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Abstract 1 

There have been many published studies aiming to identify temporal changes in river flow 2 

time-series, most of which use monotonic trend tests such as the Mann-Kendall test. Although 3 

robust to both the distribution of the data and incomplete records, these tests have important 4 

limitations and provide no information as to whether a change in variability mirrors a change 5 

in magnitude. This study develops a new method for detecting periods of change in a river 6 

flow time-series using Temporally Shifting Variograms, TSV, based on applying variograms 7 

to moving windows in a time-series and comparing these to the long-term average variogram, 8 

which characterises the temporal dependence structure in the river flow time-series. 9 

Variogram properties in each moving window can also be related to potential meteorological 10 

drivers. The method is applied to 91 UK catchments which were chosen to have minimal 11 

anthropogenic influences and good quality data between 1980 and 2012 inclusive. Each of the 12 

four variogram parameters (Range, Sill and two measures of semi-variance) characterise 13 

different aspects of change in the river flow regime, and have a different relationship with the 14 

precipitation characteristics. Three variogram parameters (the Sill and the two measures of 15 

semi-variance) are related to variability (either day-to-day or over the time-series) and have 16 

the largest correlations with indicators describing the magnitude and variability of 17 

precipitation. The fourth (the Range) is dependent on the relationship between the river flow 18 

on successive days and is most correlated with the length of wet and dry periods. Two 19 

prominent periods of change were identified: 1995 to 2001 and 2004 to 2012. The first period 20 

of change is attributed to an increase in the magnitude of rainfall whilst the second period is 21 

attributed to an increase in variability in the rainfall. The study demonstrates that variograms 22 

have considerable potential for application in the detection and attribution of temporal 23 

variability and change in hydrological systems.  24 

 25 

 26 

 27 

1. Introduction 28 

Increasing scientific agreement on climate change (IPCC, 2013) has been paralleled by a rise 29 

in the number of studies investigating the potential impacts on various aspects of the earth 30 

system, economies and society. One projected impact from climate change is a change in river 31 
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flow dynamics, in particular changes in the magnitude, seasonality and variability of river 1 

flows which could have major impacts on the management of water resources and flood risk 2 

(e.g. Hirabayashi et al. (2013) and Gosling and Arnell (2013)) on a global scale. For the UK 3 

the potential impact of climate change on water resources and flooding has recently been 4 

reviewed by Watts et al. (in press). Examining future changes in river flow is a focus for 5 

many modelling studies. However, the uncertainties inherent in scenario-based future 6 

projections (Prudhomme et al., 2003) highlight the need for observational evidence of change 7 

(Huntington, 2006). 8 

Being able to detect and attribute changes in observed data is challenging, particularly in 9 

systems which are the result of complex, often non-linear, interactions between several 10 

processes (e.g. precipitation, evapotranspiration, storage and transport within a catchment). 11 

Further levels of complexity are added due to temporal changes in catchment characteristics 12 

(e.g. land cover and land management), anthropogenic modification of rivers (e.g. abstraction, 13 

impoundments and channel modifications) and changes in the location and hydrometric 14 

performance of gauging stations.  15 

Previous studies have shown trends of increases and decreases in observed river flow for 16 

individual catchments, but at the regional to national scale the picture is more complex and 17 

regional patterns are often not spatially coherent (as noted for Europe, e.g. Kjeldsen et al. 18 

(2014)) and results are dependent on the methods and the study periods used. In the UK, 19 

significant heterogeneity in streamflow trends has been reported, with trends of different sign 20 

occurring in catchments in close proximity (Hannaford and Buys, 2012). These spatial and 21 

temporal differences in published results of change detection studies are an obstacle to efforts 22 

to develop appropriate adaptation responses, particularly when there is a lack of congruency 23 

with scenario-based projections for the future. This has led to calls for fresh approaches to 24 

change detection, as highlighted by several recent synthesis reviews (e.g. Burn et al. (2012); 25 

Merz et al. (2012); Hall et al. (2013)) and the IAHS decade ‘Panta Rhei’ (‘everything flows’) 26 

which aims to reach an improved understanding of the changing dynamics in the water cycle 27 

(Montanari et al., 2013). This paper describes one such new avenue for change detection, 28 

namely Temporally Shifting Variograms. 29 

 30 

 31 

 32 



 4 

1.1. Review of previous approaches to change detection 1 

 2 

Detection of environmental change is a huge area of research which cannot easily be reflected 3 

in an introduction. More extensive reviews of change detection methods in hydrology are 4 

available (e.g. Yue et al. (2012)) and there are textbooks on trend testing in the environmental 5 

sciences in general (e.g. Chandler & Scott, 2011). The overview below will give the reader a 6 

flavour of the range of methods which are avaliable, with a brief critique, to set the new 7 

method described in 1.2 in context. The choice of change detection method clearly depends 8 

on the users‘ aims and available data.  9 

The majority of hydrological change detection studies use monotonic trend tests such as 10 

Mann-Kendall (details of which can be found in Yue et al. (2012)) which are influenced by 11 

the amount of autocorrelation in the data as well as by the start and end points of periods to 12 

which the trends tests are applied (Hannaford et al. (2013) and Chen and Grasby (2009)). This 13 

is particularly problematic when the gauging stations have relatively short records starting in 14 

a dry or wet period. For example, the UK gauging station network was largely built in the 15 

1960s when the North Atlantic Oscillation Index (NAOI) was in a strong negative phase 16 

resulting in conditions for the UK which were drier than much of the following record. 17 

Furthermore, monotonic trend tests only provide information as to whether change has 18 

occurred over the time-period being investigated and no information is gained as to the type 19 

(e.g. abrupt or gradual) or the timing of change. This is a major limitation as it makes it 20 

difficult to link a simple monotonic trend in streamflow to trends in potential drivers of 21 

change (i.e. changes in meteorological conditions or catchment properties). A further 22 

weakness of current change detection methods is that they often use indicators of flow 23 

selected a priori to characterise a particular aspect of the flow regime (e.g. the Q95; 7-day 24 

minimum flow; frequency of Peaks-Over-Threshold, etc), which potentially introduces bias 25 

by selecting a pre-determined aspect of the flow regime.  26 

Another approach to change detection is change-point analysis, which can be used to identify 27 

the temporal location where change occurs (e.g. Beaulieu et al. (2012) applied change-point 28 

analysis to climate variables and Jandhyala et al. (2013) reviews change-point analysis 29 

including a plethora of studies which investigated change-points in the Nile river flow time 30 

series). Change-point analysis identifies the temporal location at which one or more properties 31 

of the river flow time series change abruptly (e.g. a change in the magnitude, variability or 32 
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autocorrelation, etc), but are associated with several limitations. Firstly, there is increased 1 

uncertainty about change-points detected close to the start or end of the time series (due to a 2 

higher risk of false detection). Secondly, the method only detects one aspect of the time series 3 

(e.g. changes in linear trend, magnitude, variability or autocorrelation). Finally, although 4 

change-point analysis is designed to detect abrupt changes there is, in practice, great difficulty 5 

in discriminating between trends and abrupt changes (as demonstrated by Rougé et al. (2013). 6 

Jarušková (1997) provides a cautionary review of change-point detection methods for river 7 

flow data. 8 

An alternative approach to change detection is through analysis of periodicities. There is a 9 

wide range of methods available for decomposition of time series into various components 10 

(e.g. Fourier methods, Empirical Mode Decomposition, Wavelets; see for example Labat 11 

(2005) and Sang (2013)).  These approaches can detect complex non-linear patterns of 12 

variability and do not require the selection of indicators as they are normally based on the 13 

whole time series. However, such approaches normally characterise periodicities over a range 14 

of scales, rather than changes over time. It is hard to relate the change in spectral shape to the 15 

hydrological regime (Smith et al., 1998). This is indicated by recent studies in the UK which 16 

applied these methods and did not go beyond looking at the high-level drivers, particularly the 17 

NAOI (e.g. Sen (2009) and Holman et al. (2011)). Similarly, Kumar and Duffy (2009) use 18 

single spectral analysis to look at the precipitation – temperature – river flow relationship. 19 

This analysis enabled the authors to link the identified temporal changes to the southern 20 

oscillation as well as large anthropogenic influences (dam building and pumping), but did not 21 

investigate how changes in different aspects of the precipitation regime (e.g. seasonality and 22 

magnitude) influence the river flow time series.    23 

1.2. The proposed new method 24 

Here a novel and fundamentally different methodology for detection of hydrological change is 25 

introduced using variograms that are applied to moving windows in a river flow time-series 26 

(hereafter, Temporally Shifting Variograms, TSVs). The TSV method gives insights into how 27 

river flow dynamics evolve through time, without relying on fixed study periods or pre-28 

determined flow indicators. This enables streamflow changes to be linked explicitly with 29 

external drivers (e.g. meteorological forcing). Variograms are able to capture the temporal 30 

dependence structure of the river flow (i.e. on average, how dependent river flow on a 31 

particular day is on river flow on the preceding days). The temporal dependence structure is 32 



 6 

closely related to the amount of variability at different temporal scales in the time series and, 1 

as it is influenced by catchment characteristics (Chiverton et al., 2015) it enables inferences to 2 

be made about the precipitation-to-flow relationship in a catchment.  3 

As previously noted in the introduction there are several methods of identifying temporal 4 

changes in river flow and a large range of indicators which could also be investigated using a 5 

moving window. The TSV has additional key advantages over existing methods. Firstly, :  the 6 

variogram can be thought of as a composite indicator which provides information about a 7 

range of aspects in the river flow time series, hence enabling a range of possible temporal 8 

changes in river flow dynamics (e.g. standard deviation and seasonality) to be captured. 9 

Variograms can also detect changes in daily river flow which other indicators may not be able 10 

to (e.g. changes in variability at a range of time scales). Furthermore the variogram is 11 

calculated using daily flow data and does not rely on the user extracting pre-conceived aspects 12 

of the river flow regime via the calculation of indicators (e.g. annual or seasonal averages, 13 

minimum or maximum flow). This enables the whole flow regime to be investigated, rather 14 

than much of the daily flow information being discarded, as is the case when calculating some 15 

indicators (e.g. annual 7 day minimum flow).  16 

It is worth noting that there are a range of stochastic techniques which can characterise the 17 

basic autocorrelation structure of data (e.g. AR, ARIMA, etc). These classical time series 18 

analysis approaches have been widely used to investigate hydrological behaviour (e.g. Salas 19 

et al. (1982), Montanari et al. (1997), Chun et al. (2013)). Such approaches characterise 20 

temporal dependence and can also in principle be applied in moving windows (e.g. AR1 21 

applied in 20-year moving windows by Pagano and Garen (2005)). A limitation with the 22 

classical models is that the user has to select the appropriate AR and MA parameters, a 23 

potentially subjective process, which will vary between catchments.  In practice, they have 24 

not been widely used to examine changes in temporal dependence through time.  25 

The method we propose uses variograms to characterise the autocorrelation so that the AR 26 

parameter does not need to be specified. Furthermore, variograms are designed to handle 27 

missing data which is common in river flow time series. The variogram has several defined 28 

parameters (e.g. Nugget, Sill and Range) which characterise different aspects of the 29 

autocorrelation structure that can be used in window change analysis. This enables changes in 30 

several aspects of the river flow regime to be analysed.  31 

  32 
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Conventionally most trend analysis studies focus on change detection and attribution is often 1 

based on qualitative reasoning and relies on published work to support the hypothesis (Merz 2 

et al., 2012). The TSV method enables changes in river flow (associated with changes in 3 

variogram parameters) to be quantitatively related to meteorological characteristics. This 4 

work is an attempt to provide a formal ‘proof of consistency’ (Merz et al. 2012) that river 5 

flow changes can be associated to changes in meteorological drivers. This is an important new 6 

development, as few published studies of streamflow change have sought to explain observed 7 

patterns through links to precipitation. We acknowledge that this does not amount to full 8 

attribution without ‘proof of inconsistency’ with other drivers (e.g. land use change), but it 9 

does provide a solid foundation for such attribution studies. In principle, the method could be 10 

used with a wider range of drivers, both natural and anthropogenic, if -temporal data on, e.g. 11 

land-use change, were also available.    12 

This study has the following objectives: develop a novel change detection method (TSV) to 13 

detect both linear and non-linear changes throughout the river flow regime; test the 14 

performance of the method by imposing artificial changes to a river flow time-series; identify 15 

patterns of temporal change in rivers for a set of 94 catchments in the UK; and explain the 16 

contribution of precipitation to the detected variability in variogram parameters. This paper is 17 

structured as follows: section 2 describes the data employed; section 3 details the TSV 18 

method; section 4 tests the TSV method using an artificially perturbed river flow time-series; 19 

section 5 identifies the periods of change across the 94 UK catchments and section 6 20 

investigates the meteorological drivers.  21 

 22 

2. Data  23 

2.1. Catchment selection  24 

Near-natural UK benchmark network catchments, with only modest net impacts from 25 

artificial influences, were chosen (Bradford and Marsh, 2003). These catchments are deemed 26 

to have good data quality and therefore artificial influences will be limited. Furthermore, only 27 

catchments with a record length of 33 years or more (1980 – 2012) of daily river flow data 28 

and with less than 5% missing data were considered. Nested catchments with similar flow 29 

regimes were excluded.  30 
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This data set was used in a previous study which classified UK catchments into four classes 1 

according to their average temporal dependence structure (Chiverton et al. 2015). One of 2 

these classes was excluded from the present study; this comprises catchments which have 3 

high infiltration and storage, hence with distinctly different precipitation-to-flow relationships 4 

that the rest of the catchments. In particular, Chiverton et al. (2015) demonstrated that these 5 

catchments have a very long range of temporal autocorrelation of over a year, largely due to 6 

the influence of groundwater storage, instead of weeks to a few months like the other 7 

catchments. To avoid this very different catchment response time overly influencing results, 8 

catchments which overlay highly productive aquifers were removed (mainly in the SE of 9 

England). This resulted in 94 catchments, shown in Figure 1.  10 

 11 

2.2. Precipitation characteristics 12 

Daily catchment-averaged precipitation values were calculated from CEH-GEAR, a 1km
2 

13 

gridded precipitation dataset (Tanguy et al., 2014) derived using the method outlined in Keller 14 

et al. (2015). From this data, characteristics which represent different aspects of the 15 

precipitation regime were calculated (Table 1). 16 

 17 

3. The Temporally Shifting Variograms methodology  18 

Before going into the details of the method it is important to point out that this paper is not 19 

aiming to ascribe the behaviour in the global variogram as the definitive expression of the 20 

temporal dependence structure. This paper develops a method which identifies differences 21 

between variogram parameters at different time scales that represent significant changes in the 22 

temporal dependence structure that are due to meteorological drivers (or, theoretically, 23 

anthropogenic influences e.g. land management change, although this is not considered here; 24 

see also Section 6).   25 

The methodology consists of four steps, as follows: transformation of river flow data for 26 

analysis using variograms (setion 3.1); creation of variograms for each catchment (section 27 

3.2); detection of periods of change in streamflow using TSV (section 3.3); and, analysis of 28 

the influence of meteorological drivers using Pearson correlation and multiple linear 29 

regression methods (section 3.4). 30 

 31 
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3.1. Data transformation 1 

An overview of how the river flow time-series has been de-seasonalised and standardised 2 

(steps 1 to 5) is provided here, but in-depth discussion can be found in Chiverton et al. (2015).  3 

1) The river flow data were in-filled, using the equipercentile linking method (Hughes 4 

and Smakhtin, 1996), to remove periods of missing data. This was required to improve 5 

the de-seasonalisation (step 3).  6 

2) A log-transform of the time-series was undertaken to stabilise the variance and create 7 

a near normal distribution. Values of zero were replaced by 0.001 m
3
s

-1 
prior to 8 

transformation. It should be noted that a variogram could be created for a river flow 9 

time series which has not been logged, however, the user would need to take care in 10 

the fitting to ensure: a) the variogram fits the data well and b) the shape of the 11 

variogram is not overly influenced by extreme values.  12 

3) Seasonality was removed using Fourier representation. This was done to avoid 13 

exaggerating the temporal dependence. The de-seasonalising was carried out using the 14 

‘deseasonalize’ package in R, see Hipel and McLeod (2005) and Chandler and Scott 15 

(2011) for further details and illustrative examples. 16 

4) The in-filled data from step 1 were removed. The in-filled data were solely used for 17 

the de-seasonalisation (step above). Since the in-filled data are associated with a 18 

greater uncertainty than the measured data, they are removed from the subsequent 19 

analysis as variograms are well suited to handling missing data. 20 

5) Flow data were standardised for each catchment by subtracting the mean and dividing 21 

by the standard deviation of the time-series. Standardising enables comparison of 22 

catchments with different magnitudes of flow.  23 

 24 

3.2. Creating variograms  25 

The temporal dependence structure can be represented by a one-dimensional temporally 26 

averaged variogram (see Chandler and Scott (2011) or Webster and Oliver (2007) for detailed 27 

background about variograms). Based on the transformed, de-seasonalised standardised flow 28 

data, an empirical semi-variogram was calculated for each catchment using the average 29 

squared difference between all pairs of values which are separated by the corresponding time 30 

lag (Equation 1 which calculated the semi-variance): 31 

       
 

      
                 

     
    32 

   33 

Where h is the lag time, Y(ti) is the value of the transformed data at time ti and (N-h) is the 34 

number of pairs with time lag h.  35 
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A variogram model was then fitted (using the variofit function from the geoR package in R 1 

and the Cressie method (Cressie, 1985)) to the empirical semi-variogram to enable the 2 

following parameters to be calculated (Figure 2): the Nugget, which is the y intercept, 3 

represents a combination of measurement error and sub-daily variability; the Sill is defined as 4 

the semi-variance where the gradient of the variogram is zero. A zero gradient indicates the 5 

limit of temporal dependence and is an indicator of the total amount of temporally auto-6 

correlated variance in the time-series. The Partial-Sill is the Sill minus the Nugget and shows 7 

the temporally dependent component, used herein as the Sill. The Range is the lag time at 8 

which the variogram reaches the Sill value. Autocorrelation (gradient of the variogram) is 9 

essentially zero beyond the Range.  The Practical-Range is the smallest distance beyond 10 

which covariance is no more than 5% of the maximal covariance (time it takes to reach 95% 11 

of the Sill) (Journel and Huijbregts, 1978). As the variogram is only asymptotic to the 12 

horizontal line which represents the Sill, the Practical-Range is used herein as the Range. 13 

 14 

3.3. Detection of change in streamflows using TSV 15 

 16 

The fundamental premise of the TSV approach is that variograms are applied in moving 17 

windows through a time-series, to determine the extent to which variogram properties (which 18 

characterise the autocorrelation structure) change through time. To examine how unusual 19 

these changes are in the context of the observed streamflow record, the method determines 20 

whether variogram properties in each moving window are outside thresholds which 21 

encompass the 5 – 95% range of expected values based on the original 30-year average 22 

variogram. Periods of change (compared to the 30-year average variogram) were thus 23 

detected for the 94 catchments using the following method, applied to each catchment: 24 

1) Compute bootstrap parameter estimates from multiple realisations of the 30-year 25 

average variogram, which are created by simulating 1,000 standardised river flow 26 

time-series assuming a Gaussian random field model (see Havard and Held (2005) for 27 

more detail). The data were simulated using the model parameters from the original 30 28 

year variogram, so the output has the same lags as the original data (i.e. daily). A 29 

variogram was then created for each of the time-series.  30 

2) Calculate upper and lower thresholds (the 5
th

 and 95
th

 percentiles of the 1,000 31 

variograms). Several thresholds were tested and the 5
th

 and 95
th

 percentiles were 32 

chosen as these were found to detect an appropriate number of threshold exceedences 33 

throughout the time-series.  34 

3) Calculate parameters (see below for details) for variograms applied to five year 35 

overlapping moving windows (shifting by one year) from the original (de-seasonalised 36 
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and standardised) river flow data. The values for the five year moving windows were 1 

compared to the range of expected values (between the 5
th

 and the 95
th

 percentiles) for 2 

the 30-year average variogram to see if they were above, below or inside the 3 

thresholds. Different sized windows between 1 and 10 years were analysed; five year 4 

overlapping windows were found to be long enough to obtain a good fitting variogram 5 

whilst being short enough not to characterise the average behaviour of the system.  6 

Four variogram parameters were calculated. The Sill and Range were calculated, however, as 7 

the data used are relatively high frequency (daily) and good quality, the value for the Nugget 8 

is low (although not zero as there is measurement error and sub-daily variability) and the 5
th

 9 

percentile is zero. Therefore, the nugget cannot be handled in the same way as the other 10 

variogram parameters (i.e. decreases below the lower bound cannot be investigated). Instead, 11 

a new parameter, the 3 Day Average Semi-Variance (3DASV) (average of the first three 12 

points of the semi-variogram) was defined and used to investigate changes in very short term 13 

temporal dependence. A further parameter was defined, the Half Range Average Semi-14 

Variance (HRASV) (average of the points up to half the Practical-Range) to provide 15 

information on the intermediate temporal variability (between the 3 DASV and the Partial-16 

Sill, which is the total amount of auto-correlated variability).  17 

It is acknowledged that there is uncertainty surrounding the variogram calculated from the 18 

river flow data. Part of the uncertainty comes from river flow measurement and part from the 19 

fitting of the variogram model. Due to the number of catchments and moving windows it is 20 

beyond the scope of this paper to do a full uncertainty analysis as discussed in Marchant and 21 

Lark (2004). Therefore a stability test was carried out in order to verify if the changes 22 

detected in the TSV method are caused by a change in the autocorrelation structure or by a 23 

few extreme points influencing how the variogram model fits the data. This is usually 24 

undertaken by doing a split test. However, due to requirement of having a large data set to 25 

calculate the variogram, splitting the 5 year moving window in two was not deemed 26 

appropriate. Instead each data point in the 5 year moving window was randomly assigned to 27 

one of ten equal sized groups. The variogram was then fitted to the data 10 times, each time 28 

removing the data from one of the groups meaning that the variogram was fitted to 90% of the 29 

data. This resulted in 10 values for each variogram parameter which were calculated using 30 

90% of the data. These points are then plotted against the variogram parameters which were 31 

calculated using 100% of the data to provide an indication as to the stability of the variogram 32 

parameter estimates.  33 
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 1 

3.4. Relating change to the meteorological drivers.  2 

Having established patterns of temporal variability using the TSV approach, the potential 3 

meteorological drivers behind the detected changes in the variogram parameters are identified 4 

before being used to calculate how much of the change they explain. 5 

Firstly, Pearson’s product-moment correlation is calculated between the time-series of each of 6 

the four variogram parameters and the time-series of precipitation characteristics, calculated 7 

over the same time window. These results are used to determine the likely drivers behind each 8 

variogram parameter.  9 

Secondly, Multiple Linear Regression (MLR) is undertaken in order to determine how much 10 

variance in the variogram parameters could be explained by a combination of different 11 

precipitation characteristics. As precipitation characteristics are correlated with each other, a 12 

procedure which penalises extra model parameters is required. Stepwise regression which 13 

tests whether parameters are significantly different from zero has limitations – in particular, it 14 

can lead to bias in the parameters, over-fitting and incorrect significance tests (see 15 

Whittingham et al. (2005) for an in depth discussion). In addition, the number and order of the 16 

potential parameters can influence the final model (Burnham and Anderson, 2002). Instead, 17 

Information Theory (IT) based on Akaike’s Information Criterion (AIC) is used to analyse 18 

how much information is added by each characteristic. For each catchment the model with the 19 

lowest AIC score is used to obtain the R
2
 value which provides an indication into the amount 20 

of change in the variogram parameters which can be explained by precipitation.  21 

The relative importance of each precipitation characteristic is also investigated, providing 22 

information on which precipitation characteristics are important in explaining the changes in 23 

each variogram parameter. The relative importance is obtained by calculating the R
2
 24 

contribution averaged over orderings among regressors for each precipitation characteristic 25 

using the LMG method proposed by Linderman et al. (1980) , as recommended by Gromping 26 

(2006).  27 

 28 

 29 

Positive autocorrelation would influence the efficiency of the explanatory variables causing 30 

an overestimation of the significance. However, analysing the residuals from the MLR 31 
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between precipitation and river flow (using the Durbin–Watson test for autocorrelation 1 

disturbance) showed no significant autocorrelation. Therefore, regressing against several 2 

precipitation variables with similar autocorrelation to the variogram parameters (both 3 

averaged over five year moving windows) is deemed to adequately remove the 4 

autocorrelation. 5 

4. Testing the TSV method using artificially perturbed time-series 6 

To demonstrate the suitability of the TSV approach, it was first applied to river flow time-7 

series with known artificially perturbed periods. To identify which variogram parameters 8 

respond to changes in the river flow time-series, a series of artificial changes were imposed 9 

onto a seven year (1987 to 1994) section of the observed 32-year (1980 – 2012) de-10 

seasonalised river flow time-series (Figure 3): five year moving windows starting between 11 

1982 and 1994 (inclusive) will exhibit changes. The changes were imposed on three rivers, 12 

the South Tyne in the north-east of England, the Yscir in Wales and the Tove in eastern 13 

England. The three catchments range from a relatively upland catchment with low storage 14 

(South Tyne) to a more lowland catchment with higher storage (Tove), although still a 15 

catchment with limited groundwater contribution; Base-Flow Index (BFI) values are 0.45, 16 

0.34 and 0.54 with drainage path slope (DPS) values of 138, 107 and 37 m km
-1

 for the Yscir, 17 

South Tyne and Tove, respectively (Marsh and Hannaford, 2008). 18 

The perturbations applied represent plausible scenarios of the likely types of change to be 19 

seen in river flow time-series due to climate variability, other extrinsic drivers (e.g. land 20 

management) or a change in the gauging station.   21 

- Increase in the standard deviation: a random, normally distributed set of numbers 22 

with a mean of zero and a standard deviation of 0.5 were added to the standardised 23 

river flow time-series. 24 

- Increase in variability: the smallest 20 % of values were decreased by 20% whilst 25 

the largest 20% of values were increased by 20%.  26 

- Increased dependence: a cosine wave with a wavelength of 365 days and amplitude 27 

of 0.5 was added to the standardised river flow time-series. This increases the 28 

relationship between river flow on successive days.  29 

- Increase in the mean: 1.0 was added to all the standardised river flow time-series 30 

increasing the mean from 0 to 1.  31 

- Periods of persistence: a 30 day period each December was forced to equal the mean.  32 

Imposing artificial changes onto raw time-series was selected as a more challenging test for 33 

the variogram change detection method, compared to applying the changes to a randomly 34 
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generated artificial statistically-stationary time-series, as it requires the method to be able to 1 

detect changes amongst the naturally occurring variability in the time-series.  For all three 2 

catchments, a variogram was calculated for each five year overlapping moving window (i.e. 3 

1980 – 1984, 1981 – 1985 ... 2008 – 2012) for the original and each of the artificial time-4 

series (Figure 3). The variation in time of the variogram parameters provides information on 5 

whether the enforced changes in the input time-series would be detected, and on which 6 

variogram parameters are affected by different types of change.  7 

Figure 4 shows the outputs of the TSV analysis for the artificially modified time-series. The 8 

outputs from the three catchments were similar and therefore only the output from the South 9 

Tyne is shown, as an example. 10 

The magnitude of change varies depending on the type of perturbation to the flow regime 11 

(Figure 4).  Variogram parameters are sensitive to realistic changes to aspects of the flow 12 

regime which can cause the parameters to exceed the 5
th

 or 95
th

 percentile threshold. In 13 

addition, the individual variogram parameters respond differently to each of the changes: 14 

 15 

Range: the only artificial perturbation which has a large influence on the Range is the 16 

dependence. The increase in Range is caused by creating dependency between flow on given 17 

days which lasts for a longer time. 18 

 19 

Sill: influenced mainly by the dependence and variability. Adding a wave also increases the 20 

difference between the largest and smallest values, hence the total amount of variability (the 21 

Sill) increases. 22 

HRASV: mainly influenced by the standard deviation and the variability, both of which 23 

influence the variability (short term and long term respectively). In addition the persistence 24 

also has a small negative impact as this would reduce the short term variability. 25 

3 DASV: influenced by the same artificial perturbation as the HRASV, however, the 26 

variability has less of an influence.  27 

 28 

5. Application of the TSV method to benchmark catchments  29 

5.1. Stability analysis  30 



 15 

Before the temporal changes are identifed, the stability of the variogram parameters was 1 

analysed to investigate if certain data points are having a large influence of the shape of the 2 

variogram and hence the variogram parameters. Figure 5 shows the relationship between the 3 

variogram parameters which are calculated using 100 % of the available river flow data and 4 

the same parameters calculated using 90 % of the available data. The figure highlights that 5 

there is a strong relationship between the points calculated using 90 and 100 % of the data. 6 

However, there are points which deviate much from the x=y gradient. The red dashed lines in 7 

Figure 5 represent small deviations from the y=x plot which are deemed to be an acceptable 8 

amount of variation due to the removal of 10% of the data. Any catchment which has a point 9 

or more outside these lines, for any variogram parameter, was removed. This resulted in three 10 

catchments being removed from subsequent analysis. As well as the points outside of the red 11 

dashed lines, the Range has two groups of values that exceed the length of the red dashed 12 

lines (catchments with a Range of over 170 days). These two groups have large variability in 13 

the 10 values containing 90 % of the data. The large variability is probably due to the 14 

extrapolation by the model from the calculated semi-variance. Due to the fact that all the 15 

values are above the 95
th

 threshold (and therefore it is likely that they capture a true change in 16 

the Range) these values were retained.  17 

 18 

5.2. Identifying periods of change  19 

Figure 6 identifies the periods when the TSV characteristics go above or below the 95
th

 or 5
th

 20 

percentiles from the average variogram, respectively, for the 91 catchments. Different 21 

variogram parameters exhibit different changes through time. The 3 DASV shows relatively 22 

little change, until after 2004 when there is a peak in the number of catchments above the 23 

upper threshold. The Sill has peaks in the number of catchments going above the upper 24 

threshold around 1980, 1990 and after 2004. The Range and the HRASV show several 25 

periods where the number of catchments above the upper threshold is much greater than the 26 

number of catchments below the lower threshold and vice versa. The Range and the HRASV 27 

see dramatic increases in the number of catchments which go beyond the lower and upper 28 

thresholds respectively, during approximately 1995 to 2001. Throughout this period the total 29 

amount of variability (the Sill) remains the same, as does the 3 DASV. The medium term 30 

variability (HRASV) shows an increase and the length of time the temporal dependence lasts 31 

(the Range) decreases. In addition to the 1995 to the 2001 period, every variogram parameter 32 



 16 

exhibits an increase in catchments exceeding the thresholds after around 2004.  This indicates 1 

increases in the total (Sill) and short to medium term (3 DASV and HRASV) variability in the 2 

river flow time-series.  3 

 4 

5.3. Drivers behind the change  5 

Initial analysis investigated the difference in precipitation between the periods which show 6 

the greatest changes, in terms of the number of catchments which go below / above the 7 

thresholds (approximately 1995 - 2001 and 2004 - 2012), with the preceding time-series 8 

(1980 – 1994). The periods where the most exceedances occur (1995 - 2001 and 2004 – 2012) 9 

are significantly more variable than the preceding time-series (Table 2).  10 

To explore the links with drivers more quantitatively, the relationship between precipitation 11 

characteristics and variogram parameters in the 5-year moving windows were calculated, with 12 

the results summarised for all catchments in Table 3. 13 

The Sill has the largest relationship with the winter to summer ratio (negative) followed by 14 

the standard deviation (positive). Although these appear contradictory, closer inspection 15 

found that the winter value seldom changed whereas the summer value increased (decreasing 16 

the winter to summer ratio), increasing the Sill. The Range is most correlated with the lower 17 

percentiles (negative) and the length of wet and dry periods (negative and positive 18 

respectively). Similar to the Sill, the 3 DASV has the largest correlations with the standard 19 

deviation (positive), winter to summer ratio (negative), mean (positive) and 90th percentile 20 

(positive). The largest correlations are with the HRASV which is highly correlated with the 21 

percentiles (positive), SD (positive) and the mean (positive).  22 

Each variogram characteristic has a different relationship with the precipitation characteristics 23 

(Table 3). As expected from the artificial analysis (Figure 4) the Sill, HRASV and 3 DASV 24 

are more influenced by precipitation characteristics which affect the short term or total 25 

amount of variability in the time-series (e.g. standard deviation and the different percentiles). 26 

The Range is most influenced by aspects of the precipitation which enhance correlation 27 

between the river flow on successive days (e.g. length of wet and dry periods). The 28 

relationship between the precipitation characteristics and the Range is usually in the opposite 29 

direction to the other variogram parameters.   30 



 17 

The average relative importance of each indicator in predicting each variogram parameter was 1 

calculated using the LMG method. The three most important characteristics for the Sill 2 

(accounting for over 30% of the explained variance between them) are the winter to summer 3 

ratio, standard deviation and 90th percentile. The three most influential characteristics for the 4 

3 DASV were the same as for the Sill. The average length of time below and above 1 mm 5 

accounts for over 30% of the explained variance for the Range. For the HRASV, standard 6 

deviation, winter to summer ratio and the mean precipitation account for over 30% of the 7 

explained variance. Although these key drivers have been identified, the total amount of 8 

variability in the variogram parameters which is explained by precipitation characteristics is 9 

mixed and depends on both the variogram parameter and the catchment, as shown by the 10 

range of values of explained variance for individual catchments (Figure 7).   11 

 12 

6. Discussion  13 

 14 

The TSV method provides information about temporal changes in the whole autocorrelation 15 

structure of the daily river flow data and shows the relationship between river flow on 16 

successive days. Persistent changes in precipitation can cause the river flow regime to change 17 

in a way which will alter the autocorrelation structure and be detectable using the TSV 18 

method. This is demonstrated by the analysis of the artificially perturbed time-series which 19 

showed that it is possible to identify plausible and realistic (i.e. likely to be seen in a river 20 

flow time-series) changes in a river flow time-series using the Temporal Shifting Variogram 21 

(TSV) approach. The TSV technique goes beyond monotonic change detection methods (such 22 

as the widely used Mann-Kendall test) as it does not require the whole time-series (which is 23 

driven by multiple non-linear interactions) to alter in a near-linear way for change to be 24 

detected. Change in any form (e.g. gradual linear and non-linear) can be characterised by 25 

plotting the variogram parameters over time. This is an advantage over change point analysis 26 

which is designed to detect abrupt changes. Another benefit of the TSV method is that it 27 

provides more information about the autocorrelation structure than an AR / ARMA model. 28 

Changes throughout different aspects of the river flow regime will be detected as the 29 

individual variogram parameters (Sill, Range, HRASV and 3 DASV) are sensitive to different 30 

types of change. Finally, the identified change is in relation to expected flow dynamics which 31 



 18 

represent the whole time period, enabling anomalous periods at the start and end of the 1 

records to be identified.  2 

Applied to 91 UK catchments, the TSV method was able to identify clear changes from the 3 

normal river flow behaviour. Changes in each variogram parameter (Range, Sill, HRASV and 4 

3 DASV) characterise different aspects of the river flow regime. The Range is dependent on 5 

the relationship between the flow on successive days; the value of the Sill depends on the 6 

overall variability; the 3 DASV is related to the day-to-day variability and the HRASV is a 7 

combination of short-term and long-term variability. As this is a new method, the changes in 8 

the variogram parameters are discussed below in the context of previous studies, on observed 9 

changes in river flow and precipitation, in order to corroborate the river flow variations that 10 

the variogram parameters are detecting, as well as their meteorological drivers.  11 

 12 

The variogram parameters exhibit different changes throughout the record. There is as a clear 13 

increase in the number of catchments going below the lower threshold (5% threshold, from 14 

the 1,000 river flow time-series simulations) for the Range between, approximately, 1995 and 15 

2001. Analysis of the perturbed time-series shows a decrease in the Range is likely to be 16 

caused by a reduction in the dependence between flow on successive days. This period was 17 

exceptionally wet (CEH, 2002) with less seasonality (Table 2) meaning that catchments 18 

would have often been wetter, decreasing the available storage and the lag time between 19 

precipitation and river flow and increasing the variability in river flow. This also indicates 20 

why the number of catchments which exceed the HRASV upper threshold (95% threshold) 21 

increases approximately between 1995 and 2001. The HRASV is influenced by standard 22 

deviation and variability in the river flow (Figure 4), both of which will be influenced by 23 

wetter conditions in the catchment.   24 

Post-2004 there is a large increase in the number of catchments which exceed the upper 25 

threshold for the Sill. This increase is likely caused by the increase in variability of river flow 26 

after 2004 (Figure 4). This time period experienced some of the most unusual hydrological 27 

conditions in the UK since records began: among the highest annual precipitation totals on 28 

record were recorded in 2008 (CEH, 2009) whereas January to June 2010 was the second 29 

driest since 1910. The 2010 - 2012 drought, one of the most severe droughts for a century 30 

(Kendon et al., 2013) terminated abruptly, leading to widespread flooding due to the wettest 31 

April to July in England and Wales for almost 250 years (Parry et al., 2013). In addition, the 32 
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standard deviation in the river flow was significantly larger than for both the 1980 – 1995 and 1 

the 1995 – 2001 periods. The high correlation between standard deviation and the 3 DASV 2 

explains the post-2004 increase in the number of catchments which exceed the upper 3 

threshold for the 3 DASV. 4 

Different meteorological characteristics influence each variogram parameter. The Sill, 5 

HRASV and 3 DASV are largely controlled by precipitation characteristics which influence 6 

the total amount and variability of precipitation (mean, standard deviation, 95
th

 percentile). 7 

The Range is more dependent on the length of wet and dry periods. The precipitation 8 

characteristics, on average, explain a large amount of the variability in the variogram 9 

parameters (Figure 7) (75%, 67%, 83% and 69% for the Sill, Range, HRASV and 3 DASV 10 

respectively). The medium term (half of the Range) variability has the strongest correlation 11 

with the precipitation characteristics (Table 3). This suggests that the catchment 12 

characteristics may be having more of an influence on the relationship that the Sill and 13 

3DASV have with precipitation.    14 

Although, on average, precipitation explains a large proportion of the river flow variability, 15 

there are large differences in the amount of explained variability across catchments (Figure 7). 16 

The unexplained proportion could be caused by: (1) land management change or other human 17 

disturbances which would alter the precipitation-to-river flow relationship; (2) other 18 

meteorological characteristics not included in this paper; (3) catchment characteristics 19 

moderating how a river responds to temporal changes in precipitation;  (4) unquantified error, 20 

(e.g. statistical error), including assumptions made when using information theory.  With 21 

regards to the first of these factors, the analysis was carried out on benchmark catchments 22 

with limited abstractions / discharges; however, it is likely that other factors will have a 23 

greater role in catchments with less natural regimes. Benchmark catchments generally have 24 

relatively stable land cover but land use changes over time cannot be ruled out. Other 25 

meteorological characteristics (potential factor number 2) could be influential, for example, 26 

temperature which will influence the amount of snow and evapotranspiration. Snow will 27 

increase the lag time between precipitation and river flow. Furthermore if the snow melt is 28 

gradual this will act as a store of water, and the gradual release could influence the variogram, 29 

mimicking the effect of a groundwater aquifer. Snow can be important in runoff generation in 30 

upland areas of the UK, and in more low-lying settings in some winters. However, it is 31 

unlikely to make a large difference that would be discerned in the variogram of the majority 32 
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of UK benchmark catchments. A change in the evapotranspiration losses over time could alter 1 

the magnitude of river flow, as well as seasonality. Assessing the role of additional 2 

meteorological characteristics is an important avenue of future work for developing the TSV 3 

methodology. 4 

 It is well documented that catchment characteristics moderate the precipitation-to-river flow 5 

relationship (e.g. Sawicz et al. (2011) and Ley et al. (2011)) and, more specifically, have been 6 

shown to exert a strong control over variogram properties (Chiverton et al. 2015). It therefore 7 

stands to reason that the catchment characteristics could be enhancing or damping a rivers 8 

response to changes in precipitation; influencing the non-linear precipitation to river flow 9 

relationship. This would influence the amount of variability which can be explained by 10 

multiple linear regression, and possibly explaining the wide range of degrees of explained 11 

variance between catchments in Figure 7.  The influence of catchment characteristics could 12 

explain why several studies (e.g. Hannaford and Buys (2012) and Pilon and Yue (2002)) find 13 

regional inconsistencies in observed streamflow trends in catchments with broadly similar 14 

meteorological characteristics. Therefore, the influence that catchment characteristics have on 15 

moderating how a river responds to temporal changes in precipitation needs to be established. 16 

Finally, using other methods to obtain the optimum combination of precipitation parameters 17 

(other than IT and AIC) could produce different results.  18 

7. Overall, the TSV approach has been shown to be a useful tool for 19 

characterising temporal variability in river flow series, going beyond 20 

standard monotonic trend tests and relating the changes to precipitation 21 

characteristics. As the method is able to detect non-linear changes, and 22 

there are four variogram parameters which respond in different ways, a 23 

more detailed analysis of links with drivers of change can be provided. In 24 

this study, this has been done using a suite of meteorological indicators. 25 

However, the approach could also be used with other explanatory variables 26 

(e.g. land use changes, changes in artificial influences, etc).  In this way, the 27 

method could find wider application as a tool for attribution of change 28 

using, for example,  the Multiple Working Hypothesis approach (e.g. 29 

Harrigan et al. (2014)).   Conclusion  30 

This paper developed a new method of Temporally Shifting Variograms (TSV), for detecting 31 

temporal changes in daily river flow. The TSV approach can detect periods of change 32 



 21 

(increases and/or decreases) which result from linear or non-linear changes. Each variogram 1 

parameter is related to a different aspect of the river flow, thus providing detailed information 2 

as to how river flow dynamics have changed through time. 3 

There are distinct time periods when there is a large increase in the number of UK benchmark 4 

catchments exceeding a threshold (around 1995 – 2001 for the Range and HRASV and post-5 

2004 for all of the variogram parameters). The changes between 1995 and 2001 are attributed 6 

to an increase in precipitation; increasing the wetness of the catchment. Increased wetness 7 

reduced the amount of short term (< half the Range) variability which is removed by the 8 

catchment characteristics. The period after 2004 incorporated some of the most variable 9 

precipitation on record, influencing all of the variogram parameters. Meteorological factors 10 

explained a large proportion of the variability in the variogram parameters (75%, 67%, 83% 11 

and 69% for the Sill, Range HRASV and 3 DASV respectively). The amount of unexplained 12 

variability is potentially caused by catchment characteristics moderating how a river responds 13 

to temporal changes in atmospheric conditions.  14 

This paper has demonstrated that TSV analysis enables changes in river flow dynamics to be 15 

characterised. The method will detect a wide range of changes (trends, variations in variability 16 

or standard deviation and step changes); the larger the magnitude of the change the less time 17 

is needed before the variogram parameters will exceed the thresholds. The principal 18 

advantages to the variograms are: the method is not influenced by the start and end points; 19 

changes near the start or the end of the record can be identified; non-linear changes can be 20 

detected and the four variogram parameters capture different aspects of the river flow 21 

dynamics. Variograms could also be used to identify the impact that catchment characteristics 22 

have on moderating how a river responds to temporal changes in precipitation, which could 23 

be valuable information for enabling detailed catchment management plans to be drawn up at 24 

a local level in a non-stationary environment. 25 

 26 
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FIGURE CAPTIONS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Locations of the catchments used in this paper. 
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Figure 2 Theoretical variogram. 
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Figure 3 The time-series resulting from the addition of artificial changes between 1987 

and 1994 (shaded area) to normalised river flows for the South Tyne river.  
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Figure 4  Changes in the variogram parameters resulting from the artificial changes to 

the time-series for the South Tyne 
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Figure 5  Relationship between the variogram parameters when calculated using all the 

available data and the parameters using 90 % of the data. The red lines show 

the range of acceptable values. Any catchments with points outside the red 

lines were removed. 
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Figure 6 Percentage of catchments which exceed thresholds through time.  
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Figure 7  Box and whisker plot of the average variance in 5 year variogram 

characteristics explained by meteorological characteristics, calculated using the 

adjusted R
2
 value and the variables in the model with the lowest AIC value 

(calculated using IT) for each catchment. 

    

 

  

 

 

 

Table 1:  Daily precipitation characteristics. 
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Precipitation 

characteristic  

Units Description  

Mean mm Average daily precipitation values  

Standard deviation  mm Standard deviation of the daily precipitation values 

25
th

 percentile mm Daily precipitation amount which is not exceeded 25% of the time 

Median  mm  Daily precipitation amount which is not exceeded 50% of the time 

75
th

 percentile mm Daily precipitation amount which is not exceeded 75% of the time 

90
th

  percentile mm Daily precipitation amount which is not exceeded 90% of the time 

95
th

  percentile mm Daily precipitation amount which not is exceeded 95% of the time 

Max length of 

precipitation above or 

below 1mm day
-1 

days The maximum number of successive days for which the precipitation 

is above/below the threshold.  

Average length of 

precipitation above or 

below 1mm day
-1 

days The average number of successive days for which the precipitation is 

above/below the threshold. Only periods of time greater than 2 days 

were analysed.  

Winter / summer 

precipitation ratio 

unitless  The mean rainfall in December, January and February divided by the 

mean rainfall for June, July and August.   

Autumn / spring 

precipitation ratio 

unitless The mean rainfall in September, October and November divided by 

the mean rainfall for March, April and May.   

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Change in the median value of the potential driving characteristics for 1995 – 2001 

and 2004 - 2012, compared to 1980 – 1994. The median value (taken from all 
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the 91 catchments) is presented along with the significance level (if 

significantly different from 1980 – 1994 at or above the 95% CI). 

 

Characteristic 1980 - 1994 1995 - 2001 2004 - 2012 

Mean (standardised) -0.013 -0.006 (99.9%) 0.006 (99.9%) 

Standard deviation (standardised) 0.975 0.993 (99%) 1.01 (99.9%) 

Median (standardised) -0.461 -0.458 (95%) -0.451(99.9%) 

25
th

 percentile (standardised) -0.55 -0.55 -0.55 

75
th

 percentile (standardised) 0.10 0.12 (99%) 0.14 (99.9%) 

90
th

 percentile (standardised) 1.12 1.16 (99.9%) 1.17 (99.9%) 

Winter / Summer 1.36 1.60 (99.9%) 1.03 (99.9%) 

Autumn / Spring 1.32 1.48 (99.9%) 1.47 (99.9%) 

Max consecutive number of days 

below 1 mm (days) 

29 27 (99%) 25 (99.9%) 

Max consecutive number of days 

above 1 mm (days) 

16 17 16 

Average consecutive number of days 

below 1 mm (days) 

17 17 17 

Average consecutive number of days 

above 1 mm (days) 

16 16 16 
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Table 3: Percentage of catchments with significant (at the 95% CL) correlation between the 5 

year precipitation and variogram characteristics. The average correlation (for 

catchments with significant correlations) is in brackets.  

 

Characteristic Range Sill HRASV 

 

3 DASV 

Mean 30 (-0.42) 37 (0.33) 54 (0.62) 32 (0.47) 

Standard deviation 35 (-0.31) 48 (0.47) 64 (0.62) 43 (0.53) 

Average length of 

wet period (above 

1mm) 

55 (-0.47)  54 (-0.09) 63 (0.12) 48 (-0.20) 

Average length of dry 

period (below 1mm) 

52 (0.49) 48 (-0.11) 58 (-0.11) 39 (-0.12) 

Max length of wet 

period (above 1mm) 

34 (-0.21) 32 (-0.04) 27 (0.08) 31 (-0.05) 

Max length of dry 

period (below 1mm) 

38 (0.50) 32 (0.24) 35 (-0.21) 30 (-0.02) 

25
th

 percentile   31 (-0.50) 32 (0.12) 43 (0.53) 27 (0.36) 

Median 42 (-0.43) 32 (0.06) 53 (0.48) 25 (0.37) 

75
th

 percentile 34 (-0.21) 31 (0.11) 56 (0.51) 27 (0.38) 

90
th

 percentile 30 (-0.12) 38 (0.34) 51 (0.52) 34 (0.42) 

Winter / Summer 24 (-0.36) 65 (-0.51) 60 (-0.51) 56 (-0.44) 

Autumn / Spring 15 (-0.19) 23 (0.01) 26 (0.16) 20 (-0.02) 

 

 

 

 

 

 

 


