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Abstract. As the availability of spatially distributed data sets for distributed rainfall-runoff mod-

elling is strongly growing, more attention should be paid to the influence of the quality of the data

on the calibration. While a lot of progress has been made on using distributed data in simulations of

hydrological models, sensitivity of spatial data with respect to model results is not well understood.

In this paper we develop a spatial sensitivity analysis method for spatial input data (snow cover frac-5

tion - SCF) for a distributed rainfall-runoff model to investigate if the model is differently subjected

to SCF uncertainty in different zones of the model. The analysis was focused on the relation between

the SCF sensitivity and the physical, spatial parameters and processes of a distributed rainfall-runoff

model. The methodology is tested for the Biebrza River catchment, Poland for which a distributed

WetSpa model is setup to simulate two years of daily runoff. The sensitivity analysis uses the Latin-10

Hypercube One-factor-At-a-Time (LH-OAT) algorithm, which employs different response functions

for each spatial parameter representing a 4 x 4 km snow zone. The results show that the spatial

patterns of sensitivity can be easily interpreted by co-occurrence of different environmental factors

such as: geomorphology, soil texture, land-use, precipitation and temperature. Moreover, the spa-

tial pattern of sensitivity under different response functions is related to different spatial parameters15

and physical processes. The results clearly show that the LH-OAT algorithm is suitable for our spa-

tial sensitivity analysis approach and that the SCF is spatially sensitive in the WetSpa model. The

developed method can be easily applied to other models and other spatial data.
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1 Introduction

Distributed hydrological models are developed to improve the simulation and analysis of physically20

based spatially distributed hydrological processes. While more spatially distributed parameters and

input data are becoming available for modelling, most attention is paid to the influence of the data

on the quality of the calibration and to the capacity of models to reproduce measured output time

series. Several researchers focussed on the effect of using distributed precipitation data in hydrolog-

ical models. Obled et al. (1994) showed with a semi-distributed TOPMODEL (Beven et al., 1995)25

application that although the number of stations used to generate a rainfall field appeared to have

an important impact on discharge simulation, the response of the model to changes in the rainfall

field was marginal. Schuurmans and Bierkens (2007) used the fully-distributed SIMGRO (Querner,

1997) model to analyse the effect of rainfall fields generated on basis of rain gauge and radar data

on discharge, soil moisture and groundwater heads. In their study, the distributed data outperformed30

lumped data in the simulation results. A similar study was conducted by Fu et al. (2011) who used

the MIKE SHE model (Abbott et al., 1986). However, in this case a clear effect of rainfall distri-

bution was visible only on groundwater head and recharge. In summary, the advantage of spatially

distributed precipitation over lumped data may vary, depending on the model, the study area and

processes under consideration. Nonetheless, the spatial aspect of model parameters, input data and35

the way they are implemented in models clearly is an important research issue.

Several studies address classical sensitivity and uncertainty analysis methods to spatial data and

parameters. An interesting stochastic uncertainty approach for spatial rainfall fields in the dynamic

TOPMODEL (Beven and Freer, 2001) was presented by Younger et al. (2009). The results were

obtained by dividing a catchment into homogeneous, irregular zones in which the precipitation was40

randomly perturbed by large factors. Their study, however, focusses rather on the model output

uncertainty than on quantification of spatial sources of uncertainty, or spatial sensitivity.

Another study is presented by Stisen et al. (2011), who investigated if the use of spatially dis-

tributed surface temperature data in an objective function can provide robust calibration and evalua-

tion of the MIKE SHE model compared to a lumped simulation. The study used a spatial perturbation45

of parameters by random factors between 0.75 to 1.25 in 2 km grid for the sensitivity analysis, but

the results were not analysed spatially. Thus no spatial pattern of sensitivity, showing which zones

of the model are more vulnerable to uncertainty, was obtained.

Another spatial approach for sensitivity analysis was presented by Hostache et al. (2010). In their

work a local, gradient method was applied to conduct a sensitivity analysis of the Manning coeffi-50

cient in each computational node of a hydrodynamic model. This approach showed completely dif-

ferent sensitivity zonation than in the predefined land-use based Manning coefficient classes used as

a comparison scenario. This result stresses the importance of assessing the sensitivity in a spatially-

distributed way.
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In this study, the various approaches of spatial sensitivity (or uncertainty) analysis presented above55

are compiled and extended in order to propose a method that would be generally applicable and thus

would give a framework for inter-comparison of different models. Such a method would use a reg-

ular grid to quantify the spatial pattern of sensitivity as in Stisen et al. (2011), hence it differs from

the irregular zonation in Younger et al. (2009). Furthermore, the perturbation of spatial input data

in a general framework should be realized using a well-established algorithm, e.g. Latin-Hypercube60

One-factor-At-a-Time (LH-OAT) (van Griensven et al., 2006). This change would give a straight-

forward interpretation of the sensitivity. Similarly, Hostache et al. (2010) used a well-established

gradient method for spatial sensitivity analysis. However, unlike the gradient method, LH-OAT pro-

vides global insight into sensitivity. Such a method would also allow to quantify the sensitivity of

spatial data with respect to the output and be able to explain the causes for the sensitivity patterns.65

Main purpose of the application of spatial sensitivity analysis proposed in this study would be,

after the Saltelli (2002) definition of sensitivity analysis, to quantify spatially the vulnerability of

the model output to uncertainty of spatial input. Thus a result of this analysis would provide feed-

back e.g. where in a model domain a modeller should focus more on the quality of input data and

parameters. However, the same method can be used for comprehensive spatial change (e.g. land-use70

change) analyses to show where the change (e.g. urbanization) would be least or most influencing

the model output.

Important issue in this study is the selection of the hydrological model used to conduct the spatial

sensitivity analysis. An option is the WetSpa model (De Smedt et al., 2000; Liu and De Smedt, 2004)

which shown to have a high sensitivity with respect to runoff prediction when various scenarios of75

distributed impervious surfaces input data were tested (Chormański et al., 2008; Berezowski et al.,

2012; Verbeiren et al., 2013). Moreover, the WetSpa model was positively evaluated for possibility

of utilizing distributed snow data from a remote sensor (Berezowski and Chormański, 2011). Hence,

the WetSpa model showed to be an appropriate framework for analysis of spatially distributed phe-

nomena.80

Another issue is the selection of the input data used to conduct the spatial sensitivity analysis. A

spatial data set, frequently tested and easy to obtain is snow cover. Snow cover fraction (SCF [-])

or snow water equivalent remote sensing products are widely available from a number of sensors.

The different available products vary widely in spatial resolution (500 m to 25 km), temporal reso-

lution (sub-daily to monthly) and temporal coverage (the oldest time series starts in 1966, while new85

products are regularly announced). One of the most frequently used remote sensing snow products

comes from the MODIS instrument (Hall et al., 2006). Several studies show different strategies in

respect to how hydrological models can benefit from snow cover data. A popular approach is to de-

rive snow depletion curves from MODIS SCF and use them in the Snowmelt Runoff Model - SRM

(Martinec, 1975). This approach is still popular and used in recent studies (Lee et al., 2005; Tekeli90

et al., 2005; Li and Williams, 2008; Butt and Bilal, 2011; Tahir et al., 2011; Bavera et al., 2012).
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However, the SRM studies are focused mostly on the winter half-year and are limited to study sites

where snowmelt processes are dominant. Another popular model which benefit from satellite de-

rived SCF is HBV (Sælthun, 1996); studies showing use of MODIS snow products are presented by

Udnaes et al. (2007), Parajka and Blöschl (2008) and Şorman et al. (2009). In the WetSpa model the95

MODIS snow products were used to evaluate spatial distribution of predicted snow cover (Zeinivand

and De Smedt, 2010). The spatial sensitivity of model output to snow cover, despite its popularity as

input data in distributed hydrological models, has not yet been evaluated.

The aim of this paper is to provide and test a methodology for a global spatial sensitivity analysis

of SCF in a distributed rainfall-runoff model. Purpose of this analysis is to show if the WetSpa100

model is spatially sensitive to SCF, i.e.: identify zones where the model output is most vulnerable

to input uncertainty. An important point of the analysis is to explain the existing patterns of spatial

sensitivity in function of physical, spatial parameters used and hydrological processes in the study

area. For the remainder of the paper, the section “Methods” presents the spatially distributed rainfall-

runoff model WetSpa, the study area, data and spatial sensitivity analysis. In “Results” the output105

of the spatial sensitivity analysis of SCF for Biebrza River catchment is presented and described.

The “Discussion" section presents the results in view of the hydrological processes occurring in the

study area, but further applicability of the spatial sensitivity analysis method and the limitation of

the method (e.g. computation time) are also provided. The final section “Conclusions” recaps the

main findings of the study.110

2 Methods

2.1 Hydrological model

The hydrological simulations in this study were conducted using the WetSpa model (Water and En-

ergy Transfer between Soil, Plants and Atmosphere; De Smedt et al., 2000; Liu et al., 2003). The

model divides a catchment into a regular grid with a specified dimension. In each grid cell, the water115

balance is simulated and the surface, interflow and groundwater discharge components are routed to

the catchment outlet (Wang et al., 1996). Spatial parameters used to calculate the hydrological pro-

cesses are obtained from land-use, soil and elevation input maps. Attribute tables based on literature

data are linked to the maps and transformed to distributed physical values via a GIS preprocess-

ing step (Chormański and Michałowski, 2011). Several studies have demonstrated that WetSpa and120

its steady state version WetSpass (Batelaan and De Smedt, 2007) are suited to integrate distributed

remote sensing input data in the simulation of the hydrological processes (Poelmans et al., 2010;

Dujardin et al., 2011; Ampe et al., 2012; Chormański, 2012; Demarchi et al., 2012; Dams et al.,

2013).

The model consists of the following storages: interception, depression, root zone, interflow and125

groundwater. Water transport between the storages is based on physical and empirical equations.
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Rainfall, temperature and potential evapotranspiration based on data from meteorological stations

are made spatially explicit by use of Thiessen polygons, but also a spatially distributed input form is

possible.

In the standard WetSpa version, snow accumulation is calculated based on precipitation and a130

threshold temperature t0 [◦C]. If the temperature in a grid cell is t [◦C] and falls below t0, precip-

itation is assumed to be snow. Snow melt is calculated based on t0, a degree-day coefficient ksnow

[mm ◦C−1day−1] and coefficient krain [mm mm−1◦C−1day−1] reflecting the amount of snowmelt

caused by rainfall vrain [mm]. In this study SCF was obtained from MODIS snow products and used

as input data. Thus, snow accumulation was not calculated, but replaced with the input SCF, while135

the snowmelt amount (vsm) [mm] per model time step (e.g. day) is calculated as:

vsm = SCF (ksnow(t− t0) + krainvrain(t− t0)) (1)

This approach of calculating snowmelt based on SCF and snowmelt rate was proposed by Liston

(1999). It allows to obtain distributed vsmvalues weighted by SCF from grid cells where SCF>0.

WetSpa is also capable to use an energy balance model for snowmelt calculation (Zeinivand and140

De Smedt, 2010), however, because of the higher demand on input data, this approach was not used.

Surface water routing is based on a geomorphological instantaneous unit hydrograph (IUH) (Liu

et al., 2003). The IUH is calculated for a flow path starting in a grid cell and ending at the catchment

outlet, i.e. each grid cell has its own IUH. Groundwater flow and interflow are calculated on a sub-

catchment level based on a linear reservoir method and routed to the catchment outlet with the IUH.145

Comparison of the WetSpa performance with other distributed hydrological models can be found in

the results of the DMIP2 project (Safari et al., 2012).

The model was setup with a daily time step and 250 by 250 m grid cells. The calibration period

was 1st September 2008 till 31st August 2009, while validation was from 1st September 2007 till

31st August 2008. The length of the calibration and validation was selected to optimize the model150

for snow conditions occurring in the period selected for sensitivity analysis (Sect. 2.4.1). The global

WetSpa parameters were calibrated using the Shuffled Complex Evolution algorithm (Duan et al.,

1993). The calibration was conducted with the R software (R Development Core Team, 2013) and

package “hydromad”. The model was optimized to maximize the Nash and Sutcliffe (1970) effi-

ciency (NS):155

NS = 1−

τ∑
x=1

(
Qx− Q̂x

)2
τ∑
x=1

(
Qx− Q̄

)2 (2)

where: Qx and Q̂x are observed and simulated discharges at time x, Q̄ is the mean observed dis-

charge, τ is the total number of time steps. Sensitivity of the WetSpa model to the global parameters

is presented in Yang et al. (2012).
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2.2 Study area160

The study area is the Biebrza River catchment upstream from the discharge station at Burzyn. The

total catchment area comprises 6845 km2 (Fig. 1). Biebrza is a lowland catchment consisting of

moraine plateaus and post-glacial valleys with low slopes (average 1.03 %, Fig. 2) and an elevation

ranging from 102 m ASL at the catchment outlet to 298 m ASL at the northern water divide. Land-

use is composed of agriculture (54%), forests (26%), wetlands and grasslands (17%), water (2%)165

and urban (1%) (Fig. 3). The area is considered as semi-natural, especially because of its large

area of well preserved wetlands and forests and is therefore used as a reference area in wetlands

research (Wassen et al., 2006). Several lakes in the northern part of the catchment are controlled by

management schemes, which usually discharge into Biebrza tributaries after accumulation period.

Lakes in WetSpa are modelled by setting appropriate values of the hydraulic parameters in the model170

e.g. by a high runoff coefficient and a low friction. The simulation of water management schemes in

the controlled lakes is, however, not implemented. Dominant soil textures in the study area are sand

(34%), loamy sand (26%) and sandy loam (18%), whereas minor parts are covered by sandy clay

(4%) and silt (2%), other soils cover less than 1% of the area. In the river valley, organic soils are

frequent and cover in total 16% of the study area (Fig. 4). The dominating landscape features, that175

certainly have influence on the functioning of the Biebrza hydrological system are the river valley

and the large forest complex located in the north-eastern part of the catchment (Fig. 5).

The Biebrza River is characterized by a spring flood regime, the discharge of the spring flood

is mostly related to the volume of snowmelt in the catchment (Stachý, 1987; Mioduszewski et al.,

2004; Chormański and Batelaan, 2011). Based on the meteorological record from 25 stations and180

the flow record at the Burzyn profile (Fig. 1) managed by Polish Institute of Meteorology and Water

Management - National Research Institute (IMGW) the study area can be characterized by the fol-

lowing figures. Mean yearly discharge (1951-2012) at Burzyn is 34.9 m3/s, while summer and winter

average are respectively 26.0 and 43.9 m3/s. Recorded extreme low and high discharges (1951-2012)

are 4.33 and 517 m3/s respectively. The climate in this area is transitional between continental and185

Atlantic, with relatively cold winters and warm summers, effectively making this area the coldest

region in lowland Poland. The mean air temperature (1979-2009) is 7.0oC, in the winter half-year

0.3oC and in the summer half-year 13.7oC. The mean monthly temperature (1979-2009) has a max-

imum in July (17.6oC) and minimum in January (-3.3oC). The yearly precipitation (1979-2009) is

587 mm (375 mm in the summer half-year, 212 mm in the winter half-year). The yearly average190

number of days with temperature below 0oC (1979-2009) is 79 and with snow cover (1975-2012) is

93 (average snow depth is 12 cm). Based on the meteorological maps (Stachý, 1987; Rojek, 2000),

the mean yearly evaporation from free water surface (1951-2000) is 550 mm, 465 mm in summer

and 85 mm in winter (1951-1970).
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2.3 Data195

Hydrometeorological data (precipitation, air temperature and discharge) was obtained from IMGW.

Daily precipitation was obtained for 25 rain gauge stations, whereas air temperature was available

for 5 stations (Fig. 1). Temperature was recorded as minimum and maximum daily temperature,

an average from these values was calculated to obtain the mean daily temperature for each station.

Daily discharge was obtained for Burzyn. Potential evapotranspiration was estimated based on mean200

monthly evaporation from free water surface (Stachý, 1987) and uniformly disaggregated into daily

values.

Daily SCF was obtained from MODIS/TERRA snow product MOD10A1 (Hall et al., 2006,

datasets used: IX 2007 to X 2009) with a 500 m resolution. The SCF values in MOD10A1 are

calculated based on the Normalized Difference Snow Index (NDSI):205

NDSI =
rvis− rir
rvis + rir

(3)

with rvis and rir the reflectance in visible and in near-infrared bands, which for the MODIS sensor

is respectively band 4 (545-565 nm) and band 6 (1628-1652 nm). In general, NDSI gives higher

values if a larger part of a pixel is covered by snow. However, it may be affected by noise from

many sources and has to be corrected for bias in forest areas (Klein et al., 1998). The MOD10A1210

SCF input data was aggregated into 524 4 by 4 km snow zones, while zones close to the catchment

boundary are fractions of a 4 km square. Purpose of the aggregation was to decrease computation

time of the sensitivity analysis and to reduce noise in the MOD10A1 data while keeping enough

variability to obtain meaningful spatial results. In order to remove missing data related to cloud

cover occurrence the SCF in snow zones was linearly interpolated over time. Finally, SCF was set215

to 0 in months when there was no snow recorded in lowland Poland, i.e. from May to September.

The in snow zones aggregated MOD10A1 SCF data was used to calibrate the WetSpa model. For

the spatial sensitivity analysis, however, the daily time series of catchment averages of MOD10A1

SCF’s were used, i.e.: the spatial pattern of SCF in snow zones was obtained by perturbing the

catchment averages by random factors (Sect. 2.4.1).220

Spatial data (elevation, land-use and soil) used to calculate distributed model parameters were

obtained from variable GIS sources. The elevation map (Fig. 1) was compiled from three sources:

Digital Elevation Model of Poland in scale 1:26,000, digitized contours from the Topographical Map

of Poland in scale 1:25,000 and from field surveys in the Biebrza valley. The land-use map (Fig. 3)

was obtained from the Corine Land Cover 2006 project (Commission of the European Communities,225

2013). In the catchment area outside the Polish border (56 km2), agricultural land-use was assigned.

The soil map (Fig. 4) was obtained from the Soil Map of Poland in scale 1:50,000 for agricultural

areas and 1:500,000 in forests and cities. Outside the Polish border the most frequent in the neigh-

bourhood, sandy soil, was assigned. All the spatial data were interpolated to 250 m grid cells using

the nearest-neighbourhood (soil, land-use) and the bilinear (elevation) algorithms.230
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2.4 Sensitivity analysis

2.4.1 Spatial sensitivity analysis with Latin-Hypercube One-factor-At-a-Time algorithm

Usually a sensitivity analysis is performed for global parameters of a model (i.e. a set of parameters

valid for the whole model area). The sensitivity analysis presented in this paper, however, follows a

spatial approach, i.e. parameters are evaluated in different zones of the model area, as the parameter235

ei represent a fraction of the daily averaged MOD10A1 SCF assigned into the zone i. In this study,

each ei is assigned to one of the 524 snow zones. Since ei are randomly sampled the MOD10A1

data constrains only the temporal dynamics of SCF. Hence, results of the sensitivity analysis are

interpretable in terms of SCF as input data in general, rather than in terms of MOD10A1 in particular.

LH-OAT (van Griensven et al., 2006) is an effective global sensitivity analysis method, similar240

to the Morris screening (Morris, 1991). The LH-OAT method is frequently used by SWAT users

for ranking the parameters according to their influence on the model output (Nossent and Bauwens,

2012). LH-OAT combines two different techniques. First, it selects n latin-hypercube (McKay et al.,

1979) samples. Next, the LH points are used as starting points of p one-factor-at-a-time perturba-

tions, where p is equal to the number of model parameters. A higher number of LH samples (n)245

will lead to a better convergence; a value of at least n= 100 is necessary to achieve convergence

(Nossent, 2012; Nossent et al., 2013). The method requires in total p(n+ 1) model evaluations to

calculate the sensitivity analysis results. The sensitivity measure (final effect) for each ith parameter

is calculated by averaging partial effects for this parameter (si,j) from all LH samples (van Griensven

et al., 2006):250

si,j =

∣∣∣∣∣∣
100

(
F (e1,...,ei(1+fi),...,ep)−F (e1,...,ei,...,ep)

[F (e1,...,ei(1+fi),...,ep)+F (e1,...,ei,...,ep)]/2

)
fi

∣∣∣∣∣∣ (4)

si =

n∑
j=1

sij

n
(5)

where F (.) is a response or objective function of a model run with a set of e1 to ep parameters,

ei is the current parameter, j is the current LH sample ranging between 1 and n; fi is the fraction255

by which ei was changed during the OAT perturbation, the sign of fi is random at each loop as

the value can increase or decrease. Since the small snow zones at the catchment border would give

relatively smaller sensitivity than similarly parametrized zones of bigger area, the si measure has to

be normalized for non equal area (ai) of snow zones. Thus, the normalised sensitivity (
?
si ) is defined

as:260

?
si =

si
ai

(6)

?
si should be interpreted as a response measure of the changes in SCF in the snow zones to the

value of F (.), a higher sensitivity stands for a stronger response and means that the model output
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is more vulnerable to uncertainty in a particular snow zone. This study design allows to obtain SCF

sensitivity in each snow zone of the model. Insights into model sensitivity while simulating different265

processes can be achieved by using various response functions as F (.) (Sect. 2.4.2). The example of

LH-OAT loops for spatial sensitivity analysis described above is presented in Fig. 6.

The experimental set-up for the spatial sensitivity was as follows. The values of the global pa-

rameters of the WetSpa model where the same as obtained from the model calibration. To be able

to achieve convergence, a relatively large number of LH samples was selected (n=100). Together270

with the parameters representing the snow zones, p=524, this results in a total number of model

evaluations of 52500. The LH samples are taken from a uniform distribution ranging from 0 to 1.14,

resulting in a range of 0 to 1 for the SCF in a snow zone (maximum mean SCF in the catchment was

88%, thus 1
0.88 = 1.14). The perturbation fi was set to 1%, in order to avoid that the OAT samples

exceed the average distance between the LH samples. The sensitivity analysis was run for two full275

hydrological years from 1st November 2007 till 31st October 2009, preceded by a warm-up period

of 2 months.

2.4.2 Response functions

In order to investigate the relationship between parameters and different model processes, the sen-

sitivity analysis was performed for a set of response functions F (.). A response function quantifies280

a model behaviour, but unlike an objective function a response function does not use observation

(e.g. observed discharge). Table 1 lists the 15 response functions which were used in the sensitivity

analysis. This selection of response functions allows to interpret the results in view of different com-

ponents of the discharge as simulated by a number of model processes related to them. Moreover,

the division into winter and summer half-years gives more insight into seasonal variability of the285

simulated results. The winter half-year response functions reflect processes occurring during snow

accumulation and spring snowmelt, when the highest flows occur. On the other hand, the summer

half-year response functions reflect processes occurring during the summer low flow period. Winter

half-year response function were calculated for November until April, summer half-year response

function for May until October. The q̄high and q̄low reflect processes related to the highest and lowest290

flows. The v̄sm is calculated as the mean daily value of snowmelt [mm] and reflects processes related

to snowmelt generation without routing.

2.4.3 Output data analysis

The spatial approach followed in this study gives a large output data set i.e. sensitivity maps based

on different response functions. Each sensitivity map was analysed in view of 15 WetSpa parameter295

maps presented in Table 2. The Thiessen polygons for potential evapotranspiration were omitted, as

there was only one polygon for the whole catchment.
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In order to prepare the dataset for statistical analysis, each of the 15 parameter maps was spatially

aggregated to fit the spatial extent of the sensitivity analysis results (
?
si) of the snow zones by cal-

culating the mean (for continuous data) or the majority (for discrete data) of a parameter value in a300

snow zone. Based on this data set the coefficient of determination (ρ2) was calculated for each pair

of
?
si and the aggregated parameter values. The ρ2 describes the strength of the linear association

between the variables by indicating the fraction of one variable’s variance explained by the second

variable. Since in literature the thresholds of ρ2 for quantifying the strength of the linear association

are vague, in this paper a ρ2 > 0.40 is used as representing a moderate association.305

3 Results

3.1 Model calibration and performance

The calibrated model shows high efficiencies: NS=0.86 for the calibration period, NS=0.73 for the

validation period and NS=0.79 for the whole period. The snow related global WetSpa parameters

were estimated during the calibration as: ksnow = 5.03 mm ◦C−1day−1, krain = 0.02 mm mm−1310
◦C−1day−1. The comparison of observed and simulated discharge is presented in Figure 7. 90%

of the simulated discharge at the catchment outlet has a groundwater origin, while surface runoff

(5.3%) and interflow (4.7%) contribute mostly to the highest peaks (Fig. 7).

3.2 Spatial sensitivity analysis

The maps presenting global model output sensitivities
?
si to variations of spatial SCF are presented315

in Figure 8. The use of different response function results in different patterns of spatial sensitivity,

although some similarities can be distinguished as well. The minimum, maximum and mean values

are indicated on each map (Fig. 8). If the minimum is equal to 0, the model is completely insensitive

in at least one snow zone for this response function. The values presented in the first four rows can

be compared within a row, however, comparison between the rows is more difficult as in different320

rows the response functions concern discharge components of different magnitude. Note that the

grey scale is different for all maps in the lowest row. This is because, unlike in the upper rows, the
?
si calculated from these response functions are not intended to be compared within this row as they

concern different processes.

The analysis of ρ2 values (Tab. 3) explains the spatial relations between SCF sensitivity with325

different response function and the spatial parameters. Most of the pairs in Table 3 have low ρ2

suggesting that a parameter was not relevant for sensitivity with this response function. However, for

most of the response functions at least one ρ2 > 0.40 was found, indicating that the SCF sensitivity

with these response functions can be partially explained by the values of the parameter maps. The

values of ρ2 show influential and unimportant spatial parameters for the SCF sensitivity i.e. for330
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the snow related processes. Detailed analysis of Fig. 8 and Tab. 3 is provided in the subsequent

subsections.

3.2.1 General relations of the spatial sensitivity analysis results with parameters maps

The last column of Table 3 shows the frequency of the parameters with moderately strong coefficient

of determination under different response functions. The most frequent occurring parameter with a335

coefficient of determination above the threshold (0.40) is slope. The second most frequent is the

group of soil texture related parameters: wilting point, hydraulic conductivity, porosity, residual soil

moisture and field capacity. The lowest frequency is observed for maximal and minimal interception,

initial soil moisture and root depth, as well as for parameters responsible for generating surface

runoff: runoff coefficient and depression storage.340

The scatter plots of the slope versus different response functions (Fig. 9) show that this parameter

strongly correlates with the spatial sensitivity quantified with q̄, q̄i and q̄g and their winter/summer

half-years equivalents. However, when looking closer at the plots for these response functions the

lower values of the slope (0.0% - 0.5%) give steeper relation with less scatter than higher slope

values.345

3.2.2 Discharge source response functions

Using q̄ and q̄w as response function resulted in a clear pattern differentiating the upland from the

valley (cfr. Fig 8 and Fig. 5), showing that SCF zones occurring in the flat, organic-soil dominated

valley is much less sensitive than in the mineral upland. High sensitivity is obtained in snow zones

with steeper slopes (cfr. Fig 8 and Fig. 2), what is confirmed by high ρ2 with the slope (Tab. 3).350

Several WetSpa parameters (mostly soil texture dependent: depression storage, wilting point, field

capacity, porosity, residual soil moisture content) have high ρ2 with q̄ and q̄w response functions

(Tab. 3).

Some differences between q̄ and q̄s are visible when analysing the ρ2 (Tab. 3). The SCF sensitivity

for q̄s has higher ρ2 for parameters that are related to groundwater flow, like: porosity, residual soil355

moisture content, field capacity and pore size distribution index.

When comparing q̄, q̄w and q̄s with q̄g, q̄gw and q̄gs with respect to spatial patterns (Fig. 8) and ρ2

(Tab. 3), the figures are very similar. The group of parameters responsible for groundwater processes

(porosity, residual soil moisture content, field capacity and pore size distribution index) have higher

ρ2 with the groundwater response functions q̄g and q̄gw than with q̄ and q̄w.360

The SCF sensitivity for q̄s and q̄sw differentiates the river valley and the north-western upland

catchment from the south-eastern upland (cfr. Fig 8 and Fig. 5). The maps of SCF sensitivity for q̄s

and q̄sw are the only one that show clearly a relatively higher sensitivity in the river valley than in

most of the upland.
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The SCF sensitivity for the interflow response function differs from the groundwater and surface365

water response function results. The spatial pattern of SCF sensitivity for q̄i and q̄iw seems opposite

to the pattern of q̄s and q̄sw.

3.2.3 Extreme discharges response functions

The SCF sensitivity for q̄high and q̄low presents a spatial pattern that can not be visually related

to land-use, soil, or slope maps (Fig. 8). These response functions do not correlate with any of the370

WetSpa spatial parameters (Tab. 3). The spatial pattern of q̄high shows high values both in the upland

and in the valley, however it has also some zones of low sensitivity in the central part of valley. Low

but noticeable ρ2 is found only with the slope. The spatial pattern of q̄low is quite uniform, with some

higher values in the western uplands, lower values in the central part of the valley and in flat regions

in the northern upland (cfr. Fig 5 and Fig. 8).375

3.2.4 Mean snowmelt response function

The pattern of v̄sm shows random values with different means in different Thiessen polygons for

temperature stations used in the model (Fig. 8). This pattern is confirmed by high ρ2 between vsm

and temperature, with no other parameters having noticeable ρ2 (Tab. 3).

4 Discussion380

4.1 Model calibration and performance

The groundwater dominated discharge composition obtained with the calibrated model is in concep-

tual agreement with Pajnowska et al. (1984). The model performed well during snowmelt-supplied

spring floods. Although, the peaks were underestimated by 8% of the observed value on average.

The peak discharges underestimation are possibly determined by the uncertainty of the rating curve.385

During the yearly spring floods, the measurement profile near the gauging station widens outside the

riverbed and extends into the densely vegetated floodplain, where proper hydraulic measurements

are very difficult. Nonetheless, the shape of the events resembled well the observed values, which

can be an advantage of using observed SCF data instead of predicting snow cover in the model. This

is supported by the comparison of the hydrograph (upper part of Fig. 7) with the timing of snowmelt390

and temperature rise above 0 ◦C (lower part of Fig. 7), which shows a rapid discharge rise at the

beginning of spring floods. Good results of using MODIS snow products in other hydrological mod-

els have also been shown by Lee et al. (2005); Udnaes et al. (2007); Parajka and Blöschl (2008);

Şorman et al. (2009); Tahir et al. (2011). The model performed worse during periods of intensive

summer storms. For these storms, a rapid discharge rise was simulated, which was not observed in395

reality. A possible reason for this low performance is the positively biased soil moisture prediction

of the model during these periods.
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4.2 Spatial sensitivity analysis

The global model output sensitivities (
?
si) are calculated for a regular-structured grid (Fig. 8). This

approach may be considered not perfect, as irregular, homogenous zonation (Younger et al., 2009)400

could more directly reference the sensitivity to spatial features of the model. Regular zonation used

in this study was similar as in Stisen et al. (2011). This approach implies that the borders of spatial

features do not resemble the zonation and the results are somewhat aggregated. Advantage of struc-

tured grid lies, however, in broad comparability of different models, e.g. spatial sensitivity analysis in

a study area modelled with different spatial discretization like hydrological response unit (SWAT) or405

grid cell (WetSpa) could be easily compared when using the structured grid. Moreover, irregular ap-

proach would require much more zones if very fine spatial features were to be analysed. This would

require additional computational time, as the number of zones determines the number of parameter

for the sensitivity analysis (see Sect. 4.3 for further discussion on this topic).

Computational time could be decreased if other methods than LH-OAT would be used. Spatial410

sensitivity calculated based on a gradient method was presented by Hostache et al. (2010). Their

results, although showing the importance of spatial sensitivity analysis, were calculated using a local

method. Local methods are not handling properly the non-linear models (Turanyi and Rabitz, 2000).

On the contrary, the method presented in this study results in a global sensitivity, i.e.: covering the

whole parameter space and thus giving more insight into the model behaviour than a local method.415

There is still room for selecting other method for spatial sensitivity. Interesting results could be

obtained when a variance-based method, like Sobol’ (Sobol’, 1993) would be used. Such an analysis

would give additionally to LH-OAT information on interactions between the model parameters.

4.2.1 General relations of the spatial sensitivity analysis results with parameters maps

The reason why most sensitivity maps calculated for different response functions (Fig. 8) were cor-420

related with slope (Tab. 3) is because slope has a large impact on other hydraulic parameters (e.g.

manning coefficient), but also tunes values of depression storage and potential runoff coefficient (Liu

and De Smedt, 2004).

A number of sensitivity maps were correlated with soil texture related parameters. These param-

eters have an influence on directing water that is stored as soil moisture, thus have general impact425

on groundwater, interflow and infiltrability. The soil texture related parameters have higher frequen-

cies than the land-use related parameters (cfr. Tab. 2 and Tab. 3). This means that soil texture is a

clearly more important WetSpa input than land-use with regard to the SCF sensitivity. The reason

may be that the groundwater discharge accounts for 90% of the total simulated discharge and the

parametrization of the groundwater processes is strongly dependent on soil properties in WetSpa.430

Some of the WetSpa parameter maps, have a ρ2 not above the selected threshold for any of the

sensitivity maps. In case of the interception related parameters the explanation is that the intercep-
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tion capacity is important in the summer half-year, when no SCF is present. A similar explanation

holds for the root depth (an evapotranspiration-related parameter) which has a relatively negligible

importance in the winter half-year. In case of initial soil moisture content the explanation could be435

that it affects mostly the beginning of the simulation, i.e. the warm-up period.

Parameters responsible for generating surface runoff also did not have ρ2 above the selected

threshold for any of the sensitivity maps. This is explained by the fact that the catchment is not

urbanized and areas of high runoff coefficient and low depression storage are not frequent in this

area. This situation is expected to be different for urbanized catchments, where the surface runoff440

would participate more in the total discharge than in this study area (Berezowski et al., 2012).

The frequency analysed here is obviously dependent on the value of the ρ2 threshold (in this case

0.40). The threshold is subjective, however, allows discriminating between the high and low ρ2. The

selected threshold is justified by the fact that the ρ2 = 0.40 is equivalent to the Pearson’s correla-

tion coefficient of 0.63, which is generally considered as representing a strong correlation between445

variables. Nevertheless, the results should be viewed also in scope of the ρ2 values themselves.

The analysis of correlation between slope and sensitivity maps provided in more details in Figure

9 shows that even when ρ2 values are high (Tab. 3), the spatial sensitivity can be explained by a

given parameter only in a certain range of its values, while for the remaining values the correlation is

not that strong. This shows the complexity of the presented analysis. It has to be taken into account450

that the values presented in Table 3 shows only the general relation with the sensitivity maps (Fig.

8) while at different ranges of the analysed values different model behaviour is expected.

4.2.2 Spatial sensitivity in scope of the Biebrza River catchment functioning

All the sensitivity maps calculated for the winter half-year response functions resemble the full

year response functions, both in the ρ2 (Tab. 3) and in the spatial pattern (Fig. 8). This means that455

when looking at SCF sensitivity, the winter processes dominate the whole year. The reason for this

lies in the fact that snowmelt water is routed mostly in winter and spring, while in summer water

routing is only affected by remaining snowmelt water in soil moisture and groundwater reservoirs.

A confirmation that SCF appears to influence summer half-year discharges more by groundwater

than by surface runoff is its the sensitivity for q̄s, which has strong correlation with parameters460

related to groundwater flow. Nonetheless, the groundwater discharge dominates the total discharge

in the model of Biebrza River catchment when looking at the similar results for the total discharge

and groundwater discharge response functions. This is also confirmed in functioning of the Biebrza

River catchment as described in literature (Pajnowska et al., 1984; Batelaan and Kuntohadi, 2002;

Wassen et al., 2006; Chormański et al., 2011a).465

This surface runoff response functions (q̄s and q̄sw) sensitivity pattern may be related to the soil

properties. As presented in Figure 4, the SE upland is dominated by loamy sand (h_con= 1.7×10−5

ms−1), while much lower hydraulic conductivities are observed in the river valley (dominated by
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organic soils h_con= 5.6×10−6 ms−1) and the NW upland (big share of sandy loam h_con= 6.9×
10−6 ms−1). The soil-sensitivity pattern is confirmed by the high ρ2 with the hydraulic conductivity470

and weak, but noticeable ρ2 with the runoff coefficient. Thus, the infiltration ability and surface

water routing have a considerable effect in explaining the SCF sensitivity for surface runoff. Another

important role of surface runoff is revealed by relatively higher sensitivity of q̄sw in the river valley

than in most of the upland. This may be related to the fact that snowmelt in the Biebrza River valley

is a considerable water source to spring floods and is transported as surface runoff (Chormański475

et al., 2011b).

The opposite pattern to q̄s is visible in q̄i, what may be explained by the way the interflow is

modelled in WetSpa. Interflow depends not only on the hydraulic conductivity (the key parameter

for explaining sensitivity for q̄s), but also on the slope (ρ2 = 0 for q̄s), which is related to routing

water in the subsoil and, thus shows high ρ2 with SCF sensitivity for q̄i and q̄iw (Tab. 3).480

No ρ2 > 0.40 are found for the SCF sensitivity for q̄is (Tab. 3). In this case, the role of the pa-

rameters is limited. This is probably because most of the interflow water that could be related to

SCF produced discharge during winter half-year. The highest ρ2, similarly like for q̄i and q̄iw, is

found with the slope, which can also be easily linked by similarity of spatial patterns with the SCF

sensitivity map (cfr. Fig. 2 and Fig. 8).485

Similarly, no ρ2 > 0.40 are found for the SCF sensitivity for q̄low and q̄high (Tab. 3). Thus there are

other sources of variance in the SCF sensitivity for these response functions, which do not originate

directly in the parameter maps. Only a low but noticeable ρ2 is found between q̄high and the slope

indicating a link with runoff generation in WetSpa.

The pattern of q̄low may be related to extreme groundwater deficits to which mineral soils in490

the uplands have a higher contribution than organic saturated soils in the valley (porosity has low,

but noticeable ρ2). The spatial pattern of soil moisture in the Biebrza River valley presented by

Dabrowska-Zielińska et al. (2009) partially confirms the spatial sensitivity analysis results presented

in this paper.

4.2.3 Mean snowmelt response function495

A completely different pattern than for the other response functions is presented by SCF sensitivity

for v̄sm (Fig. 8). According to Eq. 1, vsm in a model grid cell (and thus v̄sm in the entire catchment)

is calculated based on temperature and precipitation, and then adjusted by SCF. Hence, the sensitivity

for v̄sm corresponds with the spatial pattern of the mean yearly temperature averaged in the Thiessen

polygons, while yearly sum of precipitation in the Thiessen polygons is less influential. The pattern500

of SCF is not visible, because in this sensitivity analysis the SCF values in Eq. 1 come from the

random LH-OAT sampling. The reason that ρ2 between v̄sm and temperature and precipitation is

lower than 1.00 is because the values are aggregated in time and space and lose some of the variance

important for the relation.
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4.3 Computational constraints505

The total computation time, a product of simulation time and number of required runs, is a limitation

of the applicability of this method and is similar as in all methods requiring a large number of model

runs to achieve the desired output. This was also the case in this study, as WetSpa required about

1 minute for a single run, the total time for 52500 simulations was about 36.5 days. The advantage

of any random sampling based sensitivity analysis method (including LH-OAT) is that it is easily510

parallelized, i.e. the LH-OAT samples are obtained before the simulations and the model runs are

divided over a number of processors or computers.

One could, however, consider decreasing the number of zones (n) in which the input data is

perturbed or the number LH samples (p) to receive the results faster. The latter implies that the LH-

OAT method may not converge (Nossent and Bauwens, 2012). Thus, it seems more reasonable to515

decrease the number of zones and be satisfied with results at lower spatial resolution.

4.4 Applicability of the spatial sensitivity analysis

The analyses conducted in this case study are both a validation and an example application of spatial

sensitivity analysis method. The further potential use of this method could be twofold: for generic

sensitivity analysis and for a catchment change scenario analysis.520

The generic sensitivity analysis would be similar to the presented approach in this paper. The

maps (e.g. Fig. 8) would show zones of the catchment with high or low sensitivity. The correlation

analysis as in Table 3 would show the parameters explaining the sensitivity pattern which thus require

more attention during the parametrization. This would require possibly denser field sampling of

the correlated parameters additionally to the data subjected to sensitivity analysis, or obtaining the525

data from a source with less uncertainty; as a result the prediction uncertainty should be decreased.

Additionally, the detailed scatter plots of parameters against response functions (e.g. Fig. 9) would

show which data ranges of the parameters are the most responsible for the spatial sensitivity pattern.

In contrast the “standard” sensitivity analysis is performed for global parameters which usually are

not spatially distributed, or are semi-distributed (i.e. grouped to few categories with the same values;530

e.g. Ayvaz, 2013).

The catchment change scenario analysis was not investigated in this paper but is a possible appli-

cation of the presented spatial sensitivity analysis method. In such an analysis instead of SCF input

time series the LH-OAT sampling would be done for e.g. different land covers proportions in the

catchment zones. The output of such an analysis would be sensitivity of the zones to changes in land535

cover and could be used as e.g. a stochastic decision support for urban development.
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5 Conclusions

With increasing spatial data availability for distributed hydrological modelling a need appears for a

methodology for sensitivity analysis of the spatial data. Such a methodology should point to zones

of the study area where the sensitivity of a model spatial input to output is higher or lower and540

should relate these patterns to the processes simulated by the model. In order to answer these needs

this paper presents an application of the LH-OAT sensitivity analysis to the WetSpa model of the

Biebrza River catchment. Unlike a standard sensitivity analysis of global model parameters, a spatial

approach is presented in this study. The catchment is divided into regular snow grid cells or zones

in which sensitivity of SCF as input data was evaluated. The aim of this study was to present an545

approach for using sensitivity analysis for spatial input data and to show that the WetSpa model is

sensitive to spatial input data. Moreover, it was intended to show that the spatial sensitivity results

are related to physical parameters used in the model.

The spatial approach of the LH-OAT sensitivity analysis results in spatial maps presenting areas

of relatively higher and lower sensitivity. In order to extend the analysis, the sensitivity analysis was550

repeated with different response functions. Most of the sensitivity analysis results were similar for

the whole year and winter-half year response functions. Moreover, the sensitivity obtained for the

mean discharge response function was very similar to the sensitivity analysis for the mean ground-

water discharge response function. Hence, the snow-processes related model behaviour is dominated

by winter half-year and groundwater processes, which is in agreement with the Biebrza River spring555

flood regime with a dominant share of groundwater discharge. Another important finding was that

SCF sensitivity was high in snow zones in the river valley under the winter half-year surface runoff

response function. This is in agreement with the observation that the snowmelt in the river valley is

a considerable surface runoff source to spring floods.

In this case study, the spatial patterns of SCF sensitivity could, for most of the response functions,560

easily be interpreted by co-occurrence of different landscape features like upland and river valley.

However, for some of the response functions a straightforward interpretation was impossible. A

successful approach to interpret the patterns was performed by analysing the values of coefficients

of determination between the physical model parameters and the SCF sensitivity. The spatial pattern

of the sensitivity for different response functions, obtained from these results, is related to different565

spatial parameters and to different physical processes simulated by the model. The parameters which

had a strong correlation with the SCF sensitivity for most of the response functions were: slope, and

soil related parameters. The potential runoff coefficient and depression storage were important for

only a few response functions, because the catchment is not urbanized. Temperature, which directly

influences the snowmelt generation in the WetSpa model, shows a strong correlation only with the570

mean snowmelt response function. It is important to mention that the spatial sensitivity quantified

with several response functions was correlated to more than one spatial parameter. This shows the
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importance of the links between the parameters and which were revealed by this spatially distributed

analysis.

In summary, a spatial approach of sensitivity analysis can be performed with the LH-OAT al-575

gorithm, as presented in the results of this paper, and the SCF is spatially sensitive in the WetSpa

model. The pattern of spatial sensitivity is related to spatially distributed physical parameters, the

results are confirmed by a priori scientific understanding of the Biebrza River catchment functioning.

The spatial sensitivity maps can by used to highlight areas which require better attention during the

parametrization and to show which spatial parameters have influence on the analysed phenomena,580

in this case the snow related processes.

In future work, other input time series or input parameters should be evaluated in a spatial analysis.

It would also be interesting to compare spatial sensitivity of the same input data with other models

e.g. TOPMODEL or SWAT. Finally, since spatial SCF is sensitive in WetSpa, other sources of this

input data should be tested in the model.585
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Şorman, A. A., Şensoy, A., Tekeli, A. E., Şorman, A. U., and Akyürek, Z.: Modelling and forecasting snowmelt715

runoff process using the HBV model in the eastern part of Turkey, Hydrol. Process., 23, 1031–1040, 2009.

Stachý, J.: Hydrological Atlas of Poland, vol. 1, Wydawnictwo Geologiczne, Warsaw, Poland, in polish with

english translation., 1987.

Stisen, S., McCabe, M. F., Refsgaard, J. C., Lerer, S., and Butts, M. B.: Model parameter analysis using remotely

sensed pattern information in a multi-constraint framework, Journal of Hydrology, 409, 337–349, 2011.720

Tahir, A. A., Chevallier, P., Arnaud, Y., Neppel, L., and Ahmad, B.: Modeling snowmelt-runoff under climate

scenarios in the Hunza River basin, Karakoram Range, Northern Pakistan, Journal of Hydrology, 409, 104–

117, 2011.
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Table 1. Descriptions and abbreviations of the 15 response functions (RF) which were used in the sensitivity

analysis.

Description
RF abbreviation

yearly winter summer

mean simulated discharge q̄ q̄w q̄s

mean simulated discharge from surface runoff q̄s q̄sw q̄ss

mean simulated discharge from interflow q̄i q̄iw q̄is

mean simulated discharge from groundwater q̄g q̄gw q̄gs

mean of the highest 10% simulated discharges q̄high - -

mean of the lowest 10% simulated discharges q̄low - -

mean simulated snowmelt v̄sm - -

Table 2. WetSpa parameter maps used to analyse the sensitivity analysis results. The generic input maps used

to derive the parameters maps are marked with + if used and - if not used.

Parameter Abbreviation
Generic input map

Soil Land-use Elevation

slope slp - - +

hydraulic conductivity h_con + - -

soil field capacity f_cap + - -

maximal interception i_max - + -

minimal interception i_min - + -

pore size distribution index p_ind + - -

soil porosity por + - -

residual soil moisture content res + - -

root depth r_d - + -

wilting point w_p + - -

runoff coefficient r_c + + +

depression storage dep + + +

initial soil moisture content i_sm + - +

Thiessen polygons for temperature T from the stations

Thiessen polygons for precipitation P from the stations
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Table 3. ρ2 values calculated for the WetSpa distributed parameters (rows) and the SCF sensitivity maps under

different response functions (columns). ρ2 > 0.40 are bold; the frequency that this condition is true is summa-

rized (
∑

) in the last row and column. Explanation of the response functions and parameters is presented in

Tables 1 and 2.

q̄ q̄w q̄s q̄s q̄sw q̄ss q̄i q̄iw q̄is q̄g q̄gw q̄gs q̄high q̄low v̄sm
∑

slp 0.58 0.58 0.48 0.00 0.00 0.02 0.45 0.44 0.23 0.56 0.56 0.45 0.36 0.12 0.09 8

h_con 0.00 0.00 0.00 0.40 0.40 0.28 0.16 0.15 0.11 0.00 0.00 0.00 0.01 0.00 0.00 2

f_cap 0.25 0.20 0.41 0.15 0.15 0.02 0.24 0.24 0.14 0.27 0.23 0.40 0.15 0.18 0.12 2

i_max 0.00 0.01 0.00 0.03 0.03 0.03 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.01 0

i_min 0.09 0.07 0.16 0.03 0.03 0.01 0.03 0.04 0.02 0.10 0.08 0.16 0.05 0.02 0.01 0

p_ind 0.09 0.07 0.20 0.21 0.20 0.42 0.00 0.00 0.01 0.08 0.06 0.18 0.06 0.18 0.20 1

por 0.25 0.20 0.44 0.03 0.04 0.00 0.16 0.16 0.10 0.26 0.22 0.42 0.15 0.22 0.17 2

res 0.25 0.20 0.42 0.10 0.11 0.01 0.20 0.20 0.12 0.27 0.23 0.41 0.15 0.19 0.13 2

r_d 0.00 0.01 0.00 0.12 0.12 0.08 0.00 0.00 0.04 0.00 0.00 0.01 0.00 0.00 0.01 0

w_p 0.25 0.21 0.42 0.14 0.14 0.02 0.23 0.23 0.13 0.27 0.23 0.41 0.15 0.18 0.12 2

r_c 0.03 0.02 0.11 0.30 0.30 0.12 0.11 0.10 0.04 0.05 0.03 0.12 0.02 0.08 0.06 0

dep 0.26 0.26 0.24 0.11 0.11 0.15 0.05 0.05 0.06 0.24 0.24 0.22 0.14 0.06 0.03 0

i_sm 0.07 0.06 0.10 0.00 0.00 0.00 0.07 0.07 0.00 0.07 0.06 0.10 0.05 0.04 0.00 0

T 0.05 0.05 0.02 0.03 0.03 0.16 0.08 0.09 0.00 0.04 0.05 0.02 0.01 0.00 0.42 1

P 0.02 0.03 0.00 0.00 0.00 0.02 0.01 0.01 0.06 0.02 0.03 0.00 0.04 0.08 0.19 0∑
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Figure 1. Topography of the study area and location of meteorological stations.
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Figure 2. Slope map of the study area.

Figure 3. Land-use in the study area. Land-use classes are the same as used in the WetSpa model, defined by

International Geosphere-Biosphere Program classification system.
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Figure 4. Soil texture map of the study area. Soil textures are the same as used in the WetSpa model, defined

by U.S. Department of Agriculture.
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Figure 5. Major landscape features of the Biebrza River catchment. The Biebrza River valley runs NE-SW

through the catchment with at the upstream part of the valley a large forest complex. Catchment area outside

the river valley is upland/plateau with mineral soils.
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Figure 6. Graph illustrating the spatial LH-OAT SCF sampling for calculating the sensitivity analysis. The top

row presents a spatially averaged, observed SCF for an example catchment (top left panel) and the example

catchment with highlighted snow zones i and i+ 1 (top right panel). The next rows presents SCF in the zones

i (panels in the left column) and i+ 1 (panels in the central column) in the advancing LH-OAT loops starting

from the loop j− 1 and the discharge simulated during these loops (panels in the right column). Symbols are

the same as in Eq. 4: ei and ei+1 represent a fraction of the SCF in the snow zones i and i+ 1, f is the fraction

by which e was changed during the OAT perturbation, q is the discharge simulated at the catchment outlet.
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sensitivity analysis was conducted (upper panel). Also presented is WetSpa simulated groundwater and interflow

discharge as well as only groundwater discharge. Catchment average daily temperature and SCF in the same

period is presented in the lower panel. The ticks on the time axis indicate the 1st day of a month.
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Figure 8. The SCF sensitivity maps showing
?
si in snow zones of the WetSpa model for Biebrza River catchment

for different response functions. The grey scale represents linearly stretched
?
si values between minimum (black)

and maximum (white); for the top four rows the grey scale is selected to match the data range of all maps in

each row; in the lowest row each map has individual grey scale between the minimum and maximum values

indicated on the plots (see Sect. 3.2 for details). Explanation of the response functions is presented in Table 1.
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Figure 9. Relation between the slope and spatial sensitivity analysis results (
?
si) quantified with different re-

sponse functions. Explanation of the response functions is presented in Table 1.
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