are used for upscaling small scale 3-D water flow models: (i) neglecting horizontal variations of SWP at the microscopic scale and use a coarser horizontal scale discretisation to account for lateral fluxes that may be relevant at a larger scale, or (ii) using analytical approaches to account for microscopic gradients of SWP between the bulk soil and the soil-root interface.

By using a coarse discretisation of the soil domain, the first approach assumes that SWP is horizontally homogeneous in zones possibly ranging from the centimetre-scale to the plant-scale. This configuration most probably occurs under low climatic demand for water, in homogeneously rooted soils with high hydraulic conductivity (Schroeder et al., 2009b).

The second approach relies on a radial axisymmetric expression of Richards equation around a single root. Approximate analytical solutions of water flow can be obtained by assuming a constant soil hydraulic conductivity or diffusivity (Gardner, 1960), or constant-rate water uptake by roots (Van Noordwijk, 1987; De Jong Van Lier et al., 2006; Schroeder et al., 2007, 2009a). When considering a regular distribution of roots in each soil layer, this approach can be used to create a one-dimensional (1-D) RWU

- ²⁰ model, implicitly accounting for horizontal soil water flow (Raats, 2007; De Jong Van Lier et al., 2008; Jarvis, 2011). Yet, the simplifying assumptions of this approach may be constraining. In reality, local uptake is not at constant-rate, but highly variable on a daily basis, notably due to variations of plant transpiration (Jolliet and Bailey, 1992; Sperling et al., 2012). In addition, differences in root hydraulic properties between different root transpirated between end between different root.
- types and horizontal heterogeneity of root density may lead to biased predictions of RWU when homogeneously distributed roots with similar hydraulic properties are assumed (Schneider et al., 2010; Durigon et al., 2012).

The objective of this paper is to provide a theoretical framework and an exploratory analysis of methods aiming at simplifying horizontal soil water flow calculation within

the root zone, for of soil-plant water flow models. Therefore, an approach to upscale the macroscopic RWU model that was derived based on the fully discretised hydraulic root architecture by Couvreur et al. (2012) will be presented. The upscaling approach corresponding to the first conjecture will be tested under different conditions regarding atmospheric demand, soil type and rooting heterogeneity, so as to discuss its applicability field. The opportunities and obstacles tied to the second conjecture will be analysed in the last part.

2 Theory

5

 When a soil system at hydrostatic equilibrium is impacted by external processes, like
 evaporation, transpiration or aquifer level rise, the uniform SWP distribution is perturbed. Internal fluxes like soil capillary fluxes, drainage and hydraulic lift, driven by
 SWP heterogeneity then come into play to dissipate this heterogeneity and stabilise
 the system to another equilibrium state, unless other external perturbations arise in
 the meantime. The resulting system state heterogeneity may hinder the accuracy of its
 upscaled representation. Such accuracy thus highly relies on system properties influ encing the rates of processes generating and dissipating heterogeneity.

In this section, we present soil and plant water flow equations that generate and dissipate SWP heterogeneity.

2.1 Equations for three-dimensional explicit water flow simulation

Soil water capillary flow is driven by local gradients of SWP and tends to dissipate SWP heterogeneity. In this study, we assume 3-D soil water flow to be well described by Richards equation:

$$\frac{\partial \theta}{\partial t} = \nabla \cdot \left[\mathcal{K} \nabla \psi_{\rm s} \right] - S$$

(1)

where θ is the volumetric water content (L³L⁻³), *t* is the time (T), *K* is the unsaturated soil hydraulic conductivity (L²P⁻¹T⁻¹), ψ_s is the total SWP (P), and *S* is the sink term (L³L⁻³T⁻¹), which accounts for RWU. Note that the units of *K* and ψ_s differ from standards of soil physics (in which LT⁻¹ and L are more commonly used for *K* and ψ_s , respectively) but were chosen for consistency with those used in plant physiology.

In fine soil elements, the macroscopic RWU model based on the HA approach proposed by Couvreur et al. (2012) provides an expression for sink terms of Richards equation:

$$S_k \cdot V_k = T_{act} \cdot SSF_k + K_{comp} \cdot (\psi_{s,k} - \psi_{seq}) \cdot SSF_k$$

5

15

A /

where S_k (T⁻¹) is the sink term in the *k*th soil element, V_k (L³) is the volume of the *k*th soil element, T_{act} (L³T⁻¹) is the plant actual transpiration rate, SSF_k (–) is the standard sink fraction in the *k*th soil element, K_{comp} (L³P⁻¹T⁻¹) is the compensatory RWU conductance of the plant, $\psi_{s,k}$ (P) is the SWP of the *k*th soil element, and $\psi_{s eq}$ (P) is the equivalent SWP sensed by the plant, which is a function of local SWPs and of the standard sink fraction distribution:

$$\psi_{s eq} = \sum_{j=1}^{M} \psi_{s,j} \cdot SSF_j$$
(3)

where the *j* index ranges from the first to the last of the *M* soil elements.

Equations (2)–(3) rely on the assumption that the water potentials at soil–root interfaces located inside a soil element equal the element bulk SWP $\psi_{s,k}$. If sufficiently small soil elements are used, this assumption may be satisfied (Schroeder et al., 2009a, b). Another simplifying assumption that needs to be fulfilled for Eq. (2) to be valid is that root radial conductances should be much lower than root axial conductances.

²⁵ Equation (2) provides a conceptual split of the RWU variable into a "standard RWU" $(T_{act} \cdot SSF_k)$ and a "compensatory RWU" $(K_{comp} \cdot (\psi_{s,k} - \psi_{seq}) \cdot SSF_k)$. While the former

1208

(2)

CC ①

creates SWP heterogeneity as long as the plant transpires, the latter is driven by, and tends to dissipate, SWP heterogeneity as long as SWP heterogeneity exists in the rooting zone.

With the HA approach, a link between water potential in the soil, at the plant collar, ⁵ and actual transpiration rate is also provided by Couvreur et al. (2012):

 $\psi_{\text{collar}} = \psi_{\text{s eq}} - \frac{T_{\text{act}}}{K_{\text{rol}}}$

10

20

where K_{rs} (L³P⁻¹T⁻¹) is the equivalent conductance of the root system, and ψ_{collar} (P) is the water potential in xylem vessels at the plant collar, which will be referred to as the "plant collar water potential".

It is worth noting that, through Eq. (4), plant collar water potential can be interpreted as being the sum of the equivalent SWP sensed by the plant and of the water potential loss due to water flow in the root system.

By using Eq. (4) and assuming that the water potential at the plant collar and leaves are identical, one can estimate plant transpiration rate from leaf water potential under water stress, $\psi_{\text{leaf stress}}$ (P):

$$T_{\text{water stress}} = K_{\text{rs}} \cdot (\psi_{\text{s eq}} - \psi_{\text{leaf stress}})$$

where $T_{\text{water stress}}$ (L³T⁻¹) is the plant transpiration rate under water stress. Note that for isohydric plants such as maize, $\psi_{\text{leaf stress}}$ is considered as constant (Tardieu et al., 1993).

Considering that T_{act} neither exceeds plant potential transpiration rate nor $T_{water stress}$, we obtain the following water stress function:

$$T_{act} = \min(T_{pot}, T_{water stress})$$

where T_{pot} (L³T⁻¹) is the plant potential transpiration rate, which depends on both atmospheric conditions and plant leaves properties. Even though it does not appear in their units, T_{act} and T_{pot} are transpiration rates per plant.

(4)

(5)

(6)

2.2 Upscaling of water flow parameters and state variables

2.2.1 Plant water flow

Equation (2) was set up for 3-D soil-plant water dynamics modelling on small soil elements (cm scale). Understanding what are the implications of using it on larger elements requires the definition of upscaled variables in terms of the original "fine-scale" variables and parameters (S_k , V_k , SSF_k and $\psi_{s,k}$). Here, we consider that upscaled soil

elements are groups of smaller soil elements.

Since soil elements volumes and standard sink fractions are extensive entities (i.e., additive for independent subsystems), their value for a group of soil elements is the sum of the soil elements values:

$$V_{\text{Up},g} = \sum_{k=1}^{M} \varepsilon_{k,g} \cdot V_k$$

$$SSF_{\text{Up},g} = \sum_{k=1}^{M} \varepsilon_{k,g} \cdot SSF_k$$
(8)

where $V_{Up,g}$ (L³) is the "upscaled" volume of the *g*th group, $SSF_{Up,g}$ (–) is the standard sink fraction of the *g*th group, $\varepsilon_{k,g}$ (–) is one when the *k*th element belongs to the *g*th group and zero otherwise, and the *k* index ranges from the first to the last of the *M* soil elements. Note that groups are non-overlapping, so that the summation of $SSF_{Up,g}$ on the whole soil domain is 1, like for SSF_k .

The sink term only becomes an extensive variable when multiplied by the associated soil element volume (then it becomes an additive flux). We can thus write:

$$S_{\text{Up},g} \cdot V_{\text{Up},g} = \sum_{k=1}^{M} \varepsilon_{k,g} \cdot S_k \cdot V_k$$

(9)

where $S_{Up,g}$ (T⁻¹) is the sink term in the *g*th group. Upscaling the left and right hand sides of Eq. (2) leads to:

$$S_{\text{Up},g} \cdot V_{\text{Up},g} = T_{\text{act}} \cdot \text{SSF}_{\text{Up},g} + K_{\text{comp}} \cdot (\psi_{\text{sr Up},g} - \psi_{\text{s eq}}) \cdot \text{SSF}_{\text{Up},g}.$$

⁵ From Eqs. (2) and (8)–(10), the upscaled soil–root interface water potential, $\psi_{sr Up,g}$ (P), is defined as:

$$\psi_{\text{sr Up},g} = \frac{\sum_{k=1}^{M} \varepsilon_{k,g} \cdot \psi_{\text{s},k} \cdot \text{SSF}_{k}}{\sum_{k=1}^{M} \varepsilon_{k,g} \cdot \text{SSF}_{k}}$$

According to Eq. (11), the upscaled soil-root interface water potential represents the SSF-weighted mean SWP of the individual soil elements that constitute the upscaled soil element.

It is worth noting that the upscaled soil–root interface water potential represents an equivalent SWP sensed by the plant in a certain zone of the root zone. When this zone comprises the entire root zone of the plant, $\psi_{sr Up}$ is the plant sensed SWP (Eq. 3).

- ¹⁵ So as to illustrate this concept, three simple examples are shown in Fig. 1. In the first example, only soil element #3 contains a root segment. Following Eq. (11), $\psi_{sr Up,1}$ should equal the SWP of element #3. In other words, in group #1, the root segment only senses the SWP of element #3, which is its direct environment. In the second example, each soil element contains a root segment. Considering all non-null SSF_k as equal to each other, $\psi_{sr Up,2}$ would be the arithmetic mean of the three individual SWPs. In the third example, no soil element contains a root segment so that SSF_{Up,3}
- is zero and no water potential sensed by root segments needs to be calculated for this element.

(10)

(11)

CC ①

1212

Eventually, by using Eqs. (3), (8) and (11), it can be demonstrated that the equivalent SWP sensed by the plant can be calculated from SSF_{Up} [$G \times 1$] using:

$$\psi_{s eq} = \sum_{f=1}^{G} \psi_{sr Up, f} \cdot SSF_{Up, f}$$

⁵ where the *f* index ranges from the first to the last of the *G* groups of soil elements. The equations that are used to determine the plant sensed soil water content (3 and 12) and the local water uptake (2 and 10) are scale invariant, which follows directly from the fact that these relations are linear at the small scale. Similarly, the water stress equations (Eqs. 5–6) are scale invariant and do not depend on the scale at which *SSF* and ψ_{sr} are defined. A problem though is that for the calculation of the upscaled soil–root interface water potentials, $\psi_{sr Up}$, using Eq. (11) the distribution of the SWPs and *SSF* at the smaller scale must be known. In the following, we will make two assumptions to derive $\psi_{sr Up}$ directly from simulated upscaled SWPs and upscaled *SSF*.

2.2.2 Soil water flow

¹⁵ In this study, soil water flow state variables of upscaled elements were estimated with a simple "bulk" approach (i.e., the distribution of water inside upscaled soil elements was not accounted for). Their SWP, $\psi_{s Up}$ (P), and hydraulic conductivity, K_{Up} $(L^2 P^{-1} T^{-1})$, were directly deduced from their bulk water content θ_{Up} $(L^3 L^{-3})$ and, respectively, water retention curve and hydraulic conductivity curve (these properties being uniform in space and time).

In consequence, the following upscaled expression of Richards equation was used:

$$\frac{\partial \theta_{\mathsf{Up}}}{\partial t} = \nabla \cdot \left[\mathcal{K}_{\mathsf{Up}} \nabla \psi_{\mathsf{s} \; \mathsf{Up}} \right] - \mathcal{S}_{\mathsf{Up}}$$

where S_{Up} is provided by Eq. (10).

(12)

(13)

2.3 Simplifying assumptions for horizontal soil water flow

2.3.1 First conjecture: homogeneous soil water potential in upscaled soil elements

In simulations with upscaled soil elements (for instance in a 1-D soil domain), detailed SWPs around individual root segments are not available. In the first proposed approach, upscaled soil-root interface water potentials were approximated by the corresponding element bulk SWP:

 $\psi_{\mathrm{sr Up},g} = \psi_{\mathrm{m}} \left(\theta_{\mathrm{Up},g} \right) + z_g$

¹⁰ where $\psi_{\rm m}(\theta)$ (P) is the function providing soil matric potential from soil water content, $\theta_{{\rm Up},g}$ (L³L⁻³) is the bulk water content of the *g*th upscaled soil element, and z_g (P) is the gravitational potential of water at the center of the *g*th upscaled soil element. Note that z_g is defined zero at the soil surface and positive upwards.

This assumption is generally considered as consistent either on short distances (as in fine elements of reference scenarios), or in conditions of high soil hydraulic conductivity (when lateral redistribution of water occurs almost instantaneously).

When water is redistributed by soil capillary flow (or by compensatory RWU), a positive divergence of water flow is generated at points where water is removed, while a negative divergence occurs where water is added. Considering water mass conser-

vation, the volumetric integration of positive water divergences related to the process of redistribution must equal the volumetric integration of negative water divergences.
 Both integrated terms represent a volume of water moved from a place to another one per time unit, and equal a rate of water redistribution.

By assuming SWP as permanently homogeneous in an environment where water ²⁵ uptake is actually local, it is implicitly hypothesised that the divergence of soil water flow is high enough to instantly compensate for the removal of water by roots. For a given uptake rate in an upscaled element, and knowing the fine distribution of the

(14)

standard sink fractions inside the element, it can be demonstrated (see Appendix A) that the soil water redistribution rate required to maintain SWP homogeneous inside the element should be the following:

$$R_{\text{soil}\leftrightarrow\text{hyp},g} = \left| S_{\text{Up},g} \right| \cdot V_{\text{Up},g} \cdot \frac{\sum_{k=1}^{M} \varepsilon_{k,g} \cdot \left| \frac{\text{SSF}_{k}}{\text{SSF}_{\text{Up},g}} - \frac{V_{k}}{V_{\text{Up},g}} \right|}{2}$$
(15)

where $R_{\text{soil} \leftrightarrow \text{hyp},g}$ (L³T⁻¹) is the soil water redistribution rate required in order to keep the SWP horizontally homogeneous in the *g*th group of soil elements.

Note that soil water flow divergence at scales lower than the fine scale of the reference scenarios is not considered in the latter equation.

10 2.3.2 Second conjecture: solution for implicit SWP horizontal heterogeneity in soil layers

In the second proposed approach, the De Jong Van Lier et al. (2008) model provides a solution for differences between bulk soil and soil–root interface water potentials, which does not require explicitly solving horizontal soil water flow. The latter is coupled to the upscaled macroscopic RWU model (Eq. 10), which simulates the consequent vertical water flow in root system HA.

The solution for horizontal soil water flow around roots relies on the concept of matric flux potential (MFP), which is the integral of soil hydraulic conductivity curve $K(\psi_m)$, over soil matric potential ψ_m (P), and, equivalently, the integral of soil diffusivity curve $D(\theta)$ (L²T⁻¹), over soil water content θ (L³L⁻³):

$$M(\psi_{\rm m},\theta) = \int_{\psi_{\rm w}}^{\psi_{\rm m}} \mathcal{K}(\psi_{\rm m}) \cdot \mathrm{d}\psi_{\rm m} = \int_{\theta_{\rm w}}^{\theta} D(\theta) \cdot \mathrm{d}\theta$$

20

(16)

where $M(\psi_m, \theta)$ (L²T⁻¹) is the soil MFP at soil matric potential ψ_m or soil water content θ , ψ_w (P) is the soil matric potential at permanent wilting point, and θ_w (L³L⁻³) the soil water content at permanent wilting point.

By assuming root distribution as horizontally regular and the rate of uptake as cons stant, De Jong Van Lier et al. (2008) provide a simple relation between RWU rate in a soil layer ($S_{UD,a}$), bulk soil layer MFP $M_{SUD,a}$ (L^2T^{-1}), and MFP at soil-root interfaces in that soil layer $M_{sr Up,q}$ (L²T⁻¹), which implicitly accounts for SWP horizontal heterogeneity:

$$M_{\rm sr \, Up,g} = M_{\rm s \, Up,g} - \frac{S_{\rm Up,g}}{\rho_g} \tag{17}$$

where $S_{Up,q}$ is given by Eq. (10), and ρ_q (L⁻²) is a geometrical factor depending on rooting density and root radius at the gth depth (see Eq. B1). The factor ρ decreases with decreasing rooting density (and thus typically with depth). Decreasing ρ or increasing sink terms induce larger differences between $M_{s Up,a}$ and predicted $M_{sr Up,a}$.

By using the MFP curve, which links a soil matric potential to its MFP, one can derive $\psi_{\text{sr Up},q}$ from $M_{\text{sr Up},q}$:

$$\psi_{\operatorname{sr}\operatorname{Up},g} = \psi_{\operatorname{m}}\left(M_{\operatorname{sr}\operatorname{Up},g}\right) + z_g$$

10

15

20

where $\psi_{\rm m}(M)$ (P) is the function providing soil matric potential from soil MFP.

As compared to Eq. (14), Eq. (18) is an alternative way to estimate soil-root interfaces water potential in relatively large soil elements.

Knowing $\psi_{sr Up,q}$ in every soil layer, the equivalent SWP sensed by the plant can be calculated (Eq. 12), which allows further calculations of plant actual transpiration (Eqs. 5–6) and RWU distribution (Eq. 10).

iscussion Pape HESSD 11, 1203–1252, 2014 Simplifying approaches to model soil water potential Discussion heterogeneity V. Couvreur et al. Pape **Title Page** Abstract Introduction Discussion References **Figures** Pape (18)Back **Discussion** Pape Full Screen / Esc **Printer-friendly Version**

Interactive Discussion

3 Methodology

So as to discuss up to what point the first soil water flow simplification leads to worthy compromises between accuracy and time consumption, the conjecture of homogeneous SWP in upscaled soil elements was tested in different scenarios. These scenar-

- ios further described in Sect. 3.1 varied in (i) rooting heterogeneity, (ii) soil type, and (iii) atmospheric demand for water. Section 3.2 explains in detail the methods used to evaluate both conjectures implemented as options in R-SWMS.
 - 3.1 Scenarios description

3.1.1 Root systems architecture and hydraulic properties

¹⁰ Two crops with typically contrasting root distributions in the field were chosen for this study.

The first one is maize, whose horizontal rooting density varies more in the direction perpendicular than parallel to the row, due to its "wide row" sowing pattern (here corresponding to $75 \text{ cm} \times 15 \text{ cm}$). The generation and parameterisation of the 80 days-old virtual maize root system used in this study is fully described by Couvreur et al. (2012).

- ¹⁵ Virtual maize root system used in this study is fully described by Couvreur et al. (2012). The second crop is winter wheat, whose horizontal rooting density is more homogeneous than that of maize, due to a dense seeding pattern. A density of 140 plants m⁻² with a distance between plants of 10 cm in the *x* direction and 7 cm in the *y* direction was considered.
- A winter wheat root system at early spring of 17 000 segments was generated with *RootTyp* (Pages et al., 2004). This model generates root systems based on plantspecific genetic properties like insertion angles of the different root types, their trajectories, average growth speed and distances between lateral roots, which were characterised for a winter wheat during early spring, in Nebraska (USA) by Weaver et al. (1924). They were also used to adapt *RootTyp* environmental parameters so as

to reproduce measured root length density profiles. The optimised wheat root system architecture is shown in Fig. 2a.

Wheat root hydraulic properties were dependent on root segment age and type (shown in Fig. 2b and c) and were obtained from the literature. Root segments ra-⁵ dial conductivities were measured by Tazawa et al. (1997) and Bramley et al. (2007, 2009). Root segments axial conductance were measured by Sanderson et al. (1988) and Bramley et al. (2007) for primary roots, while Watt et al. (2008) estimated this property for lateral roots by using Poiseuille–Hagen law.

So as to represent winter wheat root distribution in the field and accounting for the effect of overlapping root zones from neighbouring plants, while limiting the computational needs, the virtual root system was located in a horizontally periodic soil domain of $10 \times 7 \text{ cm}^2$, which corresponds to the spacing between plants. Periodicity applies for soil and root water flow, and root system architecture, at the vertical boundaries of the domain.

15 3.1.2 Soil hydraulic properties

25

Two soil types with typically contrasting hydraulic properties were chosen for this study. The first one is a silt loam, whose water capacity and hydraulic conductivity are relatively high for a wide range of soil matric potentials (properties represented in blue, respectively in Fig. 3a and b).

²⁰ The second soil type is a sandy loam, whose hydraulic conductivity is quite high close to water saturation, but soon becomes resistive to water flow when SWP decreases (properties represented in red, respectively in Fig. 3a and b).

Note that Mualem–van Genuchten equations (Van Genuchten, 1980) were used to define the soil hydraulic property curves, and that Carsel and Parrish (1988) parameterisations were chosen for both soil types.

In the scenarios, SWP was initially uniform (hydrostatic equilibrium) and set to field capacity (-300 hPa) for the silt loam. Sandy loam initial water potential was set to

 $-130\,hPa$, so that water availability would not be limiting the uptake during the first days of the scenarios.

The soil domain was 123 cm deep, which means that for an initially uniform SWP, and neglecting the effect of osmotic potential, there was a difference of approximately

5 123 hPa between top and bottom matric potentials. This implied that soil water content and hydraulic conductivity were changing along the soil profile, already at initial conditions, as illustrated by the coloured bands in Fig. 3.

3.1.3 Boundary conditions

In order to focus on RWU and soil capillary flow as processes generating or reducing
 SWP heterogeneity, no other processes were considered in the scenarios. Therefore, no-flux boundary conditions were set at top and bottom boundaries of the soil domain, while plant transpiration was the only process removing water from the system. High and low transpiration rate cases were selected in order to investigate whether these rates impact the validity of simplifying assumptions about lateral SWP distributions in the root zone.

Atmospheric demand for water reflected the geographical position and period of the year for which the root system architectures were determined. The FAO approach (Allen et al., 1998) was used to predict daily potential transpiration rate, T_{daily} (L³T⁻¹ plant⁻¹):

²⁰ $T_{\text{daily}} = \text{ET}_{\text{ref}} \cdot K_{\text{c}} \cdot \text{Surf}$

where ET_{ref} (LT⁻¹) is the reference evapotranspiration, K_c (–) is the crop coefficient, and Surf (L² plant⁻¹) is the horizontal surface per plant in the field.

For the French maize crop in July, K_c was 1.2, Surf was $1125 \text{ cm}^2 \text{ plant}^{-1}$, and the high ET_{ref} was 4.5 mmd^{-1} while the low ET_{ref} was 2.25 mmd^{-1} . For the Nebraskan winter wheat crop at early spring, K_c was 1, Surf was $70 \text{ cm}^2 \text{ plant}^{-1}$, and the high ET_{ref} was 3.9 mmd^{-1} while the low ET_{ref} was 1.95 mmd^{-1} .

(19)

Sinusoidal daily variations of T_{pot} were expressed as a function of T_{daily} with the following expression:

$$T_{\text{pot}} = T_{\text{daily}} \cdot \left(\sin\left(\frac{2\pi \cdot t}{\tau} - \frac{\pi}{2}\right) + 1 \right)$$
(20)

⁵ where *t* (T) is the time of the day, 2π (d⁻¹) is the number of radians per day, and τ (Td⁻¹) is the number of time units in a day.

 $\psi_{\text{leaf stress}}$, which triggers stomata partial closure due to water stress (see Eqs. 5–6), was $-15\,000\,\text{hPa}$ for both crops.

The duration of scenarios is 14 days, except for high ET_{ref} on sandy loam (10 days).

3.2 Testing the simplifying approaches

The simplifying approaches described in Sect. 2.3 were tested by comparing their results with simulated reference results. In the reference simulations, Richards equation was solved for a fine 3-D soil grid, and Doussan et al. (1998)'s model was used to predict RWU by the root system HA in R-SWMS.

- ¹⁵ Due to computing power considerations, the reference maize crop scenarios could not be run with soil elements smaller than cubes of 1.5 cm length. Since the winter wheat domain dimensions were smaller, its reference scenarios could be run with cubic soil elements of 0.5 cm length. Consequently, reference scenarios do not account for additional SWP gradients around roots at scales smaller than, respectively, 1.5 and
- ²⁰ 0.5 cm. Accounting for this feature may increase differences between reference results and results obtained from upscaled soil grids (Schroeder et al., 2009b).

3.2.1 Simplifying approaches features

25

In order to test the first conjecture (homogeneous SWP in upscaled soil elements), each of the eight scenarios defined in Sect. 3.1 were run with soil elements of increasing horizontal surface, as summarised in Table 1 and illustrated in Fig. 4.

For maize, the assumption on SWP homogeneity was firstly applied to the direction parallel to the row. Subsequently, the discretisation was coarsened in the direction perpendicular to the rows. Therefore, all intermediate soil discretisations, between the finest one and 1-D, are 2-D (see Table 1). This is not the case for winter wheat, for which no preferential direction was considered to group soil elements.

In opposition, the second conjecture (soil-root interface water potential predicted from the approximate analytical solution of water flow towards a root) was tested directly for 1-D soil layers ($75 \text{ cm} \times 15 \text{ cm} \times 1.5 \text{ cm}$ and $10 \text{ cm} \times 7 \text{ cm} \times 0.5 \text{ cm}$, respectively for maize and winter wheat).

3.2.2 Comparison with reference scenarios

5

In order to evaluate the accuracy of the first simplified approach, differences between the reference and different upscaling scenarios were estimated for ψ_{collar} and horizon-tally averaged sink term and water content profiles. The mean of the absolute differences for all times and depths was divided by the mean value for the reference case, which provided one relative mean absolute difference for each scenario. The relative

computation time of the simplified to reference simulations was also determined.

Eventually, horizontal and vertical redistribution of water by both soil and roots from 1-D and reference results were compared, in order to understand which process dissipating SWP heterogeneity would be responsible of possibly wrong representations

of soil-plant water dynamics in 1-D. In the latter case, the total horizontal redistribution of water by soil was estimated as the integration of the redistribution necessary to keep each layer inner water potential homogeneous (i.e. vertical integration of Eq. 15). Equations for other processes are detailed in Appendix C.

With the second conjecture, simple effective methods that allow overcoming basic assumptions of De Jong Van Lier et al. (2006) model were discussed. These concern (i) horizontal heterogeneity of root distribution, and (ii) transient rate of water uptake.

Effective values of the geometrical parameter ρ were first estimated from reference simulations and compared to theoretical values (calculated from each layer root length

density and assuming a regular distribution of roots), in order to understand how this parameter may be affected by horizontal rooting heterogeneity. Then, $\psi_{sr Up}$ were predicted from either the current sink term, or a weighted mean of sink terms on time-windows of chosen length (weights linearly decreasing to zero with passed time), in order to understand if the history of past sink terms should be accounted for when BWU is transient.

Considering that the simplifying approaches presented in this paper introduce structural errors in the model, differences as compared to reference scenarios were considered as "errors". However, also the reference model is subject to structural errors (supposed relatively small). These basic errors were not accounted for in the next pages.

4 Results and discussion

10

4.1 First conjecture: homogeneous soil water potential in upscaled soil elements

Tables 2 and 3 show the relative errors of predicted state variables and relative time ¹⁵ consumption for each scenario, with increasing elements size inside which SWP is assumed homogeneous. Errors that occur at the finest spatial discretisation (i.e., horizontal surfaces of respectively 2.25 and 0.25 cm² for maize and winter wheat) are due to the replacement of Doussan RWU model by Eq. (2) to calculate the sink terms. It is notable that 1-D sink terms and ψ_{collar} were generally more sensitive to errors

than 1-D water contents, even though water content differences are a consequence of sink term differences. This can be explained by the fact that SWP heterogeneity is the driver of soil water flow. Thus, for instance, locally overestimating RWU leads to higher SWP heterogeneity, which leads to higher "compensation" by soil water flow. Consequently, errors of RWU will always be larger than errors of soil water content, especially in case of high soil hydraulic conductivity.

In the next sections, we study the impact of element size, daily transpiration rate and soil type on the reported relative absolute differences, and further analyse where these differences take place in space and time. Illustrations are mostly given for scenario "high T_{daily} on silt loam", but complementary explanations are given for other scenarios in case their trends differ from illustrations.

4.1.1 Impact of element size and crop type

20

For maize, the simplification from 3-D to 2-D soil discretisation results in relatively small increase of model errors (see Fig. 5a) since SWP is rather homogeneous in the direction of maize rows (see left subplot of Fig. 4). Conversely, further increases of element size in the direction perpendicular to maize rows (in which a big part of SWP variability is observed in reference scenarios) result in significant increase of model errors, particularly beyond case #3 (elements of 3 cm in the direction perpendicular to the row). This result encourages the use of 2-D soil discretisation for simulating water dynamics in a maize crop, whereas considering a 1-D approach with homogeneous SWP in hor-

¹⁵ izontal soil layers leads to strong errors in predicted state variables (approaching 50 % of relative error on 1-D sink terms and ψ_{collar} over a period of 10 days on sandy loam).

For winter wheat, while changing element dimension from 3-D to 1-D (see Fig. 5b), model errors stayed remarkably low (below 1 % for scenarios on silt loam over a period of 14 days). This feature can be related to the dense sowing pattern of the winter wheat crop (140 plants per square meter, against 9 for maize), which naturally induces rather homogeneous horizontal rooting, uptake and SWP patterns.

One of the main interests of simplifying approaches is model time consumption reduction. As shown in Table 2 (and illustrated in Fig. 5c–d), for maize, if time consumption was already reduced by a factor 25 to 100 due to the replacement of Doussan

²⁵ model by Eq. (2), another factor 3 to 30 was gained by using a 2-D soil discretisation. For winter wheat, using Eq. (2) only reduced time consumption by a factor 6 to 14 because its root system has twice less segments than maize (using Doussan model is computationally cheaper for small root systems, while time consumption of Eq. 2

does not discriminate between big and small root systems). Computation time was reduced by another factor 5 to 100 as compared to the high resolution 3-D winter wheat scenarios, by using 1-D soil elements.

Such results suggest that using the first conjecture in, respectively, 2-D (maize) and 1-D (winter wheat) soil elements as simplifying hypothesis for SWP distribution, is a worthy compromise maintaining accuracy while reducing computation time.

4.1.2 Impact of daily transpiration and soil type

10

15

20

Even though crop type and soil elements size had major impact on the simplifying approach accuracy, two other features also clearly impacted this accuracy: T_{daily} and soil type.

Almost systematically, the simplified model accuracy was higher when decreasing T_{daily} , and in the silt-loam than in the sandy loam. Since accuracy under the first conjecture is highly related to the absence of SWP horizontal heterogeneity, the previous statement can be explained through processes involving creation and dissipation of SWP heterogeneity.

Firstly, standard RWU is a process creating SWP heterogeneity in a soil with an initial hydrostatic equilibrium state; increasing T_{daily} (and obviously standard RWU) will thus lead to increased SWP heterogeneity and decreased accuracy under the first conjecture. Note that as defined in the theory, RWU is conceptually the superimposing of two processes: standard RWU, which creates SWP heterogeneity, and compensatory DWU which discipates (and diversity but is independent of

RWU, which dissipates (and is driven by) SWP heterogeneity but is independent of plant instantaneous transpiration rate.

Secondly, soil water flow is a process dissipating SWP heterogeneity; a high soil hydraulic conductivity thus favours SWP heterogeneity dissipation and leads to better

²⁵ predictions by approximations that use the first conjecture. Note that, even though silt loam hydraulic conductivity is mostly lower than that of sandy loam at the beginning of the simulations (see conductivity ranges in Fig. 3b), it stays relatively high at low soil

matric potentials, which explains the higher accuracy of the silt loam than the sandy loam scenarios.

It is also worth noting that, in general, structural and parameterisation errors in a RWU model may have a limited impact on SWP distributions when soil water flow 5 is a dominating process, as previously discussed by Hupet et al. (2002).

4.1.3 Spatio-temporal distribution of processes: comparison with 1-D results

This section clarifies the underlying assumption on soil water horizontal redistribution when using 1-D soil discretisation, and provides further insight on how it may impact model errors in space and time.

- ¹⁰ As shown in Fig. 6 for scenario "high T_{daily} on silt loam", the intensity of each process redistributing water can be rated in terms of its total positive volumetric divergence of water flow (total negative volumetric divergence being equivalent to the positive one, by definition, since these processes only redistribute water in the system). Blue lines correspond to processes as they occurred in the reference scenarios while the red ones
- ¹⁵ are for 1-D scenarios. Solid and dotted lines correspond, respectively, to horizontal and vertical spatial components of the processes. Figure 6a and c show water redistribution rates by soil, evolving with time, while Fig. 6b and d show water redistribution rates by roots. Eventually, Fig. 6a and b correspond to maize, while Fig. 6c and d correspond to winter wheat.
- In Fig. 6a (maize), one can see that the assumed horizontal redistribution rate of water by soil in 1-D is overestimated during days; reference horizontal soil water flow is thus far from sustaining the necessary flow rate to keep SWP homogeneous. Also, during nights, even though decreased, reference horizontal soil water flow goes on, due to the persistence of SWP horizontal heterogeneities, while in 1-D, the assumed horizon-
- tal water flow stops as soon as the plant stops transpiring (except once compensatory RWU significantly compensates vertical SWP heterogeneities at night). Conversely, in Fig. 6c (wheat), similar peaks of divergence of horizontal soil water flow can be noticed in both reference and 1-D scenarios. This can be attributed to the fact that water

needs to flow on much shorter horizontal distances to compensate wheat SWP heterogeneities, and thus is much more effective in dissipating these heterogeneities (which almost disappear at night). For both maize and wheat, the vertical component of divergence of soil water flow is slightly underestimated in 1-D, which suggests that this

⁵ process is affected by the hypothesis of horizontally homogeneous SWP, and may actually participate to dissipating SWP horizontal heterogeneities in reference scenarios.

For maize, both components of compensatory RWU are largely underestimated in 1-D (especially the horizontal one, which is null in 1-D, since SWP is considered as horizontally uniform), which is not the case for wheat, whose dominant vertical component of compensatory RWU is well represented in 1-D (see Fig. 6d).

10

During the second week of simulation, compensatory RWU rates reach increasingly high values (approximately 10 and 250 cm³ per day redistributed in the profile, respectively for wheat and maize). Values for maize are similar or even higher than these of water redistribution by soil. Such integrated values of redistribution are also

- ¹⁵ non-negligible as compared to each plant daily transpiration rate (respectively 27 and 600 cm³ d⁻¹). This confirms that the process of compensatory RWU might have a major impact on plant water availability (Feddes et al., 2001; Teuling et al., 2006). However, compensatory RWU takes some time to become significant, as compared to horizontal and vertical water redistribution by soil. This can be explained by the fact that, while
- SWP heterogeneity increases with time, root system hydraulic conductances do not change; redistribution of water by the root system thus increases. In the same time, soil hydraulic conductivities tend to decrease (due to soil water content reduction); redistribution of water by soil capillary flow thus becomes of lesser importance as compared to compensatory RWU.
- Vertical soil water redistribution was generally the least important process, in terms of rates. It can be explained by the fact that, on long vertical distances, equivalent soil hydraulic resistances are high enough to limit redistribution (water has to flow through a larger number of hydraulic resistances in series), and thus prevent SWP heterogeneities from being dissipated.

In case horizontal soil water flow would actually not be fast enough to equilibrate a layer SWP, the assumed water potential at soil root interfaces would be overestimated in 1-D. This is exactly the observed response in scenarios of RWU by maize, where local SWP sensed by the plant decreases slower than in reference scenarios

⁵ (Fig. 7a vs. d). This overestimation of local SWP sensed the plant has two main consequences: (i) an underestimation of compensatory RWU (Fig. 7b vs. e, and dotted lines in Fig. 7f), and (ii) an overestimation of total SWP sensed by the plant (Fig. 7c) inducing underestimation of plant water stress (Fig. 7f).

It is notable that, for the same T_{act} , errors on ψ_{collar} equal errors on $\psi_{s eq}$ since the difference between these variables is $\frac{T_{act}}{K_{rs}}$, which has no spatial dimension, and thus, is not affected by a spatial dimension reduction. Also, values of compensatory RWU in Fig. 7b and e are given as fluxes per plant in soil layers of 1.5 cm height. As a matter of comparison, the spatial integration of positive terms is given in Fig. 7f, while the integration of all terms would be zero by definition.

- Figure 8 is the equivalent of Fig. 7 for winter wheat on sandy loam instead of maize on silt loam. The 1-D system state appears to be very close to the reference one for all variables. Even though ψ_{collar} and $\psi_{s eq}$ are slightly overestimated at night and underestimated during the day, T_{act} follows the same trend in both simulations. Conversely to results shown in Fig. 7, compensatory RWU is slightly overestimated in 1-D (see
- Fig. 8f), possibly due to water depletion around deep roots of wheat in the reference scenario, which limited the compensation rate. Proportionally to the total uptake rate, the compensation rate was always more intense on sandy loam than on silt loam, seemingly because water is not as efficiently redistributed by the sandy soil.

A conclusion of the detailed comparison between 1-D and reference maize scenar-²⁵ ios is that, when horizontal redistribution of water by soil is a limiting process, there is a clear need to account for differences between bulk SWP and water potential sensed by roots in soil layers, in order to avoid biased predictions of compensatory RWU and plant water stress, in dimensionally simplified soil-plant systems. A physical approach

1227

presented in Sect. 2.3 was developed by De Jong Van Lier et al. (2006) for that purpose, of which opportunities and limitations are discussed in the next section.

4.2 Second conjecture: solution for water potential differences between bulk soil and root surface in 1-D soil layers

In this section, limitations of the second conjecture and tested adaptations aiming at 5 better accounting for unfulfilled assumptions are discussed.

Horizontally heterogeneous rooting pattern 4.2.1

10

Like macroscopic RWU models using a "microscopic approach" (Raats, 2007; De Jong Van Lier et al., 2008; Jarvis, 2011), the second conjecture allows predicting SWP variations between the bulk soil ($\psi_{s \downarrow u}$) and soil-root interfaces ($\psi_{sr \downarrow u}$) by assuming a horizontally homogeneous root distribution, which implies that the water dynamics around roots is the same (their properties being considered as identical).

Yet, for maize crops, due to the wide-row sowing pattern, two features are in contradiction with the second conjecture's assumptions: (i) water potentials at soil-root interfaces are not horizontally homogeneous (see for instance left subplot of Fig. 4), and 15 (ii) the horizontal rooting pattern is not uniform. As demonstrated in Eq. (11), in each soil layer, a unique value of $\psi_{sr UD,q}$ may lead to the right average sink term for the layer. The microscopic approach might help finding this layer "equivalent soil-root interface water potential", which makes it unnecessary to search for the full range of soil-root interfaces water potentials in each soil layer. The second contradiction is more of an 20 issue since no definition of the geometrical factor ρ (see Eq. B1 for its theoretical formulation) accounts for horizontal rooting pattern heterogeneity. However, knowing values of $S_{Up,q}$, $M_{sr Up,q}$ and $M_{s Up,q}$ (from the reference scenarios), an effective value of ρ_q was calculated at each depth for each time step of the scenarios, by using Eq. (17).

As shown in Fig. 9a for scenario "maize high T_{daily} on silt loam", the effective values 25 grouped by depth are significantly lower than theoretical values of ρ (blue dotted line),

which means that the system behaves like if there were much less roots, or maybe, one "big root". This necessity to use smaller values of ρ was already noticed in comparison with experimental data, by Faria et al. (2010), who interpreted that feature as a consequence of poor contact at soil-root interfaces or inactivity of a significant percentage of

roots (approximately 95%), which thus should not be taken into account when calcu-5 lating ρ . Here we provide another reason for the overestimation of ρ : horizontal rooting heterogeneity.

Note that since root geometry does not change during scenarios, effective ρ values at a certain depth should theoretically remain constant with time. As shown in Fig. 9a, they actually cover a certain range of effective values, which are also strongly sensitive to soil type (not shown). One should thus be careful when using the theoretical parameterisation of ρ for root systems with heterogeneous horizontal distribution.

Figure 9c shows the same comparison for wheat, whose theoretical ρ values are much closer to the effective ones. This confirms that the theoretical parameterisation is more reliable for wheat, whose horizontal root distribution is indeed rather uniform.

Note that negative effective values of ρ are not displayed in Fig. 9a and c. These however occur in reference simulations when roots exude water while of $\psi_{sr \, Up}$ is still lower than the corresponding layer bulk SWP. This transient situation cannot be predicted by the default model of water depletion around roots, since the geometrical factor ρ is defined positive (see Eq. B1).

10

25

4.2.2 Transient rate of root water uptake

Another assumption of macroscopic RWU models using a "microscopic approach" to predict SWP depletion at soil-root interfaces is that rates of water uptake are constant with time. Water uptake rates at a soil-root interface change over time due to temporal changes in plant transpiration but also due to compensation mechanisms in the connected root system. Since the soil system has a memory due to its buffer capacity, the water potential profile around a root at a certain time does not depend only on the extraction rate at that time but also on previous extraction rates. Thus, using

a weighted-mean of past sink terms in Eq. (17) rather than the sink term at a given moment might be better to predict the difference between soil–root interface $\psi_{\rm sr \ Up}$ and bulk soil $\psi_{\rm s \ Up}$.

In this section, we tested if reference values of $M_{\text{sr Up},g}$ (from which $\psi_{\text{sr Up},g}$ can directly be deduced) could be predicted from Eq. (17), either by using the theoretical values of ρ_g and instantaneous $S_{\text{Up},g}$ ("Default method"), or by using the mean values of effective ρ_g (red vertical lines in the boxplots in Fig. 9a and c) and instantaneous $S_{\text{Up},g}$ ("Average Rho" method), or eventually by using time-averaged values of $S_{\text{Up},g}$, in addition of the mean effective ρ_g ("Average Rho & S" method).

- Figure 9b shows the results obtained for maize at all time-steps of the "high T_{daily} on silt loam" scenario. The "1 : 1 line" illustrates the position of the reference $M_{\text{sr Up},g}$, while black circles correspond to layers bulk MFP (and to the $M_{\text{sr Up},g}$ predicted under the first conjecture). Mostly, even though more accurate than the first conjecture, using the "Default method" (red crosses) still resulted in an overestimation of $M_{\text{sr Up},g}$, mainly
- ¹⁵ due to the theoretical overestimation of ρ . Effective methods "Average Rho" and "Average Rho & S" allowed increasing the accuracy of the predictions around the 1 : 1 line, however significant differences persist, mainly in dry conditions (where small errors on $M_{\text{sr Up},g}$ moreover have a high impact on $\psi_{\text{sr Up},g}$). The prediction of negative values of $M_{\text{sr Up},g}$ is also problematic since it would correspond to soil–root interface water po-
- ²⁰ tentials equal to minus infinity. Even though both effective methods were sensitive to the chosen averaging function, none of the tested functions allowed reaching satisfying results for maize (averaging functions used for results shown in Fig. 9b and d: mean function for ρ , and 36 h average for the sink term). For wheat (Fig. 9d), results were already satisfying under the first conjecture, but could be improved by using the second ²⁵ conjecture, as shown by Fig. 9d.

When the RWU model using the second conjecture was further coupled to Richards equation, the frequent prediction of negative values of $M_{\text{sr Up}}$ (happens when $M_{\text{s Up},g} < \frac{S_{\text{Up},g}}{\rho_g}$, typically when the soil becomes dry) and oscillating $\psi_{\text{sr Up},g}$ caused

1230

non-convergence issues (mainly for simulations on sandy loam). These could not be solved, even when allowing time steps smaller than $10^{-7} d^{-1}$.

4.2.3 Closing remarks on the second conjecture

Ideally, exact physical expressions would allow accounting for transient RWU rates and heterogeneous rooting distribution, with a resulting model shape that would possibly have to be adapted as compared to Eqs. (17) and (B1). However, such opportunity does not exist today, and a simple alternative is to use effective parameters and variables such as described in previous paragraphs and suggested by Faria et al. (2010), even though they entail a loss of physical meaning of the model.

The proposed effective methods, accounting for unfulfilled assumptions of De Jong 10 Van Lier et al. (2006) model, did not allow significantly improving predictions of differences between bulk SWP and SWP sensed by roots for 1-D spatial discretisation, except in conditions in which the first conjecture was already satisfying (winter wheat crop on silt loam). There is however a clear need for accurate functions predicting soil-

root interface water potential, in order to correctly predict compensatory RWU and plant 15 water stress. In the future, that problem might be solved through the development of specific analytical solutions for each type of system properties.

Conclusions and outlook 5

The objective of this paper was to provide a theoretical framework and exploratory analysis regarding the use of "upscaled" RWU models, partly or fully neglecting SWP 20 horizontal heterogeneity within the root zone. We demonstrated how to derive upscaled RWU parameters and state variables (among which the upscaled soil-root interface water potential) from small scale information. Two simplified approaches aiming at estimating such upscaled water potential (when small scale information is not available)

were then tested in soil-plant hydrodynamics scenarios, for two crops with rather heterogeneous (maize) or homogeneous (winter wheat) horizontal rooting distributions.

With the first approach, SWP was considered as homogeneous in upscaled soil elements. For maize, neglecting SWP heterogeneities in the direction of the row was

- shown to be a good compromise between accuracy (relative errors mostly below 5%) 5 and time consumption (reduced of 67 to 96%). However, in 1-D, the assumed horizontal water redistribution rate by soil was far above reference 3-D values during the day and far below them at night. Consequently, the intensity of compensatory RWU was underestimated while plant collar water potential was overestimated. For winter wheat,
- the rather uniform rooting distribution tended to generate short-distance SWP hetero-10 geneities, and favoured a fast horizontal redistribution of water by soil. Therefore, 1-D processes of water redistribution were in agreement with reference values (relative errors mostly below 5%), and computation time could be reduced by 80 to 99%. More generally, the accuracy of the first approach was improved in cases processes creat-
- ing SWP heterogeneity were reduced (e.g., low plant transpiration rate) and processes 15 dissipating SWP heterogeneity were dominant (e.g., high soil hydraulic conductivity). A conclusion of the first conjecture is that a 1-D soil geometry is enough to represent soil-plant water dynamics for winter wheat, but not for maize. Representing the latter case in 1-D would require accounting for water depletion around roots, which is the aim

of the second conjecture. 20

> With the second conjecture, the difference between bulk SWP and SWP sensed by roots in 1-D soil layers was estimated with an approximate analytical solution of soil water flow towards roots. The validity of the latter model, when two of its assumptions are not met (regular rooting distribution and constant RWU rate) was guestioned. First, hor-

izontal rooting heterogeneity was shown to impact effective values of the geometrical 25 parameter ρ for maize, while a better agreement between theoretical and effective values of ρ were noticed for the rather regular rooting distribution of winter wheat. Second, accounting for past uptake rates over a time-window of 36 h improved the agreement with reference results, whose local RWU rates were transient. However, for maize, the

layers soil-root interface water potentials could not be accurately predicted, especially in dry conditions.

This study confirmed that the use of 1-D spatial discretisation to represent soil-plant water dynamics is a worthy choice for densely seeded crops. It also highlighted that,

⁵ for wide-row crops, further theoretical developments, better accounting for actual system properties, might be needed to properly predict plant collar water potential and compensatory RWU, as compared to fine scale simulations.

Appendix A

10

15

Definition of soil water flow divergence necessary to keep soil water potential homogeneous during root water uptake in upscaled soil elements

From an initially uniform distribution of SWP inside a horizontally upscaled soil element, taking up a flux " $S_{Up,g}$. $V_{Up,g}$ " of water would generate SWP heterogeneity around roots if water was not redistributed. Leading SWP to a new homogeneous state inside the upscaled soil element instantly requires a horizontal divergence of soil water flow (mostly negative in regions where RWU occurs), which depends on the characteristic distribution of RWU inside the upscaled soil element.

When using upscaled soil elements, one indirectly assumes that the element is an entity keeping its inner water potential homogeneous, independently of other upscaled elements. In other words, the equilibration of inner SWP requires soil water redistribution, which is assumed to some from the inside of the upscaled element only. The

- ²⁰ bution, which is assumed to come from the inside of the upscaled element only. The divergence of soil capillary flow over the upscaled soil element is thus zero regarding the equilibration step, while divergences may locally be different from zero in its constituting elements. Note that when calculating soil water flow between different upscaled soil elements, their divergence of water flow may of course be different from zero.
- ²⁵ The following forms of Richards equation thus apply, respectively for upscaled and fine soil elements, regarding the instantaneous equilibration of upscaled elements inner

SWP:

$$\frac{\partial \theta_{\mathsf{Up},g}}{\partial t} = -S_{\mathsf{Up},g}$$
$$\frac{\partial \theta_k}{\partial t} = -\mathsf{Div}_k - S_k$$

⁵ where $\text{Div}_k (L^3 L^{-3} T^{-1})$ is the divergence of soil water flow in the *k*th fine element, more commonly expressed as " $-\nabla \cdot [\mathcal{K}(\psi_{m,k}) \nabla \psi_{s,k}]$ ".

In order to keep SWP horizontally homogeneous inside an upscaled element (and considering soil hydraulic properties as uniform), all local $\frac{\partial \theta_k}{\partial t}$ need to equal $\frac{\partial \theta_{\text{Up},g}}{\partial t}$. From Eqs. (A1) and (A2) we thus obtain:

10
$$\operatorname{Div}_k = S_{\operatorname{Up},g} - S_k$$
.

Considering initial SWP as homogeneous inside the upscaled soil element, local uptake rates can be defined as a standard fractions of the total uptake rate of the upscaled element:

$$S_{k} \cdot V_{k} = S_{\text{Up},g} \cdot V_{\text{Up},g} \cdot \frac{\text{SSF}_{k}}{\text{SSF}_{\text{Up},g}}$$

where
$$\sum_{k=1}^{M} \varepsilon_{k,g} \cdot SSF_k = SSF_{Up,g}$$
.

From Eqs. (A3) and (A4), the local divergence of soil water flow can be defined as follows:

²⁰
$$\operatorname{Div}_{k} = S_{\operatorname{Up},g} \cdot \frac{V_{\operatorname{Up},g}}{V_{k}} \cdot \left(\frac{V_{k}}{V_{\operatorname{Up},g}} - \frac{\operatorname{SSF}_{k}}{\operatorname{SSF}_{\operatorname{Up},g}}\right).$$
 (A5)

Since in our case, soil water flow divergence is simply a redistribution of water inside the upscaled element, the volumetric integration of positive terms equals that of negative terms, and half the volumetric integration of all absolute terms. We thus obtain

HESSD							
11, 1203–1	1252, 2014						
Simplifying approaches to model soil water potential heterogeneity V. Couvreur et al.							
Title	Page						
Abstract	Introduction						
Conclusions	References						
Tables	Figures						
I.							
•	•						
Back	Close						
Full Scre	en / Esc						
Printer-frier	ndly Version						
Interactive	Discussion						

Iscussion Paper

Discussion Paper

Discussion Pape

Iscussion Paper

(A1)

(A2)

(A3)

(A4)

the following definition of the volumetric integration of positive water flow divergence necessary to keep SWP uniform inside an upscaled soil element, $R_{soil \leftrightarrow hvp.a}$ (L³T⁻¹):

$$R_{\text{soil}\leftrightarrow\text{hyp},g} = \frac{\sum_{k=1}^{M} \varepsilon_{k,g} \cdot V_k \cdot |\text{Div}_k|}{2} = \left| S_{\text{Up},g} \right| \cdot V_{\text{Up},g} \cdot \frac{\sum_{k=1}^{M} \varepsilon_{k,g} \cdot \left| \frac{\text{SSF}_k}{\text{SSF}_{\text{Up},g}} - \frac{V_k}{V_{\text{Up},g}} \right|}{2}.$$
(A6)

Note that soil water flow divergence at scales lower than the scale of fine elements is 5 not considered in the latter equation.

The coefficient $\frac{\sum_{k=1}^{M} \varepsilon_{k,g} \cdot \left| \frac{SSF_k}{SSF_{Up,g}} - \frac{V_k}{V_{Up,g}} \right|}{2}$ appears to be an indicator of how "generator of SWP heterogeneity" a HA is, inside an upscaled soil element (which could be enlarged up to the whole soil domain). Its value tends to zero for uniform standard sink distributions inside the upscaled element, which do not create SWP heterogeneities, and tends to one for a single root inside an infinitesimal part of the upscaled element, which corresponds to the case generating the biggest amount of heterogeneity for a given water uptake or exudation rate.

Appendix B

10

20

Theoretical equation for the geometrical parameter ρ_q for regular root 15 distribution in a soil layer

De Jong Van Lier et al. (2006) provides the following theoretical equation for the geometrical parameter ρ_{a} for regular root distribution in a soil layer:

$$\rho_{g} = \frac{4}{r_{0,g}^{2} - \frac{a^{2}}{\pi \cdot \text{RLD}_{g}} + 2 \cdot \left(\frac{1}{\pi \cdot \text{RLD}_{g}} + r_{0,g}^{2}\right) \cdot \ln\left(\frac{a}{r_{0,g} \cdot \sqrt{\pi \cdot \text{RLD}_{g}}}\right)}$$
1234

(B1)

where $r_{0,g}$ (L) is the mean roots radius at the *g*th depth, *a* (–) is a parameter considered as equal to 0.53 (De Jong Van Lier et al., 2006), and RLD_{*g*} (L⁻²) is the root length density at the *g*th depth.

Appendix C

15

. .

5 Equations for vertical and horizontal water redistribution rates by soil and roots

Vertical and horizontal water redistribution rates by soil were calculated as the volumetric integration of the corresponding absolute components of water flow divergence between soil elements:

$$R_{\text{soil} \leftrightarrow} = \frac{1}{2} \cdot \sum_{k=1}^{M} \left| \left(J_{x2,k} - J_{x1,k} \right) \cdot d_{y} \cdot d_{z} + \left(J_{y2,k} - J_{y1,k} \right) \cdot d_{x} \cdot d_{z} \right|$$
(C1)

¹⁰
$$R_{\text{soil}\uparrow} = \frac{1}{2} \cdot \sum_{k=1}^{M} \left| \left(J_{z2,k} - J_{z1,k} \right) \cdot d_x \cdot d_y \right|$$
 (C2)

where $R_{\text{soil}\leftrightarrow}$ and $R_{\text{soil}\uparrow}$ (L³T⁻¹) are, respectively, the horizontal and vertical components of water redistribution rates by soil, $J_{x1,k}$ and $J_{x2,k}$ (LT⁻¹) are soil water flow densities in the *x*-direction, respectively on the first and second side of soil element #*k*, and d_x (L) is the length of soil elements in the *x* direction (same logic for *y* and *z* directions).

Even though RWU rates have no direction per se, water redistribution between layers was considered vertical while redistribution resulting from horizontal heterogeneities was considered horizontal.

Vertical water redistribution rates by roots were calculated as the integration of absolute net compensatory RWU of each soil layer:

$$R_{\text{root}} = \frac{1}{2} \cdot \sum_{l=1}^{L} \left| \sum_{k=1}^{M} \varepsilon_{k,l} \cdot \beta_k \right|$$

⁵ where $R_{\text{root}\uparrow}$ (L³T⁻¹) is the vertical water redistribution rate by roots, $\beta_k = S_k \cdot V_k - SSF_k \cdot T_{\text{act}}$ (L³T⁻¹) is the compensatory RWU in the *k*th soil element, *l* (–) is the soil layer index, *L* is the total number of soil layers, and $\varepsilon_{k,l}$ (–) equals 1 when the *k*th soil element is included in the *l*th soil layer and equals 0 otherwise.

Horizontal water redistribution rates by roots were calculated as the integration of absolute deviations of compensatory RWU as compared to the expected distribution of layers net compensatory RWU for horizontally uniform SWP:

$$R_{\text{root}\leftrightarrow} = \sum_{l=1}^{L} \frac{1}{2} \cdot \left(\sum_{k=1}^{M} \varepsilon_{k,l} \cdot \left| \beta_{k} - \frac{\text{SSF}_{k}}{\sum_{k=1}^{M} \varepsilon_{k,l} \cdot \text{SSF}_{k}} \cdot \left(\sum_{k=1}^{M} \varepsilon_{k,l} \cdot \beta_{k} \right) \right| \right)$$
(C4)

where $R_{\text{root} \leftrightarrow}$ (L³T⁻¹) is the horizontal water redistribution rate by roots, $\sum_{k=1}^{M} \varepsilon_{k,l} \cdot \beta_k$ (L³T⁻¹) is the net compensatory RWU in the /th soil layer, $\frac{\text{SSF}_k}{\sum_{k=1}^{M} \varepsilon_{k,l} \cdot \text{SSF}_k}$ (-) is the fraction

of net compensatory RWU expected in the *k*th soil element in case SWP would be horizontally uniform in the /th soil layer.

Acknowledgements. During the preparation of this manuscript, V.C. was supported by the "Fonds National de la Recherche Scientifique" (FNRS) of Belgium as a Research Fellow, by

²⁰ the "Belgian American Educational Foundation" (BAEF), as UCLouvain Fellow, and by the "Wallonie–Bruxelles International" (WBI) with a WBI.WORLD excellence grant. The authors thank these funding agencies for their financial support.

(C3)

References

15

- Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration guidelines for computing crop water requirements, Paper 56, FAO Irrigation and drainage, Rome, 1998.
- Beff, L., Günther, T., Vandoorne, B., Couvreur, V., and Javaux, M.: Three-dimensional moni-
- toring of soil water content in a maize field using Electrical Resistivity Tomography, Hydrol. 5 Earth Syst. Sci., 17, 595-609, doi:10.5194/hess-17-595-2013, 2013.
- Bramley, H., Turner, N. C., Turner, D. W., and Tverman, S. D.: Comparison between gradientdependent hydraulic conductivities of roots using the root pressure probe: the role of pressure propagations and implications for the relative roles of parallel radial pathways. Plant Cell Environ., 30, 861-874, 2007. 10
- Bramley, H., Turner, N. C., Turner, D. W., and Tyerman, S. D.: Roles of morphology, anatomy, and aquaporins in determining contrasting hydraulic behavior of roots, Plant Physiol., 150, 348-364, 2009.

Carsel, R. F. and Parrish, R. S.: Developping joint probability-distributions of soil-water retention characteristics. Water Resour. Res., 24, 195-200, 1988.

Couvreur, V., Vanderborght, J., and Javaux, M.: A simple three-dimensional macroscopic root water uptake model based on the hydraulic architecture approach, Hydrol. Earth Syst. Sci., 16, 2957-2971, doi:10.5194/hess-16-2957-2012, 2012.

De Jong Van Lier, Q., Metselaar, K., and Van Dam, J. C.: Root water extraction and limiting

- soil hydraulic conditions estimated by numerical simulation, Vadose Zone J., 5, 1264-1277, 20 2006.
 - De Jong Van Lier, Q., Van Dam, J. C., Metselaar, K., De Jong, R., and Duijnisveld, W. H. M.: Macroscopic root water uptake distribution using a matric flux potential approach, Vadose Zone J., 7, 1065–1078, 2008.
- Doussan, C., Pages, L., and Vercambre, G.: Modelling of the hydraulic architecture of root 25 systems: an integrated approach to water absorption - model description, Ann. Bot.-London, 81, 213-223, 1998.

Doussan, C., Pierret, A., Garrigues, E., and Pages, L.: Water uptake by plant roots: II - modelling of water transfer in the soil root-system with explicit account of flow within the root

system - comparison with experiments, Plant Soil, 283, 99-117, 2006. 30

Durigon, A., dos Santos, M. A., van Lier, Q. D., and Metselaar, K.: Pressure heads and simulated water uptake patterns for a severely stressed bean crop, Vadose Zone J., 11, doi:10.2136/vzj2011.0187, 2012.

Faria, L. N., Da Rocha, M. G., Van Lier, Q. D., and Casaroli, D.: A split-pot experiment with sorghum to test a root water uptake partitioning model, Plant Soil, 331, 299–311, 2010.

sorghum to test a root water uptake partitioning model, Plant Soil, 331, 299–311, 2010. Feddes, R. A., Kowalik, P., Kolinska-Malinka, K., and Zaradny, H.: Simulation of field water uptake by plants using a soil water dependent root extraction function, J. Hydrol., 31, 13–26, 1976.

Feddes, R. A., Hoff, H., Bruen, M., Dawson, T., De Rosnay, P., Dirmeyer, P., Jackson, R. B.,

¹⁰ Kabat, P., Kleidon, A., Lilly, A., and Pitman, A. J.: Modeling root water uptake in hydrological and climate models, B. Am. Meteorol. Soc., 82, 2797–2809, 2001.

Gardner, W. R.: Dynamic aspects of water availability to plants, Soil Sci., 89, 63–73, 1960.

Hupet, F., Lambot, S., Javaux, M., and Vanclooster, M.: On the identification of macroscopic root water uptake parameters from soil water content observations, Water Resour. Res., 38, 1–14, 2002.

15

Jarvis, N. J.: Simple physics-based models of compensatory plant water uptake: concepts and eco-hydrological consequences, Hydrol. Earth Syst. Sci., 15, 3431–3446, doi:10.5194/hess-15-3431-2011, 2011.

Javaux, M., Schroder, T., Vanderborght, J., and Vereecken, H.: Use of a three-dimensional

- detailed modeling approach for predicting root water uptake, Vadose Zone J., 7, 1079–1088, 2008.
 - Javaux, M., Couvreur, V., Vanderborght, J., and Vereecken, H.: Root water uptake: from 3-D biophysical processes to macroscopic modeling approaches, Vadose Zone J., doi:10.2136/vzj2013.02.0042, 2013.
- ²⁵ Jolliet, O. and Bailey, B. J.: The effect of climate on tomato transpiration in greenhouses: measurements and models comparison, Agr. Forest Meteorol., 58, 43–62, 1992.

Manabe, S.: Climate and ocean circulation. I. Atmospheric circulation and hydrology of earth surface, Mon. Weather Rev., 97, 739–774, 1969.

Pages, L., Vercambre, G., Drouet, J. L., Lecompte, F., Collet, C., and Le Bot, J.: Root typ: a

³⁰ generic model to depict and analyse the root system architecture, Plant Soil, 258, 103–119, 2004.

Raats, P. A. C.: Uptake of water from soils by plant roots, Transport Porous Med., 68, 5–28, 2007.

- 1239
- Van Noordwijk, M. and De Willigen, P.: Agricultural concepts of roots: From morphogenetic to functional equilibrium between root and shoot growth, Neth. J. Agr. Sci., 35, 487-496, 1987. Watt, M., Magee, L. J., and McCully, M. E.: Types, structure and potential for axial water flow in the deepest roots of field-grown cereals, New Phytol., 178, 135-146, 2008.
- L03401, doi:10.1029/2005GL025019, 2006. Van Genuchten, M. T.: A closed form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892-898, 1980.
- port in barley roots, J. Plant Res., 110, 435-442, 1997. Teuling, A. J., Uijlenhoet, R., Hupet, F., and Troch, P. A.: Impact of plant water uptake strategy on soil moisture and evapotranspiration dynamics during drydown, Geophys. Res. Lett., 33,
- leaf water status a test of a model for droughted or ABA-fed field-grown maize, Plant Cell 20 Environ., 16, 413–420, 1993. Tazawa, M., Ohkuma, E., Shibasaka, M., and Nakashima, S.: Mercurial-sensitive water trans-
- ing sap flux densities in date palm trees using the heat dissipation method and weighing lysimeters, Tree Physiol., 32, 1171–1178, 2012. Tardieu, F., Zhang, J., and Gowing, D. J. G.: Stomatal control by both ABA in the xylem sap and
- refinement approach for a three-dimensional soil-root water transfer model, Water Resour. Res., 45, W10412, doi:10.1029/2009WR007873, 2009b. Sperling, O., Shapira, O., Cohen, S., Tripler, E., Schwartz, A., and Lazarovitch, N.: Estimat-
- architecture water transfer model, Vadose Zone J., 8, 783–792, 2009a. Schroeder, T., Tang, L., Javaux, M., Vanderborght, J., Körfgen, B., and Vereecken, H.: A grid

5

10

15

25

30

- a microscopic soil-root hydraulic conductivity drop function in a three-dimensional soil-root
- traction and limiting soil hydraulic conditions estimated by numerical simulation", Vadose Zone J., 6, 524–526, 2007. Schroeder, T., Javaux, M., Vanderborght, J., Korfgen, B., and Vereecken, H.: Implementation of
- axial hydraulic conductivity in the apical 20 cm of barley seminal root axes implications for the driving force for water-movement, Plant Cell Environ., 11, 247-256, 1988. Schneider, C. L., Attinger, S., Delfs, J.-O., and Hildebrandt, A.: Implementing small scale pro-

Sanderson, J., Whitbread, F. C., and Clarkson, D. T.: Persistent Xylem cross-walls reduce the

cesses at the soil-plant interface - the role of root architectures for calculating root water

uptake profiles, Hydrol. Earth Syst. Sci., 14, 279–289, doi:10.5194/hess-14-279-2010, 2010.

Schroeder, T., Javaux, M., Vanderborght, J., and Vereecken, H.: Comment on "Root water ex-

Discussion

Paper

Discussion Paper

Discussion Paper

Discussion Pa	HES 11, 1203–1	SSD 252, 2014
aper Discussion	Simpl approaches soil water heterog	ifying s to model potential geneity eur et al.
Paper	Title I	Page
Discussi	Conclusions	References Figures
on Paper	14	►I ►
Discuss	Back Full Scre	Close en / Esc
ion Paper	Printer-frien Interactive I	dly Version Discussion

Weaver, J. E., Kramer, J., and Reed, M.: Development of root and shoot of winter wheat under

field environment, Ecology, 5, 26-50, 1924.

HES 11, 1203–1	HESSD 11, 1203–1252, 2014						
Simplifying approaches to model soil water potential heterogeneity							
Title I	Page						
Abstract	Introduction						
Conclusions	References						
Tables	Figures						
14	►I.						
•	•						
Back	Close						
Full Scre	Full Screen / Esc						
Printer-frien	dly Version						
Interactive	Discussion						

Discussion Paper

Discussion Paper

Discussion Paper

Table 1. Sizes of upscaled soil elements and domain properties for both maize and winter wheat crops in the runs testing the first conjecture.

Plant type	Element properties	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6
Maize	Horizontal area (cm^2) X and Y lengths (cm) Elements per layer (–)	2.25 1.5 × 1.5 500	22.5 1.5 × 15 50	45 4 × 15 25	112.5 7.5 × 15 10	225 15 × 15 5	1125 75 × 15 1
Winter wheat	Horizontal Area (cm ²) X and Y lengths (cm) Elements per layer (–) Domain dimensionality	3-D 0.25 0.5 × 0.5 280 3-D	2-D 1 1 × 1 70 3-D	2-D 7 2 × 3.57 10 3-D	2-D 70 10 × 7 1 1-D	2-0	1-0

	c						
		Case #					
	Maize scenario	1	2	3	4	5	6
Relative difference	Low T _{daily} – silt loam	0.5	0.3	0.9	5.1	10.6	14.8
on ψ_{collar} (%)	High T _{daily} – silt loam	0.9	1.5	4.5	15.5	26.8	30.3
	Low T _{daily} – sandy loam	1.9	2.9	8.8	25.9	30.6	32.7
	High T_{daily} – sandy loam	3.7	4.6	8.1	13.2	15.0	18.7
Relative difference	Low T _{dailv} – silt Ioam	1.0	1.2	1.2	5.3	12.1	17.1
1-D sink (%)	High T _{daily} – silt loam	1.9	3.2	4.2	11.1	19.7	24.2
	Low T _{daily} – sandy loam	3.4	5.0	6.8	21.3	35.4	38.5
	High T_{daily} – sandy loam	6.3	8.0	10.9	24.3	44.9	47.4
Relative difference	Low T _{daily} – silt loam	0.6	0.6	0.5	2.6	5.4	10.0
1-D water cont. (%)	High T _{daily} – silt loam	1.3	1.9	2.1	5.1	9.5	17.0
	Low T _{daily} – sandy loam	2.0	2.8	3.4	8.6	13.6	22.4
	High T_{daily} – sandy loam	2.4	4.4	5.1	9.3	14.2	22.8
Relative time	Low T _{daily} – silt loam	3.0	1.5	1.2	1.1	0.81	0.37
consumption (%)	High T _{daily} – silt loam	1.9	0.21	0.13	0.10	0.10	0.09
	Low T_{daily} – sandy loam	3.9	0.46	0.36	0.33	0.29	0.26
	High T _{daily} – sandy loam	0.98	0.04	0.03	0.02	0.02	0.02

Table 2. Relative absolute differences on the collar water potential (ψ_{collar}), 1-D sink terms, 1-D water contents and time consumptions in the maize scenarios, for increasing soil element sizes. Refer to Table 1 for the detailed geometry of cases 1–6.

HESSD 11, 1203–1252, 2014 Simplifying approaches to model soil water potential heterogeneity V. Couvreur et al. Title Page Abstract Introduction Conclusions References **Tables Figures** 14 Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion

Discussion Paper

Discussion Paper

Discussion Paper

		Case #			
	Winter wheat scenario	1	2	3	4
Relative difference	Low T _{daily} – silt loam	0.0	0.0	0.1	0.1
on H _{collar} (%)	High T _{daily} – silt loam	0.1	0.2	0.5	0.6
	Low T _{daily} – sandy loam	0.3	1.8	2.5	2.5
	High T _{daily} – sandy loam	4.0	4.8	5.2	5.6
Relative difference	Low T _{dailv} – silt Ioam	0.2	0.2	0.2	0.2
1-D sink (%)	High T _{dailv} – silt loam	0.4	0.5	0.7	0.8
	Low T _{daily} – sandy loam	0.9	2.9	4.6	4.9
	High T_{daily} – sandy loam	5.9	10.9	14.1	15.8
Relative difference	Low T _{dailv} – silt Ioam	0.1	0.1	0.1	0.1
1-D water cont. (%)	High T _{dailv} – silt loam	0.1	0.2	0.3	0.3
	Low T _{daily} – sandy loam	0.19	1.1	2.0	2.4
	High T_{daily} – sandy loam	2.8	3.6	4.9	5.9
Relative time	Low T _{daily} – silt loam	6.9	4.8	1.9	1.5
consumption (%)	High T _{daily} – silt loam	9.0	3.3	1.5	0.98
	Low T_{daily} – sandy loam	17	3.6	1.3	0.79
	High T _{daily} – sandy loam	11	1.1	0.27	0.10

Table 3. Relative absolute differences on the collar water potential (ψ_{collar}), 1-D sink terms, 1-D water contents and time consumptions in the winter wheat scenarios, for increasing soil element sizes. Refer to Table 1 for the detailed geometry of cases 1–4.

Fig. 1. Examples of the relation between $\psi_{s,k}$ and $\psi_{sr Up,g}$. Cubes are soil elements whose SWP, $\psi_{s,k}$, is represented by the colour scale. Parallelepipeds are groups of three, upscaled, soil elements, whose upscaled soil–root interface water potential $\psi_{sr Up,g}$ is represented by the same colour scale. Green vertical lines, in elements 3 to 6 and groups 1 and 2, are root segments.

Fig. 2. Virtual winter wheat root system (a) architecture at early spring, and (b) principal and (c) lateral root segments hydraulic properties.

Discussion Paper

Fig. 3. Silt loam (blue) and sandy loam (red) hydraulic properties: **(a)** water retention curves and **(b)** hydraulic conductivity curves. The coloured bands show the ranges of **(a)** water content and **(b)** hydraulic conductivities initially met in the soil profile.

Discussion Paper

Discussion Paper

Fig. 4. Discretisations of the maize crop soil domain used for the first simplifying approach. The colour scale gives the soil water potential distribution at the end of the high transpiration rate scenario on silt loam.

Fig. 5. Relative errors on three state variables predictions (ψ_{collar} , 1-D Sink and 1-D Water content) when using upscaled soil elements whose inner SWP is considered as homogeneous, for maize (a) and winter wheat (b). Relative time consumption for maize (c) and wheat (d), logarithmic scale. Scenario: high T_{daily} on silt loam.

Fig. 6. Rating of processes dissipating soil water potential heterogeneity by (**a**, **c**) soil and (**b**, **d**) roots, in scenarios "high T_{daily} on silt loam", for (**a**, **b**) maize and (**c**, **d**) wheat.

Fig. 7. Spatio-temporal distribution of **(a, d)** SWP locally sensed by roots and **(b, e)** compensatory RWU rates (spatial integration of positive terms), respectively in reference and 1-D scenarios. Temporal evolution of **(c)** plant collar water potential and SWP sensed by the plant, and **(f)** actual transpiration and compensation rates (scenario: maize, high T_{daily} on silt loam).

Discussion Paper

Discussion Paper

Fig. 8. Spatio-temporal distribution of **(a, d)** SWP locally sensed by roots and **(b, e)** compensatory RWU rates (spatial integration of positive terms), respectively in reference and 1-D scenarios. Temporal evolution of **(c)** plant collar water potential and SWP sensed by the plant, and **(f)** actual transpiration and compensation rates (scenario: winter wheat, high T_{daily} on sandy loam).

Discussion Paper

Discussion Paper

Fig. 9. System effective properties and state from the scenario "high T_{daily} on silt loam". Theoretical (blue dotted lines) and effective (boxplots) values of ρ for maize **(a)** and wheat **(c)**. Layers matric flux potential at soil–root interfaces predicted using Eq. (17) with default and effective methods, compared with reference values, for maize **(b)** and wheat **(d)**.

Discussion Paper

Discussion Paper