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Abstract 18 

The ability to estimate Terrestrial Water Storage (TWS) realistically is essential for 19 

understanding past hydrological events and predicting future changes in the hydrological 20 

cycle. Inadequacies in model physics, uncertainty in model land parameters, and uncertainties 21 

in meteorological data commonly limit the accuracy of hydrological models in simulating 22 

TWS.  In an effort to improve model performance, this study investigated the benefits of 23 

assimilating TWS estimates derived from the Gravity Recovery And Climate Experiment 24 

(GRACE) data into the OpenStreams wflow_hbv model using an Ensemble Kalman Filter 25 

(EnKF) approach. The study area chosen was the Rhine River basin, which has both well-26 

calibrated model parameters and high-quality forcing data that were used for experimentation 27 

and comparison. Four different case studies were examined which were designed to evaluate 28 
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different levels of forcing data quality and resolution including those typical of other less 29 

well-monitored river basins. The results were validated using in situ groundwater and stream 30 

gauge data. The analysis showed a noticeable improvement in groundwater estimates when 31 

GRACE data were assimilated, with a best-case improvement of 71% in correlation 32 

coefficient (from 0.31 to 0.53) and 35% in RMS error (from 8.4 to 5.4 cm) compared to the 33 

reference (ensemble open-loop) case. The correlation and RMSE improvements in 34 

groundwater estimates for the data-sparse case were up to 33% and 35%, respectively, while 35 

the average improvements for all four cases evaluated were 13 % and 14%, respectively. Only 36 

a slight overall improvement was observed in streamflow estimates when GRACE data were 37 

assimilated. Further analysis suggested that this is likely due to sporadic short-term, but 38 

sizeable, errors in the forcing data and the lack of sufficient constraints on the soil moisture 39 

component. Overall, the results highlight the benefit of assimilating GRACE data into 40 

hydrological models, particularly in data-sparse regions, while also providing insight on 41 

future refinements of the methodology. 42 

 43 

1 Introduction 44 

Terrestrial Water Storage (TWS) is the integrated sum of all surface water, soil moisture, 45 

snow water, and groundwater availability, and is a metric critical for monitoring the water 46 

supply for domestic, industrial, and agricultural sectors. The ability to estimate TWS is useful 47 

for understanding past events and predicting future changes in the hydrological cycle, 48 

streamflow and water availability, as well as their impact on the occurrence of droughts, heat 49 

waves, and floods (Hirschi, et al., 2007). The individual components of TWS influence the 50 

climate system in different ways. Soil moisture is a major source of water for the atmosphere 51 

in the terrestrial water cycle (Jung et al, 2010) and plays a particularly important role in the 52 

climate system (Seneviratne et al., 2010). Soil moisture estimates are also useful for seasonal 53 

predictions, and have been shown to improve predictions of air temperature in North America 54 

(Koster et al., 2010) and Europe (van den Hurk et al., 2012). Similarly, realistic estimation of 55 

the snowpack can improve the prediction of near surface temperature at high latitude regions 56 

at 15-30 day scales (Orsolini et al., 2013). Finally, groundwater variability influences soil 57 

moisture and evapotranspiration, and is related to long-term water availability and climate 58 

changes (Bierkens and van den Hurk, 2007; Green et al., 2011).  59 
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Despite the importance of having reliable estimates of TWS, knowledge about the spatial and 60 

temporal variations of TWS and its components is generally lacking. This is particularly true 61 

at large scales, due to the absence of global monitoring systems. Ground-based 62 

measurements, while very accurate, only provide point-wise estimates (Dorigo et al., 2011; 63 

Lettenmaier and Famiglietti, 2006). Large spatial coverage can be achieved using satellite 64 

remote sensing observations, but these often measure only one component of the total storage 65 

and suffer from additional limitations. For example, in the case of soil moisture, satellite 66 

observations are limited to the top few centimetres of the soil column and to areas free from 67 

dense vegetation cover (e.g., de Jeu et al., 2008; Entekhabi et al., 2010; Kerr et al., 2012). 68 

Variations in surface water can be observed with satellite altimetry but this technique is 69 

currently limited to large target areas (>10 km) (Phan et al., 2012; Schwatke et al., 2013, 70 

Kleinherenbrink et al., 2014). 71 

Since measurements alone are not sufficient to comprehensively monitor all components of 72 

TWS, hydrological models are often employed. A strong point of hydrological models is their 73 

ability to obtain spatially distributed estimates, differentiate TWS components, and simulate 74 

changing boundary conditions. Many hydrological models are available, which vary in terms 75 

of process description, temporal resolution, spatial resolution, and the detail in process 76 

representation (Koster et al., 2000; Rodell et al., 2004). Models vary in terms of which TWS 77 

components are included in the model, and how they are represented. The performance of 78 

hydrological models is also influenced by the accuracy of the input forcing data and the 79 

quality of the model calibration. The existence of model uncertainties motivates the need to 80 

combine the model with independent observations to obtain a better representation of the 81 

system’s behaviour. 82 

Changes in TWS can also be estimated by observing variations of the regional gravity field 83 

over time. The idea is that changes in water storage, including those deep underground, 84 

induce a gravitational signature proportional to the amount of (water) mass redistribution. 85 

Since 2002, these variations have been measured by the Gravity Recovery and Climate 86 

Experiment (GRACE) satellite mission (Tapley et al., 2004). GRACE allows temporal 87 

variations of Earth’s gravity field to be observed at spatial scales ranging in the hundreds of 88 

kilometres, and at time scales as short as one month. As part of the GRACE data processing, 89 

atmospheric and ocean related time-variable gravity effects are removed from the data, 90 

leaving the remaining gravity signal over the continents mostly representing changes in TWS 91 
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(in some areas, additional removal of other nuisance signals is needed, such as those due to 92 

glacier melting, glacial isostatic adjustment, and megathrust earthquakes). The GRACE 93 

mission has enabled the first direct observations of large-scale TWS, and studies to date have 94 

shown high correlation with modelled TWS in terms of seasonal dynamics and regional 95 

spatial patterns (Syed et al., 2008; Becker et al., 2011; Longuevergne et al., 2013). A unique 96 

feature of satellite gravimetry is that it observes the total column of mass variations (including 97 

groundwater) while other remote sensing techniques can only penetrate to a very limited 98 

depth, often just a few centimetres. In contrast to hydrological modelling, it is not possible to 99 

identify which layer the inferred mass variations can be attributed (Rodell et al., 2009).  100 

Several earlier studies have employed data assimilation to combine the strengths of 101 

hydrological modelling and GRACE observations and to mitigate their respective weaknesses 102 

(Zaitchik et al., 2008; Su et al., 2010; Houborg et al., 2012; Li et al., 2012; Forman et al., 103 

2012). In data assimilation, the model states are constrained by observations, taking into 104 

account the estimated uncertainties for both the model states and the observations (Evensen, 105 

2003; Reichle, 2008). Employing data assimilation provides a mechanism to downscale the 106 

coarse GRACE TWS variations to the temporal and spatial resolution of the model as well as 107 

providing insight from the hydrological model into the distribution of TWS between the 108 

individual storage terms. Zaitchik et al. (2008) assimilated GRACE into the Catchment Land 109 

Surface Model to estimate the TWS over the Mississippi River Basin. Houborg et al. (2012) 110 

and Li et al. (2012) applied a similar strategy to improve the drought indicator over North 111 

America and Europe, respectively. Su et al. (2010) and Forman et al. (2012), extended the 112 

work of Zaitchik et al. (2008) to improve the estimated snow water equivalent over North 113 

America and northwestern Canada, respectively. All results from earlier studies reported that 114 

assimilating GRACE improved, or at least did not degrade, the hydrology model’s 115 

performance. In particular, good agreements between estimated state variables, e.g., 116 

groundwater and streamflow, and the in situ measurements were observed. This study adds to 117 

these prior works by examining how GRACE assimilation performs when the hydrological 118 

model is not well calibrated or when unreliable meteorological data are used to force the 119 

model.  This focus of the study is on the Rhine River basin (Fig. 1), which is significantly 120 

smaller than the large basin or continent scale studies of these prior works, so the analysis 121 

presented here provides new insight into the performance of GRACE assimilation over 122 

smaller basins. And, while previous data assimilation studies have been performed in the 123 

Rhine and neighbouring basins (e.g. Weerts and Serafy, 2006; Rakovec et al., 2012), this 124 
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study is the first to incorporate GRACE observations in the assimilation scheme for this 125 

region. 126 

The primary goal of this study was to understand the impact of GRACE assimilation on the 127 

estimated TWS, groundwater (GW) variations and streamflow in the Rhine basin. The second 128 

goal was to investigate the potential value of assimilating GRACE observations in data-sparse 129 

regions. Four scenarios were considered in which the model parameters used were either 130 

calibrated (high quality) or basin-averaged (poor quality) values, and the forcing data were 131 

obtained from either local (high quality) or global (poorer quality) datasets. In this context, 132 

comparison of the four scenarios provides insight into how GRACE can be used to constrain 133 

hydrological models when limited data are available. 134 

 135 

2 Hydrological modelling 136 

The hydrological model employed in this study is the OpenStreams wflow_hbv model 137 

(Schellekens, 2014). This is a distributed version of the HBV-96 model, named after the 138 

Hydrologiska Byråns Vattenbalansavdelning (Hydrological Bureau Waterbalance-section). 139 

The HBV model was originally developed at this former section of the Swedish 140 

Meteorological and Hydrological Institute (SMHI) in the early 1970’s. Since then, the HBV 141 

model has been used in over 40 countries. In 1996, a comprehensive re-evaluation of the 142 

HBV model routines was carried out (Lindström et al., 1997), which resulted in the HBV-96 143 

version. The OpenStreams wflow_hbv model is a variant of this model, programmed in the 144 

PCRaster-Python environment (Karssenberg et al., 2009), but using a kinematic wave for 145 

hydrological routing. It is publicly available through the OpenStreams project 146 

(https://code.google.com/p/wflow/, last access 18 January 2015). The defined grid resolution 147 

used in this study was 1 km. A schematic representation of OpenStreams wflow_hbv is given 148 

in Fig. 2 (a) and the key parameters of the soil moisture and runoff response routines are listed 149 

and described in Table 1. 150 

OpenStreams wflow_hbv consists of three main routines: (i) precipitation and snow, (ii) soil 151 

moisture, and (iii) runoff. The water from either precipitation or snow first enters the 152 

interception storage and snow routine. The remaining liquid water (from rainfall and snow 153 

melt) after the snow routine infiltrates into the soil. The soil moisture storage term (SM in 154 

[mm]), which includes both surface and root zone soil moisture is controlled by three main 155 

parameters fc, lp, and β (see also Table 1). When the amount of water exceeds the maximum 156 
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capacity (fc), the excess water becomes available for direct runoff. Within the soil layer, 157 

seepage is generated and controlled by an empirical parameter β. The volume of water 158 

available for runoff (direct runoff and seepage) is transferred to the runoff response routine. 159 

Additionally, some percentage of the soil moisture evaporates, which is controlled by a 160 

defined threshold (fc×lp). 161 

Two linear reservoirs are defined in the runoff routine, namely the upper and lower zones (UZ 162 

and LZ). The excess water from SM recharges the upper zone, and some of the water in UZ 163 

percolates to LZ, as determined by the perc parameter. At the same time, capillary flow from 164 

UZ to SM also occurs, controlled by cflux. The runoff generation in UZ is controlled mainly 165 

by two main parameters, the recession constant (khq) and the non-linearity parameter (α). LZ 166 

contributes the water to the base flow through the recession constant (k4). The amount of base 167 

flow is simply the multiplication between k4 and the amount of LZ. Runoff from UZ and LZ 168 

then enters the routing model to determine the streamflow. 169 

For reference, TWS is defined here as the sum of SM, UZ and LZ. Groundwater storage 170 

(GW) is defined as the sum of UZ and LZ. These storage terms are calculated in the soil 171 

moisture and runoff response routines. Fig. 2 (b) shows the simulated SM, UZ and LZ from a 172 

nominal model run (i.e. using the calibrated parameters and local forcing data). The main 173 

source of TWS variation in this model is SM, with the variations in LZ and UZ an order of 174 

magnitude smaller. Extraction of groundwater for irrigation is considered to be small over our 175 

study region. It accounts for less than 1 km3/year. Industry is the largest user (Wada et al. 176 

(2014). However, The net removal is small as only 10% of the total water withdrawal over the 177 

Rhine is from groundwater and the water is re-introduced to the system after being used for 178 

industry. This is markedly different to the extraction of groundwater for irrigated agriculture 179 

observed in India (Ferrant et al., 2014). Therefore, this impact on TWS is not considered in 180 

this study. 181 

The OpenStreams wflow_hbv model was calibrated for the Rhine river basin using 182 

observations from in situ streamflow gauges (Mülders et al., 1999; Eberle et al., 2002; 2005; 183 

Photiadou et al., 2011). The spatial distribution of the calibrated model parameters is shown 184 

in Fig. 3.  185 

In data-sparse regions, a lack of in situ (meteorological and streamflow) data makes it 186 

difficult to calibrate hydrological models (Sivapalan et al., 2003; Hrachowitz et al., 2013). 187 

Therefore, we decided to add “non-calibrated” cases to our simulations. In those cases, we 188 
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defined the non-calibrated parameters as the areally-averaged values of the calibrated 189 

parameters in the entire basin, and used these for every grid cell in the basin. 190 

 191 

3 Datasets 192 

3.1 GRACE observation 193 

The most recent release (RL05) of the GRACE gravity model product, generated by the 194 

University of Texas at Austin’s Center of Space Research (CSR: Bettadpur, 2012), was used 195 

in the analysis. The CSR RL05 models represent a time-series of Stokes coefficients up to a 196 

maximum spherical harmonic degree and order of 60, and are provided monthly. Following 197 

the GRACE conventional processing steps, degree-1 coefficients provided by Swenson et al. 198 

(2008) were added, and the degree-2 coefficients were replaced by the values estimated from 199 

satellite laser ranging (Cheng and Tapley, 2004). Variations in the gravity field were 200 

computed by removing the long-term mean (computed over the entire study period, see Sect. 201 

5) from each monthly solution. The TWS variations over the Rhine basin were then produced 202 

using the approach described by Wahr et al. (1998). Because of strong noise artefacts present 203 

in the high degree coefficients, a de-striping filter similar to that described in Swenson and 204 

Wahr (2006) was applied to each monthly solution. The filter used a 5th degree polynomial 205 

(Savitsky-Golay) over a 5-point window to remove the correlations, and orders below 8 206 

remained unchanged. Further, an additional 250-km radius Gaussian smoothing (Jekeli, 1981) 207 

was applied. While this process helps to mitigate noise in the solution, it also attenuates 208 

genuine signal, so a scale factor is often applied in an effort to restore some of the signal that 209 

gets “leaked” out of the basin due to the spatial filtering. To that end, scale factors using the 210 

Global Land Data Assimilation System (GLDAS) hydrological model (Rodell et al., 2004) 211 

were computed following the method described by Landerer and Swenson (2012). The sum of 212 

four soil moisture layers (0 to 2 m) and a snow water equivalent layer from a monthly 213 

GLDAS NOAH Version 1 model was defined as the TWS. We (least squares) fitted the time 214 

series between the original and filter GLDAS at every grid node over the Rhine using only 215 

one scale factor. The estimated filtering scale factors varied between 0.98 and 1.02 over the 216 

Rhine River basin. The correction for glacial isotactic adjustment, which has been shown in 217 

other regions to affect the interpretation of long-term trends (Peltier, 2004), was determined to 218 

be small in our study, so the corresponding correction was not applied. 219 
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3.2 Forcing data 220 

The forcing data required to drive the OpenStreams wflow_hbv model are precipitation, 221 

temperature and potential evapotranspiration (PET). Two types of forcing data were used in 222 

this study. “Local” forcing data indicates the best available data, and “global” forcing data 223 

indicates a lower quality dataset but one which is available globally or nearly globally.  224 

In this study of the Rhine basin, local forcing data refer to meteorological data from the 225 

network of local weather stations, providing higher spatial and temporal resolution. Local 226 

precipitation and temperature data were retrieved from the European Climate Assessment & 227 

Data set (ECA&D) and ENSEMBLE project, known as E-OBS data (Haylock et al., 2008). 228 

Data collected from several hundred ground stations were combined to produce a daily grid of 229 

precipitation and mean surface temperature at a 0.25-degree spatial resolution. Local PET 230 

data were derived from climatological data obtained from the Commission for the Hydrology 231 

of the Rhine basin (CHR) and the German Meteorological Service (DWD) (Weerts et al., 232 

2008). The daily local PET was interpolated from a monthly mean value with a fixed annual 233 

cycle and was available at a 1-km spatial resolution (Weerts et al., 2008; Photiadou et al., 234 

2011).  235 

Global precipitation and temperature data were obtained from Sheffield et al. (2005). These 236 

data are constructed based on the long-term near-surface meteorological variables from the 237 

National Centers for Environmental Prediction–National Center for Atmospheric Research 238 

(NCEP/NCAR) reanalysis product. The daily global precipitation and temperature data were 239 

provided at a spatial resolution of 0.5-degree. For global PET, the 1-degree daily product 240 

generated by Senay et al. (2008) was used.  241 

Fig. 4 shows a comparison between mean daily precipitation, temperature and PET in 2006 242 

from the local and global forcing datasets. For the mean temperature, aside from the 243 

resolution difference, the spatial distribution and magnitude is very similar between the two 244 

datasets. On the other hand, significant differences can be seen between the local and global 245 

precipitation data, especially over the High Rhine. Differences are also observed in the PET 246 

products, with the global dataset having generally higher values than the local one, in addition 247 

to the much coarser spatial resolution of the global product.  248 
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3.3 Validation data 249 

Groundwater and streamflow measurements from various networks are used to validate our 250 

estimated results.  251 

3.3.1 Groundwater data 252 

In situ groundwater measurements were obtained from 3 different networks:  253 

1) Ministerium für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Verbraucherschutz 254 

des Landes Nordrhein-Westfalen (http://www.elwasweb.nrw.de, last access: 5 March 255 

2014) 256 

2) Bayerisches Landesamt für Umwelt (http://www.gkd.bayern.de, last access: 5 March 257 

2014) 258 

3) Portail national d’Accès aux Donnéessur les Eaux Souterraines (ADES, 259 

http://www.ades.eaufrance.fr, last access: 17 March 2014) 260 

Measurements that did not exhibit seasonal variations were flagged as belonging to confined 261 

aquifers, and were excluded. Data from stations with weekly measurements (e.g., ADES) 262 

were interpolated to daily intervals. A total of eighteen wells were used for validation. Their 263 

locations are shown in Fig. 1, and their names are provided in Table A1. 264 

The in situ groundwater measurements were provided in the form of piezometric head. The 265 

variations in piezometric head can be related to variations in groundwater storage if the 266 

specific yield is known (Rodell et al., 2007). As the latter data were unavailable, the 267 

piezometric head was scaled to the units of GW storage based on other GW data. Previous 268 

studies have demonstrated that subtracting SM derived from GLDAS from GRACE was able 269 

to extract the groundwater component from GRACE in several regions e.g., North America 270 

(Rodell et al., 2006; 2007), Australia (Tregoning et al., 2012), the Middle East (Longuevergne 271 

et al., 2013), etc. We adopt a similar idea by using the relationship between ∆TWS-∆SM 272 

(TWS variation from GRACE minus SM variation) and the observed head to scale the 273 

observed head. Ideally, we would prefer to use in-situ soil moisture data to represent the SM 274 

term, but they are not available at the well locations, and the nearest station from the 275 

International Soil Moisture Network (ISMN: Dorigo et al., 2011) does not have data covering 276 

the GRACE observation period. The soil moisture estimated from remote sensing was also 277 

not appropriate because the penetration depth depends on frequency and would not be the 278 

same as that in OpenStreams wflow_hbv. Therefore, we decided to use GLDAS-derived SM 279 
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in this study. The SM variation from GLDAS (∆SMGLDAS) was computed by removing its 280 

long-term mean value. The long-term mean value was produced from all GLDAS SM data 281 

over the same period as the GRACE observations (see Sect. 5). The groundwater variations 282 

from GRACE (ΔGW�����) were obtained by removing ∆SMGLDAS from the GRACE 283 

observations every month. ΔGW����� was interpolated to daily values in order to compare it 284 

to the daily head variations Δℎ. The comparison was done using the following relationship:  285 

ΔGW����� + � =  + � ∙ Δℎ         (1) 286 

where e indicates the observation error.  The two parameters a and b were estimated by least-287 

squares regression. The scaled in situ GW variation (∆GWin situ) were then obtained from the 288 

observed variations in piezometric head using: 289 

ΔGW������� = � + �� ∙ Δℎ         (2) 290 

where �, �� are the parameters estimated from Eq. (1).  291 

3.3.2 Streamflow data 292 

Streamflow was validated using observations from the thirteen in situ gauges indicated in Fig. 293 

1. Time-series were provided by the Hydrological Modelling Basis in the Rhine Basin 294 

(HYMOG; Bader et al., 2013). The hourly data were aggregated to daily data for this study. 295 

 296 

4 Data assimilation 297 

4.1 Ensemble Kalman Filter 298 

The Ensemble Kalman Filter (EnKF) is used here to assimilate GRACE TWS into the 299 

OpenStreams wflow_hbv model. The EnKF uses a Monte Carlo approach: an ensemble of 300 

model states is integrated forward in time using the forward model. The update equation from 301 

the classical Kalman filter is used to update the model estimate, where the Kalman gain is 302 

determined using the error covariances calculated from the ensemble (Evensen, 1994). The 303 

EnKF and its variants are widely used because they are efficient, easy to implement and allow 304 

great flexibility in terms of model uncertainty (Evensen, 2003). In this study, we implement a 305 

so-called 1D-EnKF (De Lannoy et al., 2009) in which each grid cell is updated individually. 306 

The state equation in discrete form is given as: 307 

��� + 1� = ������,  �� + 1�, !, "���#         (3) 308 
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where f is the model operator, ψ is the state variables, u is the forcings, ! is the model 309 

parameters, and w is the model error. In this paper, the state variables (ψ) are an n×1 vector of 310 

TWS from OpenStreams wflow_hbv. The observations available at a measurement time t are 311 

gathered in a vector of observations d (TWS from GRACE): 312 

$��� = %���� + &; &~(�0, *�        (4) 313 

where $ is an m×1 vector containing the observations, H is measurement operator which 314 

relates the state ψ(t) to the measured variables d(t). In this study, the observation and the state 315 

vector are TWS, so n=m=1 and H is the unit matrix. The uncertainties in the observations are 316 

given in the random error ϵ, which is assumed to have zero mean and covariance matrix R. In 317 

the initialization phase, the EnKF is initialized by generating an ensemble (i) of N realizations 318 

of the state vector ψi(t), i=1,…,N around a nominal ψ(t). This reflects the prior knowledge of 319 

the state at the initial time. The EnKF moves sequentially from one observation time to the 320 

next and works in two steps, a forecast step and an update step. At the updated time t (when 321 

the observation is available), an ensemble of perturbed observations, di(t) is generated as: 322 

$+��� = $��� + &+���,          (5) 323 

where ϵi denotes the perturbation of the error of each ensemble member i. If the ensembles of 324 

the variables are stored in a matrix , = ��-, �., �/, … , �1�, the ensemble perturbation matrix 325 

can be defined as ,2 = , − ,̅ where ,̅ is the mean computed from all ensemble members. 326 

Similarly, the ensemble members of the observation and perturbations are gathered into the 327 

matrices 5 = �$-, $., $/, … , $1� and 6 = �&-, &., &/, … , &1�. The analysis equation can be 328 

expressed as (Evensen, 2003): 329 

,7��� = ,��� + ,2���,28���%8�%,2���,28���%8 + 668#
�-
�5��� − %,���#  (6) 330 

where ,7 is the analyzed model state 331 

4.2 Assimilating GRACE observations 332 

Several steps must be taken before GRACE TWS can be assimilated into OpenStreams 333 

wflow_hbv. GRACE observations represent average TWS variations over one month, while 334 

the OpenStreams wflow_hbv model has a daily time step. In this study, it is assumed that the 335 

average TWS corresponds to the middle of the month. Then, spline interpolation between 336 

consecutive months is used to generate a time series of GRACE TWS variations at five-day 337 

intervals. The five-day interval was chosen through trial-and-error to be a good compromise 338 
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between allowing the ensemble to grow between updates and avoiding implausible jumps. As 339 

in any land surface assimilation application, the update results in discontinuities as mass is 340 

added or removed from the state but these are not large enough to be obvious when a five-day 341 

interval is used (see Sect. 5.1). If the update took place at larger time interval (e.g., once a 342 

month) and the entire increment was applied on one day, more significant artefacts or 343 

temporal discontinuities would occur (Widiastuti, 2009). In order to convert GRACE 344 

variations to absolute values the mean TWS in the study period was calculated from the 345 

nominal OpenStreams wflow_hbv run and added to the GRACE time series.  346 

GRACE observes total TWS, some components of which can be neglected (e.g., nominal 347 

OpenStreams wflow_hbv simulations indicate that surface water and interception storage 348 

contributed by less than 1 % to the estimated TWS).  Snow  is also small averaged over the 349 

study area (approximately 2% to the estimated TWS in winter). Only over the Alps (see Fig. 350 

1) is the snow contribution greater (approximately 7%). Therefore, we decided to exclude the 351 

snow from the state vector. To reconcile GRACE to OpenStreams wflow_hbv TWS, we then 352 

removed the snow component estimated from the nominal run from the GRACE prior to 353 

assimilation. Note that in catchments where the snow component is more significant, it should 354 

not be excluded from the state vector. 355 

In the EnKF, the GRACE TWS are calculated and assimilated at each 1-km model grid cell 356 

every five days. Because the analyzed model state ,7��� was an integrated value of TWS, the 357 

increment (9,��� = ,7��� − ,���) for every ensemble member needed to be disseminated 358 

among the three stores, SM, UZ, and LZ. The information about the distribution of the 359 

increment among the different model compartments could be obtained directly from the 360 

Kalman filter. However, we chose to carry out the vertical distribution in the way consistent 361 

with the OpenStreams wflow_hbv model (Fig. 2). While the SM and LZ stores have upper 362 

bounds determined by model parameters, UZ does not. As a result, allowing it to update 363 

freely in the EnKF runs the risk that it becomes excessively large, which would also have a 364 

detrimental effect on runoff. Therefore, the increment is used to adjust the SM first, subject to 365 

the upper and lower limits of zero and fc. Any remaining increment is applied in turn to LZ, 366 

up to its upper limit, and only then to UZ. 367 

The GRACE observation error is assumed to be 20 mm and horizontal observation error 368 

correlations are not considered. The 20 mm value is considered realistic as it was suggested 369 

by several independent assessments e.g., Klees et al. (2008), Wahr et al. (2006), Schmidt et al. 370 
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(2008) and it also had been applied in previous GRACE assimilation studies (Zaitchik et al., 371 

2008; Houborg et al., 2012). Our philosophy was to set the GRACE errors to realistic values 372 

determined from independent studies, so that the solutions were not guided towards any 373 

particular outcome.  374 

 375 

4.3 Uncertainty in model forcing data and parameters 376 

In the EnKF, stochastic noise can be included in model forcing data and parameters to 377 

account for model uncertainty. An earlier sensitivity study (Widiastuti, 2009) was conducted 378 

to identify the parameters of the OpenStreams wflow_hbv model that had a significant impact 379 

on TWS. Six such parameters, which include fc, lp, β, cflux, khq, and perc were found. 380 

Therefore, the soil moisture routine parameters, fc, lp and β, as well as the runoff routine 381 

parameters, cflux, khq and perc, were perturbed. For the “calibrated” case, the calibrated 382 

model parameters in each grid cell were perturbed using additive Gaussian noise, with a mean 383 

of zero and a standard deviation equal to 10% of the range of values that occurred over the 384 

whole Rhine basin. In the “non-calibrated” case, the mean parameter value in each grid cell 385 

was set to the average calibrated value across the whole basin, and the standard deviation was 386 

set to that of the calibrated parameter across the whole basin. This was considered as a proxy 387 

for assigning approximate values based on the land cover type, topography, and climatology 388 

from the globally available databases. Averaging each parameter across the entire Rhine basin 389 

is intended merely to reflect this kind of first-order assumption. Though not all OpenStreams 390 

wflow_hbv parameters can be gleaned from such global databases, we the averaged values 391 

could be compared to those in the Food and Agriculture Organization of the United Nations 392 

(FAO) database (http://www.fao.org/geonetwork/srv/en/main.home, last access: 5 December 393 

2014). The areally averaged parameter values over the Rhine were found to be within the 394 

range the provided by FAO. For example, the areally averaged soil moisture field capacity 395 

over the Rhine FAO provided is mostly between 150 and 200 mm, while the areally averaged 396 

value of approximately 180 mm is used as a mean in this study with a standard deviation of 397 

33 cm. The meteorological forcing data were also varied, with the temperature data being 398 

perturbed with additive Gaussian noise, and the precipitation and PET being perturbed with 399 

additive lognormal noise. In the “local forcing data” case, noise with standard deviation based 400 

on 10 % of the nominal value was added to precipitation while 15 % noise was added to 401 

temperature and PET. For the “global forcing data” case, we assumed that the local forcing 402 
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data were accurate and reliable, and the differences between the local and global forcing data 403 

represent the errors of global forcing data. The errors were assumed to be spatially correlated, 404 

so an exponential correlation function was applied to the covariance matrix for each variable. 405 

The correlation lengths for precipitation, temperature and PET were determined using 406 

variogram analysis (Widiastuti, 2009) and found to be 21 km, 21 km, and 59 km, respectively.  407 

Recall from Sect. 1 and Sect. 3.2, that four cases are considered in this study: 1) calibrated 408 

parameters with local forcing data (CL), 2) calibrated parameters with global forcing data 409 

(CG), 3) non-calibrated parameters with local forcing data (NCL), and 4) non-calibrated 410 

parameters with global forcing data (NCG). Comparison of the four scenarios provides insight 411 

into the benefit of GRACE assimilation under different degrees of uncertainty. The lowest 412 

and highest levels of uncertainty are associated with the CL and the NCG cases. 413 

 414 

5 Results and discussion 415 

Using the EnKF approach described above, GRACE observations were assimilated into the 416 

OpenStreams wflow_hbv model. An ensemble of 100 model states was propagated forward 417 

from 1 Jan 2001 to 30 Nov 2003 to spin up the model. The ensemble state at the end of the 418 

spin-up period provided the initial state for the assimilation. The study period is from 1 Dec 419 

2003 to 31 Oct 2007 because the observed streamflow was only available until Autumn 2007. 420 

5.1 Impact of GRACE assimilation on TWS estimates 421 

First, the impact of assimilating GRACE on the temporal and spatial patterns of the estimated 422 

TWS is considered. For the temporal pattern, the areal mean of the estimated TWS over the 423 

entire Rhine River basin was computed. The time series of TWS variations from the ensemble 424 

open loop (EnOL, ensemble run without GRACE assimilation), EnKF, and GRACE 425 

observations are shown in Fig. 5. 426 

As expected, there is a seasonal cycle in the TWS estimates, which varies between ±75 mm. 427 

The high frequency variations in TWS in the CL and NCL that are not apparent in CG and 428 

NCG are due to the coarser spatial resolution of the global precipitation product. Lower 429 

spatial variability of the global data causes smoother averaged TWS presented in the CG and 430 

NCG time series. During the summer of 2006 (June, July, August: JJA), the areal mean global 431 

and local precipitation and temperature products agree. However, the global PET product 432 
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estimates an areal mean PET of 4.10 mm/day while the local PET data suggest it was 2.89 433 

mm/day. As the result, the minimum TWS in the CL and NCL cases in the EnOL is -69 mm 434 

while CG and NCG are close to -90 mm. In this period, GRACE assimilation has little impact 435 

on CL and NCL, but results in a significant (25 mm) update in TWS in the CG and NCG 436 

cases. The largest difference between the EnOL and EnKF occurs when TWS is increasing 437 

(for example, October 2005). This is apparent in all cases, but is greatest in the two non-438 

calibrated cases. In all cases, Fig. 5 shows that assimilation draws the TWS estimate toward 439 

the GRACE observation.  440 

The impact of GRACE assimilation also varies within the basin. Fig. 6 shows the spatial 441 

distribution of the average increment (posterior minus prior) in TWS during winter 442 

(December, January, February: DJF, 2005-2006) and summer (JJA) of 2006. During the 443 

winter (left), the EnKF estimated wetter conditions over entire Rhine River basin when the 444 

local forcing data were used. In the Alps, the global precipitation product is approximately 445 

35% higher than the local precipitation product. Therefore, GRACE assimilation reduced the 446 

TWS estimate over the Alps in the CG and NCG cases. During the summer (right), GRACE 447 

assimilation reduced the TWS estimate over the Alps and Neckar basin when local forcing 448 

data were applied, but adds moisture in the global data case. In this period, the local PET 449 

product is 66% lower than the global product over the Alps and 44% lower over the Lahn 450 

basin. This is consistent with the increase in areal averaged TWS observed in the CG and 451 

NCG cases in Fig. 5. Since the local precipitation data are generally considered to be more 452 

accurate, the adjustment of the TWS estimates towards those produced by the local product is 453 

an excellent example of the benefit of GRACE assimilation, particularly in data sparse areas. 454 

In the Regnitz basin (east of domain), GRACE assimilation leads to a significant increase in 455 

TWS in both calibrated cases during the winter months. In this basin, the upper zone 456 

recession coefficient (khq) is 0.52 in the calibrated case, compared to 0.3 in the non-calibrated 457 

case. This results in almost twice as much fast runoff in the calibrated case, which depletes 458 

the terrestrial water storage in the winter months. GRACE assimilation adds moisture to the 459 

UZ and LZ stores, drawing the TWS closer to the GRACE observations.  460 

In the summer, an average of 0.7 and 1.07 mm was removed in each update from the southern 461 

part of Moselle basin in the CL and CG cases, respectively (Fig. 6(b) and (d)), compared to 462 

0.74 mm and 1.25 mm added per update in the NCL and NCG cases. In the two calibrated 463 

cases, the evaporation threshold value (the product of fc and lp) is approximately 11 % less 464 
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than that in the non-calibrated cases. This leads to less soil evaporation and higher soil 465 

moisture in the calibrated cases. GRACE assimilation reduces the SM in the calibrated cases, 466 

and increases it in the non-calibrated cases to draw the TWS closer to the GRACE 467 

observations in all cases. 468 

5.2 Impact of GRACE assimilation on GW estimates 469 

The TWS and GW variations from OpenStreams wflow_hbv were computed at every grid 470 

cell. The estimates at the Sundern and A319C wells are shown in Fig. 7 and 8. The two 471 

stations represent the behaviour of the other 16 stations (detailed below). For example, 472 

stations 2, 3, 4, 6, 9, 10, 11, 13, and 18 have similar behaviour to Sundern, while the rest have 473 

similar behaviour to A319C station. Recall that GW is defined as the sum of UZ and LZ, so 474 

the difference between the left and right columns is the SM term. GRACE measures monthly 475 

variations, so the monthly mean of TWS, GW estimates and the in situ data are shown. 476 

Similar to the areal mean values, the TWS from the EnKF in the individual grid cells (left 477 

column) is generally between the values from the EnOL and those observed by GRACE. 478 

At Sundern (Fig. 7) in the CG and NCG cases, the impact of the forcing data was seen in the 479 

summer of every year. Table 2 shows that the precipitation, temperature and PET at Sundern 480 

were higher in the global forcing data than in the local data. Fig. 7(c) and 7(g) suggest that 481 

this leads to a more negative estimate of TWS in the EnOL for the CG and NCG cases. In the 482 

EnKF results, these TWS estimates are drawn towards the GRACE observations. The 483 

corresponding updates in terms of GW are larger in the global forcing data case than in the 484 

local forcing data cases - assimilation added approximately 5-10 mm of water to GW in the 485 

global data cases. Similar behaviour was also seen in CL and NCL cases in summer 2005.  486 

At Sundern, the estimated GW in the CL case agrees quite well with the in situ values, 487 

suggesting that the distribution between the SM and GW components is reasonable in the 488 

calibrated cases. The fact that a good estimate of TWS does not result in an improved GW 489 

estimate indicates that the non-calibrated parameters are leading to an incorrect distribution of 490 

the TWS between the different stores. In the NCL and NCG cases, fc is just 179 mm 491 

compared to the calibrated value of 239 mm. So, for the same TWS value, the non-calibrated 492 

cases have more water in GW than the calibrated cases. As a result, despite the agreement in 493 

TWS in the winter months, the GW variation is considerably overestimated. 494 



 17

In every case at the A319C well location (Fig. 8), the EnOL estimated lower TWS in the first 495 

half of 2004 and 2006, and higher in the second half of the same years. Assimilation updated 496 

the TWS toward GRACE observation in these periods and resulted in better agreement 497 

between the assimilated and observed GW. In late-2005, the estimated TWS from the EnOL 498 

and EnKF are very close to the GRACE observations. However, the estimated GW in both 499 

cases is a lot lower than that observed in situ. As discussed, the difference between the two is 500 

soil moisture. The model is predicting a significant increase in soil moisture in all four cases. 501 

However, given there is little to improve in terms of TWS, the GW estimate from the EnKF is 502 

as bad as that from the EnOL. 503 

The impact of the forcing data used is also presented. In CG and NCG cases, on 3 Oct and 23 504 

Oct 2006, underestimated global precipitation caused the underestimated GW. GRACE could 505 

not correct such a high frequency event due to the limitation of its temporal resolution.  506 

The choice of the parameters plays a role in the estimated GW magnitude (as seen in Fig. 7), 507 

but now the non-calibrated parameters (compared to the calibrated ones) provided closer 508 

values to the in situ data (Fig. 8(f) and (h)). Higher non-calibrated fc parameter (see Table 3 509 

for the values) was responsible for smaller GW estimates. 510 

Tables 4 and 5 show the correlation coefficient and RMS error (RMSE) between the 511 

estimated and in situ GW for all eighteen well locations indicated on Fig. 1. These were 512 

calculated based on the monthly mean, but similar results were obtained using the daily 513 

values. In most cases, assimilation leads to an increase in correlation coefficient and a 514 

reduction in RMSE.  515 

The results varied across the wells. The highest correlation coefficients in the EnOL 516 

simulations were typically found in the CL case, followed by the NCL. Clearly, using the 517 

local forcing data has a significant impact in resolving features at a single grid cell. An 518 

exception is the Main basin (wells 5, 7-10) where the global forcing data produce TWS more 519 

consistently with the GRACE observations and hence result in a better agreement with the 520 

GW.  The highest correlation coefficients in the EnKF cases are also found in the two local 521 

data cases. The improvements in correlation coefficient are seen in all four cases.  The CL and 522 

NCL cases also yield the lowest RMSE values in the EnOL case, and the results with the 523 

EnKF are very mixed.  524 

It is important to note that at many wells, the NCL and NCG cases yield higher correlation 525 

coefficients than the CL and CG cases, respectively. Recall that the model is calibrated using 526 
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streamflow, not groundwater data. So, while assimilation draws the modelled TWS towards 527 

the GRACE observations, the model parameters have a significant impact on whether or not 528 

this translates to an improvement in GW estimate. 529 

One of the objectives was to examine the potential value of GRACE assimilation in data-530 

sparse regions. In the NCG case, it is encouraging that GRACE assimilation consistently 531 

leads to an increase in correlation coefficient (up to 33 %) and reduction in RMSE (up to 35 532 

%). In other scenarios, assimilation of GRACE observations also leads into an increase in 533 

correlation coefficient (up to 71%, at station 11 in the CG case) and a decrease in RMSE (up 534 

to 35 %, at station 1 in the NCG case). In average, correlation and RMSE improvements in 535 

groundwater estimates for all cases evaluated are 13 % and 14 %, respectively. 536 

5.3 Impact of GRACE assimilation on streamflow estimates 537 

The estimated and observed streamflows at Maxau (upstream) and Wessel (downstream) 538 

gauge stations are shown in Fig. 9 and 10.  Accurate forcing data, particularly precipitation, 539 

are essential for reproducing the observed streamflow. The high frequency variations in 540 

streamflow associated with fast response to local precipitation are often reproduced 541 

reasonably well in the CL case, but not in the CG case (compare Fig. 9(a) to 9(b) and 10(a) to 542 

10(b)).  543 

Use of the global data frequently underestimates the streamflow. This is clear on 5 Jun 2004, 544 

24 Aug 2005, 6 Oct 2006, and 10 Aug 2007 in Fig. 9(b) and 9(d). Comparing Fig. 9(a) to 545 

9(b), it is clear that the larger peaks in streamflow are poorly estimated when the global data 546 

are used. Because GRACE observations describe monthly variations over a larger area, they 547 

can do little to capture these individual streamflow events. By correcting TWS, GRACE 548 

assimilation mainly influences the longer term variations. The difference between EnOL and 549 

EnKF is very small in the CL case. The largest differences are observed in the CG and NCG 550 

cases, where TWS is updated to correct for errors in forcing data (e.g., summer 2004 and 551 

2006 in Fig. 9). 552 

Fig. 11 shows the impact of GRACE assimilation on the correlation coefficient, Nash-553 

Sutcliffe coefficient (NS) (Nash and Sutcliffe, 1970), and RMSE in streamflow. Results are 554 

shown for four gauge stations along the main channel, as well as the average value across all 555 

thirteen stations. These results underscore the importance of forcing data and calibration for 556 

estimating streamflow. By far, the highest correlation coefficients and Nash-Sutcliffe 557 
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coefficients and lowest RMSEs are obtained when local forcing data are used. Use of global 558 

forcing data leads to a significant loss in performance. For example, using global rather than 559 

local forcing data with the calibrated model results in a decrease in correlation coefficient 560 

from 0.89 to 0.65, a decrease in Nash-Sutcliffe coefficient from 0.76 to 0.35 and an increase 561 

in RMSE of 71 % in the EnKF results. Using the non-calibrated model rather than the 562 

calibrated model also leads to poorer performance, though to a lesser degree. For example, 563 

using the non-calibrated rather than calibrated model with the local forcing data results in a 564 

decrease in correlation coefficient from 0.89 to 0.88, a decrease in Nash-Sutcliffe coefficient 565 

from 0.76 to 0.65 and an increase in RMSE of 23 % in the EnKF results.  566 

Compared to the differences due to forcing data and calibration, GRACE assimilation leads to 567 

a relatively modest improvement in streamflow estimates. In terms of correlation coefficient, 568 

the largest improvements on average (Avg column) are found when the global forcing data 569 

are used. The correlation coefficient increased from 0.64 to 0.65 in the CG case, and 0.65 to 570 

0.66 in the NCG case. The largest improvement at an individual station was found at Maxau 571 

where assimilation resulted in an increase in correlation coefficient from 0.54 to 0.59 in the 572 

NCG case.   573 

Similarly, GRACE assimilation leads to a modest improvement in terms of NS coefficient. 574 

The largest average improvement was from 0.62 to 0.65 in the NCL case. GRACE 575 

assimilation slightly reduced the RMSE in all 4 cases. The greatest reduction is 4 % in the 576 

NCL case.  577 

Though it is encouraging that GRACE assimilation improved the estimated streamflow, these 578 

results demonstrate that it clearly cannot replace high quality forcing data or good model 579 

calibration. 580 

 581 

6 Conclusions 582 

The first goal of this study was to investigate the impact of assimilating GRACE into the 583 

OpenStreams wflow_hbv model on the estimated terrestrial water storage, groundwater 584 

storage and streamflow in the Rhine river basin. GRACE observations were assimilated into 585 

each grid cell of the model with an EnKF to update the soil moisture and upper and lower 586 

zone storage terms of the model. In general, assimilation drew the EnOL estimated TWS 587 

closer to the GRACE observations. In the absence of independent TWS observations, a 588 
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qualitative analysis of the increments in TWS indicated that GRACE assimilation could 589 

partially correct the TWS estimate for the influence of errors in the meteorological forcing 590 

data and model parameters. As result, an improvement in groundwater estimate after 591 

assimilating GRACE data was noticeable, with an overall improvement up to 71% 592 

(correlation coefficient) and 35% (RMS error) over the EnOL case. However, it is found that 593 

the improvement in TWS estimates did not always translate to an improved agreement 594 

between the estimated and observed groundwater storage variation at certain well locations. 595 

The differences may be due to the OpenStreams wflow_hbv parameters: if the upper limit on 596 

soil moisture storage is too high (low), then the groundwater variations could be under (over)-597 

estimated. This is particularly relevant in the type of model where the calibration is per sub-598 

basin. This does not allow for local differences on the order of single or a few grid cells. The 599 

issue of scale is also significant because GRACE observes monthly variations on the order of 600 

hundreds of kilometres. Groundwater variations can be influenced by local features at finer 601 

scales. When the basin average is considered, validation against a denser network of well data 602 

or an independent groundwater model could be used to determine if an improvement occurs at 603 

the scale of the entire basin. 604 

Furthermore, the considered model was used to simulate runoff. The groundwater terms, UZ 605 

and LZ, primarily serve as reservoirs for quick and base runoff generation. Due to the coarse 606 

resolution of the observations, GRACE assimilation resulted in only a modest improvement in 607 

streamflow estimates. Correlation coefficients increased by up to 2 %, Nash Sutcliffe 608 

coefficients increased by up to 4 % and RMSE was reduced by up to 4 %.  609 

The second goal of this study was to investigate the potential value of assimilating GRACE 610 

observations in data-sparse regions. Results from four scenarios were compared in which the 611 

ensemble mean model parameters were either calibrated values, or basin average values and 612 

the meteorological forcing data were either local (high quality) data or global (poorer quality) 613 

data.  By comparing the four cases, it was shown that GRACE assimilation could correct for 614 

errors in model forcing data and parameter calibration by drawing the estimated TWS toward 615 

that observed by GRACE. This also resulted in drawing the estimated groundwater storage 616 

closer to the in situ measurement. Given that the most significant improvements were 617 

observed in the NCG case, this suggests that GRACE observations are most valuable in data 618 

sparse regions. In these regions any additional observations, even those at coarse spatial 619 

and/or temporal resolution, are welcome. GRACE can provide essential independent 620 
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observations for validation, and serves as a constraint for TWS within the assimilation 621 

process. In terms of streamflow, a comparison of the four scenarios demonstrates that the 622 

ability to capture high flow events is determined largely by the quality of the forcing data and 623 

the model parameters. The improvements in streamflow estimates after assimilation are 624 

modest. Nevertheless, we consider the obtained results as promising, particularly in data-625 

sparse scenarios, e.g., the NCG case. They indicate that GRACE contains information that can 626 

be useful for streamflow estimation. Whether updating TWS is the best way to use this 627 

information is an open question. An alternative strategy could be to use GRACE assimilation 628 

for parameter estimation at a sub-basin or basin scale and constrain the rainfall-runoff model 629 

through assimilation of soil moisture observations.  630 

In conclusion, GRACE assimilation is beneficial, and the largest improvements are generally 631 

observed in the NCG (i.e. “data-sparse”) cases. In addition to providing a modest 632 

improvement to the estimated streamflow, it may result in a noticeable improvement in TWS 633 

estimates, yielding an extra insight into the behaviour of the hydrological model, its forcing 634 

data and parameters. Further research will combine assimilation of GRACE and a soil 635 

moisture remote sensing product to constrain the SM estimate storage term, and ensure that 636 

improved TWS would lead to more consistently improved estimates of groundwater storage 637 

variations. Further research will also explore the value of assimilating GRACE into a 638 

groundwater model in which the primary processes of interest vary on temporal and spatial 639 

scales similar to those of GRACE. In addition, recent studies have explored the effect of 640 

spatial aggregation of GRACE TWS prior to assimilation (Forman and Reichle, 2013) as well 641 

as inclusion of the full GRACE error structure (Eicker et al., 2014). Combining the advances 642 

made in those studies with the assimilation framework presented here is expected to yield 643 

even more realistic estimates. As shown by De Lannoy et al. (2009), working with a spatially 644 

distributed state vector (3D-EnKF) can lead to an improved estimate. Given the coarse 645 

resolution of GRACE, we expect that implementing a 3D-EnKF within the assimilation 646 

framework would lead to an improved performance. This could be particularly important in 647 

small basins like the Rhine, and can be used to account for the fact that the GRACE 648 

overpasses are infrequent and may not sensitive to TWS variations in response to specific 649 

events.  650 

651 
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 652 

Appendix A: Names of well locations 653 

Table A1: Names of the well locations used in this paper. 654 

Location 

number 

Name Source 

1 Sundern Ministerium für Klimaschutz, Umwelt, 

Landwirtschaft, Natur- und 

Verbraucherschutz des 

LandesNordrhein-

Westfalenb(http://www.elwasweb.nr

w.de) 

2 GEW KOELN 557 

3 SHELL GODORF GW I 

4 LGD BN-BEUEL 

5 Stetten S1  

 

Bayerisches Landesamt für 

Umwelt(http://www.gkd.bayern.de) 

6 Dietersdorf 

7 Haβfurt Q2 

8 Limbach Q1 

9 Rattelsdorf 136 

10 Faulbach 

11 01373X0130/A25  

 

 

Portail national d’Accès aux 

Donnéessur les Eaux 

Souterraines(http://www.ades.eaufran

ce.fr) 

12 
02303X0065/P 

13 
02307X0281/S 

14 
01995X0030/563 

15 
02344X0082/326E 

16 
02344X0055/319 

17 
02348X0009/319C 

(called A319C in this 

paper) 

18 
03426X0197/136 

 655 

 656 
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Table 1. Parameters of the soil moisture and runoff routines in the OpenStreams wflow_hbv 885 

model. 886 

Parameter Description Unit 

fc Maximum soil moisture storage mm 

β Empirical based parameter determines the relative 

contribution to runoff from soil moisture storage 

- 

cflux Maximum value of capillary rise from upper zone storage to 

soil moisture storage 

mm/day 

khq Recession constant of upper zone storage, determines the 

amount of quick runoff from upper zone storage 

1/day 

perc Maximum percolation value (from upper to lower zone 

storage) 

mm/day 

lp Soil moisture fraction above which actual evapotranspiration 

(ET) equals potential ET 

- 

k4 Recession constant of lower zone storage, determines the 

amount of baseflow from lower zone storage 

1/day 

α Non-linearity parameter of upper zone storage - 

887 
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Table 2. Daily mean values of the forcing data at Sundern during summer (JJA) months. 888 

 Precipitation (mm) Temperature (oC) PET (mm) 

 Local Global Local Global Local Global 

2004 5.48 5.21 16.10 17.65 2.47 3.30 

2005 5.25 4.68 16.12 17.46 2.47 3.55 

2006 4.96 4.39 17.64 19.25 2.47 3.90 

2007 9.97 7.08 16.09 17.52 2.47 3.25 

 889 

Table 3. Ensemble mean parameter values at the Sundern, and A319C well locations for the 890 

calibrated and non-calibrated simulations. 891 

 Sundern A319C 

Parameter Calibrated Non-calibrated Calibrated Non-calibrated 

fc 239.03  179.12  130.95  181.98  

β      2.06       1.65       1.95       1.68  

cflux      0.06       0.27       0.41       0.30  

khq      0.10       0.12       0.06       0.09  

perc      0.67       1.15       0.43       1.09  

lp 

k4 

     0.88  

     0.63 

     0.75  

     0.03 

     0.67  

     0.01 

     0.72  

     0.03 

892 
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Table 4. Correlation coefficient computed between monthly mean estimated GW variation 893 

and monthly mean in situ variation. Names of the stations (first column) are provided in 894 

Appendix A. 895 

 CL CG NCL NCG 

 EnOL EnKF EnOL EnKF EnOL EnKF EnOL EnKF 

1 0.85 0.83 0.71 0.74 0.79 0.85 0.70 0.78 

2 0.57 0.68 0.32 0.52 0.43 0.65 0.38 0.45 

3 0.69 0.81 0.46 0.68 0.51 0.73 0.46 0.61 

4 0.60 0.67 0.42 0.58 0.50 0.75 0.60 0.67 

5 0.71 0.68 0.67 0.76 0.71 0.72 0.72 0.78 

6  0.57 0.64 0.58 0.66 0.74 0.78 0.66 0.72 

7 0.77 0.80 0.67 0.71 0.80 0.83 0.64 0.72 

8 0.75 0.80 0.65 0.78 0.81 0.83 0.62 0.74 

9 0.50 0.64 0.54 0.70 0.72 0.78 0.65 0.80 

10 0.56 0.58 0.50 0.55 0.66 0.70 0.42 0.46 

11 0.41 0.55 0.31 0.53 0.71 0.73 0.72 0.74 

12 0.71 0.80 0.64 0.71 0.76 0.85 0.74 0.78 

13 0.77 0.80 0.50 0.56 0.72 0.84 0.59 0.66 

14 0.71 0.70 0.73 0.74 0.33 0.47 0.51 0.56 

15 0.82 0.85 0.67 0.69 0.72 0.83 0.65 0.71 

16 0.68 0.80 0.55 0.64 0.77 0.88 0.63 0.71 

17 0.67 0.79 0.55 0.60 0.70 0.82 0.57 0.66 

18 0.65 0.66 0.64 0.65 0.45 0.54 0.59 0.63 

Mean 0.67 0.73 0.56 0.66 0.66 0.75 0.60 0.68 

896 
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Table 5. RMSE [mm] computed between monthly mean estimated GW variation and monthly 897 

mean in situ variation. Names of the stations (first column) are provided in Appendix A. 898 

 CL CG NCL NCG 

 EnOL EnKF EnOL EnKF EnOL EnKF EnOL EnKF 

1 4.16 3.84 5.63 4.02 7.00 6.99 8.37 5.40 

2 5.34 4.91 6.66 5.96 6.36 5.73 10.78 8.14 

3 3.62 3.06 5.04 4.35 5.96 4.85 10.64 8.13 

4  3.79 3.65 4.41 3.55 5.83 5.03 9.00 7.56 

5 9.72 8.30 6.89 5.49 8.43 7.83 6.06 5.03 

6  6.19 5.19 5.47 5.26 7.56 6.31 5.25 4.29 

7 8.30 6.75 7.48 6.99 6.45 5.88 7.36 6.82 

8 8.76 6.59 6.63 4.96 5.21 5.20 5.71 4.67 

9 5.95 5.38 5.16 5.09 7.33 6.43 5.43 3.91 

10 8.95 7.64 6.44 5.66 8.92 8.54 7.62 6.21 

11 6.03 5.10 6.21 4.89 9.88 8.32 11.43 8.30 

12 7.17 6.37 7.33 7.42 6.24 5.01 6.58 5.95 

13 6.25 5.34 6.80 5.91 7.90 7.55 8.84 8.53 

14 12.67 10.16 11.43 9.01 9.34 7.97 9.29 7.21 

15 8.83 8.28 10.28 10.08 9.78 8.31 10.08 9.89 

16 12.74 9.58 13.20 10.60 9.76 8.32 10.44 9.78 

17 12.01 9.17 11.10 9.54 7.59 6.14 7.90 6.38 

18 7.23 7.50 8.62 7.94 9.59 8.42 9.51 7.88 

Mean 7.65 6.49 7.49 6.48 7.73 6.82 8.35 6.89 

899 
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 900 

Figure 1. River gauge (circle) and well (triangle) locations over the Rhine River basin used in 901 

this paper. Red triangles indicate Sundern (1) and A319C locations (17). Names of all well 902 

locations are given in Table A1. 903 

904 
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(a) 905 

 906 

(b) 907 

 908 

Figure 2. (a) OpenStreams wflow_hbv model structure, adapted from Schellekens (2014).  (b) 909 

Sample results of the nominal run related to soil moisture (SM), upper grounwater zone (UZ), 910 

and lower groundwater zone (LZ) storages averaged over Rhine River basin.911 
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 912 

Figure 3. Calibrated parameters of the soil moisture and runoff response routines of the 913 

OpenStreams wflow_hbv model.914 
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 915 

Figure 4. Mean daily precipitation, temperature, and potential evapotranspiration in 2006 916 

from the local (left) and global (right) forcing datasets.917 
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 918 

Figure 5. Area-averaged mean terrestrial water storage (TWS) over the Rhine River basin 919 

from the EnOL, EnKF and GRACE observations in 4 different scenarios (CL: calibrated 920 

parameters with local forcing data, CG: calibrated parameters with global forcing data, NCL: 921 

non-calibrated parameters with local forcing data, NCG: non-calibrated parameters with 922 

global forcing data). 923 

924 



 41

 925 

Figure 6. Averaged increment (posterior minus prior) of TWS in mm during the winter 2005-926 

2006 (left) and summer of 2006 (right) in 4 different scenarios (CL: calibrated parameters 927 

with local forcing data, CG: calibrated parameters with global forcing data, NCL: non-928 
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calibrated parameters with local forcing data, NCG: non-calibrated parameters with global 929 

forcing data). The polygons in the right column define the southern part of Moselle basin.930 
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 931 

Figure 7. TWS variation (left) and GW variation (right) at the Sundern well location in 4 932 

different scenarios (CL: calibrated parameters with local forcing data, CG: calibrated 933 

parameters with global forcing data, NCL: non-calibrated parameters with local forcing data, 934 

NCG: non-calibrated parameters with global forcing data).935 
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 936 

Figure 8. TWS variation (left) and GW variation (right) at the A319C well location in 4 937 

different scenarios (CL: calibrated parameters with local forcing data, CG: calibrated 938 

parameters with global forcing data, NCL: non-calibrated parameters with local forcing data, 939 

NCG: non-calibrated parameters with global forcing data).940 



 45

 941 

Figure 9. Estimated and observed streamflow at the Maxau gauge station in 4 different 942 

scenarios (CL: calibrated parameters with local forcing data, CG: calibrated parameters with 943 

global forcing data, NCL: non-calibrated parameters with local forcing data, NCG: non-944 

calibrated parameters with global forcing data).945 
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 946 

Figure 10. Estimated and observed streamflow at the Wesel gauge station in 4 different 947 

scenarios (CL: calibrated parameters with local forcing data, CG: calibrated parameters with 948 

global forcing data, NCL: non-calibrated parameters with local forcing data, NCG: non-949 

calibrated parameters with global forcing data).950 
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 951 

Figure 11. The correlation coefficient (left), Nash-Sutcliffe coefficient (middle) and RMS 952 

error (right) computed between estimated streamflows and gauge measurements in 4 different 953 

scenarios (CL: calibrated parameters with local forcing data, CG: calibrated parameters with 954 

global forcing data, NCL: non-calibrated parameters with local forcing data, NCG: non-955 

calibrated parameters with global forcing data). Results are shown for the Maxau (Max), 956 

Mainz (Mai), Andernach (And), and Wesel (Wes) gauge stations. Average values (Avg) 957 

calculated across all 13 gauge locations are shown in the rightmost bar of each histogram, 958 

with the standard deviations indicated by error bars. 959 


