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Abstract 1 

We characterize how regional watersheds function as simple, dynamic systems through a 2 

series of hysteresis loops using measurements from NASA’s Gravity Recovery and Climate 3 

Experiment (GRACE) satellites. These loops illustrate the temporal relationship between 4 

runoff and terrestrial water storage in three regional-scale watersheds (>150,000 km2) of 5 

the Columbia River Basin, USA and Canada. The shape and size of the hysteresis loops are 6 

controlled by the climate, topography, and geology of the watershed. The direction of the 7 

hystereses for the GRACE signals move in opposite directions from the isolated 8 

groundwater hystereses, suggesting that regional scale watersheds require soil water storage 9 

to reach a certain threshold before groundwater recharge and peak runoff occur. The 10 

subsurface water (soil moisture and groundwater) hystereses more closely resemble the 11 

storage-runoff relationship of a soil matrix. While the physical processes underlying these 12 

hystereses are inherently complex, the vertical integration of terrestrial water in the 13 

GRACE signal encapsulates the processes that govern the non-linear function of regional-14 

scale watersheds. We use this process-based understanding to test how GRACE data can be 15 

applied prognostically to predict seasonal runoff (mean Nash-Sutcliffe Efficiency of 0.91) 16 

and monthly runoff during the low flow/high demand month of August (mean Nash-17 

Sutcliffe Efficiency of 0.77) in all three watersheds. The global nature of GRACE data 18 

allows this same methodology to be applied in other regional-scale studies, and could be 19 

particularly useful in regions with minimal data and in trans-boundary watersheds. 20 

21 
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1. Introduction 22 

At the most fundamental level, watershed processes can be described as the 23 

collection, storage, and release of water (Black, 1996; McDonnell et al., 2007). The runoff 24 

from these processes is governed by threshold mediated relationships across scales that 25 

result in storage—runoff hystereses (Spence, 2010). These threshold relationships between 26 

storage and runoff (S—R) are not uniform across a watershed, functioning as a series of 27 

discontinuous processes in soils and hillslopes that provide an integrated S—R relationship 28 

at the watershed scale (Spence, 2010). Kirchner (2009) described the S—R relationship to 29 

be non-linear and stated that watersheds typically function as dynamic systems governed by 30 

their unique climate and geology. These conceptual models of hydrologic behaviors help 31 

provide a process-based understanding of watersheds as dynamic environmental systems 32 

(Aspinall, 2010), and identify connections that advance hydrologic science and hydrologic 33 

prediction (Wagener et al., 2007).  34 

At the local scale, in situ instrumentation can quantify the non-linear relationship 35 

between streamflow and water stored in a watershed as snow, soil moisture, groundwater 36 

and reservoirs (Appleby, 1970; Brutsaert, 2008; Kirchner, 2009; Sayama et al., 2011). 37 

These four primary storage components, along with climate, topography, and geology 38 

govern the fluxes of water through a catchment, and play an important role in the hysteretic 39 

nature of storage and runoff dynamics (McGlynn and McDonnell, 2003; McNamara et al., 40 

2011). Knowledge of these processes is fundamental to developing an understanding of a 41 

watershed’s hydrologic behavior. However, observations over larger regions can be 42 

technically challenging and costly, and in situ measurements from small basins do not 43 

necessarily represent the complexity inherent to watersheds at more broad scales (Spence, 44 
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2010). This scaling problem limits our capacity to understand and predict regional 45 

hydrologic processes, which is often the practical scale of watershed management (Blöschl, 46 

2001; Western et al., 2002; Skøien et al., 2003; Peel and Blöschl, 2011; Thompson et al., 47 

2011).  48 

In the absence of broad-scale observations, past hydrological studies have typically 49 

relied on in situ measurements as a proxy for regional scale hydrological processes. For 50 

example, in higher latitude or mountainous regions measurements of snow water storage 51 

have provided a simple metric that has been used in water resource planning for decades 52 

(Cayan, 1996; United States Army Corps of Engineers, 2001), and are often correlated to 53 

streamflow gauged downstream (Dozier, 2011). While informative, this approach can often 54 

provide hydrological forecasts that are misleading, because point-based measurements do 55 

not fully represent the broad-scale variability of rugged mountain terrain (Dozier, 2011; 56 

Nolin, 2012; Webster et al., 2014; Ayala et al., 2014). Similarly, measurements of soil 57 

moisture in the upper 2000 mm of the soil rely on point-based data that are often distributed 58 

at the regional scale, but do not effectively represent the true variability of soil moisture 59 

found at the regional scale (Western et al., 2002; Brocca et al., 2010). A complete 60 

understanding of groundwater stores and fluxes (deeper than 2000 mm) at regional scales 61 

also remains elusive, despite its increasing importance in water resources management 62 

(Wagener et al., 2007; Gleeson et al., 2012; Famiglietti and Rodell, 2013; Barthel, 2014). In 63 

addition to contributing to runoff, groundwater serves as an important water resource for 64 

consumptive use (Gleeson et al., 2012). 65 

While local-scale methods have been applied with moderate success in the past, 66 

current trends in climate and in consumptive water demand suggest that long-term changes 67 
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in hydrological fluxes will have a major impact at the regional scale (Milly et al., 2008). As 68 

a result, the supply and demand of water is also expected to shift, especially at the regional 69 

scale (Wagener et al., 2010; Gleick, 2014a).  70 

Hydrologic models can help address the questions of scale and bridge the gap 71 

between local scale observations and regional-scale processes by estimating the primary 72 

components of water storage (snow, soil moisture, reservoir, and groundwater) across a 73 

larger spatial grid. Regional-scale modeling approaches are integrated into water resource 74 

management operations for navigation, human consumptive use, irrigation, and hydropower 75 

(Payne et al., 2004; Rodell et al., 2004). Models can also be applied diagnostically to test 76 

scientific hypotheses and provide a better understanding of the physical processes that 77 

govern real world systems, such as the connections between snowmelt, streamflow, and 78 

groundwater (Beven, 2007, 2010; Moradkhani and Sorooshian, 2008; Kirchner, 2009; 79 

Clark et al., 2011; Capell et al., 2012). Despite their utility, developing and validating a 80 

model can be both time consuming and reliant on multiple data inputs, which even in the 81 

most well-instrumented basins provides sparse geographic coverage (Bales et al., 2006; 82 

Zang et al., 2012). The lack of an integrated measurement of water storage and streamflow 83 

has limited regional-scale hydrologic insights to model-based studies (Koster et al., 2010; 84 

Mahanama et al., 2011).  85 

Since 2002, broad-scale measurements of changes in the amount of water stored 86 

across and through the earth have been available from NASA’s Gravity Recovery and 87 

Climate Experiment (GRACE) satellites (Tapley et al., 2004). GRACE measures monthly 88 

changes in the Earth’s gravitational field that are proportional to regional changes in total 89 

water storage (Wahr et al., 2006). GRACE satellites provide a monthly record of terrestrial 90 
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water storage anomalies (TWSA), which represent the changes in the vertical sum of water 91 

at the Earth’s surface stored in snow, surface, soil and groundwater. Water losses to runoff 92 

and evapotranspiration are implicit in the GRACE storage signal, removing the added layer 93 

of complexity typically required to model the terrestrial water balance.  94 

GRACE data, coupled with modeled and measured variations of water stored in 95 

snow, surface reservoirs and soils, have successfully been decomposed to quantify regional 96 

groundwater changes (Rodell et al., 2009; Famiglietti et al., 2011; Voss et al., 2013; Castle 97 

et al., 2014) and have contributed to improving water balance calculations (Zaitchik et al., 98 

2008; Li et al., 2012). More recent efforts have quantified the relationship between regional 99 

water storage and specific streamflow events (Reager and Famiglietti, 2009; Reager et al., 100 

2014). Riegger and Tourian (2014) coupled GRACE data using data-driven and model-101 

based approaches to better understand the relationship between storage and runoff across 102 

climatic zones globally. Their study found that coupled liquid storage is linear to runoff, 103 

and that in climatic regions with snow and ice the relationship between storage and runoff 104 

is more hysteretic. These novel analyses, which are more diagnostic in nature, have 105 

provided new insights into regional watershed hydrology using GRACE measurements as a 106 

core data input. These studies have not explored how topography and geology can also help 107 

describe the S—R relationship of regional watersheds. Nor did these studies examine the 108 

ability of GRACE measurements to predict seasonal runoff.  109 

In this paper, we use terrestrial water storage data from GRACE to better 110 

understand the hydrology of regional watersheds and the relationship between storage and 111 

runoff. The temporal relationships between coincident TWSA and discharge observations at 112 

three scales in the Columbia River Basin (CRB) of western North America are investigated 113 

5 
 



using climate, topography, and geology as a framing principle to describe the shape of the 114 

storage-streamflow hysteresis. We associate regional and temporal differences in the 115 

hystereses with varying watershed dynamics. Finally, we compare the prognostic abilities 116 

of GRACE observations with individual modeled estimates of snow and soil moisture to 117 

predict seasonal streamflow at regional scales.  118 

2. Study Area 119 

Our study area is the Columbia River Basin (CRB; 41-53ºN and 110-122ºW; Fig. 120 

1). This basin has dry summers and wet winters. Up to 70% of annual precipitation falls 121 

between November and March, 50-60% of which occurs as snow (Serreze et al., 1999; 122 

Nolin et al., 2012). The spring months (April to June) are also wet, but warmer. 123 

Precipitation during the spring combines with snowmelt to swell rivers and potentially 124 

exacerbate flooding. Snowmelt also serves as a critical component of the hydrologic cycle, 125 

recharging aquifers and filling streams later in the year. These contributions bridge the 126 

temporal disconnect between wet winters and dry summers when demand is at its peak as 127 

farmers, fish, hydropower and municipal users vie for over-allocated water resources 128 

(United States Army Corps of Engineers, 2001; Oregon Water Supply and Conservation 129 

Initiative, 2008). However, concerns with winter surplus and summer scarcity are not 130 

uniform across the CRB, since climate and geology vary greatly. Two of the study 131 

watersheds, the Upper Columbia (155,000 km2) and the Snake River basin (182,000 km2), 132 

represent distinctly different climatic, topographic, and geologic provinces of the CRB 133 

(described and illustrated in Fig. 1). The Upper Columbia is wet and is characterized by 134 

steep topography of fractured rock and poor groundwater storage. In contrast, the arid 135 

Snake River basin is bowl-shaped with mountains on three sides. The interior of the Snake 136 
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River basin is a broad plain with well-developed soils and expansive aquifer storage. The 137 

Columbia River at The Dalles (614,000 km2) encompasses the Upper Columbia and the 138 

Snake River sub-basins, and its climate and geology are an integration of the two (Fig. 1). 139 

A distinct climatic feature of the Columbia River at The Dalles is the western slope of the 140 

Cascade Mountains, where over 3000 mm of mean annual precipitation at higher elevations 141 

sustains a considerable seasonal snowpack. The scale of this study was constrained to 142 

watersheds larger than 150,000 km2, the optimal minimum geographic limit of GRACE 143 

data (Yeh et al., 2006; Landerer and Swenson, 2012). 144 

3. Methods and Data  145 

We used 108 months of GRACE and streamflow data over nine water years (WY; 146 

Oct – Sep; 2004–2012). This data comprises positive, neutral, and negative phases of the El 147 

Niño-Southern Oscillation and negative and positive phases of the Pacific Decadal 148 

Oscillation (Feng et al., 2014; Iizumi et al., 2014). As a result, the data provides years of 149 

above- and below-average precipitation, snowpack, and streamflow for the region. The 150 

three watersheds were delineated upstream from United States Geological Survey (USGS) 151 

stream gages at 1° resolution, which is the resolution of GRACE data. In the CRB, these 152 

grid cells represent a dimension of approximately 80 km by 120 km. The Upper Columbia 153 

consists of the area upstream of the Columbia River at the International Boundary gage 154 

(USGS 12399500), just downstream of the confluence of the Columbia and Pend-Oreille 155 

Rivers. The Pend-Oreille is a major watershed in the upper portions of the CRB. The Snake 156 

River gage at Weiser (USGS 13269000) provides gauged streamflow data above Hell’s 157 

Canyon Reservoir, the largest impoundment in the Snake River basin. The USGS gage at 158 

The Dalles (USGS 14105700) provides the most downstream streamflow data for the CRB. 159 
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Monthly mean runoff (R; mm) was calculated for each of the three gages using the USGS 160 

streamflow data.  161 

Measurements of TWSA were obtained from the GRACE RL-05 (Swenson and 162 

Wahr, 2006; Landerer and Swenson, 2012) data set from NASA’s Tellus website 163 

(http://grace.jpl.nasa.gov). The errors present in the gridded GRACE data exist primarily as 164 

a result of truncation (i.e., a low number of harmonics) in the spherical harmonic solution, 165 

and smoothing and systematic noise removal (called “de-striping”) that is applied after 166 

GRACE level-2 processing to remove spatially correlated noise (called “stripes”) (Swenson 167 

and Wahr, 2006). This smoothing tends to smear adjacent signals together (within the 168 

radius of the filtering function), resulting in smaller signals being lost, and larger signals 169 

having a coarser footprint and a loss of spatial information. 170 

To restore the GRACE signal lost during processing, the data were scaled using 1° 171 

Land-Grid Scale Factors produced by putting a 1° land surface model through identical 172 

processing (truncation and filtering) as the GRACE solutions, then measuring the decrease 173 

in the signal amplitude at each 1° grid. These procedures are described on the Tellus 174 

website and detailed in Landerer and Swenson (2012). Monthly 1° GRACE estimates of 175 

TWSA, and the associated 1° leakage and measurement errors, were spatially averaged over 176 

each of the three study watersheds following the procedures described in the Tellus 177 

website.  178 

GRACE represents monthly storage anomalies relative to an arbitrary record-length 179 

mean value, analogous to the amount of water above or below the long-term mean storage 180 

of a bucket, and should balance with the equation: 181 
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ΔStorage = TWSA = ΔGW + ΔSM + ΔSWE + ΔRES   (1) 182 

where all components are at monthly time steps; GW represents groundwater, SM 183 

represents soil moisture (from 0–2000 mm depth), SWE represents snow water equivalent 184 

(the equivalent depth of water held in snowpack), and RES represents reservoir storage. The 185 

Δ used here represents the anomaly from the study-period mean, rather than a monthly 186 

change. To isolate monthly groundwater storage anomalies (ΔGW = GWSA) in the above 187 

equation, ΔSM, ΔSWE and ΔRES estimates were subtracted from the monthly TWSA data 188 

using methods described in Famiglietti et al. (2011). Similarly, the combined signal of 189 

water storage anomalies of subsurface moisture (TWSAsub), SM and GW, was isolated by 190 

subtracting SWE and RES from TWSA values.  191 

Monthly SM values over the study basins were obtained from the mean of the North 192 

American and Global Land Data Assimilation Systems (NLDAS at 1/8º resolution 193 

(Cosgrove et al., 2003) and GLDAS at 1/4º resolution (Rodell et al., 2004), respectively), 194 

and were spatially averaged over the three study watersheds. Monthly 1-km resolution SWE 195 

values were obtained from the mean of NLDAS and Snow Data Assimilation System 196 

(SNODAS; National Operational Hydrologic Remote Sensing Center, 2004) and were 197 

spatially averaged over the three watersheds. SNODAS data were used in place of the 198 

GLDAS data product, which considerably underestimated SWE in mountainous areas when 199 

compared to point-based measurements. Changes in monthly reservoir storage were 200 

calculated for the five largest reservoirs in the CRB (see Table A1). Other smaller 201 

reservoirs in the CRB were excluded when it was determined that fluctuations in their 202 

levels were below the detection limits of GRACE. 203 
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Like all measurements, estimates of TWSA from GRACE contain error. For all of 204 

the study basins, the range of error is well below the TWSA signal strength, approximately 205 

an order of magnitude below the annual amplitude (200 – 300 mm) of the TWSA signal in 206 

the CRB. The basin-averaged TWSA errors (time invariant) for the three study basins are 37 207 

mm (Upper Columbia), 22 mm (Snake), and 25 mm (The Dalles).  208 

The model data from LDAS and SNODAS simulations are driven by in situ 209 

measurements, and represents the best available data for broad scales. We address any 210 

structural error from an individual model by using an ensemble of outputs. Calculation of 211 

the error in individual terms followed standard methodologies (Famiglietti et al., 2011), 212 

where error in SM is the mean monthly standard deviation, and standard errors for SWE and 213 

RES are 15% of mean absolute changes. GWSA and TWSAsub anomaly errors are 214 

calculated as the sum of basin-averaged errors (added as variance) in the individual terms in 215 

each respective calculation (eq. 1), including the error in TWSA (Swenson et al., 2006). The 216 

basin-averaged error variance for GWSA (time invariant) in the three study basins are 45 217 

mm (Upper Columbia), 26 mm (Snake), and 33 mm (The Dalles). For TWSAsub these 218 

values are 37 mm (Upper Columbia), 22 mm (Snake), and 25 mm (The Dalles). The 219 

individual error components (SM, SWE, RES respectively) for each basin are Upper 220 

Columbia (24 mm, 6 mm, 0.01 mm), Snake (14 mm, 3 mm, 0.01 mm), and The Dalles (21 221 

mm, 4 mm, 0.01mm). Note that these error estimates are distributed across an entire 222 

regional watershed and do not represent the error at individual monitoring sites. A time 223 

series of these values and basin-averaged errors is provided in Fig. 2. 224 

Based on an approach similar to Reager et al. (2014) and Riegger and Tourian 225 

(2014), we plotted the temporal relationship between TWSA and R to examine hysteresis 226 
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relationships in all three of the study watersheds for each individual water year and for the 227 

monthly mean across all water years. Expanding from the integrated terrestrial component 228 

of water storage, we also plotted the relationships of TWSAsub and GWSA with R. We 229 

examined the branches of these hysteresis plots to better understand how the size, shape, 230 

and direction of the hystereses varied across years in each of the three regional watersheds.  231 

In order to verify groundwater hysteresis, we compared the GRACE-derived GWSA 232 

to groundwater depths from well measurements at 33 sites throughout the study region 233 

(Fig. 1 and Table A2). These data were normalized by their standard deviation, and the 234 

mean of the 33 wells was calculated. The standard deviation of the GRACE-derived GWSA 235 

for The Dalles was normalized to provide a direct comparison of GWSA and in situ 236 

measurements.  237 

We further hypothesized that because peak SWE accumulation occurs between 238 

February and April, that TWSA for these months could be used to predict R for an 239 

individual month and the cumulative seasonal runoff (Rseason) that occurs after peak SWE 240 

accumulation. To test this prognostic hypothesis we used a two-parameter power function 241 

(The MathWorks, 2013):  242 

Rpredicted = a(TWSAmonth)b + c    (2) 243 

where Rpredicted is runoff for the predicted time interval; TWSAmonth represents terrestrial 244 

water storage for an individual month, and a, b, and c are fittted parameters from the power 245 

function. 246 

We tested this relationship for TWSA in February, March and April to predict Rseason 247 

(April – September) and for the individual months of July (RJuly), August (RAug), and 248 
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September (RSep); these represent the lower-flow months when demand is near its peak. 249 

Additionally, we tested and compared the modeled-values of SWE from NLDAS and 250 

SNODAS and SM from NLDAS and GLDAS, and the model-derived values of TWSAsub to 251 

predict Rseason and for the individual months using the same power-function analysis.  252 

Because our data set was constrained to nine water years, we used a double-pass 253 

approach to fit and test the empirical relationship between S—R. This approach allowed us 254 

double our data inputs for calculating standard hydrologic evaluation metrics such as Root 255 

Mean Square Error (RMSE), Nash-Sutcliffe Efficiency (NSE) and Coefficient of 256 

Determination (R2); (Legates and McCabe, 1999). The nine years were divided into two 257 

sets (Set 1, even years 2004-2012; Set 2, odd years 2005-2011). The first pass calculated 258 

the power function of S—R to Set 1, and the parameters were then tested against Set 2. The 259 

roles of the datasets were then reversed, and the empirical model results of each pass were 260 

compiled into one data set and tested against measured values to calculate RMSE, NSE, 261 

and R2. In order to maximize the limited data inputs, once we tested the two independent 262 

sets for model performance, we combined the data sets for a single power function curve. 263 

The observed data were tested against the simulated data from the complete, but limited 264 

data record. The final model curve was fit to these data. 265 

 266 

4. Results 267 

4.1. Storage-runoff hysteresis 268 

The filling and emptying of the study basins at the regional-scale over the course of 269 

an individual WY results in a hysteretic relationship between storage and runoff (Fig. 3a). 270 
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The hysteresis loops begin at the onset of the wet season in October, with TWSA increasing 271 

(Figs. 3a, 4a-c) as precipitation is stored as snow and soil moisture. An increase in storage 272 

that is not offset by an increase in discharge indicates a predominance of snow inputs and 273 

the freezing of soil water. The lower branch of the hysteresis plot (storage increase 274 

unmatched by runoff) can be used to estimate cumulative snow water equivalent and soil 275 

moisture in the basin. This is the water that later contributes to streamflow and groundwater 276 

recharge in the spring.  277 

The hysteresis shifts direction from Feb-Apr (inflection 1, Fig. 3a) when saturated 278 

soils and snowmelt cause R to rapidly increase. Each hysteresis loop contains a vertical 279 

branch of the curve during which storage is relatively constant, but streamflow increases 280 

rapidly. This also represents the groundwater recharge branch of the loop. As snow melts 281 

and the ground thaws, runoff is generated, recharge into soils occurs, and basins tend to be 282 

at peak storage during this branch. Storage losses and additional precipitation inputs during 283 

this period are re-organized internally. A second shift (inflection 2, Fig. 3a) occurs from 284 

Apr-June when peak TWSA begins to decrease, representing spring snowmelt and a switch 285 

from precipitation that falls primarily as snow to rain; these combine to contribute to peak 286 

R.  287 

Once peak R values are reached, the loop shifts direction a third time (inflection 3, 288 

Fig. 3a), receding on both axes as contributions from snowmelt diminish while presumably 289 

groundwater sustains streams and provides a source for irrigated agriculture. During this 290 

period, the relationship between TWSA and discharge is more linear, corresponding to 291 

baseflow-driven runoff processes in which each monthly change in storage causes a 292 

proportional change in the generation of streamflow.  293 
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The hysteresis plots of TWSA—R for an individual water year demonstrate that the 294 

timing and quantity of precipitation governs the size of a hysteresis loop for an individual 295 

WY (Figs. 3a, 4a-c, 5). For instance wet years (e.g., 2008) have bigger loops, while dry 296 

years (e.g., 2005) are more compressed along both axes. However, the general shape of the 297 

loops is distinct for each basin. Plotting multiple WYs provides a family of curves for each 298 

basin that helps describe how climate, topography, and geology govern the timing and 299 

magnitude of the relationship between TWSA and R (Figs. 3a, 5).  300 

4.2. Subsurface water (TWSAsub) – runoff hysteresis 301 

 The TWSAsub hysteresis curve contracts horizontally when the snow signal is 302 

removed from TWSA values for both the Upper Columbia and The Dalles (Figs. 3b, 4d-f), 303 

which collapses the loops and takes a form similar to a plot-scale hysteresis of soil. Peak 304 

TWSAsub occurs in June, which corresponds to the spring melt of mountain snowpack and 305 

the end of the wet season (Figs. 4d-f). However in the Snake River, the hysteresis curve 306 

still retains a loop, but the timing of maximum TWSAsub is also earlier, reaching its peak 307 

during March and April (Fig. 4e). It is noteworthy that in the Snake River the TWSAsub—R 308 

hysteresis loop temporally progresses in the opposite direction, but stays in phase with 309 

precipitation inputs.  310 

4.3. Groundwater-runoff hysteresis 311 

The hysteresis loops describing the temporal relationship between GWSA and R are 312 

equally informative, with one distinct difference—they temporally progress in opposite 313 

directions of the hysteresis loops of TWSA and R (Fig. 3). For all three watersheds, GWSA 314 

decreases from Oct–Feb/Mar (Fig. 4h-j), which is out of phase with the onset of the wet 315 
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season. GWSA does not shift towards positive gains until early spring and the initial stages 316 

of melt before reaching its maximum in June.  317 

The 33 point-specific well data located across the CRB show considerable 318 

individual variability throughout a water year, and the mean of the normalized standard 319 

deviations of well levels was close to zero for all months. The temporal variability for the 320 

well data provides no discernable correlation with the derived GWSA signal (Fig. A1). 321 

4.4. Individual basin hysteresis plots of TWSA, TWSAsub, GWSA and R 322 

Of the three study basins, the Upper Columbia is the most hydrologically active, 323 

showing the largest annual range for TWSA, TWSAsub, GWSA, and R (Fig. 6). The TWSA—R 324 

hysteresis loops are more open (Fig. 4), corresponding to the fluxes of water moving 325 

through watershed. When SWE is removed and subsurface water is highlighted, the 326 

TWSAsub—R hysteresis loops collapse horizontally and more closely resemble the 327 

hystereses associated with soil (Figs. 4d). However the inter-annual range (WYmax – 328 

WYmin) for TWSAsub in the Upper Columbia is considerably greater than the other two 329 

basins (median range = 234 mm; Fig. 6). As the hysteresis reverses directions for GWSA—330 

R, the loops shift to a more open shape (Figs. 4d), but the inter-annual range remains 331 

similar.  332 

In contrast to the rapid response of the Upper Columbia, the Snake River receives 333 

~60% less annual precipitation, but has an annual TWSA range that is only 22% less 334 

(median annual range = 192 mm; R=7 mm; Figs. 4, 5, and 6). However, the TWSA 335 

hysteresis loops for the Snake River are collapsed vertically (Fig. 4b). In the more arid 336 

Snake River, removing the snow signal does not collapse the TWSAsub—R hysteresis loops 337 
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(TWSAsub = 89 mm). Similarly, the GWSA loops suggest that subsurface moisture plays a 338 

more prominent role in the Snake River.  339 

The climate, topography, and geology of the Columbia River at The Dalles are an 340 

integration of the Upper Columbia and Snake River, seen in the shape of the hysteresis 341 

loops (Figs. 4, 5, 6; median annual range TWSA=195 mm; R=27 mm). The period from 342 

Feb–June more closely resembles the Snake River basin, with gradual increases in TWSA 343 

and sharp increases in R. The slope of the recession from June-Sept has the same general 344 

shape for The Dalles as the Upper Columbia (Figs. 4a, 4c), presumably from snowmelt-345 

generated runoff.  346 

4.5. Streamflow forecasting 347 

We next present how TWSA was applied prognostically to predict streamflow. 348 

Using the double-pass calibration and validation approach, TWSAMar provided the best 349 

overall predictive capabilities for Rseason with a mean NSE (NSE�����) and mean R2 (R�2) of 0.75 350 

and 0.91, respectfully (Fig. 7a, Table 1), for all three basins. The Dalles had the highest 351 

NSE and R2, and lowest RMSE values (0.98, 0.98, 6 mm; Table 1). The results in the 352 

Upper Columbia were also robust (0.82, 0.86, 33 mm; Table 1), while the Snake River 353 

performed with less skill (0.46, 0.59, and 14 mm, Table 1). Applying TWSAApril also 354 

provided similar results, but with a lower degree of skill in predicting R (NSE����� = 0.57, R�2= 355 

0.69). TWSAApr provided improved predicted capabilities in the Upper Columbia (0.87, 356 

0.88, and 28 mm, Table 1), but inferior results in the other two watersheds. TWSAFeb had a 357 

low degree of skill in predicting R in all three watersheds (Table A3).  358 
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TWSAMar and TWSAApril also served as a good predictor of monthly runoff in July 359 

and August for the Upper Columbia and to a lesser degree in The Dalles (Tables 1 and A3). 360 

In the Snake River, TWSA did not serve as a good predictor for R in an individual month.  361 

Snowpack and soil moisture play a considerable role in the hydrology of the CRB 362 

and are commonly used to help predict water demand and availability later in the year 363 

(Koster et al., 2010). We compared the capabilities of the modeled snow (SWE) and soil 364 

moisture (SM) products to predict R to the skill of measured GRACE TWSA data (Table 1). 365 

In the Upper Columbia and The Dalles, TWSAMar predicts seasonal and monthly runoff 366 

(July and August) with considerably more skill than SWE or SM (Figure 7, Table 1). In the 367 

Snake River, SMMar has a higher degree of skill than TWSAMar in predicting Rseason and RAug. 368 

SWEMar provided inferior results in all three watersheds, but with some predictive skill in 369 

the Upper Columbia and The Dalles (NSE of 0.24 and 0.46 respectively, Table 1). In all 370 

three watersheds, TWSAsub provided extremely poor predictions (Tables 1 and A3).  371 

When the results of the empirical model using two independent sets of data proved 372 

robust for some of the storage metrics, the observed data were tested against the simulated 373 

data from the complete, but limited data record. The performance of the empirical model 374 

improved using the complete data set (Tables 2 and A4), with the same general results. 375 

TWSAMar provided the best model fit for seasonal runoff in the Upper Columbia (NSE = 376 

0.93, RMSE = 19.8 mm) and The Dalles (NSE = 0.98, RMSE = 5.7 mm). In the Snake 377 

River, predictive capabilities improved more dramatically (NSE = 0.83, RMSE = 7.4 mm), 378 

but soil moisture still served as a better predictor of seasonal streamflow (NSE = 0.93, 379 

RMSE = 5.2 mm). Similarly, TWSAMar provided the best model fit for runoff in August, 380 

one of the drier months when demand is at its peak (Tables 2 and A4). 381 
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5. Discussion 382 

5.1. Storage-runoff hysteresis 383 

Decades of data collection and monitoring at individual gage sites indicate that 384 

watersheds collect, store and release water. Using one integrated measurement from the 385 

GRACE satellites, our results show these same process at the regional scale in the 386 

hysteresis loops of storage (TWSA) and runoff (R). While hystereic processes have 387 

previously been identified in local-scale measurements (McDonnell, 2003; McGlynn and 388 

McDonnell, 2003), only recently has streamflow-storage hysteresis been identified at the 389 

regional scale (Riegger and Tourian, 2014).  390 

Our work builds on Riegger and Tourian’s (2014) results, and employs GRACE data to 391 

describe how regional watersheds function as integrated, non-linear systems governed by 392 

climate, topography, and geology. Climate controls the size of the hysteresis loops by 393 

providing a first-order control on hydrologic inputs and the storage of solid water, which in 394 

turn governs the ranges of TWSA and R. However, runoff response to precipitation and 395 

snowmelt does not act independently from topography and geology (Jefferson et al., 2008; 396 

Tague et al., 2008), which controls how liquid water is stored and routed through a 397 

watershed, even at the regional scale. The climatic, topographic, and geological 398 

characteristics of each watershed provide an explanation of the S—R relationship that helps 399 

govern the shape and size of its respective hysteresis curve. GRACE offers a single, 400 

integrated measurement of changes in water storage through and across a watershed that 401 

can be applied to predict regional streamflow using an empirical model. Where these 402 
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predictive capabilities succeed and fail help better describe the climatic, topographic, and 403 

geological characteristics in each watershed. 404 

For example, in the Upper Columbia, steep topography and wet climate fills subsurface 405 

storage quickly before reaching a threshold in April or May. After this watershed-scale 406 

threshold is reached, the steep topography moves snowmelt and rain quickly through the 407 

terrestrial system and into the river channel until cresting in June (Figs. 4, 5, and 6), 408 

followed by declines in TWSA and R from June-September. These large fluxes of water 409 

create a more open hysteresis loop, expanding non-linearly on both the horizontal and 410 

vertical axes.  411 

The Upper Columbia also has the broadest range of annual TWSAsub and GWSA during 412 

the study period (Figs. 5 and 6), despite having limited aquifer capacity. Conceptually, this 413 

demonstrates that the upper limit of storage is greater than in the Snake River or The 414 

Dalles, but that it also loses the most water. Its minimums at the end of the WY are also the 415 

lowest (median TWSASep = -98mm; Figs. 5 and 6). This range across TWSA, TWSAsub, and 416 

GWSA supports the conceptual model that the watershed fills during the wet season, and is 417 

then drained more quickly due to steep topography and limited water storage. The 418 

predictive capability of TWSA also strongly suggests that the components and temporal 419 

relationships of storage across this watershed are interconnected, and that incorporating 420 

April snowpack improves the model results. 421 

In contrast, the arid Snake River basin provides a very different family of hysteresis 422 

curves (Figs. 4, 5) that identify groundwater and soil moisture as primary components of 423 

watershed function. The curves are compressed vertically (R) as compared to the Upper 424 
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Columbia, and are more constrained horizontally (Fig. 6). The onset of spring melt runoff 425 

in February does not deplete TWSA for the Snake River. Instead, TWSA continues to 426 

increase until May, when peak runoff occurs. As TWSA decreases to the end of the water 427 

year in September, the median TWSASep measurement (-78 mm) is 20 mm greater than in 428 

the Upper Columbia. This indicates that the lower drainage threshold of the Snake River 429 

watershed is relatively greater than the Upper Columbia, potentially explained by a less 430 

severe topography and higher aquifer capacity.  431 

The TWSAsub hysteresis curves in the Snake River retain a similar shape to the 432 

TWSA signal. While they reverse direction they do stay temporally connected to the onset 433 

of the wet season in October, indicating that subsurface moisture is a central control on the 434 

filling of the watershed through May. The capabilities of SM to empirically predict R better 435 

than TWSA further highlight the importance of subsurface water in this watershed. The 436 

intra-annual range of GWSA in the Snake River is also more limited than in the more 437 

hydrologically responsive Upper Columbia. This more limited range of data supports the 438 

conceptual model of a watershed that retains comparatively more winter precipitation in 439 

soils and aquifers throughout the spring season, and that sustains flow later in the year and 440 

until the onset of melt the following winter. 441 

The greater Columbia River Basin upstream from The Dalles integrates the climatic, 442 

topographic, and geologic characteristics of the Snake River and Upper Columbia as well 443 

as other areas within the CRB. The western slope of the Cascades (Fig. 1), which is outside 444 

of the Upper Columbia, accumulates up to several meters of SWE each winter. Due east of 445 

the Cascades, an expansive basalt plain that provides aquifer storage helps dampen the 446 
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snowmelt pulse in the spring. The hysteresis loops for The Dalles reflect these combined 447 

characteristics.  448 

Storage at The Dalles increases along the horizontal axis (TWSA) until peak storage 449 

is reached in March or April (Figs 3, 4, and 5). This TWSA threshold responds with an 450 

increase in R that continues through June. In July, the hysteresis begins to recede along 451 

both axes closing out the loop. The GWSA has the most limited range, potentially explained 452 

by the extensive basalt aquifer moderating the relationship between storage and runoff. In 453 

The Dalles, TWSASep has a median value of -88mm (Fig. 6), between the lower drainage 454 

thresholds of the Upper Columbia and Snake River watersheds; indicating an integration of 455 

the contributing climate, topography, and geology.  456 

5.2. Distinguishing the difference between TWSAsub and GWSA  457 

Conceptually TWSAsub represents changes in the amount of water stored as soil 458 

moisture and groundwater, where as GWSA represents water changes greater than 2000mm 459 

below the soil surface. The goals of evaluating these metrics were to see if monthly changes 460 

in soil moisture were linked to changes in groundwater storage, and the role of snowpack in 461 

the S—R relationship.  462 

The TWSAsub hysteresis curves in the Upper Columbia and The Dalles collapse into 463 

a more linear relationship that is more commonly associated with the S—R relationship of a 464 

soil matrix (Fig. 3 and 4). This is in contrast to the GWSA hystereses that are represented by 465 

loops that show an out-of-phase relationship between precipitation and groundwater 466 

recharge from the start of the wet season in October until February or March. The TWSAsub 467 

and GWSA hysteresis plots demonstrate that in these two basins changes in monthly soil 468 
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moisture are not always temporally aligned with GWSA. This can be explained by the 469 

physical reality that soil moisture and groundwater are not always interconnected, and that 470 

there is not a fixed depth (i.e., 2000 mm) that separates the two components of water 471 

storage.  472 

GRACE-derived calculations of GWSA also provide insights into the hydrological 473 

processes governing groundwater recharge and depletion, as evidenced in the GWSA 474 

hysteresis loops. The GWSA—R curves show an out-of-phase relationship between 475 

precipitation and groundwater recharge from the start of the wet season in October until 476 

February or March. This indicates that groundwater helps sustain stream flow during the 477 

wet fall and winter and that pore space in soils and geologic materials must fill to a certain 478 

threshold before groundwater begins to recharge and runoff is generated. The relationship 479 

between the TWSA and GWSA curves from Oct-Mar identifies how the onset of snowmelt 480 

also marks the beginning of groundwater recharge, and suggests that snowmelt inputs to 481 

groundwater are considerable. In the CRB this is critical as current climate trends are 482 

projected to reduce snowpack accumulation and exacerbate melt in the region (Wu et al., 483 

2012; Rupp et al., 2013; Sproles et al., 2013). 484 

Additionally, our analysis identifies summer as the time of peak groundwater 485 

storage in all three regional watersheds. This finding is of value for groundwater 486 

management and policy decisions, as peak groundwater levels in June correspond to the 487 

timing of groundwater pump tests that are used to develop groundwater withdrawal 488 

regulations (Jarvis, 2011, 2014). Our data suggest that groundwater pump tests should not 489 

be limited to an individual month, and should also include periods of reduced storage 490 

particularly during the winter months. The inclusion of multiple pump tests throughout the 491 
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year could be particularly relevant as the population and water demand is projected to 492 

increase in the region.  493 

The point-specific well data are not conclusive and show considerable variability 494 

with no consistent pattern regarding the timing of recharge and peak groundwater levels. 495 

This is presumably a function of how site characteristics (i.e., usage, depth, location, 496 

elevation) are extremely variable across a region. Rather than excluding these results or 497 

selecting individual wells that match GRACE data, we discuss the results from all 33 wells 498 

to help demonstrate the high variability that exists from well to well, and that 499 

measurements of groundwater changes at a fixed location does not represent watershed-500 

scale characteristics (Jarvis, 2011, 2014). The disconnect between sites also highlights the 501 

concept brought forward by Spence (2010), that storage is not uniform across a watershed, 502 

and functions as a series of discontinuous processes at the watershed scale. 503 

5.3. Applying the S—R relationship as a predictive tool 504 

We applied these climatic, topographic, and geologic insights to develop and test 505 

the hypothesis that spring TWSA could predict R later in the year, based on two 506 

observations: First, the shapes of the hysteresis curves for each basin are similar (Figs. 4a-c, 507 

5), but vary by magnitude of annual TWSA. Second, peak TWSA occurs before the peak 508 

runoff. We show that the integrated GRACE signal is a good baseline measurement to 509 

empirically predict seasonal streamflow across a range of water years with regards to 510 

precipitation and streamflow. In essence, our data suggest that the water stored across and 511 

through the Columbia River Basin in March describes the water available for the remainder 512 

of the water year.  513 
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In the CRB and in the northwestern United States, peak snowpack occurs in March 514 

or April, and is commonly used as a metric for predicting spring runoff. Despite the 515 

importance of snowpack to the hydrologic cycle of the region, measurements of TWSAMar 516 

from GRACE provide a better prediction of Rseason, RJuly, and RAug than model-derived 517 

estimates of snowpack. GRACE TWSAMar also provided a better prediction for runoff than 518 

soil moisture, except for the Snake River watershed. There March soil moisture provided a 519 

better indicator of runoff for the rest of the year. TWSAFeb provided inferior predictive 520 

capacity, as the annual maximum TWSA values have not been reached.  521 

These results are promising with regards to using GRACE as a predictive tool for 522 

water resources in both wet and dry years. Our limited data record represents a wide-range 523 

of conditions with regards to climate and streamflow, which is captured in our empirical 524 

models and is shown in the box plots to the right of Figs. 7a - b. These same results also 525 

indicate that R is insensitive to TWSAMar values below 100 mm. This lower threshold 526 

describes with some certainty the amount of runoff that will be available for operations for 527 

the remainder of the year. 528 

We recognize that all three of these regional watersheds are managed through a 529 

series of dams and reservoirs that create an altered runoff signal. Water resources managers 530 

use point-specific and model-based estimates of water storage in the region to optimize 531 

their operations for the water year. Additionally, in the fertile plains of the Snake River and 532 

lower CRB, broad-scale agriculture relies on both ground- and surface water for irrigation. 533 

Water withdrawals would be implicit in the TWSA signal and reduce R. However, a more 534 

detailed analysis of withdrawals lies outside the scope of this study.  535 
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Regardless of the length of record or anthropogenic influence, climate, topography, 536 

and geology still provide the first-order controls on water storage that are found in the 537 

hysteresis loops. GRACE encapsulates these hydrologic processes through measurements 538 

of TWSA. The hysteresis loops expand and contract accordingly during wet and dry years, 539 

as the intra-annual relationship between TWSA and Q represents the fluxes of water into 540 

and out of the watershed. Despite intra-annual differences, a family of hysteresis curves can 541 

describe each of the sub-regional watersheds. The predicative capability using TWSA, the 542 

vertical sum of water, as compared to snowpack and soil moisture further highlights the 543 

integrated nature of water storage in regional hydrology. These predictive capabilities 544 

highlights the potential of GRACE to improve upon seasonal forecast predictions and 545 

regional hydrological models.  546 

5.4. GRACE as an analysis tool for regional watersheds 547 

Where previous approaches to modeling watershed behavior have focused on 548 

separate storage compartments, new approaches should include the magnitude and direction 549 

of hysteresis (Spence, 2010). This integrated approach would provide new ways forward to 550 

classify watersheds not only by runoff, but also on the first-order controls that govern the 551 

non-linear hydrological processes.  552 

Even though GRACE is somewhat of a blunt instrument with regards to temporal 553 

(monthly) and spatial (1°) resolution, this emerging technology provides a new dimension 554 

to regional watershed analysis by providing an integrated measurement of water stored 555 

across and through the Earth. These measurements continue to prove their value in 556 

retrospective analysis of regional hydrology (Rodell et al., 2009; Castle et al., 2014). 557 
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However, the hysteresis loops presented by Riegger and Tourian (2014) and further 558 

developed in this paper demonstrate the ability of GRACE data to help develop a process-559 

based understanding of how regional watersheds function as simple, dynamic systems. As 560 

the temporal record of GRACE continues to increase, its value as both a diagnostic and 561 

predictive tool will continue to grow. In the mean time, these data have value in 562 

augmenting existing management strategies. 563 

Perhaps one of the most important facets of GRACE data is that it does not 564 

distinguish political boundaries. It is not linked to a specific in situ monitoring agency with 565 

limited data access and has the capacity to bridge sparse and inconsistent on-the-ground 566 

hydrologic monitoring networks that exist in many regions of the world. Previous GRACE-567 

based analysis has shown its value in highlighting negative trends in terrestrial water 568 

storage in trans-boundary watersheds (Voss et al., 2013; Castle et al., 2014), and resulting 569 

regional conflict exacerbated by water shortages (Gleick, 2014b). GRACE provides an 570 

objective measurement of a region’s water resources that can provide valuable insights into 571 

potential shortages or surpluses of water resources, and simple empirical predictions of 572 

seasonal and monthly runoff that are easily deployable in places with limited data. 573 

6. Conclusions 574 

We have shown how GRACE-based measurements of TWSA distill the complexity 575 

of regional hydrology into a simple, dynamic system. TWSA and derived estimates of 576 

GWSA reveal hysteretic behavior for regional watersheds, which is more commonly 577 

associated with hydrologic measurements at local scales. While the magnitude of the 578 

hysteresis curves vary across years, they retain the same general shape that is unique to 579 
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each watershed. We demonstrated the utility of these hysteresis curves by showing how the 580 

complete TWSA record during March and April can be used to empirically predict R for the 581 

remainder for the water year (TWSAMar, mean NSE = 0.91) and during the drier summer 582 

months (TWSAMar, mean NSE for July = 0.76, August = 0.72; Tables 1 and 2). 583 

Because GRACE TWSA can augment prediction, managers could start to interpret 584 

each year's hysteresis curve for the upcoming spring and summer, providing greater clarity 585 

and validation for model-based forecasts presently used by water resource managers. Our 586 

results demonstrate a way forward, expanding GRACE from a diagnostic tool, into a 587 

conceptual model and predictive resource.  588 

Although this study focused on the CRB, which has a rich data record, GRACE data 589 

are available at a global scale and could be readily applied in areas with a paucity of data to 590 

understand how watersheds function and to improve streamflow forecasting capabilities. 591 

GRACE does not discern political boundaries and provides an integrated approach to 592 

understanding international watersheds (Voss et al., 2013). This resource could serve as a 593 

valuable tool for managers in forecasting surplus and scarcity, and in developing strategies 594 

that include changes in supply and demand due to human consumptive needs and current 595 

climate trends (Wagener et al., 2010; Gleick, 2014a).  596 

597 
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Table 1: Comparison of performance metrics using the dual-pass approach to apply 
GRACE TWSA data, model derived snow (SWE), and soil moisture (SM) products in 
predicting seasonal (Rseason) and August (RAug) runoff by watershed. Average values for the 
three basins are also provided. RMSE values are in mm. Complete results can be found in 
Appendix table A3.   
 
 

 
Upper Columbia 

 
Rseason RAug 

 
TWSAMar TWSAApr SWEMar SMMar TWSAMar TWSAApr SWEMar SMMar 

NSE 0.82 0.87 0.46 < 0 0.71 0.70 < 0 < 0 
RMSE 33.06 27.62 56.10 > 1000 5.71 5.38 13.08 143.17 
R2 0.86 0.88 0.58 0.00 0.71 0.71 0.28 0.05 

 
 

Snake River 
NSE 0.46 0.29 < 0 0.85 < 0 < 0 < 0 < 0 
RMSE 14.03 15.71 21.53 7.38 13.59 0.76 0.78 0.72 
R2 0.59 0.47 0.08 0.86 0.15 0.08 0.27 0.29 
          The Dalles 
NSE 0.98 0.54 0.24 < 0 0.80 0.29 < 0 < 0 
RMSE 6.01 26.50 26.48 122.88 1.86 3.31 18.91 22.10 
R2 0.98 0.71 0.39 0.00 0.82 0.71 0.03 0.02 

          Average 
NSE 0.75 0.57 0.35 0.85 0.76 0.50 < 0 < 0 
RMSE 17.70 23.28 34.70 65.13 7.05 3.15 10.92 55.33 
R2 0.81 0.69 0.35 0.29 0.56 0.50 0.19 0.12 
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Table 2: Comparison of performance metrics from applying all nine water years of GRACE 
TWSA data, model derived snow (SWE), and soil moisture (SM) products in predicting 
seasonal (Rseason) and August (RAug) runoff by watershed. Average values for the three 
basins are also provided. RMSE values are in mm. R2 values are the same as NSE for this 
linear regression. Complete results can be found in Appendix table A4.  
 

 
Upper Columbia 

 
Rseason RAug 

 
TWSAMar TWSAApr SWEMar SMMar TWSAMar TWSAApr SWEMar SMMar 

NSE 0.93 0.92 0.82 0.03 0.76 0.73 0.56 0.09 
RMSE 22.18 23.18 36.19 82.90 6.60 6.90 8.92 12.79 

 
 

Snake River 
NSE 0.83 0.75 0.34 0.93 0.68 0.52 0.62 0.76 
RMSE 8.76 10.55 17.23 5.80 0.43 0.52 0.47 0.37 

 
        

 The Dalles 
NSE 0.98 0.91 0.67 0.00 0.88 0.91 0.46 0.02 
RMSE 6.22 13.00 24.60 42.67 1.55 1.30 3.30 4.40 

 
        

 Average 
NSE 0.91 0.86 0.61 0.32 0.77 0.72 0.55 0.29 
RMSE 12.39 15.58 26.01 43.79 2.86 2.91 4.23 5.85 

 
 
 
 
Table 3: Parameters from the power function curves in each of the three watersheds using 
TWSA to predict streamflow. Figure 7 provides these results visually.  
 

  Upper Columbia  Snake River The Dalles 

 

TWSAMar 
Rseason 

TWSAMar 
RAug 

TWSAMar 
Rseason 

TWSAMar 
RAug 

TWSAMar 
Rseason 

TWSAMar 
RAug 

a 2.12E-10 4.83E-06 5.69E-05 2.26E-04 7.40E-10 3.61E-15 
b 4.99 3.41 2.88 1.89 5.25 7.28 
c 41.06 273.99 23.97 3.30 124.21 15.54 
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Table A1: The reservoirs used in the GRACE analysis. 
 

Reservoir Name Operating Agency 

Normal  
Operating 

Capacity (m3) 
Grand Coulee US Department of Interior 1.16 x 1010 

Libby US Army Corps of Engineers 7.17 x 109 
Hungry Horse US Department of Interior 4.28 x 109 

Dworsha US Army Corps of Engineers 4.26 x 109 
American Falls US Department of Interior 2.10 x 109 

 
Table A2: The groundwater wells used in the analysis that compares GRACE-derived 
groundwater with location-specifc wells. USGS is the United States Geological Survey and 
IDWR is the Idaho Department of Water Resources. 
 

Well Number Operating Agency 
434400121275801 USGS 
442242121405501 USGS 
452855119064701 USGS 
453239119031501 USGS 
453845121191401 USGS 
453937121215801 USGS 
453944121211301 USGS 
454013121225901 USGS 
454027121212501 USGS 
454040121222901 USGS 
454047121203701 USGS 
454100119164801 USGS 
454416119212801 USGS 
455418118333001 USGS 
461518114090802 USGS 
463750114033001 USGS 
465520114074001 USGS 
470049113035401 USGS 
470946114013201 USGS 
473442118162201 USGS 
474011117072901 USGS 
474251114385201 USGS 
475439116503401 USGS 
480519114091001 USGS 
480621115244901 USGS 
02S20E-01ACC2 IDWR 
07S06E-29BBA1 IDWR 
08S06E-03BDC1 IDWR 
07S06E-34BCA1 IDWR 
09S14E-03BAA1 IDWR 
08S14E-16CBB1 IDWR 
05S31E-27ABA1 IDWR 
07N38E-23DBA1 IDWR 
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Table A3: Comparison of performance metrics using the dual-pass approach to apply 
GRACE TWSA, model derived snow (SWE), soil moisture (SM), and subsurface 
(TWSAsub) data in predicting seasonal (Rseason) and August (RAug) runoff by watershed. 
RMSE values are in mm.  
 

U
pp

er
 C

ol
um

bi
a 

    TWSA   SM   SWE   TWSAsub 

 

 
Feb Mar Apr 

 
Feb Mar Apr 

 
Feb Mar Apr 

 
Feb Mar Apr 

R
se

as
on

 NSE < 0 0.82 0.87  < 0 < 0 < 0  < 0 0.46 < 0  < 0 < 0 < 0 
RMSE 84 33 28  >1000 >1000 134  110 56 309  >1000 >1000 354 

R2 0.43 0.86 0.88  0.01 0.00 0.07  0.23 0.58 0.27  0.15 0.02 0.02 

 

 
               

R
Ju

ly
 NSE < 0 0.90 0.84  < 0 < 0 < 0  < 0 < 0 < 0  < 0 < 0 < 0 

RMSE 32 7 8  >1000 71 56  28 25 108  >1000 >1000 123 
R2 0.19 0.93 0.92  0.01 0.00 0.00  0.32 0.45 0.24  0.05 0.01 0.01 

 

 
               

R
A

ug
 NSE < 0 0.71 0.70  < 0 < 0 < 0  < 0 < 0 < 0  < 0 < 0 < 0 

RMSE 228 6 5  >1000 143 32  12 13 51  >1000 >1000 30 
R2 0.19 0.71 0.71  0.07 0.05 0.30  0.25 0.28 0.12  0.18 0.11 0.01 

 

 
               

R
Se

pt
 NSE < 0 < 0 < 0  < 0 < 0 < 0  < 0 < 0 < 0  < 0 < 0 < 0 

RMSE 2 21 104  4 28 10  >1000 3 50  20 587 6 
R2 0.12 0.06 0.12   0.09 0.24 0.20   0.04 0.07 0.04   0.04 0.02 0.03 

                  

Sn
ak

e 
R

iv
er

 
   TWSA   SM   SWE   TWSAsub 

 

 
Feb Mar Apr 

 
Feb Mar Apr 

 
Feb Mar Apr 

 
Feb Mar Apr 

R
se

as
on

 NSE < 0 0.46 0.29  0.58 0.85 < 0  < 0 < 0 0.09  < 0 < 0 < 0 
RMSE 258 14 16  12 7 52  5 22 8  >1000 108 474 

R2 0.21 0.59 0.47  0.64 0.86 0.29  0.00 0.08 0.13  0.04 0.11 0.01 

 

 
               

R
Ju

ly
 NSE < 0 < 0 < 0  < 0 < 0 < 0  < 0 < 0 < 0  < 0 < 0 < 0 

RMSE 23 3 2  2 2 40  1 2 1  99 >1000 35 
R2 0.00 0.05 0.01  0.01 0.09 0.11  0.15 0.00 0.04  0.00 0.06 0.02 

 

 
               

R
A

ug
 NSE < 0 < 0 -0.70  < 0 < 0 < 0  < 0 < 0 0.65  < 0 < 0 < 0 

RMSE 11 13.59 0.76  1 1 2  0 1 1  >1000 >1000 474 
R2 0.05 0.15 0.08  0.06 0.29 0.10  0.00 0.27 0.67  0.04 0.11 0.01 

 

 
               

R
Se

pt
 NSE < 0 < 0 -0.94  < 0 < 0 < 0  < 0 < 0 0.03  < 0 < 0 < 0 

RMSE 16 1 1  1 1 1  0 1 0  140 8 435 
R2 0.01 0.04 0.03   0.07 0.15 0.11   0.03 0.00 0.11   0.00 0.00 0.01 

                  

T
he

 D
al

le
s 

   TWSA   SM   SWE   TWSAsub 

 

 
Feb Mar Apr 

 
Feb Mar Apr 

 
Feb Mar Apr 

 
Feb Mar Apr 

R
se

as
on

 NSE < 0 0.98 0.54  < 0 < 0 < 0  < 0 0.24 0.14  < 0 < 0 < 0 
RMSE 84 61 27  267 122 363  >1000 26 26  13 5231 737 

R2 0.20 0.98 0.71  0.01 0.00 0.02  0.13 0.39 0.29  0.02 0.00 0.00 

 

 
               

R
Ju

ly
 NSE < 0 0.86 < 0  < 0 < 0 < 0  < 0 0.28 < 0  < 0 < 0 < 0 

RMSE 19 3 10  >1000 16 80  >1000 4 6  4 4 311 
R2 0.05 0.86 0.64  0.00 0.00 0.02  0.03 0.30 0.10  0.00 0.00 0.00 

 

 
               

R
A

ug
 NSE < 0 0.80 0.29  < 0 < 0 < 0  < 0 < 0 0.05  < 0 < 0 < 0 

RMSE 9 2 3  >1000 22 16  >1000 19 2  2 1 3 
R2 0.04 0.82 0.71  0.04 0.02 0.00  0.02 0.03 0.12  0.00 0.00 0.12 

 

 
               

R
Se

pt
 NSE < 0 0.41 < 0  < 0 < 0 < 0  < 0 < 0 < 0  < 0 0.05 < 0 

RMSE 5 1 3  756 3 7  1 5x109 7x1010  6 1 2 
R2 0.00 0.42 0.28   0.03 0.01 0.03   0.06 0.02 0.02   0.22 0.06 0.14 
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Table A4: Comparison of performance metrics from applying all nine water years of 
GRACE TWSA, model derived snow (SWE), soil moisture (SM), and subsurface 
(TWSAsub) data in predicting seasonal (Rseason) and August (RAug) runoff by watershed. 
RMSE values are in mm. R2 values are the same as NSE for this linear regression. 
 

U
pp

er
 C

ol
um

bi
a 

    TWSA   SM   SWE   TWSAsub 

 

 
Feb Mar Apr 

 
Feb Mar Apr 

 
Feb Mar Apr 

 
Feb Mar Apr 

R
se

as
on

 

NSE 0.84 0.93 0.92 
 

0.01 0.03 0.33 
 

0.63 0.82 0.62 
 

0.15 0.22 0.22 
RMSE 28.62 19.81 20.72 

 
8.38 14.30 36.80 

 
37.78 30.27 37.85 

 
28.22 32.50 32.50 

 

               
  

R
Ju

ly
 

NSE 0.75 0.95 0.96 
 

0.01 0.00 0.18 
 

0.53 0.79 0.60 
 

0.05 0.22 0.22 
RMSE 10.38 5.00 4.74 

 
2.16 1.34 9.10 

 
11.95 9.80 11.73 

 
5.38 9.86 9.86 

 

               
  

R
A

ug
 

NSE 0.62 0.76 0.73 
 

0.07 0.09 0.44 
 

0.37 0.56 0.34 
 

0.18 0.11 0.23 
RMSE 6.02 5.31 5.48 

 
3.12 3.50 6.15 

 
6.00 6.16 5.87 

 
4.80 3.95 5.22 

 

               
  

R
Se

pt
 

NSE 0.20 0.07 0.13 
 

0.31 0.28 0.40 
 

0.04 0.04 0.10 
 

0.39 0.15 0.51 
RMSE 1.60 1.05 1.32 

 
1.85 1.80 1.96 

 
0.80 0.80 1.22 

 
1.95 1.42 2.00 

                  

Sn
ak

e 
R

iv
er

 
    TWSA   SM   SWE   TWSA.sub 

 

 
Feb Mar Apr 

 
Feb Mar Apr 

 
Feb Mar Apr 

 
Feb Mar Apr 

R
se

as
on

 

NSE 0.39 0.83 0.75 
 

0.84 0.93 0.91 
 

0.09 0.34 0.60 
 

0.35 0.39 0.42 
RMSE 9.59 7.39 8.48 

 
7.15 5.16 5.64 

 
5.60 9.37 9.65 

 
9.39 9.63 9.71 

 

               
  

R
Ju

ly
 

NSE 0.07 0.43 0.43 
 

0.41 0.63 0.51 
 

0.09 0.21 0.70 
 

0.05 0.19 0.23 
RMSE 0.41 0.80 0.80 

 
0.79 0.78 0.81 

 
0.46 0.66 0.74 

 
0.34 0.63 0.68 

 

               
  

R
A

ug
 

NSE 0.35 0.68 0.52 
 

0.56 0.76 0.61 
 

0.24 0.62 0.91 
 

0.13 0.09 0.12 
RMSE 0.34 0.33 0.35 

 
0.35 0.30 0.34 

 
0.30 0.34 0.21 

 
0.24 0.20 0.22 

 

               
  

R
Se

pt
 

NSE 0.18 0.53 0.58 
 

0.60 0.88 0.66 
 

0.08 0.30 0.91 
 

0.16 0.18 0.18 
RMSE 0.34 0.44 0.44 

 
0.43 0.29 0.42 

 
0.25 0.41 0.25 

 
0.32 0.34 0.34 

                  

T
he

 D
al

le
s 

    TWSA   SM   SWE   TWSA.sub 

 

 
Feb Mar Apr 

 
Feb Mar Apr 

 
Feb Mar Apr 

 
Feb Mar Apr 

R
se

as
on

 

NSE 0.48 0.98 0.91 
 

0.00 0.01 0.22 
 

0.21 0.67 0.65 
 

0.19 0.23 0.27 
RMSE 19.82 5.70 11.43 

 
2.10 3.59 16.53 

 
16.06 18.65 18.95 

 
15.43 16.74 17.61 

 

               
  

R
Ju

ly
 NSE 0.27 0.89 0.89 

 
0.04 0.03 0.09 

 
0.07 0.52 0.51 

 
0.20 0.38 0.40 

RMSE 4.05 2.90 2.87 
 

1.73 1.52 2.64 
 

2.27 4.55 4.55 
 

3.66 4.43 4.47 

 

               
  

R
A

ug
 NSE 0.29 0.88 0.91 

 
0.04 0.02 0.24 

 
0.05 0.45 0.42 

 
0.34 0.44 0.49 

RMSE 1.89 1.34 1.22 
 

0.77 0.65 1.78 
 

0.88 2.07 2.05 
 

1.96 2.06 2.08 

 

               
  

R
Se

pt
 NSE 0.20 0.57 0.53 

 
0.03 0.03 0.13 

 
0.02 0.29 0.34 

 
0.37 0.15 0.35 

RMSE 0.75 0.94 0.94 
 

0.34 0.31 0.63 
 

0.28 0.86 0.90 
 

0.92 0.67 0.90 
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Fig. 1: Context map and descriptions of the three study watersheds and the locations of the 
groundwater wells used in the study.  
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Fig. 2 Monthly storage anomalies for Runoff, TWSA, and the subcomponents of terrestrial 
water for the three watersheds. Standard errors and error variance for hydrological 
component are noted in each sub-figure, and represented by the blue shading. All units on 
the vertical axis are in mm. Note the different vertical scales for Runoff. 
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Fig. 3a-c: Annotated hysteresis curves of terrestrial water storage anomalies (a), the 
subsurface water storage anomalies (TWSAsub; b), and groundwater storage anomalies (c) 
based upon the nine-year mean for the Columbia River at The Dalles. These curves 
describe the fluxes of water moving through the watershed. 
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Fig. 4a-f: Individual hysteresis curves for the three study watersheds for TWSA (a-c), 
TWSAsub  (d-f), and GWSA (h-j). TWSAsub in the Upper Columbia and The Dalles collapses 
to represent a shape more commonly associated with the hysteresis of a soil matrix. The 
Snake River retains a similar looping shape. The grey areas in the TWSAsub and GWSA 
plots provide a visual reference of the TWSA error variance for each watershed. The low 
topography and high storage capacity of the Snake aquifer provides a consistent 
groundwater signal, as compared to the limited aquifer of the Upper Columbia, which fills 
and drains quickly. Note the different scales on the y-axes.  
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Fig. 5: Plots of the hysteresis curves for TWSA in each of the three study watersheds across all 
nine water years. For visual clarity, each plot contains three water years and the nine-year mean. 
Note the different scales on the y-axes for each basin. 
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Fig. 6: The intra-annual range of TWSA, TWSAsub, GWSA, and R for the nine water years of the 
study period.   
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Fig. 7a-b: Measurements of terrestrial water storage anomalies in March (TWSAMar) 
effectively predict the cumulative runoff for April – September (Rseason; a), and help 
describe how these three regional watersheds function as simple non-linear systems. 
TWSAMar also predicts mean runoff for August (RAug; b), one of the driest months of the 
year when demand for water is at its peak. The hashed lines represent the 95% confidence 
intervals. The box plots to the right of each plot represent the range of R for the respective 
watershed from WY’s 1969 – 2012. Note the semi-log y-axis on (b). For complete results 
and parameters from the empirical model please refer to Tables 1, 2, 3, A3, and A4. 
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