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Abstract

The ability to estimate Terrestrial Water StorageNG) realistically is essential for
understanding past hydrological events and predjctuture changes in the hydrological
cycle. Inadequacies in model physics, uncertamtyodel land parameters, and uncertainties
in meteorological data commonly limit the accuradyhydrological models in simulating
TWS. In an effort to improve model performanceds thtudy investigated the benefits of
assimilating TWS estimates derived from the Grawigcovery And Climate Experiment
(GRACE) data into the OpenStreams wflow_hbv modahgi an Ensemble Kalman Filter
(EnKF) approach. The study area chosen was theeRRiver basin, which has both well-
calibrated model parameters and high-quality fgyaata that were used for experimentation

and comparison. Four different case studies weaeneed which were designed to evaluate
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different levels of forcing data quality and regan including those typical of other less
well-monitored river basins. The results were \atiédl using in situ groundwater and stream
gauge data. The analysis showed a noticeable iraprent in groundwater estimates when
GRACE data were assimilated, with a best-case iwgment of 71% in correlation
coefficient (from 0.31 to 0.53) and 35% in RMS er(mom 8.4 to 5.4 cm) compared to the
reference (ensemble open-loop) case. The cormelabod RMSE improvements in
groundwater estimates for the data-sparse caseupet@ 33% and 35%, respectively, while
the average improvements for all four cases evedilaaere 13 % and 14%, respectively. Only
a slight overall improvement was observed in stfé&@mestimates when GRACE data were
assimilated. Further analysis suggested that thikkely due to sporadic short-term, but
sizeable, errors in the forcing data and the ldckudficient constraints on the soil moisture
component. Overall, the results highlight the binef assimilating GRACE data into
hydrological models, particularly in data-sparsegioas, while also providing insight on

future refinements of the methodology.

1 Introduction

Terrestrial Water Storage (TWS) is the integratech ©f all surface water, soil moisture,
snow water, and groundwater availability, and isietric critical for monitoring the water
supply for domestic, industrial, and agriculturat®rs. The ability to estimate TWS is useful
for understanding past events and predicting futthianges in the hydrological cycle,
streamflow and water availability, as well as theipact on the occurrence of droughts, heat
waves, and floods (Hirschi, et al., 2007). The widlial components of TWS influence the
climate system in different ways. Soil moisturaimajor source of water for the atmosphere
in the terrestrial water cycle (Jung et al, 2019J @lays a particularly important role in the
climate system (Seneviratne et al., 2010). Soilstooe estimates are also useful for seasonal
predictions, and have been shown to improve priedistof air temperature in North America
(Koster et al., 2010) and Europe (van den HurK.eR812). Similarly, realistic estimation of
the snowpack can improve the prediction of neafasartemperature at high latitude regions
at 15-30 day scales (Orsolini et al., 2013). Finajroundwater variability influences soil
moisture and evapotranspiration, and is relatetbig-term water availability and climate
changes (Bierkens and van den Hurk, 2007; Greah,&011).
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Despite the importance of having reliable estimafeBWS, knowledge about the spatial and
temporal variations of TWS and its components isegally lacking. This is particularly true
at large scales, due to the absence of global oromgt systems. Ground-based
measurements, while very accurate, only providetpwise estimates (Dorigo et al., 2011;
Lettenmaier and Famiglietti, 2006). Large spatiaverage can be achieved using satellite
remote sensing observations, but these often measily one component of the total storage
and suffer from additional limitations. For exampie the case of soil moisture, satellite
observations are limited to the top few centimetethe soil column and to areas free from
dense vegetation cover (e.g., de Jeu et al., 2BA&khabi et al., 2010; Kerr et al., 2012).
Variations in surface water can be observed witlellga altimetry but this technique is
currently limited to large target areas (>10 kmhdP et al., 2012; Schwatke et al., 2013,
Kleinherenbrink et al., 2014).

Since measurements alone are not sufficient to ceimepsively monitor all components of
TWS, hydrological models are often employed. Amsgrpoint of hydrological models is their
ability to obtain spatially distributed estimatesfferentiate TWS components, and simulate
changing boundary conditions. Many hydrological elecare available, which vary in terms
of process description, temporal resolution, spatgsolution, and the detail in process
representation (Koster et al., 2000; Rodell et26104). Models vary in terms of which TWS
components are included in the model, and how #reyrepresented. The performance of
hydrological models is also influenced by the aacyrof the input forcing data and the
quality of the model calibration. The existencenuddel uncertainties motivates the need to
combine the model with independent observationshitain a better representation of the

system’s behaviour.

Changes in TWS can also be estimated by obsenangtions of the regional gravity field
over time. The idea is that changes in water s@ragcluding those deep underground,
induce a gravitational signature proportional te timount of (water) mass redistribution.
Since 2002, these variations have been measuretthebyGravity Recovery and Climate
Experiment (GRACE) satellite mission (Tapley et, &004). GRACE allows temporal
variations of Earth’s gravity field to be observatdspatial scales ranging in the hundreds of
kilometres, and at time scales as short as onehm@stpart of the GRACE data processing,
atmospheric and ocean related time-variable graeffgcts are removed from the data,

leaving the remaining gravity signal over the coatits mostly representing changes in TWS
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(in some areas, additional removal of other nuisasignals is needed, such as those due to
glacier melting, glacial isostatic adjustment, amegathrust earthquakes). The GRACE
mission has enabled the first direct observatidiarge-scale TWS, and studies to date have
shown high correlation with modelled TWS in termfsseasonal dynamics and regional
spatial patterns (Syed et al., 2008; Becker e8ll,1; Longuevergne et al., 2013). A unique
feature of satellite gravimetry is that it obsertles total column of mass variations (including
groundwater) while other remote sensing techniquaes only penetrate to a very limited
depth, often just a few centimetres. In contragiytdrological modelling, it is not possible to

identify which layer the inferred mass variatioas de attributed (Rodell et al., 2009).

Several earlier studies have employed data assiomlato combine the strengths of
hydrological modelling and GRACE observations amdhitigate their respective weaknesses
(Zaitchik et al., 2008; Su et al., 2010; Houborgakt 2012; Li et al., 2012; Forman et al.,
2012). In data assimilation, the model states amsttained by observations, taking into
account the estimated uncertainties for both thdehstates and the observations (Evensen,
2003; Reichle, 2008). Employing data assimilatioovgles a mechanism to downscale the
coarse GRACE TWS variations to the temporal antiap&solution of the model as well as
providing insight from the hydrological model intbe distribution of TWS between the
individual storage terms. Zaitchik et al. (20083iaslated GRACE into the Catchment Land
Surface Model to estimate the TWS over the Misg@sRiver Basin. Houborg et al. (2012)
and Li et al. (2012) applied a similar strategyirtgprove the drought indicator over North
America and Europe, respectively. Su et al. (2G@) Forman et al. (2012), extended the
work of Zaitchik et al. (2008) to improve the estited snow water equivalent over North
America and northwestern Canada, respectivelyresults from earlier studies reported that
assimilating GRACE improved, or at least did notgrdele, the hydrology model’s
performance. In particular, good agreements betwestimated state variables, e.g.,
groundwater and streamflow, and the in situ measen¢és were observed. This study adds to
these prior works by examining how GRACE assinolatperforms when the hydrological
model is not well calibrated or when unreliable @oeblogical data are used to force the
model. This focus of the study is on the RhineeRiwasin (Fig. 1), which is significantly
smaller than the large basin or continent scaldissuof these prior works, so the analysis
presented here provides new insight into the perdmce of GRACE assimilation over
smaller basins. And, while previous data assinafatstudies have been performed in the
Rhine and neighbouring basins (e.g. Weerts andf{5e2806; Rakovec et al., 2012), this
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study is the first to incorporate GRACE observadion the assimilation scheme for this

region.

The primary goal of this study was to understaredithpact of GRACE assimilation on the

estimated TWS, groundwater (GW) variations andastiftow in the Rhine basin. The second
goal was to investigate the potential value ofragating GRACE observations in data-sparse
regions. Four scenarios were considered in whiehntodel parameters used were either
calibrated (high quality) or basin-averaged (pooalify) values, and the forcing data were
obtained from either local (high quality) or gloldgborer quality) datasets. In this context,
comparison of the four scenarios provides insigtd how GRACE can be used to constrain

hydrological models when limited data are available

2 Hydrological modelling

The hydrological model employed in this study i® tOpenStreams wflow _hbv model
(Schellekens, 2014). This is a distributed versabrthe HBV-96 model, named after the
Hydrologiska Byrans Vattenbalansavdelning (Hydratat Bureau Waterbalance-section).
The HBV model was originally developed at this fermsection of the Swedish
Meteorological and Hydrological Institute (SMHI) the early 1970’s. Since then, the HBV
model has been used in over 40 countries. In 189€ymprehensive re-evaluation of the
HBV model routines was carried out (Lindstrom et 4897), which resulted in the HBV-96
version. The OpenStreams wflow_hbv model is a warnd this model, programmed in the
PCRaster-Python environment (Karssenberg et aQ9)2(but using a kinematic wave for
hydrological routing. It is publicly available thrgh the OpenStreams project
(https://code.google.com/p/wflow/, last access aBudry 2015). The defined grid resolution
used in this study was 1 km. A schematic representaf OpenStreams wflow_hbv is given
in Fig. 2 (a) and the key parameters of the soikimeoe and runoff response routines are listed

and described in Table 1.

OpenStreams wflow_hbv consists of three main restif) precipitation and snowijij soll
moisture, and i{i) runoff. The water from either precipitation orosn first enters the
interception storage and snow routine. The remgitiouid water (from rainfall and snow
melt) after the snow routine infiltrates into th&lsThe soil moisture storage term (SM in
[mm]), which includes both surface and root zong swisture is controlled by three main

parameters fc, Ip, anfti(see also Table 1). When the amount of water elsctee maximum
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capacity (fc), the excess water becomes availaliaifect runoff. Within the soil layer,
seepage is generated and controlled by an empipaameter. The volume of water
available for runoff (direct runoff and seepagejransferred to the runoff response routine.
Additionally, some percentage of the soil moistesneaporates, which is controlled by a
defined threshold (fcxIp).

Two linear reservoirs are defined in the runofftinog, namely the upper and lower zones (UZ
and LZ). The excess water from SM recharges themuppne, and some of the water in UZ
percolates to LZ, as determined by the perc pammat the same time, capillary flow from
UZ to SM also occurs, controlled by cflux. The rifrgeneration in UZ is controlled mainly
by two main parameters, the recession constani @hd the non-linearity parametet).(LZ
contributes the water to the base flow throughréeession constant (k4). The amount of base
flow is simply the multiplication between k4 andetamount of LZ. Runoff from UZ and LZ

then enters the routing model to determine thastfiow.

For reference, TWS is defined here as the sum of SKland LZ. Groundwater storage
(GW) is defined as the sum of UZ and LZ. Theseagjerterms are calculated in the soil
moisture and runoff response routines. Fig. 2 flos the simulated SM, UZ and LZ from a
nominal model run (i.e. using the calibrated partamseand local forcing data). The main
source of TWS variation in this model is SM, wittetvariations in LZ and UZ an order of
magnitude smaller. Extraction of groundwater fogation is considered to be small over our
study region. It accounts for less than 13kmar. Industry is the largest user (Wada et al.
(2014). However, The net removal is small as o6 lof the total water withdrawal over the
Rhine is from groundwater and the water is re-ohiiced to the system after being used for
industry. This is markedly different to the extrantof groundwater for irrigated agriculture
observed in India (Ferrant et al., 2014). Therefties impact on TWS is not considered in

this study.

The OpenStreams wflow_hbv model was calibrated tfee Rhine river basin using
observations from in situ streamflow gauges (Misdetrral., 1999; Eberle et al., 2002; 2005;
Photiadou et al., 2011). The spatial distributiérin@ calibrated model parameters is shown
in Fig. 3.

In data-sparse regions, a lack of in situ (metegichl and streamflow) data makes it
difficult to calibrate hydrological models (Sivapal et al., 2003; Hrachowitz et al., 2013).

Therefore, we decided to add “non-calibrated” casesur simulations. In those cases, we

6
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defined the non-calibrated parameters as the wae#iraged values of the calibrated

parameters in the entire basin, and used thesvéoy grid cell in the basin.

3 Datasets

3.1 GRACE observation

The most recent release (RLO5) of the GRACE grawmitydel product, generated by the
University of Texas at Austin’s Center of Space ddesh (CSR: Bettadpur, 2012), was used
in the analysis. The CSR RLO5 models represennha-sieries of Stokes coefficients up to a
maximum spherical harmonic degree and order ofaé@, are provided monthly. Following
the GRACE conventional processing steps, degresefficients provided by Swenson et al.
(2008) were added, and the degree-2 coefficients vaplaced by the values estimated from
satellite laser ranging (Cheng and Tapley, 2004aridfions in the gravity field were
computed by removing the long-term mean (computett the entire study period, see Sect.
5) from each monthly solution. The TWS variationgmothe Rhine basin were then produced
using the approach described by Wahr et al. (188&ause of strong noise artefacts present
in the high degree coefficients, a de-stripingefilsimilar to that described in Swenson and
Wahr (2006) was applied to each monthly solutione Tilter used a 5th degree polynomial
(Savitsky-Golay) over a 5-point window to removee tborrelations, and orders below 8
remained unchanged. Further, an additional 250ddius Gaussian smoothing (Jekeli, 1981)
was applied. While this process helps to mitigabdésen in the solution, it also attenuates
genuine signal, so a scale factor is often apphiezh effort to restore some of the signal that
gets “leaked” out of the basin due to the spatitdring. To that end, scale factors using the
Global Land Data Assimilation System (GLDAS) hyamical model (Rodell et al., 2004)
were computed following the method described bydemar and Swenson (2012). The sum of
four soil moisture layers (0 to 2 m) and a snowewaquivalent layer from a monthly
GLDAS NOAH Version 1 model was defined as the TWA& (least squares) fitted the time
series between the original and filter GLDAS atrgvgrid node over the Rhine using only
one scale factor. The estimated filtering scaleofacvaried between 0.98 and 1.02 over the
Rhine River basin. The correction for glacial isti@ adjustment, which has been shown in
other regions to affect the interpretation of ldegn trends (Peltier, 2004), was determined to
be small in our study, so the corresponding cawaat/as not applied.
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3.2 Forcing data

The forcing data required to drive the OpenStreaviilsw_hbv model are precipitation,
temperature and potential evapotranspiration (PEWp types of forcing data were used in
this study. “Local” forcing data indicates the bastilable data, and “global” forcing data

indicates a lower quality dataset but one whicavigilable globally or nearly globally.

In this study of the Rhine basin, local forcing alaefer to meteorological data from the
network of local weather stations, providing higlspatial and temporal resolution. Local
precipitation and temperature data were retrieveth fthe European Climate Assessment &
Data set (ECA&D) and ENSEMBLE project, known as BS)data (Haylock et al., 2008).

Data collected from several hundred ground statiegr® combined to produce a daily grid of
precipitation and mean surface temperature at &-@egree spatial resolution. Local PET
data were derived from climatological data obtaifrech the Commission for the Hydrology

of the Rhine basin (CHR) and the German Meteoroligbervice (DWD) (Weerts et al.,

2008). The daily local PET was interpolated froimanthly mean value with a fixed annual
cycle and was available at a 1-km spatial resalufMeerts et al., 2008; Photiadou et al.,
2011).

Global precipitation and temperature data wereiobtafrom Sheffield et al. (2005). These
data are constructed based on the long-term nefmesumeteorological variables from the
National Centers for Environmental Prediction—NadilbCenter for Atmospheric Research
(NCEP/NCAR) reanalysis product. The daily globaqgipitation and temperature data were
provided at a spatial resolution of 0.5-degree. §lobal PET, the 1-degree daily product
generated by Senay et al. (2008) was used.

Fig. 4 shows a comparison between mean daily gtatgn, temperature and PET in 2006
from the local and global forcing datasets. For thean temperature, aside from the
resolution difference, the spatial distribution andgnitude is very similar between the two
datasets. On the other hand, significant differeraan be seen between the local and global
precipitation data, especially over the High Rhibéferences are also observed in the PET
products, with the global dataset having genetatijer values than the local one, in addition

to the much coarser spatial resolution of the dlpbaduct.
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3.3 Validation data

Groundwater and streamflow measurements from vaenmiworks are used to validate our

estimated results.
3.3.1 Groundwater data
In situ groundwater measurements were obtained &alifferent networks:

1) Ministerium fur Klimaschutz, Umwelt, Landwirtschallatur- und Verbraucherschutz
des Landes Nordrhein-Westfalen (http://www.elwasweh.de, last access: 5 March
2014)

2) Bayerisches Landesamt fir Umwelt (http://www.gkgdra.de, last access: 5 March
2014)

3) Portail national d’Acces aux Donnéessur les Eauxut&8mines (ADES,

http://www.ades.eaufrance.fr, last access: 17 Magd)

Measurements that did not exhibit seasonal vanatiwere flagged as belonging to confined
aquifers, and were excluded. Data from station$ wieekly measurements (e.g., ADES)
were interpolated to daily intervals. A total ofleieen wells were used for validation. Their

locations are shown in Fig. 1, and their namesgpeoeided in Table Al.

The in situ groundwater measurements were providete form of piezometric head. The
variations in piezometric head can be related toatians in groundwater storage if the
specific yield is known (Rodell et al., 2007). ABet latter data were unavailable, the
piezometric head was scaled to the units of GWagtibased on other GW data. Previous
studies have demonstrated that subtracting SM egfrom GLDAS from GRACE was able
to extract the groundwater component from GRACEaweral regions e.g., North America
(Rodell et al., 2006; 2007), Australia (Tregoningk, 2012), the Middle East (Longuevergne
et al., 2013), etc. We adopt a similar idea by gidime relationship betweeNTWS-ASM
(TWS variation from GRACE minus SM variation) andetobserved head to scale the
observed head. Ideally, we would prefer to usdtinsoil moisture data to represent the SM
term, but they are not available at the well lawadi and the nearest station from the
International Soil Moisture Network (ISMN: Doriga a@l., 2011) does not have data covering
the GRACE observation period. The soil moisturenestied from remote sensing was also
not appropriate because the penetration depth depem frequency and would not be the
same as that in OpenStreams wflow_hbv. Therefoeed®&cided to use GLDAS-derived SM

9
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in this study. The SM variation from GLDAR$Mg pas) was computed by removing its
long-term mean value. The long-term mean value pvaduced from all GLDAS SM data
over the same period as the GRACE observations3set 5). The groundwater variations
from GRACE QAGWgracg) Were obtained by removindhSMg pas from the GRACE
observations every montAGW;race Was interpolated to daily values in order to corapa

to the daily head variationsh. The comparison was done using the following retesthip:
AGWGRACE +e=a+b-Ah (1)

wheree indicates the observation error. The two pararaetandb were estimated by least-
squares regression. The scaled in situ GW varidh@W,, i) were then obtained from the

observed variations in piezometric head using:

AGWiy_gity = @ + b - Ah (2)
wherea, b are the parameters estimated from Eq. (1).

3.3.2 Streamflow data

Streamflow was validated using observations froenttirteen in situ gauges indicated in Fig.
1. Time-series were provided by the Hydrological ddiling Basis in the Rhine Basin
(HYMOG; Bader et al., 2013). The hourly data weggragated to daily data for this study.

4 Data assimilation

4.1 Ensemble Kalman Filter

The Ensemble Kalman Filter (EnKF) is used here gsimailate GRACE TWS into the

OpenStreams wflow_hbv model. The EnKF uses a M@a#do approach: an ensemble of
model states is integrated forward in time usirggfrward model. The update equation from
the classical Kalman filter is used to update thedeh estimate, where the Kalman gain is
determined using the error covariances calculatewch the ensemble (Evensen, 1994). The
EnKF and its variants are widely used because dnefficient, easy to implement and allow
great flexibility in terms of model uncertainty (&vsen, 2003). In this study, we implement a
so-called 1D-EnKF (De Lannoy et al., 2009) in whesdrch grid cell is updated individually.

The state equation in discrete form is given as:
Wt +1) = f(e),ult + 1), a,w(?)) (3)

10
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wheref is the model operatoiy is the state variablesy is the forcings,x is the model
parameters, and is the model error. In this paper, the state \wem (/) are amx1 vector of
TWS from OpenStreams wflow_hbv. The observatioralable at a measurement tirnare
gathered in a vector of observatiah6TWS from GRACE):

d(t) = HY(t) + €, e~N(0,R) 4)

whered is anmx1 vector containing the observation$,is measurement operator which
relates the statg(t) to the measured variabld&). In this study, the observation and the state
vector are TWS, so=m=1 andH is the unit matrix. The uncertainties in the olagons are
given in the random erret which is assumed to have zero mean and covarraat@x R. In

the initialization phase, the EnKF is initializey enerating an ensembig ¢f N realizations

of the state vectaoy;(t), i=1,... N around a nominal(t). This reflects the prior knowledge of
the state at the initial time. The EnKF moves sataky from one observation time to the
next and works in two steps, a forecast step angpdate step. At the updated titn@vhen
the observation is available), an ensemble of pgegtliobservations(t) is generated as:

di(6) = d(t) + €(2), (5)

wheree; denotes the perturbation of the error of eachrahemember. If the ensembles of
the variables are stored in a matdix= (4, Y, ¥, ..., Yy), the ensemble perturbation matrix
can be defined ad’ = A — A whereA is the mean computed from all ensemble members.
Similarly, the ensemble members of the observadioth perturbations are gathered into the
matricesD = (dy,d,,ds, ...,dy) andy = (€1, €,, €3, ...,€y). The analysis equation can be

expressed as (Evensen, 2003):
A%(t) = A(t) + A (AT (OHT(HA' (DA ()HT + ny)_l(D(t) — HA(t)) (6)

whereA® is the analyzed model state

4.2 Assimilating GRACE observations

Several steps must be taken before GRACE TWS caasbenilated into OpenStreams
wflow_hbv. GRACE observations represent average TAi&tions over one month, while
the OpenStreams wflow_hbv model has a daily tirep.dh this study, it is assumed that the
average TWS corresponds to the middle of the monilen, spline interpolation between
consecutive months is used to generate a timessefiGRACE TWS variations at five-day

intervals. The five-day interval was chosen throtrggd-and-error to be a good compromise

11
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between allowing the ensemble to grow between egdatd avoiding implausible jumps. As
in any land surface assimilation application, tipelate results in discontinuities as mass is
added or removed from the state but these arearg# Enough to be obvious when a five-day
interval is used (see Sect. 5.1). If the updaté f@ace at larger time interval (e.g., once a
month) and the entire increment was applied on dag more significant artefacts or
temporal discontinuities would occur (WidiastutiD0®). In order to convert GRACE
variations to absolute values the mean TWS in thdysperiod was calculated from the

nominal OpenStreams wflow_hbv run and added t@&slRACE time series.

GRACE observes total TWS, some components of whaih be neglected (e.g., nominal
OpenStreams wflow_hbv simulations indicate thafesi@r water and interception storage
contributed by less than 1 % to the estimated TW&)ow is also small averaged over the
study area (approximately 2% to the estimated Tw®&inter). Only over the Alps (see Fig.

1) is the snow contribution greater (approximai&ly). Therefore, we decided to exclude the
snow from the state vector. To reconcile GRACE peibtreams wflow_hbv TWS, we then
removed the snow component estimated from the rednmum from the GRACE prior to

assimilation. Note that in catchments where thevscmamponent is more significant, it should

not be excluded from the state vector.

In the EnKF, the GRACE TWS are calculated and atsied at each 1-km model grid cell
every five days. Because the analyzed model dtate) was an integrated value of TWS, the
increment QA(t) = A%(t) — A(t)) for every ensemble member needed to be dissesdinat
among the three stores, SM, UZ, and LZ. The infeienaabout the distribution of the
increment among the different model compartmentsidcdoe obtained directly from the
Kalman filter. However, we chose to carry out thegtical distribution in the way consistent
with the OpenStreams wflow_hbv model (Fig. 2). Whihe SM and LZ stores have upper
bounds determined by model parameters, UZ doesAwof result, allowing it to update
freely in the EnKF runs the risk that it becomesessively large, which would also have a
detrimental effect on runoff. Therefore, the incegrnis used to adjust the SM first, subject to
the upper and lower limits of zero and fc. Any rémray increment is applied in turn to LZ,

up to its upper limit, and only then to UZ.

The GRACE observation error is assumed to be 20 anth horizontal observation error
correlations are not considered. The 20 mm valwmisidered realistic as it was suggested

by several independent assessments e.g., Kleeg20@8), Wahr et al. (2006), Schmidt et al.

12



371
372
373
374

375

376

377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402

(2008) and it also had been applied in previous GRAssimilation studies (Zaitchik et al.,
2008; Houborg et al., 2012). Our philosophy wasdbthe GRACE errors to realistic values
determined from independent studies, so that thatisns were not guided towards any

particular outcome.

4.3 Uncertainty in model forcing data and parameters

In the EnKF, stochastic noise can be included irdehdorcing data and parameters to
account for model uncertainty. An earlier sendijiatudy (Widiastuti, 2009) was conducted
to identify the parameters of the OpenStreams wfldw model that had a significant impact
on TWS. Six such parameters, which includglp, g, cflux, khq, and perc were found.
Therefore, the soil moisture routine parameté&s|p andp, as well as the runoff routine
parameterscflux, khq and perc, were perturbed. For the “calibrated” case, thebcated
model parameters in each grid cell were perturts#tguadditive Gaussian noise, with a mean
of zero and a standard deviation equal to 10% efrdmge of values that occurred over the
whole Rhine basin. In the “non-calibrated” case thean parameter value in each grid cell
was set to the average calibrated value acrosstibée basin, and the standard deviation was
set to that of the calibrated parameter acrossvti®e basin. This was considered as a proxy
for assigning approximate values based on the ¢andr type, topography, and climatology
from the globally available databases. Averaginthgegrameter across the entire Rhine basin
is intended merely to reflect this kind of firstder assumption. Though not all OpenStreams
wflow_hbv parameters can be gleaned from such gldambases, we the averaged values
could be compared to those in the Food and AgticallOrganization of the United Nations
(FAO) database (http://www.fao.org/geonetwork/amitteain.home, last access: 5 December
2014). The areally averaged parameter values tneRhine were found to be within the
range the provided by FAO. For example, the aremligraged soil moisture field capacity
over the Rhine FAO provided is mostly between 150 200 mm, while the areally averaged
value of approximately 180 mm is used as a medhignstudy with a standard deviation of
33 cm. The meteorological forcing data were alspeda with the temperature data being
perturbed with additive Gaussian noise, and theipitation and PET being perturbed with
additive lognormal noise. In the “local forcing datase, noise with standard deviation based
on 10 % of the nominal value was added to prediprawhile 15 % noise was added to
temperature and PET. For the “global forcing datase, we assumed that the local forcing
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data were accurate and reliable, and the diffeseheéveen the local and global forcing data
represent the errors of global forcing data. Tiererwere assumed to be spatially correlated,
so an exponential correlation function was appleethe covariance matrix for each variable.
The correlation lengths for precipitation, temperat and PET were determined using

variogram analysis (Widiastuti, 2009) and foundbéo21 km, 21 km, and 59 km, respectively.

Recall from Sect. 1 and Sect. 3.2, that four casesconsidered in this study: 1) calibrated
parameters with local forcing data (CL), 2) caltbdh parameters with global forcing data
(CG), 3) non-calibrated parameters with local fegcidata (NCL), and 4) non-calibrated
parameters with global forcing data (NCG). Compmarisf the four scenarios provides insight
into the benefit of GRACE assimilation under diéflet degrees of uncertainty. The lowest

and highest levels of uncertainty are associatéid tve CL and the NCG cases.

5 Results and discussion

Using the EnKF approach described above, GRACEreasens were assimilated into the

OpenStreams wflow_hbv model. An ensemble of 100ehsthtes was propagated forward
from 1 Jan 2001 to 30 Nov 2003 to spin up the motileé ensemble state at the end of the
spin-up period provided the initial state for trssianilation. The study period is from 1 Dec

2003 to 31 Oct 2007 because the observed streamfésnronly available until Autumn 2007.

5.1 Impact of GRACE assimilation on TWS estimates

First, the impact of assimilating GRACE on the temgh and spatial patterns of the estimated
TWS is considered. For the temporal pattern, tlealanean of the estimated TWS over the
entire Rhine River basin was computed. The timeseaf TWS variations from the ensemble
open loop (EnOL, ensemble run without GRACE assitimh), EnKF, and GRACE

observations are shown in Fig. 5.

As expected, there is a seasonal cycle in the T®iates, which varies between £75 mm.
The high frequency variations in TWS in the CL a#@L that are not apparent in CG and
NCG are due to the coarser spatial resolution ef global precipitation product. Lower
spatial variability of the global data causes seotiveraged TWS presented in the CG and
NCG time series. During the summer of 2006 (Juuaky, August: JJA), the areal mean global

and local precipitation and temperature productee@gHowever, the global PET product
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estimates an areal mean PET of 4.10 mm/day whdddbal PET data suggest it was 2.89
mm/day. As the result, the minimum TWS in the Cld &CL cases in the EnOL is -69 mm

while CG and NCG are close to -90 mm. In this prl@RACE assimilation has little impact

on CL and NCL, but results in a significant (25 muapdate in TWS in the CG and NCG

cases. The largest difference between the EnOLEakd= occurs when TWS is increasing
(for example, October 2005). This is apparent incakes, but is greatest in the two non-
calibrated cases. In all cases, Fig. 5 shows tatmadation draws the TWS estimate toward
the GRACE observation.

The impact of GRACE assimilation also varies witline basin. Fig. 6 shows the spatial
distribution of the average increment (posteriornusi prior) in TWS during winter
(December, January, February: DJF, 2005-2006) amdrer (JJA) of 2006. During the
winter (left), the EnKF estimated wetter conditiamger entire Rhine River basin when the
local forcing data were used. In the Alps, the glgtrecipitation product is approximately
35% higher than the local precipitation producterdfore, GRACE assimilation reduced the
TWS estimate over the Alps in the CG and NCG cal3asng the summer (right), GRACE
assimilation reduced the TWS estimate over the Alpd Neckar basin when local forcing
data were applied, but adds moisture in the glolagh case. In this period, the local PET
product is 66% lower than the global product over Alps and 44% lower over the Lahn
basin. This is consistent with the increase in laagaraged TWS observed in the CG and
NCG cases in Fig. 5. Since the local precipitatiata are generally considered to be more
accurate, the adjustment of the TWS estimates tism#wose produced by the local product is

an excellent example of the benefit of GRACE adsitioin, particularly in data sparse areas.

In the Regnitz basin (east of domain), GRACE adation leads to a significant increase in
TWS in both calibrated cases during the winter thentin this basin, the upper zone
recession coefficienkliqg) is 0.52 in the calibrated case, compared torDtBe non-calibrated
case. This results in almost twice as much faspffun the calibrated case, which depletes
the terrestrial water storage in the winter mon@®RACE assimilation adds moisture to the
UZ and LZ stores, drawing the TWS closer to the @EAobservations.

In the summer, an average of 0.7 and 1.07 mm waswved in each update from the southern
part of Moselle basin in the CL and CG cases, sy (Fig. 6(b) and (d)), compared to
0.74 mm and 1.25 mm added per update in the NCLND@ cases. In the two calibrated

cases, the evaporation threshold value (the proofuict andlp) is approximately 11 % less
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than that in the non-calibrated cases. This leadids soil evaporation and higher soil
moisture in the calibrated cases. GRACE assimilatamluces the SM in the calibrated cases,
and increases it in the non-calibrated cases tov dtee TWS closer to the GRACE

observations in all cases.

5.2 Impact of GRACE assimilation on GW estimates

The TWS and GW variations from OpenStreams wflow_tere computed at every grid

cell. The estimates at the Sundern and A319C veetbsshown in Fig. 7 and 8. The two
stations represent the behaviour of the other h€osts (detailed below). For example,
stations 2, 3, 4, 6, 9, 10, 11, 13, and 18 havdaiimehaviour to Sundern, while the rest have
similar behaviour to A319C station. Recall that G\efined as the sum of UZ and LZ, so
the difference between the left and right colunsthe SM term. GRACE measures monthly
variations, so the monthly mean of TWS, GW estimaad the in situ data are shown.
Similar to the areal mean values, the TWS fromEh&F in the individual grid cells (left

column) is generally between the values from th® Eand those observed by GRACE.

At Sundern (Fig. 7) in the CG and NCG cases, theathof the forcing data was seen in the
summer of every year. Table 2 shows that the pitatign, temperature and PET at Sundern
were higher in the global forcing data than in kbeal data. Fig. 7(c) and 7(g) suggest that
this leads to a more negative estimate of TWSenBhOL for the CG and NCG cases. In the
EnKF results, these TWS estimates are drawn towdrdsGRACE observations. The

corresponding updates in terms of GW are largehénglobal forcing data case than in the
local forcing data cases - assimilation added apprately 5-10 mm of water to GW in the

global data cases. Similar behaviour was also se€h and NCL cases in summer 2005.

At Sundern, the estimated GW in the CL case aggegte well with the in situ values,
suggesting that the distribution between the SM @wd components is reasonable in the
calibrated cases. The fact that a good estimai@Ad® does not result in an improved GW
estimate indicates that the non-calibrated parameate leading to an incorrect distribution of
the TWS between the different stores. In the NCHd &CG casesfc is just 179 mm
compared to the calibrated value of 239 mm. SotHfersame TWS value, the non-calibrated
cases have more water in GW than the calibrategsc#@s a result, despite the agreement in

TWS in the winter months, the GW variation is colesably overestimated.
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In every case at the A319C well location (Fig.tBg EnOL estimated lower TWS in the first
half of 2004 and 2006, and higher in the secontidfahe same years. Assimilation updated
the TWS toward GRACE observation in these periodd eesulted in better agreement
between the assimilated and observed GW. In [ai&.2he estimated TWS from the EnOL
and EnKF are very close to the GRACE observatibltsvever, the estimated GW in both
cases is a lot lower than that observed in situdidsussed, the difference between the two is
soil moisture. The model is predicting a significarcrease in soil moisture in all four cases.
However, given there is little to improve in terofsSTWS, the GW estimate from the EnKF is
as bad as that from the EnOL.

The impact of the forcing data used is also pregserih CG and NCG cases, on 3 Oct and 23
Oct 2006, underestimated global precipitation cduke underestimated GW. GRACE could

not correct such a high frequency event due tdinméeation of its temporal resolution.

The choice of the parameters plays a role in thienatked GW magnitude (as seen in Fig. 7),
but now the non-calibrated parameters (comparethedocalibrated ones) provided closer
values to the in situ data (Fig. 8(f) and (h)). k&g non-calibrated fc parameter (see Table 3

for the values) was responsible for smaller GWhesties.

Tables 4 and 5 show the correlation coefficient &S error (RMSE) between the
estimated and in situ GW for all eighteen well komas indicated on Fig. 1. These were
calculated based on the monthly mean, but simésults were obtained using the daily
values. In most cases, assimilation leads to are@se in correlation coefficient and a
reduction in RMSE.

The results varied across the wells. The highesteladion coefficients in the EnOL
simulations were typically found in the CL caselldeed by the NCL. Clearly, using the
local forcing data has a significant impact in tesm features at a single grid cell. An
exception is the Main basin (wells 5, 7-10) whére global forcing data produce TWS more
consistently with the GRACE observations and hemeselt in a better agreement with the
GW. The highest correlation coefficients in theKEncases are also found in the two local
data cases. The improvements in correlation coeffi@are seen in all four cases. The CL and
NCL cases also yield the lowest RMSE values inEn®L case, and the results with the

EnKF are very mixed.

It is important to note that at many wells, the Na@hd NCG cases yield higher correlation
coefficients than the CL and CG cases, respectivdgall that the model is calibrated using
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streamflow, not groundwater data. So, while assitioh draws the modelled TWS towards
the GRACE observations, the model parameters haignéicant impact on whether or not
this translates to an improvement in GW estimate.

One of the objectives was to examine the potentisle of GRACE assimilation in data-
sparse regions. In the NCG case, it is encouratfia GRACE assimilation consistently
leads to an increase in correlation coefficient @3 %) and reduction in RMSE (up to 35
%). In other scenarios, assimilation of GRACE obatons also leads into an increase in
correlation coefficient (up to 71%, at station hlthe CG case) and a decrease in RMSE (up
to 35 %, at station 1 in the NCG case). In averagegelation and RMSE improvements in

groundwater estimates for all cases evaluated&fé and 14 %, respectively.

5.3 Impact of GRACE assimilation on streamflow estimates

The estimated and observed streamflows at Maxastr@gm) and Wessel (downstream)
gauge stations are shown in Fig. 9 and 10. Aceurating data, particularly precipitation,

are essential for reproducing the observed streamflThe high frequency variations in

streamflow associated with fast response to loaa&cipitation are often reproduced

reasonably well in the CL case, but not in the @Sec(compare Fig. 9(a) to 9(b) and 10(a) to
10(b)).

Use of the global data frequently underestimatesstreamflow. This is clear on 5 Jun 2004,
24 Aug 2005, 6 Oct 2006, and 10 Aug 2007 in Fidp) ¥nd 9(d). Comparing Fig. 9(a) to
9(b), it is clear that the larger peaks in streamfhre poorly estimated when the global data
are used. Because GRACE observations describe masmthations over a larger area, they
can do little to capture these individual streamflevents. By correcting TWS, GRACE
assimilation mainly influences the longer term g&tans. The difference between EnOL and
EnKF is very small in the CL case. The largestedéhces are observed in the CG and NCG
cases, where TWS is updated to correct for ermororcing data (e.g., summer 2004 and
2006 in Fig. 9).

Fig. 11 shows the impact of GRACE assimilation &e torrelation coefficient, Nash-
Sutcliffe coefficient (NS) (Nash and Sutcliffe, )7 and RMSE in streamflow. Results are
shown for four gauge stations along the main chamasewell as the average value across all
thirteen stations. These results underscore therapce of forcing data and calibration for
estimating streamflow. By far, the highest corielat coefficients and Nash-Sutcliffe
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coefficients and lowest RMSEs are obtained whealléarcing data are used. Use of global

forcing data leads to a significant loss in perfante. For example, using global rather than
local forcing data with the calibrated model resuft a decrease in correlation coefficient
from 0.89 to 0.65, a decrease in Nash-Sutcliffeéffament from 0.76 to 0.35 and an increase
in RMSE of 71 % in the EnKF results. Using the matibrated model rather than the

calibrated model also leads to poorer performatieagh to a lesser degree. For example,
using the non-calibrated rather than calibrated ehadth the local forcing data results in a

decrease in correlation coefficient from 0.89 t88).a decrease in Nash-Sutcliffe coefficient
from 0.76 to 0.65 and an increase in RMSE of 231 %heé EnKF results.

Compared to the differences due to forcing datacatbration, GRACE assimilation leads to
a relatively modest improvement in streamflow eates. In terms of correlation coefficient,
the largest improvements on average (Avg colume)faund when the global forcing data
are used. The correlation coefficient increasethffb64 to 0.65 in the CG case, and 0.65 to
0.66 in the NCG case. The largest improvement ahdinidual station was found at Maxau
where assimilation resulted in an increase in ¢atioe coefficient from 0.54 to 0.59 in the
NCG case.

Similarly, GRACE assimilation leads to a modest iayement in terms of NS coefficient.
The largest average improvement was from 0.62 &b On the NCL case. GRACE
assimilation slightly reduced the RMSE in all 4 emasThe greatest reduction is 4 % in the
NCL case.

Though it is encouraging that GRACE assimilatiopiiaved the estimated streamflow, these
results demonstrate that it clearly cannot replaigh quality forcing data or good model
calibration.

6 Conclusions

The first goal of this study was to investigate thmpact of assimilating GRACE into the
OpenStreams wflow_hbv model on the estimated tei@esvater storage, groundwater
storage and streamflow in the Rhine river basinAGR observations were assimilated into
each grid cell of the model with an EnKF to updédte soil moisture and upper and lower
zone storage terms of the model. In general, alsgion drew the EnOL estimated TWS
closer to the GRACE observations. In the absencenadpendent TWS observations, a
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qualitative analysis of the increments in TWS itk that GRACE assimilation could
partially correct the TWS estimate for the influeraf errors in the meteorological forcing
data and model parameters. As result, an improvenrergroundwater estimate after
assimilating GRACE data was noticeable, with an ralVeimprovement up to 71%
(correlation coefficient) and 35% (RMS error) otlee ENnOL case. However, it is found that
the improvement in TWS estimates did not alwaysdiae to an improved agreement
between the estimated and observed groundwatexgstaariation at certain well locations.
The differences may be due to the OpenStreams whbw parameters: if the upper limit on
soil moisture storage is too high (low), then tiheumdwater variations could be under (over)-
estimated. This is particularly relevant in theaygf model where the calibration is per sub-
basin. This does not allow for local differencestlo@ order of single or a few grid cells. The
issue of scale is also significant because GRACEee@s monthly variations on the order of
hundreds of kilometres. Groundwater variations larnnfluenced by local features at finer
scales. When the basin average is consideredatialidagainst a denser network of well data
or an independent groundwater model could be usddtermine if an improvement occurs at

the scale of the entire basin.

Furthermore, the considered model was used to atmulinoff. The groundwater terms, UZ
and LZ, primarily serve as reservoirs for quick d&age runoff generation. Due to the coarse
resolution of the observations, GRACE assimilatesulted in only a modest improvement in
streamflow estimates. Correlation coefficients éased by up to 2 %, Nash Sutcliffe

coefficients increased by up to 4 % and RMSE wdaged by up to 4 %.

The second goal of this study was to investiga¢epibtential value of assimilating GRACE
observations in data-sparse regions. Results foamdcenarios were compared in which the
ensemble mean model parameters were either calibvaues, or basin average values and
the meteorological forcing data were either lotagli quality) data or global (poorer quality)
data. By comparing the four cases, it was showah @RACE assimilation could correct for
errors in model forcing data and parameter calimaby drawing the estimated TWS toward
that observed by GRACE. This also resulted in dngwhe estimated groundwater storage
closer to the in situ measurement. Given that thestnsignificant improvements were
observed in the NCG case, this suggests that GR&§3Ervations are most valuable in data
sparse regions. In these regions any additionaérghgsons, even those at coarse spatial

and/or temporal resolution, are welcome. GRACE ganovide essential independent
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observations for validation, and serves as a cainstfor TWS within the assimilation
process. In terms of streamflow, a comparison ef fthur scenarios demonstrates that the
ability to capture high flow events is determinadgely by the quality of the forcing data and
the model parameters. The improvements in stream#stimates after assimilation are
modest. Nevertheless, we consider the obtainedtseas promising, particularly in data-
sparse scenarios, e.g., the NCG case. They indltat&RACE contains information that can
be useful for streamflow estimation. Whether upaatfWs is the best way to use this
information is an open question. An alternativatsigy could be to use GRACE assimilation
for parameter estimation at a sub-basin or basite ssnd constrain the rainfall-runoff model

through assimilation of soil moisture observations.

In conclusion, GRACE assimilation is beneficialdahe largest improvements are generally
observed in the NCG (i.e. “data-sparse”) cases.adidition to providing a modest
improvement to the estimated streamflow, it mayltda a noticeable improvement in TWS
estimates, yielding an extra insight into the bémavof the hydrological model, its forcing
data and parameters. Further research will combsgmilation of GRACE and a soil
moisture remote sensing product to constrain theeStnate storage term, and ensure that
improved TWS would lead to more consistently imga\estimates of groundwater storage
variations. Further research will also explore tredue of assimilating GRACE into a
groundwater model in which the primary processesgfrest vary on temporal and spatial
scales similar to those of GRACE. In addition, récstudies have explored the effect of
spatial aggregation of GRACE TWS prior to assinolat{Forman and Reichle, 2013) as well
as inclusion of the full GRACE error structure (Egc et al., 2014). Combining the advances
made in those studies with the assimilation frantewmesented here is expected to yield
even more realistic estimates. As shown by De Lamt@l. (2009), working with a spatially
distributed state vector (3D-EnKF) can lead to amproved estimate. Given the coarse
resolution of GRACE, we expect that implementingd@-EnKF within the assimilation
framework would lead to an improved performancesTdould be particularly important in
small basins like the Rhine, and can be used toumtcfor the fact that the GRACE
overpasses are infrequent and may not sensitivBAl§ variations in response to specific

events.
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Appendix A: Names of well locations

Table Al: Names of the well locations used in gagper.

Location Name Source

number

1 Sundern Ministerium fir Klimaschutz, Umwelt,
2 GEW KOELN 557 Landwirtschaft, Natur- und
3 SHELL GODORF GW I Verbraucherschutz des
4 LGD BN-BEUEL LandesNordrhein-

Westfalenb (http: //www.elwasweb.nr

w.de)
5 Stetten S1
6 Dietersdorf
7 Hapfurt Q2 Bayerisches Landesamt flir
8 Limbach Q1 Umwelt(http: //www.gkd.bayern.de)
9 Rattelsdorf 136
10 Faulbach
11 01373X0130/A25
12 02303X0065/P
13 02307X0281/S
Portail national d’Acces aux
14 01995X0030/563 Donnéessur les Eaux
15 02344X0082/326E Souterraines(http://www.ades.eaufran
16 02344X0055/319 ce.fr)
17 02348X0009/319C
(called A319C in this
paper)
18 03426X0197/136
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885 Table 1. Parameters of the soil moisture and rummitines in the OpenStreams wflow_hbv

886

887

model.

Parameter Description Unit

fc Maximum soil moisture storage mm

B Empirical based parameter determines the relative -
contribution to runoff from soil moisture storage

cflux Maximum value of capillary rise from upper zone storage to mm/day
soil moisture storage

khq Recession constant of upper zone storage, determines the 1/day
amount of quick runoff from upper zone storage

perc Maximum percolation value (from upper to lower zone mm/day
storage)

Ip Soil moisture fraction above which actual evapotranspiration -
(ET) equals potential ET

k4 Recession constant of lower zone storage, determines the 1/day
amount of baseflow from lower zone storage

a Non-linearity parameter of upper zone storage -
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888 Table 2. Daily mean values of the forcing datawatdern during summer (JJA) months.

Precipitation (mm) Temperature (°C) PET (mm)

Local Global Local Global Local Global
2004 5.48 5.21 16.10 17.65 2.47 3.30
2005 5.25 4.68 16.12 17.46 2.47 3.55
2006 4.96 4.39 17.64 19.25 2.47 3.90
2007 9.97 7.08 16.09 17.52 2.47 3.25

889

890 Table 3. Ensemble mean parameter values at theeByrahd A319C well locations for the

891 calibrated and non-calibrated simulations.

Sundern A319C
Parameter Calibrated Non-calibrated Calibrated Non-calibrated
fc 239.03 179.12 130.95 181.98
B 2.06 1.65 1.95 1.68
cflux 0.06 0.27 0.41 0.30
khq 0.10 0.12 0.06 0.09
perc 0.67 1.15 0.43 1.09
Ip 0.88 0.75 0.67 0.72
k4 0.63 0.03 0.01 0.03

892
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893 Table 4. Correlation coefficient computed betweeonthly mean estimated GW variation
894 and monthly mean in situ variation. Names of treianhs (first column) are provided in
895 Appendix A.

CL CG NCL NCG

EnOL EnKF| EnOL EnKF| EnOL EnKF| EnOL EnKF

1 0.85 0.83 0.71 0.74 0.79 0.85 0.70 0.78

2 0.57 0.68 0.32 0.52 0.43 0.65 0.38 0.45

3 0.69 0.81 0.46 0.68 0.51 0.73 0.46 0.61

4 0.60 0.67 0.42 0.58 0.50 0.75 0.60 0.67

5 0.71 0.68 0.67 0.76 0.71 0.72 0.72 0.78

6 0.57 0.64 0.58 0.66 0.74 0.78 0.66 0.72

7 0.77 0.80 0.67 0.71 0.80 0.83 0.64 0.72

8 0.75 0.80 0.65 0.78 0.81 0.83 0.62 0.74

9 0.50 0.64 0.54 0.70 0.72 0.78 0.65 0.80

10 0.56 0.58 0.50 0.55 0.66 0.70 0.42 0.46

11 0.41 0.55 0.31 0.53 0.71 0.73 0.72 0.74

12 0.71 0.80 0.64 0.71 0.76 0.85 0.74 0.78

13 0.77 0.80 0.50 0.56 0.72 0.84 0.59 0.66

14 0.71 0.70 0.73 0.74 0.33 0.47 0.51 0.56

15 0.82 0.85 0.67 0.69 0.72 0.83 0.65 0.71

16 0.68 0.80 0.55 0.64 0.77 0.88 0.63 0.71

17 0.67 0.79 0.55 0.60 0.70 0.82 0.57 0.66

18 0.65 0.66 0.64 0.65 0.45 0.54 0.59 0.63

Mean 0.67 0.73 0.56 0.66 0.66 0.75 0.60 0.68

896
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897 Table 5. RMSE [mm] computed between monthly medéimesed GW variation and monthly
898 mean in situ variation. Names of the stationst(Bdumn) are provided in Appendix A.

CL CG NCL NCG

EnOL EnKF| EnOL EnKF| EnOL EnKF| EnOL EnKF

1 4.16 3.84 5.63 4.02 7.00 6.99 8.37 5.40

2 5.34 4.91 6.66 5.96 6.36 5.73 | 10.78 8.14

3 3.62 3.06 5.04 4.35 5.96 4.85| 10.64 8.13

4 3.79 3.65 441 3.55 5.83 5.03 9.00 7.56

5 9.72 8.30 6.89 5.49 8.43 7.83 6.06 5.03

6 6.19 5.19 5.47 5.26 7.56 6.31 5.25 4.29

7 8.30 6.75 7.48 6.99 6.45 5.88 7.36 6.82

8 8.76 6.59 6.63 4.96 5.21 5.20 5.71 4.67

9 5.95 5.38 5.16 5.09 7.33 6.43 5.43 3.91

10 8.95 7.64 6.44 5.66 8.92 8.54 7.62 6.21

11 6.03 5.10 6.21 4.89 9.88 832 | 11.43 8.30

12 7.17 6.37 7.33 7.42 6.24 5.01 6.58 5.95

13 6.25 5.34 6.80 591 7.90 7.55 8.84 8.53

14| 12.67 10.16 | 11.43 9.01 9.34 7.97 9.29 7.21

15 8.83 8.28 | 10.28 10.08 9.78 8.31 | 10.08 9.89

16 | 12.74 9.58 | 13.20 10.60 9.76 8.32 | 10.44 9.78

17 | 12.01 9.17 | 11.10 9.54 7.59 6.14 7.90 6.38

18 7.23 7.50 8.62 7.94 9.59 8.42 9.51 7.88

Mean 7.65 6.49 7.49 6.48 7.73 6.82 8.35 6.89
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913 Figure 3. Calibrated parameters of the soil mogsaurd runoff response routines of the

914 OpenStreams wflow_hbv model.
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916 Figure 4. Mean daily precipitation, temperatured potential evapotranspiration in 2006

917

from the local (left) and global (right) forcing tdsets.
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919 Figure 5. Area-averaged mean terrestrial wateag®(TWS) over the Rhine River basin
920 from the EnOL, EnKF and GRACE observations in 4edént scenarios (CL: calibrated
921 parameters with local forcing data, CG: calibrgtadameters with global forcing data, NCL.:
922 non-calibrated parameters with local forcing dAl@G: non-calibrated parameters with
923 (global forcing data).
924
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926 Figure 6. Averaged increment (posterior minus prdmWS in mm during the winter 2005-
927 2006 (left) and summer of 2006 (right) in 4 diffetecenarios (CL: calibrated parameters
928 with local forcing data, CG: calibrated parameteith global forcing data, NCL: non-
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929
930

calibrated parameters with local forcing data, N@Gn-calibrated parameters with global

forcing data). The polygons in the right columnidefthe southern part of Moselle basin.
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Figure 7. TWS variation (left) and GW variationgft) at the Sundern well location in 4

different scenarios (CL: calibrated parameters Vattal forcing data, CG: calibrated

parameters with global forcing data, NCL: non-aaibd parameters with local forcing data,

NCG: non-calibrated parameters with global foraiadga).
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937 Figure 8. TWS variation (left) and GW variationgfnt) at the A319C well location in 4
938 different scenarios (CL: calibrated parameters \atal forcing data, CG: calibrated
939 parameters with global forcing data, NCL: non-aaibd parameters with local forcing data,
940 NCG: non-calibrated parameters with global foraiadga).
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941

942  Figure 9. Estimated and observed streamflow aMitweau gauge station in 4 different
943 scenarios (CL: calibrated parameters with locaifay data, CG: calibrated parameters with
944  global forcing data, NCL: non-calibrated parameteith local forcing data, NCG: non-

945 calibrated parameters with global forcing data).

45



946

947
948
949
950

(@) CL
8000 | 1 1 1
—Gauge EnOL —— EnKF

6000 -
4000

m®/s

2000

T T T
2004 2005 2006 2007 2008

() CG
8000

6000 -

4000

m®/s

2000

T T
2004 2005 2006 2007 2008

© NCL
8000 : :

6000 - F

4000

md/s

2000

T
2004 2008

(@)

T
2004 2008

Figure 10. Estimated and observed streamflow at\thsel gauge station in 4 different
scenarios (CL: calibrated parameters with locatifay data, CG: calibrated parameters with
global forcing data, NCL: non-calibrated parameteith local forcing data, NCG: non-

calibrated parameters with global forcing data).
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Figure 11. The correlation coefficient (left), NaShtcliffe coefficient (middle) and RMS

error (right) computed between estimated streandlamd gauge measurements in 4 different
scenarios (CL: calibrated parameters with locatifay data, CG: calibrated parameters with
global forcing data, NCL: non-calibrated parameteith local forcing data, NCG: non-
calibrated parameters with global forcing data)sufts are shown for the Maxau (Max),
Mainz (Mai), Andernach (And), and Wesel (Wes) gasiggions. Average values (Avg)
calculated across all 13 gauge locations are shiowre rightmost bar of each histogram,

with the standard deviations indicated by errosbar
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