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Abstract

There have been many published studies aiming to identify temporal changes in river flow
time-series, most of which use monotonic trend tests such as the Mann-Kendall test. Although
robust to both the distribution of the data and incomplete records, these tests have important
limitations and provide no information as to whether a change in variability mirrors a change
in magnitude. This study develops a new method for detecting periods of change in a river
flow time-series using Temporally Shifting Variograms, TSV, based on applying variograms
to moving windows in a time-series and comparing these to the long-term average variogram,
which characterises the temporal dependence structure in the river flow time-series.
Variogram properties in each moving window can also be related to potential meteorological
drivers. The method is applied to 91 UK catchments which were chosen to have minimal
anthropogenic influences and good quality data between 1980 and 2012 inclusive. Each of the
four variogram parameters (Range, Sill and two measures of semi-variance) characterise
different aspects of change in the river flow regime, and have a different relationship with the
precipitation characteristics. Three variogram parameters (the Sill and the two measures of
semi-variance) are related to variability (either day-to-day or over the time-series) and have
the largest correlations with indicators describing the magnitude and variability of
precipitation. The fourth (the Range) is dependent on the relationship between the river flow
on successive days and is most correlated with the length of wet and dry periods. Two
prominent periods of change were identified: 1995 to 2001 and 2004 to 2012. The first period
of change is attributed to an increase in the magnitude of rainfall whilst the second period is
attributed to an increase in variability in the rainfall. The study demonstrates that variograms
have considerable potential for application in the detection and attribution of temporal

variability and change in hydrological systems.

1. Introduction

Increasing scientific agreement on climate change (IPCC, 2013) has been paralleled by a rise
in the number of studies investigating the potential impacts on various aspects of the earth

system, economies and society. One projected impact from climate change is a change in river
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flow dynamics, in particular changes in the magnitude, seasonality and variability of river
flows which could have major impacts on the management of water resources and flood risk
(e.g. Hirabayashi et al. (2013) and Gosling and Arnell (2013)) on a global scale. For the UK
the potential impact of climate change on water resources and flooding has recently been
reviewed by Watts et al. (in press). Examining future changes in river flow is a focus for
many modelling studies. However, the uncertainties inherent in scenario-based future
projections (Prudhomme et al., 2003) highlight the need for observational evidence of change
(Huntington, 2006).

Being able to detect and attribute changes in observed data is challenging, particularly in
systems which are the result of complex, often non-linear, interactions between several
processes (e.g. precipitation, evapotranspiration, storage and transport within a catchment).
Further levels of complexity are added due to temporal changes in catchment characteristics
(e.g. land cover and land management), anthropogenic modification of rivers (e.g. abstraction,
impoundments and channel modifications) and changes in the location and hydrometric
performance of gauging stations.

Previous studies have shown trends of increases and decreases in observed river flow for
individual catchments, but at the regional to national scale the picture is more complex and
regional patterns are often not spatially coherent (as noted for Europe, e.g. Kjeldsen et al.
(2014)) and results are dependent on the methods and the study periods used. In the UK,
significant heterogeneity in streamflow trends has been reported, with trends of different sign
occurring in catchments in close proximity (Hannaford and Buys, 2012). These spatial and
temporal differences in published results of change detection studies are an obstacle to efforts
to develop appropriate adaptation responses, particularly when there is a lack of congruency
with scenario-based projections for the future. This has led to calls for fresh approaches to
change detection, as highlighted by several recent synthesis reviews (e.g. Burn et al. (2012);
Merz et al. (2012); Hall et al. (2013)) and the IAHS decade ‘Panta Rhei’ (‘everything flows’)
which aims to reach an improved understanding of the changing dynamics in the water cycle
(Montanari et al., 2013). This paper describes one such new avenue for change detection,

namely Temporally Shifting Variograms.
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1.1. Review of previous approaches to change detection

Detection of environmental change is a huge area of research which cannot easily be reflected
in an introduction. More extensive reviews of change detection methods in hydrology are
available (e.g. Yue et al. (2012)) and there are textbooks on trend testing in the environmental
sciences in general (e.g. Chandler & Scott, 2011). The overview below will give the reader a
flavour of the range of methods which are avaliable, with a brief critique, to set the new
method described in 1.2 in context. The choice of change detection method clearly depends
on the users‘ aims and available data.

The majority of hydrological change detection studies use monotonic trend tests such as
Mann-Kendall (details of which can be found in Yue et al. (2012)) which are influenced by
the amount of autocorrelation in the data as well as by the start and end points of periods to
which the trends tests are applied (Hannaford et al. (2013) and Chen and Grasby (2009)). This
is particularly problematic when the gauging stations have relatively short records starting in
a dry or wet period. For example, the UK gauging station network was largely built in the
1960s when the North Atlantic Oscillation Index (NAOI) was in a strong negative phase
resulting in conditions for the UK which were drier than much of the following record.
Furthermore, monotonic trend tests only provide information as to whether change has
occurred over the time-period being investigated and no information is gained as to the type
(e.g. abrupt or gradual) or the timing of change. This is a major limitation as it makes it
difficult to link a simple monotonic trend in streamflow to trends in potential drivers of
change (i.e. changes in meteorological conditions or catchment properties). A further
weakness of current change detection methods is that they often use indicators of flow
selected a priori to characterise a particular aspect of the flow regime (e.g. the Qgs; 7-day
minimum flow; frequency of Peaks-Over-Threshold, etc), which potentially introduces bias

by selecting a pre-determined aspect of the flow regime.

Another approach to change detection is change-point analysis, which can be used to identify
the temporal location where change occurs (e.g. Beaulieu et al. (2012) applied change-point
analysis to climate variables and Jandhyala et al. (2013) reviews change-point analysis
including a plethora of studies which investigated change-points in the Nile river flow time
series). Change-point analysis identifies the temporal location at which one or more properties

of the river flow time series change abruptly (e.g. a change in the magnitude, variability or

4
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autocorrelation, etc), but are associated with several limitations. Firstly, there is increased
uncertainty about change-points detected close to the start or end of the time series (due to a
higher risk of false detection). Secondly, the method only detects one aspect of the time series
(e.g. changes in linear trend, magnitude, variability or autocorrelation). Finally, although
change-point analysis is designed to detect abrupt changes there is, in practice, great difficulty
in discriminating between trends and abrupt changes (as demonstrated by Rougé et al. (2013).
Jaruskova (1997) provides a cautionary review of change-point detection methods for river

flow data.

An alternative approach to change detection is through analysis of periodicities. There is a
wide range of methods available for decomposition of time series into various components
(e.g. Fourier methods, Empirical Mode Decomposition, Wavelets; see for example Labat
(2005) and Sang (2013)). These approaches can detect complex non-linear patterns of
variability and do not require the selection of indicators as they are normally based on the
whole time series. However, such approaches normally characterise periodicities over a range
of scales, rather than changes over time. It is hard to relate the change in spectral shape to the
hydrological regime (Smith et al., 1998). This is indicated by recent studies in the UK which
applied these methods and did not go beyond looking at the high-level drivers, particularly the
NAOI (e.g. Sen (2009) and Holman et al. (2011)). Similarly, Kumar and Duffy (2009) use
single spectral analysis to look at the precipitation — temperature — river flow relationship.
This analysis enabled the authors to link the identified temporal changes to the southern
oscillation as well as large anthropogenic influences (dam building and pumping), but did not
investigate how changes in different aspects of the precipitation regime (e.g. seasonality and
magnitude) influence the river flow time series.

1.2. The proposed new method

Here a novel and fundamentally different methodology for detection of hydrological change is
introduced using variograms that are applied to moving windows in a river flow time-series
(hereafter, Temporally Shifting Variograms, TSVs). The TSV method gives insights into how
river flow dynamics evolve through time, without relying on fixed study periods or pre-
determined flow indicators. This enables streamflow changes to be linked explicitly with
external drivers (e.g. meteorological forcing). Variograms are able to capture the temporal
dependence structure of the river flow (i.e. on average, how dependent river flow on a

particular day is on river flow on the preceding days). The temporal dependence structure is
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closely related to the amount of variability at different temporal scales in the time series and,
as it is influenced by catchment characteristics (Chiverton et al., 2015) it enables inferences to
be made about the precipitation-to-flow relationship in a catchment.

As previously noted in the introduction there are several methods of identifying temporal
changes in river flow and a large range of indicators which could also be investigated using a
moving window. The TSV has additional key advantages over existing methods. Firstly, : the
variogram can be thought of as a composite indicator which provides information about a
range of aspects in the river flow time series, hence enabling a range of possible temporal
changes in river flow dynamics (e.g. standard deviation and seasonality) to be captured.
Variograms can also detect changes in daily river flow which other indicators may not be able
to (e.g. changes in variability at a range of time scales). Furthermore the variogram is
calculated using daily flow data and does not rely on the user extracting pre-conceived aspects
of the river flow regime via the calculation of indicators (e.g. annual or seasonal averages,
minimum or maximum flow). This enables the whole flow regime to be investigated, rather
than much of the daily flow information being discarded, as is the case when calculating some

indicators (e.g. annual 7 day minimum flow).

It is worth noting that there are a range of stochastic techniques which can characterise the
basic autocorrelation structure of data (e.g. AR, ARIMA, etc). These classical time series
analysis approaches have been widely used to investigate hydrological behaviour (e.g. Salas
et al. (1982), Montanari et al. (1997), Chun et al. (2013)). Such approaches characterise
temporal dependence and can also in principle be applied in moving windows (e.g. AR1
applied in 20-year moving windows by Pagano and Garen (2005)). A limitation with the
classical models is that the user has to select the appropriate AR and MA parameters, a
potentially subjective process, which will vary between catchments. In practice, they have

not been widely used to examine changes in temporal dependence through time.

The method we propose uses variograms to characterise the autocorrelation so that the AR
parameter does not need to be specified. Furthermore, variograms are designed to handle
missing data which is common in river flow time series. The variogram has several defined
parameters (e.g. Nugget, Sill and Range) which characterise different aspects of the
autocorrelation structure that can be used in window change analysis. This enables changes in

several aspects of the river flow regime to be analysed.
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Conventionally most trend analysis studies focus on change detection and attribution is often
based on qualitative reasoning and relies on published work to support the hypothesis (Merz
et al.,, 2012). The TSV method enables changes in river flow (associated with changes in
variogram parameters) to be quantitatively related to meteorological characteristics. This
work is an attempt to provide a formal ‘proof of consistency’ (Merz et al. 2012) that river
flow changes can be associated to changes in meteorological drivers. This is an important new
development, as few published studies of streamflow change have sought to explain observed
patterns through links to precipitation. We acknowledge that this does not amount to full
attribution without ‘proof of inconsistency’ with other drivers (e.g. land use change), but it
does provide a solid foundation for such attribution studies. In principle, the method could be
used with a wider range of drivers, both natural and anthropogenic, if -temporal data on, e.g.

land-use change, were also available.

This study has the following objectives: develop a novel change detection method (TSV) to
detect both linear and non-linear changes throughout the river flow regime; test the
performance of the method by imposing artificial changes to a river flow time-series; identify
patterns of temporal change in rivers for a set of 94 catchments in the UK; and explain the
contribution of precipitation to the detected variability in variogram parameters. This paper is
structured as follows: section 2 describes the data employed; section 3 details the TSV
method; section 4 tests the TSV method using an artificially perturbed river flow time-series;
section 5 identifies the periods of change across the 94 UK catchments and section 6

investigates the meteorological drivers.

2. Data

2.1. Catchment selection

Near-natural UK benchmark network catchments, with only modest net impacts from
artificial influences, were chosen (Bradford and Marsh, 2003). These catchments are deemed
to have good data quality and therefore artificial influences will be limited. Furthermore, only
catchments with a record length of 33 years or more (1980 — 2012) of daily river flow data
and with less than 5% missing data were considered. Nested catchments with similar flow

regimes were excluded.
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This data set was used in a previous study which classified UK catchments into four classes
according to their average temporal dependence structure (Chiverton et al. 2015). One of
these classes was excluded from the present study; this comprises catchments which have
high infiltration and storage, hence with distinctly different precipitation-to-flow relationships
that the rest of the catchments. In particular, Chiverton et al. (2015) demonstrated that these
catchments have a very long range of temporal autocorrelation of over a year, largely due to
the influence of groundwater storage, instead of weeks to a few months like the other
catchments. To avoid this very different catchment response time overly influencing results,
catchments which overlay highly productive aquifers were removed (mainly in the SE of

England). This resulted in 94 catchments, shown in Figure 1.

2.2. Precipitation characteristics

Daily catchment-averaged precipitation values were calculated from CEH-GEAR, a 1km?
gridded precipitation dataset (Tanguy et al., 2014) derived using the method outlined in Keller
et al. (2015). From this data, characteristics which represent different aspects of the

precipitation regime were calculated (Table 1).

3. The Temporally Shifting Variograms methodology

Before going into the details of the method it is important to point out that this paper is not
aiming to ascribe the behaviour in the global variogram as the definitive expression of the
temporal dependence structure. This paper develops a method which identifies differences
between variogram parameters at different time scales that represent significant changes in the
temporal dependence structure that are due to meteorological drivers (or, theoretically,
anthropogenic influences e.g. land management change, although this is not considered here;

see also Section 6).

The methodology consists of four steps, as follows: transformation of river flow data for
analysis using variograms (setion 3.1); creation of variograms for each catchment (section
3.2); detection of periods of change in streamflow using TSV (section 3.3); and, analysis of
the influence of meteorological drivers using Pearson correlation and multiple linear

regression methods (section 3.4).
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3.1. Data transformation

An overview of how the river flow time-series has been de-seasonalised and standardised
(steps 1 to 5) is provided here, but in-depth discussion can be found in Chiverton et al. (2015).

1) The river flow data were in-filled, using the equipercentile linking method (Hughes
and Smakhtin, 1996), to remove periods of missing data. This was required to improve
the de-seasonalisation (step 3).

2) A log-transform of the time-series was undertaken to stabilise the variance and create
a near normal distribution. Values of zero were replaced by 0.001 m3s™ prior to
transformation. It should be noted that a variogram could be created for a river flow
time series which has not been logged, however, the user would need to take care in
the fitting to ensure: a) the variogram fits the data well and b) the shape of the
variogram is not overly influenced by extreme values.

3) Seasonality was removed using Fourier representation. This was done to avoid
exaggerating the temporal dependence. The de-seasonalising was carried out using the
‘deseasonalize’ package in R, see Hipel and McLeod (2005) and Chandler and Scott
(2011) for further details and illustrative examples.

4) The in-filled data from step 1 were removed. The in-filled data were solely used for
the de-seasonalisation (step above). Since the in-filled data are associated with a
greater uncertainty than the measured data, they are removed from the subsequent
analysis as variograms are well suited to handling missing data.

5) Flow data were standardised for each catchment by subtracting the mean and dividing
by the standard deviation of the time-series. Standardising enables comparison of
catchments with different magnitudes of flow.

3.2. Creating variograms

The temporal dependence structure can be represented by a one-dimensional temporally
averaged variogram (see Chandler and Scott (2011) or Webster and Oliver (2007) for detailed
background about variograms). Based on the transformed, de-seasonalised standardised flow
data, an empirical semi-variogram was calculated for each catchment using the average
squared difference between all pairs of values which are separated by the corresponding time

lag (Equation 1 which calculated the semi-variance):

9(h) = 5o T (Eien) = Y (6))°]

Where h is the lag time, Y(t;) is the value of the transformed data at time tj and (N-h) is the

number of pairs with time lag h.
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A variogram model was then fitted (using the variofit function from the geoR package in R
and the Cressie method (Cressie, 1985)) to the empirical semi-variogram to enable the
following parameters to be calculated (Figure 2): the Nugget, which is the y intercept,
represents a combination of measurement error and sub-daily variability; the Sill is defined as
the semi-variance where the gradient of the variogram is zero. A zero gradient indicates the
limit of temporal dependence and is an indicator of the total amount of temporally auto-
correlated variance in the time-series. The Partial-Sill is the Sill minus the Nugget and shows
the temporally dependent component, used herein as the Sill. The Range is the lag time at
which the variogram reaches the Sill value. Autocorrelation (gradient of the variogram) is
essentially zero beyond the Range. The Practical-Range is the smallest distance beyond
which covariance is no more than 5% of the maximal covariance (time it takes to reach 95%
of the Sill) (Journel and Huijbregts, 1978). As the variogram is only asymptotic to the

horizontal line which represents the Sill, the Practical-Range is used herein as the Range.

3.3. Detection of change in streamflows using TSV

The fundamental premise of the TSV approach is that variograms are applied in moving
windows through a time-series, to determine the extent to which variogram properties (which
characterise the autocorrelation structure) change through time. To examine how unusual
these changes are in the context of the observed streamflow record, the method determines
whether variogram properties in each moving window are outside thresholds which
encompass the 5 — 95% range of expected values based on the original 30-year average
variogram. Periods of change (compared to the 30-year average variogram) were thus
detected for the 94 catchments using the following method, applied to each catchment:

1) Compute bootstrap parameter estimates from multiple realisations of the 30-year
average variogram, which are created by simulating 1,000 standardised river flow
time-series assuming a Gaussian random field model (see Havard and Held (2005) for
more detail). The data were simulated using the model parameters from the original 30
year variogram, so the output has the same lags as the original data (i.e. daily). A
variogram was then created for each of the time-series.

2) Calculate upper and lower thresholds (the 5™ and 95" percentiles of the 1,000
variograms). Several thresholds were tested and the 5" and 95" percentiles were
chosen as these were found to detect an appropriate number of threshold exceedences
throughout the time-series.

3) Calculate parameters (see below for details) for variograms applied to five year
overlapping moving windows (shifting by one year) from the original (de-seasonalised

10
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and standardised) river flow data. The values for the five year moving windows were
compared to the range of expected values (between the 5 and the 95™ percentiles) for
the 30-year average variogram to see if they were above, below or inside the
thresholds. Different sized windows between 1 and 10 years were analysed; five year
overlapping windows were found to be long enough to obtain a good fitting variogram
whilst being short enough not to characterise the average behaviour of the system.
Four variogram parameters were calculated. The Sill and Range were calculated, however, as
the data used are relatively high frequency (daily) and good quality, the value for the Nugget
is low (although not zero as there is measurement error and sub-daily variability) and the 5™
percentile is zero. Therefore, the nugget cannot be handled in the same way as the other
variogram parameters (i.e. decreases below the lower bound cannot be investigated). Instead,
a new parameter, the 3 Day Average Semi-Variance (3DASV) (average of the first three
points of the semi-variogram) was defined and used to investigate changes in very short term
temporal dependence. A further parameter was defined, the Half Range Average Semi-
Variance (HRASV) (average of the points up to half the Practical-Range) to provide
information on the intermediate temporal variability (between the 3 DASV and the Partial-

Sill, which is the total amount of auto-correlated variability).

It is acknowledged that there is uncertainty surrounding the variogram calculated from the
river flow data. Part of the uncertainty comes from river flow measurement and part from the
fitting of the variogram model. Due to the number of catchments and moving windows it is
beyond the scope of this paper to do a full uncertainty analysis as discussed in Marchant and
Lark (2004). Therefore a stability test was carried out in order to verify if the changes
detected in the TSV method are caused by a change in the autocorrelation structure or by a
few extreme points influencing how the variogram model fits the data. This is usually
undertaken by doing a split test. However, due to requirement of having a large data set to
calculate the variogram, splitting the 5 year moving window in two was not deemed
appropriate. Instead each data point in the 5 year moving window was randomly assigned to
one of ten equal sized groups. The variogram was then fitted to the data 10 times, each time
removing the data from one of the groups meaning that the variogram was fitted to 90% of the
data. This resulted in 10 values for each variogram parameter which were calculated using
90% of the data. These points are then plotted against the variogram parameters which were
calculated using 100% of the data to provide an indication as to the stability of the variogram

parameter estimates.

11
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3.4. Relating change to the meteorological drivers.

Having established patterns of temporal variability using the TSV approach, the potential
meteorological drivers behind the detected changes in the variogram parameters are identified

before being used to calculate how much of the change they explain.

Firstly, Pearson’s product-moment correlation is calculated between the time-series of each of
the four variogram parameters and the time-series of precipitation characteristics, calculated
over the same time window. These results are used to determine the likely drivers behind each

variogram parameter.

Secondly, Multiple Linear Regression (MLR) is undertaken in order to determine how much
variance in the variogram parameters could be explained by a combination of different
precipitation characteristics. As precipitation characteristics are correlated with each other, a
procedure which penalises extra model parameters is required. Stepwise regression which
tests whether parameters are significantly different from zero has limitations — in particular, it
can lead to bias in the parameters, over-fitting and incorrect significance tests (see
Whittingham et al. (2005) for an in depth discussion). In addition, the number and order of the
potential parameters can influence the final model (Burnham and Anderson, 2002). Instead,
Information Theory (IT) based on Akaike’s Information Criterion (AIC) is used to analyse
how much information is added by each characteristic. For each catchment the model with the
lowest AIC score is used to obtain the R? value which provides an indication into the amount
of change in the variogram parameters which can be explained by precipitation.

The relative importance of each precipitation characteristic is also investigated, providing
information on which precipitation characteristics are important in explaining the changes in
each variogram parameter. The relative importance is obtained by calculating the R?
contribution averaged over orderings among regressors for each precipitation characteristic
using the LMG method proposed by Linderman et al. (1980) , as recommended by Gromping
(2006).

Positive autocorrelation would influence the efficiency of the explanatory variables causing

an overestimation of the significance. However, analysing the residuals from the MLR

12
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between precipitation and river flow (using the Durbin—Watson test for autocorrelation
disturbance) showed no significant autocorrelation. Therefore, regressing against several
precipitation variables with similar autocorrelation to the variogram parameters (both
averaged over five year moving windows) is deemed to adequately remove the

autocorrelation.
4. Testing the TSV method using artificially perturbed time-series

To demonstrate the suitability of the TSV approach, it was first applied to river flow time-
series with known artificially perturbed periods. To identify which variogram parameters
respond to changes in the river flow time-series, a series of artificial changes were imposed
onto a seven year (1987 to 1994) section of the observed 32-year (1980 — 2012) de-
seasonalised river flow time-series (Figure 3): five year moving windows starting between
1982 and 1994 (inclusive) will exhibit changes. The changes were imposed on three rivers,
the South Tyne in the north-east of England, the Yscir in Wales and the Tove in eastern
England. The three catchments range from a relatively upland catchment with low storage
(South Tyne) to a more lowland catchment with higher storage (Tove), although still a
catchment with limited groundwater contribution; Base-Flow Index (BFI) values are 0.45,
0.34 and 0.54 with drainage path slope (DPS) values of 138, 107 and 37 m km™ for the Yscir,
South Tyne and Tove, respectively (Marsh and Hannaford, 2008).

The perturbations applied represent plausible scenarios of the likely types of change to be
seen in river flow time-series due to climate variability, other extrinsic drivers (e.g. land
management) or a change in the gauging station.

- Increase in the standard deviation: a random, normally distributed set of numbers
with a mean of zero and a standard deviation of 0.5 were added to the standardised
river flow time-series.

- Increase in variability: the smallest 20 % of values were decreased by 20% whilst
the largest 20% of values were increased by 20%.

- Increased dependence: a cosine wave with a wavelength of 365 days and amplitude
of 0.5 was added to the standardised river flow time-series. This increases the
relationship between river flow on successive days.

- Increase in the mean: 1.0 was added to all the standardised river flow time-series
increasing the mean from 0 to 1.

- Periods of persistence: a 30 day period each December was forced to equal the mean.

Imposing artificial changes onto raw time-series was selected as a more challenging test for

the variogram change detection method, compared to applying the changes to a randomly

13
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generated artificial statistically-stationary time-series, as it requires the method to be able to
detect changes amongst the naturally occurring variability in the time-series. For all three
catchments, a variogram was calculated for each five year overlapping moving window (i.e.
1980 — 1984, 1981 — 1985 ... 2008 — 2012) for the original and each of the artificial time-
series (Figure 3). The variation in time of the variogram parameters provides information on
whether the enforced changes in the input time-series would be detected, and on which
variogram parameters are affected by different types of change.

Figure 4 shows the outputs of the TSV analysis for the artificially modified time-series. The
outputs from the three catchments were similar and therefore only the output from the South

Tyne is shown, as an example.

The magnitude of change varies depending on the type of perturbation to the flow regime
(Figure 4). Variogram parameters are sensitive to realistic changes to aspects of the flow
regime which can cause the parameters to exceed the 5™ or 95 percentile threshold. In

addition, the individual variogram parameters respond differently to each of the changes:

Range: the only artificial perturbation which has a large influence on the Range is the
dependence. The increase in Range is caused by creating dependency between flow on given

days which lasts for a longer time.

Sill: influenced mainly by the dependence and variability. Adding a wave also increases the
difference between the largest and smallest values, hence the total amount of variability (the

Sill) increases.

HRASV: mainly influenced by the standard deviation and the variability, both of which
influence the variability (short term and long term respectively). In addition the persistence
also has a small negative impact as this would reduce the short term variability.

3 DASV: influenced by the same artificial perturbation as the HRASV, however, the

variability has less of an influence.

5. Application of the TSV method to benchmark catchments
5.1. Stability analysis

14
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Before the temporal changes are identifed, the stability of the variogram parameters was
analysed to investigate if certain data points are having a large influence of the shape of the
variogram and hence the variogram parameters. Figure 5 shows the relationship between the
variogram parameters which are calculated using 100 % of the available river flow data and
the same parameters calculated using 90 % of the available data. The figure highlights that
there is a strong relationship between the points calculated using 90 and 100 % of the data.
However, there are points which deviate much from the x=y gradient. The red dashed lines in
Figure 5 represent small deviations from the y=x plot which are deemed to be an acceptable
amount of variation due to the removal of 10% of the data. Any catchment which has a point
or more outside these lines, for any variogram parameter, was removed. This resulted in three
catchments being removed from subsequent analysis. As well as the points outside of the red
dashed lines, the Range has two groups of values that exceed the length of the red dashed
lines (catchments with a Range of over 170 days). These two groups have large variability in
the 10 values containing 90 % of the data. The large variability is probably due to the
extrapolation by the model from the calculated semi-variance. Due to the fact that all the
values are above the 95" threshold (and therefore it is likely that they capture a true change in

the Range) these values were retained.

5.2. Identifying periods of change

Figure 6 identifies the periods when the TSV characteristics go above or below the 95" or 5™
percentiles from the average variogram, respectively, for the 91 catchments. Different
variogram parameters exhibit different changes through time. The 3 DASV shows relatively
little change, until after 2004 when there is a peak in the number of catchments above the
upper threshold. The Sill has peaks in the number of catchments going above the upper
threshold around 1980, 1990 and after 2004. The Range and the HRASV show several
periods where the number of catchments above the upper threshold is much greater than the
number of catchments below the lower threshold and vice versa. The Range and the HRASV
see dramatic increases in the number of catchments which go beyond the lower and upper
thresholds respectively, during approximately 1995 to 2001. Throughout this period the total
amount of variability (the Sill) remains the same, as does the 3 DASV. The medium term
variability (HRASV) shows an increase and the length of time the temporal dependence lasts

(the Range) decreases. In addition to the 1995 to the 2001 period, every variogram parameter
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exhibits an increase in catchments exceeding the thresholds after around 2004. This indicates
increases in the total (Sill) and short to medium term (3 DASV and HRASV) variability in the

river flow time-series.

5.3. Drivers behind the change

Initial analysis investigated the difference in precipitation between the periods which show
the greatest changes, in terms of the number of catchments which go below / above the
thresholds (approximately 1995 - 2001 and 2004 - 2012), with the preceding time-series
(1980 — 1994). The periods where the most exceedances occur (1995 - 2001 and 2004 — 2012)

are significantly more variable than the preceding time-series (Table 2).

To explore the links with drivers more quantitatively, the relationship between precipitation
characteristics and variogram parameters in the 5-year moving windows were calculated, with

the results summarised for all catchments in Table 3.

The Sill has the largest relationship with the winter to summer ratio (negative) followed by
the standard deviation (positive). Although these appear contradictory, closer inspection
found that the winter value seldom changed whereas the summer value increased (decreasing
the winter to summer ratio), increasing the Sill. The Range is most correlated with the lower
percentiles (negative) and the length of wet and dry periods (negative and positive
respectively). Similar to the Sill, the 3 DASV has the largest correlations with the standard
deviation (positive), winter to summer ratio (negative), mean (positive) and 90th percentile
(positive). The largest correlations are with the HRASV which is highly correlated with the

percentiles (positive), SD (positive) and the mean (positive).

Each variogram characteristic has a different relationship with the precipitation characteristics
(Table 3). As expected from the artificial analysis (Figure 4) the Sill, HRASV and 3 DASV
are more influenced by precipitation characteristics which affect the short term or total
amount of variability in the time-series (e.g. standard deviation and the different percentiles).
The Range is most influenced by aspects of the precipitation which enhance correlation
between the river flow on successive days (e.g. length of wet and dry periods). The
relationship between the precipitation characteristics and the Range is usually in the opposite

direction to the other variogram parameters.
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The average relative importance of each indicator in predicting each variogram parameter was
calculated using the LMG method. The three most important characteristics for the Sill
(accounting for over 30% of the explained variance between them) are the winter to summer
ratio, standard deviation and 90th percentile. The three most influential characteristics for the
3 DASV were the same as for the Sill. The average length of time below and above 1 mm
accounts for over 30% of the explained variance for the Range. For the HRASV, standard
deviation, winter to summer ratio and the mean precipitation account for over 30% of the
explained variance. Although these key drivers have been identified, the total amount of
variability in the variogram parameters which is explained by precipitation characteristics is
mixed and depends on both the variogram parameter and the catchment, as shown by the
range of values of explained variance for individual catchments (Figure 7).

6. Discussion

The TSV method provides information about temporal changes in the whole autocorrelation
structure of the daily river flow data and shows the relationship between river flow on
successive days. Persistent changes in precipitation can cause the river flow regime to change
in a way which will alter the autocorrelation structure and be detectable using the TSV
method. This is demonstrated by the analysis of the artificially perturbed time-series which
showed that it is possible to identify plausible and realistic (i.e. likely to be seen in a river
flow time-series) changes in a river flow time-series using the Temporal Shifting Variogram
(TSV) approach. The TSV technique goes beyond monotonic change detection methods (such
as the widely used Mann-Kendall test) as it does not require the whole time-series (which is
driven by multiple non-linear interactions) to alter in a near-linear way for change to be
detected. Change in any form (e.g. gradual linear and non-linear) can be characterised by
plotting the variogram parameters over time. This is an advantage over change point analysis
which is designed to detect abrupt changes. Another benefit of the TSV method is that it
provides more information about the autocorrelation structure than an AR / ARMA model.
Changes throughout different aspects of the river flow regime will be detected as the
individual variogram parameters (Sill, Range, HRASV and 3 DASV) are sensitive to different
types of change. Finally, the identified change is in relation to expected flow dynamics which
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represent the whole time period, enabling anomalous periods at the start and end of the

records to be identified.

Applied to 91 UK catchments, the TSV method was able to identify clear changes from the
normal river flow behaviour. Changes in each variogram parameter (Range, Sill, HRASV and
3 DASV) characterise different aspects of the river flow regime. The Range is dependent on
the relationship between the flow on successive days; the value of the Sill depends on the
overall variability; the 3 DASV is related to the day-to-day variability and the HRASV is a
combination of short-term and long-term variability. As this is a new method, the changes in
the variogram parameters are discussed below in the context of previous studies, on observed
changes in river flow and precipitation, in order to corroborate the river flow variations that

the variogram parameters are detecting, as well as their meteorological drivers.

The variogram parameters exhibit different changes throughout the record. There is as a clear
increase in the number of catchments going below the lower threshold (5% threshold, from
the 1,000 river flow time-series simulations) for the Range between, approximately, 1995 and
2001. Analysis of the perturbed time-series shows a decrease in the Range is likely to be
caused by a reduction in the dependence between flow on successive days. This period was
exceptionally wet (CEH, 2002) with less seasonality (Table 2) meaning that catchments
would have often been wetter, decreasing the available storage and the lag time between
precipitation and river flow and increasing the variability in river flow. This also indicates
why the number of catchments which exceed the HRASV upper threshold (95% threshold)
increases approximately between 1995 and 2001. The HRASV is influenced by standard
deviation and variability in the river flow (Figure 4), both of which will be influenced by

wetter conditions in the catchment.

Post-2004 there is a large increase in the number of catchments which exceed the upper
threshold for the Sill. This increase is likely caused by the increase in variability of river flow
after 2004 (Figure 4). This time period experienced some of the most unusual hydrological
conditions in the UK since records began: among the highest annual precipitation totals on
record were recorded in 2008 (CEH, 2009) whereas January to June 2010 was the second
driest since 1910. The 2010 - 2012 drought, one of the most severe droughts for a century
(Kendon et al., 2013) terminated abruptly, leading to widespread flooding due to the wettest
April to July in England and Wales for almost 250 years (Parry et al., 2013). In addition, the
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standard deviation in the river flow was significantly larger than for both the 1980 — 1995 and
the 1995 — 2001 periods. The high correlation between standard deviation and the 3 DASV
explains the post-2004 increase in the number of catchments which exceed the upper
threshold for the 3 DASV.

Different meteorological characteristics influence each variogram parameter. The Sill,
HRASV and 3 DASV are largely controlled by precipitation characteristics which influence
the total amount and variability of precipitation (mean, standard deviation, 95" percentile).
The Range is more dependent on the length of wet and dry periods. The precipitation
characteristics, on average, explain a large amount of the variability in the variogram
parameters (Figure 7) (75%, 67%, 83% and 69% for the Sill, Range, HRASV and 3 DASV
respectively). The medium term (half of the Range) variability has the strongest correlation
with the precipitation characteristics (Table 3). This suggests that the catchment
characteristics may be having more of an influence on the relationship that the Sill and

3DASV have with precipitation.

Although, on average, precipitation explains a large proportion of the river flow variability,
there are large differences in the amount of explained variability across catchments (Figure 7).
The unexplained proportion could be caused by: (1) land management change or other human
disturbances which would alter the precipitation-to-river flow relationship; (2) other
meteorological characteristics not included in this paper; (3) catchment characteristics
moderating how a river responds to temporal changes in precipitation; (4) unquantified error,
(e.g. statistical error), including assumptions made when using information theory. With
regards to the first of these factors, the analysis was carried out on benchmark catchments
with limited abstractions / discharges; however, it is likely that other factors will have a
greater role in catchments with less natural regimes. Benchmark catchments generally have
relatively stable land cover but land use changes over time cannot be ruled out. Other
meteorological characteristics (potential factor number 2) could be influential, for example,
temperature which will influence the amount of snow and evapotranspiration. Snow will
increase the lag time between precipitation and river flow. Furthermore if the snow melt is
gradual this will act as a store of water, and the gradual release could influence the variogram,
mimicking the effect of a groundwater aquifer. Snow can be important in runoff generation in
upland areas of the UK, and in more low-lying settings in some winters. However, it is

unlikely to make a large difference that would be discerned in the variogram of the majority
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of UK benchmark catchments. A change in the evapotranspiration losses over time could alter
the magnitude of river flow, as well as seasonality. Assessing the role of additional
meteorological characteristics is an important avenue of future work for developing the TSV

methodology.

It is well documented that catchment characteristics moderate the precipitation-to-river flow
relationship (e.g. Sawicz et al. (2011) and Ley et al. (2011)) and, more specifically, have been
shown to exert a strong control over variogram properties (Chiverton et al. 2015). It therefore
stands to reason that the catchment characteristics could be enhancing or damping a rivers
response to changes in precipitation; influencing the non-linear precipitation to river flow
relationship. This would influence the amount of variability which can be explained by
multiple linear regression, and possibly explaining the wide range of degrees of explained
variance between catchments in Figure 7. The influence of catchment characteristics could
explain why several studies (e.g. Hannaford and Buys (2012) and Pilon and Yue (2002)) find
regional inconsistencies in observed streamflow trends in catchments with broadly similar
meteorological characteristics. Therefore, the influence that catchment characteristics have on
moderating how a river responds to temporal changes in precipitation needs to be established.
Finally, using other methods to obtain the optimum combination of precipitation parameters

(other than IT and AIC) could produce different results.

7. Overall, the TSV approach has been shown to be a useful tool for
characterising temporal variability in river flow series, going beyond
standard monotonic trend tests and relating the changes to precipitation
characteristics. As the method is able to detect non-linear changes, and
there are four variogram parameters which respond in different ways, a
more detailed analysis of links with drivers of change can be provided. In
this study, this has been done using a suite of meteorological indicators.
However, the approach could also be used with other explanatory variables
(e.g. land use changes, changes in artificial influences, etc). In this way, the
method could find wider application as a tool for attribution of change
using, for example, the Multiple Working Hypothesis approach (e.g.
Harrigan et al. (2014)). Conclusion

This paper developed a new method of Temporally Shifting Variograms (TSV), for detecting
temporal changes in daily river flow. The TSV approach can detect periods of change
20
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(increases and/or decreases) which result from linear or non-linear changes. Each variogram
parameter is related to a different aspect of the river flow, thus providing detailed information
as to how river flow dynamics have changed through time.

There are distinct time periods when there is a large increase in the number of UK benchmark
catchments exceeding a threshold (around 1995 — 2001 for the Range and HRASV and post-
2004 for all of the variogram parameters). The changes between 1995 and 2001 are attributed
to an increase in precipitation; increasing the wetness of the catchment. Increased wetness
reduced the amount of short term (< half the Range) variability which is removed by the
catchment characteristics. The period after 2004 incorporated some of the most variable
precipitation on record, influencing all of the variogram parameters. Meteorological factors
explained a large proportion of the variability in the variogram parameters (75%, 67%, 83%
and 69% for the Sill, Range HRASV and 3 DASV respectively). The amount of unexplained
variability is potentially caused by catchment characteristics moderating how a river responds

to temporal changes in atmospheric conditions.

This paper has demonstrated that TSV analysis enables changes in river flow dynamics to be
characterised. The method will detect a wide range of changes (trends, variations in variability
or standard deviation and step changes); the larger the magnitude of the change the less time
IS needed before the variogram parameters will exceed the thresholds. The principal
advantages to the variograms are: the method is not influenced by the start and end points;
changes near the start or the end of the record can be identified; non-linear changes can be
detected and the four variogram parameters capture different aspects of the river flow
dynamics. Variograms could also be used to identify the impact that catchment characteristics
have on moderating how a river responds to temporal changes in precipitation, which could
be valuable information for enabling detailed catchment management plans to be drawn up at

a local level in a non-stationary environment.
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Figure 6
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(calculated using IT) for each catchment.

Table 1: Daily precipitation characteristics.
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Precipitation Units Description

characteristic

Mean mm Average daily precipitation values

Standard deviation mm Standard deviation of the daily precipitation values

25" percentile mm Daily precipitation amount which is not exceeded 25% of the time
Median mm Daily precipitation amount which is not exceeded 50% of the time
75" percentile mm Daily precipitation amount which is not exceeded 75% of the time
90" percentile mm Daily precipitation amount which is not exceeded 90% of the time
95™ percentile mm Daily precipitation amount which not is exceeded 95% of the time
Max length of days The maximum number of successive days for which the precipitation
precipitation above or is above/below the threshold.

below 1mm day™

Average length of days The average number of successive days for which the precipitation is
precipitation above or above/below the threshold. Only periods of time greater than 2 days
below 1mm day™ were analysed.

Winter / summer unitless | The mean rainfall in December, January and February divided by the
precipitation ratio mean rainfall for June, July and August.

Autumn / spring unitless | The mean rainfall in September, October and November divided by
precipitation ratio the mean rainfall for March, April and May.

Table 2: Change in the median value of the potential driving characteristics for 1995 — 2001
and 2004 - 2012, compared to 1980 — 1994. The median value (taken from all
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the 91 catchments) is presented along with the significance level (if
significantly different from 1980 — 1994 at or above the 95% CI).

Characteristic 1980 - 1994 1995 - 2001 2004 - 2012
Mean (standardised) -0.013 -0.006 (99.9%) 0.006 (99.9%)
Standard deviation (standardised) 0.975 0.993 (99%) 1.01 (99.9%)
Median (standardised) -0.461 -0.458 (95%) -0.451(99.9%)
25 percentile (standardised) -0.55 -0.55 -0.55
75™ percentile (standardised) 0.10 0.12 (99%) 0.14 (99.9%)
90™ percentile (standardised) 1.12 1.16 (99.9%) 1.17 (99.9%)
Winter / Summer 1.36 1.60 (99.9%) 1.03 (99.9%)
Autumn / Spring 1.32 1.48 (99.9%) 1.47 (99.9%)
Max consecutive number of days 29 27 (99%) 25 (99.9%)

below 1 mm (days)

Max consecutive number of days 16 17 16
above 1 mm (days)

Average consecutive number of days 17 17 17
below 1 mm (days)

Average consecutive number of days 16 16 16
above 1 mm (days)
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Table 3: Percentage of catchments with significant (at the 95% CL) correlation between the 5
year precipitation and variogram characteristics. The average correlation (for

catchments with significant correlations) is in brackets.

Characteristic Range Sill HRASV 3 DASV

Mean 30 (-0.42) 37 (0.33) 54 (0.62) 32 (0.47)

Standard deviation 35 (-0.31) 48 (0.47) 64 (0.62) 43 (0.53)

Average length of | 55 (-0.47) 54 (-0.09) 63 (0.12) 48 (-0.20)
wet period (above

1mm)

Average length of dry | 52 (0.49) 48 (-0.11) 58 (-0.11) 39 (-0.12)
period (below 1mm)

Max length of wet | 34 (-0.21) 32 (-0.04) 27 (0.08) 31 (-0.05)
period (above 1mm)

Max length of dry | 38 (0.50) 32 (0.24) 35 (-0.21) 30 (-0.02)
period (below 1mm)

25" percentile 31 (-0.50) 32 (0.12) 43 (0.53) 27 (0.36)

Median 42 (-0.43) 32 (0.06) 53 (0.48) 25 (0.37)

75™ percentile 34 (-0.21) 31 (0.11) 56 (0.51) 27 (0.38)

90™ percentile 30(-0.12) 38 (0.34) 51 (0.52) 34 (0.42)

Winter / Summer 24 (-0.36) 65 (-0.51) 60 (-0.51) 56 (-0.44)
Autumn / Spring 15 (-0.19) 23 (0.01) 26 (0.16) 20 (-0.02)
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