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Abstract. The paper examines the quality of satellite-based
precipitation estimates for the Lower Mahanadi River Basin
(Eastern India). The considered data sets known as 3B42 and
3B42-RT (version 7/7A) are routinely produced by the trop-
ical rainfall measuring mission (TRMM) from passive mi-5

crowave and infrared recordings. While the 3B42-RT data
are disseminated in real time, the gauge-adjusted 3B42 data
set is published with a delay of some months. The quality
of the two products was assessed in a two-step procedure.
First, the correspondence between the remotely sensed pre-10

cipitation rates and rain gauge data was evaluated at the sub-
basin scale. Second, the quality of the rainfall estimates was
assessed by analysing their performance in the context of
rainfall-runoff simulation.

At sub-basin level (4000 to 16 000 km2) the satellite-based15

areal precipitation estimates were found to be moderately
correlated with the gauge-based counterparts (R2 of 0.64–
0.74 for 3B42 and 0.59–0.72 for 3B42-RT). Significant dis-
crepancies between TRMM data and ground observations
were identified at high intensity levels. The rainfall depth20

derived from rain gauge data is often not reflected by the
TRMM estimates (hit rate< 0.6 for ground-based intensi-
ties> 80 mm day−1). At the same time, the remotely sensed
rainfall rates frequently exceed the gauge-based equivalents
(false alarm ratios of 0.2–0.6). In addition, the real time prod-25

uct 3B42-RT was found to suffer from a spatially consistent
negative bias.

Since the regionalisation of rain gauge data is potentially
associated with a number of errors, the above results are sub-
ject to uncertainty. Hence, a validation against independent30

information, such as stream flow, was essential. In this case
study, the outcome of rainfall–runoff simulation experiments
was consistent with the above-mentioned findings. The best
fit between observed and simulated stream flow was obtained

if rain gauge data were used as model input (Nash–Sutcliffe35

Index of 0.76–0.88 at gauges not affected by reservoir opera-
tion). This compares to the values of 0.71–0.78 for the gauge-
adjusted TRMM 3B42 data and 0.65–0.77 for the 3B42-RT
real-time data. Whether the 3B42-RT data are useful in the
context of operational runoff prediction in spite of the iden-40

tified problems remains a question for further research.

1 Introduction

Precipitation estimates constitute the essential forcing of
hydrological catchment models. Reliable data on rain and45

snowfall are indispensable for model calibration, simulation,
and forecasting. In many regions of the world, rain gauge
data are difficult to access for technical and/or administrative
reasons. This is particularly true for real-time data needed for
operational hydrological forecasting. In many catchments,50

precipitation estimates are also subject to considerable un-
certainty due to the small number of rain gauges and/or non-
representative observation sites. Finally, recording devices,
human operators, and data transmission are susceptible to er-
rors and outages for various reasons. Therefore, traditional55

precipitation records are rarely complete.
In view of these difficulties, the use of remotely-sensed

precipitation estimates becomes attractive. In large river
basins, satellite-based estimates are of particular interest. For
latitudes≤ 50◦, such data are made available at no charge60

by the TRMM mission, jointly conducted by the US and
Japanese space agencies. The TRMM product with identi-
fier 3B42 is particularly suitable for hydrological modeling
due to its high resolution in space (0.25◦ × 0.25◦) and time
(3 h). In addition to ground-adjusted data for research pur-65
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poses (Huffman et al., 2007), a near real-time variant known
as 3B42-RT is available (Huffman and Bolvin, 2013).

TRMM-based precipitation estimates were compared to
rain gauge measurements in a number of case studies from
all over the world (see, e.g. Oke et al., 2009; Javanmard et al.,70

2010; Liu et al., 2012; Ouma et al., 2012; Gao and Liu, 2013;
Peña-Arancibia et al., 2013). A preliminary evaluation over
India was carried out by Rahman and Sengupta (2007) at
daily scale using a spatial resolution of 1◦×1◦. TRMM data
were also tried as inputs for hydrological modeling by a num-75

ber of groups (Collischonn et al., 2008; Li et al., 2012). Re-
garding India, the suitability of TRMM-based precipitation
data for hydrological modeling is yet to be studied for most
river basins.

This paper analyses the latest TRMM 3B42 (version 7)80

and 3B42-RT (version 7, revision 2) data for a hydrologically
sensitive part of India. The spatial focus is on the Mahanadi
River Basin downstream of the Hirakud Reservoir. To our
knowledge, no case study on the quality of TRMM data is
available for this specific area. The evaluation is carried out85

in two steps. First, the satellite-based precipitation estimates
are compared to ground observations after spatial and tem-
poral aggregation. Second, TRMM and rain gauge data are
processed through a hydrological model and the correspond-
ing errors in simulated stream flow are analysed.90

2 Study area

The Mahanadi River Basin covers an area of about
140 000 km2 in the Eastern part of India. The Mahanadi and
its tributaries drain a considerable part of the states Chhattis-
garh and Orissa towards the Bay of Bengal. In the delta re-95

gion, the river is split across a number of branches, including
man-made canals. According to the global land-cover data
set (JRC, 2003), 55 % of the basin is covered by agricultural
land of which almost 90 % is subject to irrigation. Forests
and shrubs cover 35 and 7 %, respectively. Built-up areas are100

of minor importance.
The basin’s climate is characterised by the Monsoon with

dry winters and wet summers. Rainfall amounts to approx.
1500mmyr−1. The annual peak is typically observed in
July with about 400mmmonth−1. In the dry season extend-105

ing from November to March, rainfall is usually less than
20mmmonth−1. The annual maximum of air temperature
occurs in May with average values well above 30 ◦C.

The flow regime in the lower reaches of the Mahanadi
River is largely controlled by the Hirakud Dam operated110

since 1957 (Fig. 1). The Hirakud reservoir serves multiple
purposes such as flood protection of the delta region, irri-
gation, and power production. With a storage capacity of
over 5 km3, Hirakud is one of India’s largest reservoirs. In
spite of its significant retention capacity, the lower reaches115

of the Mahanadi River still experience severe floods associ-
ated with significant losses (DOWR, 2009). The latest major
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Fig. 1. Mahanadi River basin with the analysed gauges (trian-
gles) and their catchments. Gauge names are abbreviated: Hirakud,
Kesinga, Salebhata, Kantamal, Tikarpara, Mundali.

events occurred in 1980, 1982, 2008, and 2011 with peak
discharges of up to 44 000m3 s−1 entering the delta down-
stream of Mundali (easternmost gauge in Fig. 1). Peak travel120

times from Hirakud to Mundali (310 km) range from 36 to
50 h (DOWR, 2010).

3 Data and methods

3.1 Precipitation data sets

3.1.1 TRMM rainfall estimates125

Two high-resolution rainfall data sets provided by the
TRMM mission were analysed. The official identifiers are
3B42 for the gauge-adjusted research version and 3B42-
RT for the real-time variant. Basic specifications of the two
data sets are collected in Table 1. A description of the130

remote sensing approach and technical specifications can
be found in Huffman et al. (2007) for the 3B42 data and
Huffman and Bolvin (2013) for the 3B42-RT data. The
two data sets can be downloaded from the NASA servers
disc2.nascom.nasa.gov/s4pa/TRMM L3/TRMM 3B42 and135

trmmopen.gsfc.nasa.gov/pub/merged/3B42RT, respectively.
The spatial coverage of the Mahanadi Basin by the TRMM

grid is illustrated in Fig. 2. In this region, the dimensions of
an individual 0.25◦×0.25◦ grid cell is about 26km×28 km
(≈ 730 km2). The number of missing values in the TRMM140

times series is surprisingly low. In over 12 yr, the real-time
data set is incomplete on 28 days only. On all but two days
the spatial coverage is at least 50 %.
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Table 1. Basic specifications of the evaluated TRMM data sets.

Data set 3B42 3B42-RT

Temporal resolution 3h same as left
Spatial resolution 0.25◦ × 0.25◦ same as left
Spatial coverage 50◦ N–50◦ S 60◦ N–60◦ S
Delay of dissemination 3 months 3 h
Adjustment to gauge data Monthly sums none
Used version 7 7, revision 2
File format (unzipped) HDF Custom binary format
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Fig. 2. Grid of the TRMM 3B42/3B42RT product covering the Ma-
hanadi River Basin. Individual cells are 0.25◦×0.25◦ wide. Points
represent rain-gauges in sub-catchments downstream of the Hirakud
Dam, stream gauges are marked by triangles (cf. Fig. 1).

The data were downloaded using the software tool “wget”
after collecting a list of all required file paths. Appropriate145

R scripts were used for the purpose of further processing,
including decompression, conversion to ASCII, spatial sub-
setting, time conversions, and formatting. The actual binary-
to-ASCII conversion was performed using “hdp” (for HDF
files) and customised C code (for the 3B42-RT file format).150

The correctness of the processing was verified by plotting
the results for selected dates. Spatial patterns and the scaling
were then compared to corresponding outputs of the NASA’s
online visualisation system “TOVAS”.

The real time product (3B42-RT) showed a moderate neg-155

ative bias when compared with the gauge-adjusted 3B42
product. We corrected for this deficit by multiplying the for-
mer product with an adjustment factor reflecting the devia-
tion between the two satellite data sets. In order not to intro-
duce artificial skill, factors were derived independently for160

two sub-sets of the 11 yr time series. The factor determined

on the first half of the time series was applied to the second
half and vice versa. Note that this correction does not make
explicit use of recent rain gauge data since the adjustment
factor is derived from historic satellite data alone. Hence, the165

real-time character of the 3B42-RT product, i. e. its opera-
tional applicability, is fully preserved.

3.1.2 Rain gauge data

Daily rainfall data were provided by the India Meteorologi-
cal Department for 74 rain gauges located inside and nearby170

the Lower Mahanadi Basin (Fig. 2). Implausible values and
periods with zero-only data during the monsoon season were
marked as “missing”. Furthermore, the data at all rain gauges
were validated by double mass analysis using the spatial me-
dian as the reference. Based on this, the data of some rain175

gauges and/or years were also set to “missing”. To facilitate
further analysis and the use of the data as a model input, all
“missing” values were finally substituted with estimates ob-
tained by spatial interpolation (inverse distance method).

3.1.3 Disaggregated gauge data180

A derived, gauge-based precipitation estimate was obtained
by imprinting the 3 hourly pattern of the TRMM 3B42 data
on the 24 h sums observed at the rain gauges. The approach
of disaggregation is described by Eq. (1). In this equation, G3
is the 3 hourly estimate for a gauge, G24 is the original daily185

observation, and SRR3 and SRR24 denote the corresponding
3 hourly and daily sums according to the real-time TRMM
data for the nearest grid cell (cf. Table 2).

G3 =

{
G24 ·SRR3/SRR24 ifSRR24 > 0

G24 · 3/24 ifSRR24 = 0
(1)

190

Eq. 1 assumes that, in terms of cumulated rainfall, ground
observations are more reliable than remotely sensed esti-
mates. That is why the satellite information is used as a
dimensionless weight only (first case). In the second case
of Eq. 1, the satellite-based estimate is simply ignored and195

the gauge-recorded rainfall is distributed uniformely over the
day.

3.1.4 Short data set identifiers

For clarity, abbreviations are introduced to identify the var-
ious precipitation estimates introduced in the previous sec-200

tions. Gauge-based estimates are generally identified by the
initial letter “G” whereas an initial “S” is used for the
satellite-based estimates. A summary of all abbreviations
used throughout the remainder of the paper is given in Ta-
ble 2.205
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Table 2. Short identifiers for the different precipitation estimates.

Abbrev. Description

G24 Original 24 h rain gauge data.
G3 3 hourly rain gauge data produced by disaggregation.
SG Gauge-adjusted satellite data (TRMM 3B42).
SRR Raw real-time satellite data (TRMM 3B42-RT).
SRC SRR after bias correction.

Table 3. Contingency table to measure the correspondence between
rain gauge data (column headers) and remotely sensed estimates
(row headers) with respect to a threshold intensity X (mmday−1).
A value of 1 is added to the appropriate field for every analysed
event.

Ground obs. >X Ground obs. ≤X

Remote sens. >X Hit False alarm
Remote sens. ≤X Miss Correct negative

3.2 Evaluation procedure

First, the correspondence between the satellite-based precip-
itation estimates and rain gauge data was examined. For that
purpose, the data were aggregated in space (areal rainfall for
sub-basins) and time (24 h sums). The spatial aggregation210

aims at compensating for the coarse resolution of the TRMM
grid (Fig. 2) compared with the rain gauge domain. The tem-
poral aggregation was necessary since high resolution rain
gauge data were unavailable. The association of the data
sets was expressed in terms of R2 and the percentage bias215

(Eq. 5). The probability of detection (POD), the false alarm
ratio (FAR) and the equitable threat score (ETS) were eval-
uated to assess the ability of the remote sensing approach to
properly detect high rainfall intensities. For a contingency ta-
ble like Table 3, these first two scores are defined by Eqs. (2)220

and (3). See Jolliffe and Stephenson (2003) for the definition
of ETS.

POD =
Hits

Hits+Misses
(2)

FAR =
False Alarms

Hits+False Alarms
(3)

225

Second, rain gauge data and satellite-based estimates were
processed through a conceptual hydrological model. This al-
lowed for a comparison of the rainfall estimates with respect
to the error of simulated runoff. The error was quantified
by the Nash–Sutcliffe Index, NS, and the percentage bias,230

pBias (Eqs. 4 and 5; o: observations, p: model predictions,
MSE: mean squared error, VAR: variance operator, n: length
of vectors o and p). Since systematic errors in rainfall in-
put may partly be compensated by the choice of the model’s

parameters (see, e.g. Heistermann and Kneis, 2011), the eval-235

uation was done with and without (re-)calibration of the hy-
drological model to the individual rainfall data sets.

NS = 1− MSE(p,o)
VAR(o)

(4)

pBias =
∑n

i=1 (pi − oi)∑n
i=1 (oi)

· 100% (5)
240

The evaluation was carried out on the period March 2000
to December 2010 owing to the limited access to hydrologi-
cal and rain gauge data. For the same reason, the spatial focus
was put on the Lower Mahanadi Basin downstream of the Hi-
rakud dam.245

3.3 Hydrological modeling

3.3.1 Model engine

The hydrological model used in this study is called HYPSO-
RR. This is a time-continuous, semi-distributed, concep-
tual model developed on the basis of the ECHSE model-250

ing framework. Both the model and the underlying modeling
framework are available at http://echse.bitbucket.org includ-
ing source code and documentation.

The basic types of objects (formally called classes) sim-
ulated by HYPSO-RR are (1) sub-basins, (2) river reaches,255

and (3) river junctions. Additional classes are available for
the simulation of lakes and reservoirs. HYPSO-RR was origi-
nally designed for time-consuming applications in hydrolog-
ical forecasting (ensemble simulation, operational data as-
similation). Therefore, computational efficiency was given260

priority over a very detailed, strictly physically-based de-
scription of real-world processes. A brief summary of the
major hydrological processes and the associated model con-
cepts is presented in Table 4. A detailed documentation, in-
cluding all equations, can be found in Kneis (2012b). The265

current version of HYPSO-RR distinguishes three classes of
land cover only: vegetated soil, water, and impervious sur-
faces.

3.3.2 Spatial setup and data

Drainage network and watershed boundaries were derived270

from the ASTER digital elevation model using software de-
scribed in Kneis (2012b). The median sub-basin size was
about 150 km2. Information on land use was taken from the
global land cover map (JRC, 2003). Basic soil properties
were extracted from the global WISE data base provided275

by the International Soil Reference and Information Centre
(www.isric.org).

Survey cross-section data were available for 40 sites along
the main Mahanadi River between Hirakud and Mundali.
For about 200 additional sites, cross-sections were extracted280

from the elevation model. Based on this information, hy-
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Table 4. Concepts used by HYPSO-RR to simulate major hydrological processes at the level of sub-basins, river reaches, or lakes.

Processes Concepts

Runoff generation – Simulation of the water balance of a single-layer soil column
– Estimation of saturated areas with the Xinanjiang approach (Zhao et al., 1980)
– Calculation of direct runoff using the analytical solution of Todini (1996)
– Calculation of interflow and groundwater recharge as in LARSIM (Ludwig and Bremicker, 2006)

Runoff concentration – Transformation of individual runoff components through linear reservoirs
– Storage constants derived from DEM to account for spatial variability in concentration times

Evapotranspiration – Estimation of potential evapotranspiration (PET) using the Makkink model (de Bruin, 1987)
– Actual ET is derived from PET by multiplying with a soil moisture term and a crop factor
– Leaf-area index is used as a proxy to capture the crop factor’s seasonality

Snow storage/melt – Energy balance model similar to the one presented in Tarboton and Luce (1996)

Channel routing – Approximation of a uniform reach as a non-linear reservoir
– Local linearisation of the governing differential equation for analytical solvability
– Parameters derived from cross-section data using Manning’s equation

Lake storage – Numerical solution of the water balance equation

draulic parameters were assigned to all simulated reaches us-
ing the regionalisation approach described in Kneis (2012b).

3.3.3 Meteorological inputs

The rainfall data sets introduced in Sects. 3.1.1 to 3.1.3 form285

the essential input of the hydrological model. Both the gauge
and satellite data were interpolated to the sub-basins’ cen-
ters of mass using inverse-distance weighting (IDW) with
a power of 2 and sector search enabled (selection of a sin-
gle neighbor from each of four sectors). With respect to the290

satellite data, these settings guarantee that, for each target lo-
cation, weighted information from the 4 nearest grid cells is
used, with strong preference for the nearest cell. Suitability
of the IDW parameters for interpolation of the rain gauge
data was tested experimentally by means of leave-one-out295

cross validation (verification at point scale) as well as by
analyzing the error in simulated runoff (verification at basin
scale) for different configurations. The optimum parameters
suggested by cross validation (power of 1, eight neighbors)
did not compare favourable to the above-mentioned settings300

(power of 2, four neighbors) in terms of simulated runoff.
In addition to rainfall data, HYPSO-RR requires time

series of air temperature, short-wave radiation, and air-
pressure, at least. The available temperature data (5 stations,
daily records) were regionalised by residual interpolation us-305

ing the sub-basins’ elevation as external predictor. Radiation
data were accessible for a single station only (monthly aver-
ages). Air-pressure was generally estimated from elevation.

3.3.4 Observed stream flow

Stream flow data were provided by India’s Central Wa-310

ter Commission for the gauges listed in Table 5. Most of

Table 5. Analysed stream gauges in the central parts of the Ma-
hanadi Basin (see Fig. 1).

Gauge River Catchment (km2)

Salebhata Ong R. 4500
Kesinga Tel R. 12 200
Kantamal Tel R. 20 900
Tikarpara Mahanadi 127 000
Mundali Mahanadi 134 000

the hydrographs consist of instantaneous values recorded at
08:00 IST. Hourly data existed for Mundali only. Information
on the release from the Hirakud Reservoir was available as
24 h averages. Knowledge of the discharge at Hirakud is es-315

sential for simulating stream flow in the downstream reaches
of the Mahanadi River, including the gaging sites Tikarpara
and Mundali.

3.3.5 Calibration strategy

The calibration of the hydrological model was performed320

semi-automatically using a sequence of Monte Carlo simu-
lations (SMCS). This approach was tested in a number of
rainfall-runoff modeling studies (e.g. Kneis et al., 2012). It is
briefly described by the following algorithm:

1. Define initial sampling ranges for all parameters based325

on physical limits, literature, data analysis, or experi-
ence from earlier studies.

2. Generate n random parameter sets by the Latin Hyper-
cube method with uniform distribution.
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3. Run the model for all parameter sets and compute the330

objective function, i.e. the simulation error.

4. Plot the objective function’s value against the individual
parameter values.

5. Visually inspect the plots and narrow (or shift) the sam-
pling ranges where an optimum (or trend) can be iden-335

tified with sufficient certainty.

6. Continue with step 2 until all sampling ranges have col-
lapsed to zero width.

With respect to the HYPSO-RR model engine, initial es-
timates for many parameters can be deduced from basic340

soil properties or hydrograph analysis as described in Kneis
(2012a). To facilitate the identification of physically rea-
sonable, near-optimum parameter values multiple objective
functions may be evaluated simultaneously. In this study,
both the Nash–Sutcliffe Index and the percentage bias were345

used (Eqs. 4 and 5). In addition, the two objective functions
were analysed for subsets of observations (low flow, high
flows, full range). The analysis of the model error during pe-
riods of low flow was essential for identifying the parameters
that control groundwater recharge and drainage.350

The described methodology may be regarded as a stochas-
tic algorithm with regular human intervention. The SMCS
approach is believed to be a reasonable generic alternative to
other strategies. Compared to manual calibration, for exam-
ple, the SMCS reduces the manual effort dramatically and355

it leaves less room for subjectivity. Compared to fully auto-
matic optimisation, the SMCS is robust as it bypasses typical
numerical obstacles. In this case study, a total of 800–1000
model runs was needed to calibrate the model for a single
gauged sub-basin.360

The model was calibrated on observed stream flow data
from 2002-01-01 to 2009-12-31. Model runs were initialised
about 1.75 years in advance (2000-03-01) but the outputs for
this ’warm-up’ period were discarded. The estimated initial
state for 2000-03-01 was generated in a long-term simulation365

using recycled meteorological data of the years 2001-2010 as
forcings.

We abstained from calibrating the model for the catch-
ments of Tikarpara and Mundali since stream flow at these
two gauges is largely controlled by operation of the Hirakud370

Dam. The parameters for the two catchments were set to the
average of the respective calibrated values for Kesinga, Kan-
tamal, and Salebhata.

4 Results

4.1 Validation of the hydrological model375

Typically, only some part of an observed hydrograph is used
for model calibration while the other part is reserved for vali-
dation. In this case study, however, the split-sample approach

Table 6. Performance of the hydrological model in terms of the
Nash–Sutcliffe Index (Eq. 4). Calibration results are indicated by
bold-face numbers in the diagonal. Forcing: rain gauge data of the
period 2002–2010.

Calibrated Parameters applied to
for Salebhata Kesinga Kantamal

Salebhata 0.82 0.71 0.72
Kesinga 0.79 0.77 0.83
Kantamal 0.73 0.72 0.86

Table 7. Like Table 6 but numbers represent the percentage bias
(Eq. 5).

Calibrated Parameters applied to
for Salebhata Kesinga Kantamal

Salebhata −1 −14 0
Kesinga 15 0 16
Kantamal −1 −13 0

was found to be very sensitive to the choice of the time peri-
ods used for calibration and validation, respectively. In par-380

ticular, the problem occurred if each of the two sub-samples
consisted of a different sub-set of years. In such a case, the
value of the Nash-Sutcliffe Index is largely controlled by the
intensity of the Monsoon in the selected years (recall the de-
nominator in Eq. 4). We circumvented this problem by adopt-385

ing an alternative strategy of model validation where the cal-
ibrated parameter sets are exchanged between neighboring
catchments. This strategy analyses the parameter’s transfer-
ability in space rather than time.

The validation experiments were carried out using the rain390

gauge data (Sect. 3.1.2) as precipitation forcing. The re-
sults are summarised in Tables 6 and 7. The original per-
formance of the calibrated model is represented by the bold
numbers. Normal-face numbers off the diagonals indicate the
performance when the calibrated parameters from a particu-395

lar catchment (specified in the the row header) are applied to
a different catchment (column header).

According to the statistics presented in Tables 6 and 7, the
model concept is capable of capturing the catchment’s fun-
damental hydrological behavior. Hence, the model was also400

used to analyse the impact of different precipitation inputs
(Sect. 3.2)

4.2 Daily areal precipitation estimates

The correspondence between TRMM precipitation estimates
and ground data was analysed for five major sub-catchments405

(cf. Fig. 1). Assuming the rain gauge-based estimates to be
reliable, the TRMM data reflect about 60–70 % of the ob-
served variance in daily areal rainfall (Table 8). Compared
to the post-processed product, the real time data perform
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Table 8. Quality of daily areal precipitation estimates gained from
gauge-adjusted TRMM data (SG) and raw real-time TRMM data
(SRR). Reference: regionalised rain gauge data.

Catchment R2 pBias (%)
SG SRR SG SRR

Salebhata 0.64 0.60 10 −6
Kesinga 0.71 0.68 −8 −26
Kantamal 0.73 0.72 −5 −23
Tikarpara 0.74 0.71 5 −14
Mundali 0.65 0.59 2 −16

worse. In particular, the real-time data which did not undergo410

bias correction exhibit a consistent underestimation (right-
most column of Table 8).

The representation of high rainfall intensities by the
TRMM data is examined in Fig. 3. In all investigated sub-
catchments, the POD shows a steep decline towards higher415

rainfall intensities. While scores of 0.6–0.8 were found for
low intensities, typical POD values range from 0.2–0.5 for
events exceeding the threshold of 100mmday−1. In gen-
eral, higher scores were obtained for the gauge-adjusted
TRMM product (SG) as compared to the raw real-time prod-420

uct (SRR).
False alarm ratios fall in the range from 0.2 to 0.6. As op-

posed to the POD statistics, the FAR is not strongly corre-
lated with the threshold intensity. There is also no clear rank-
ing with respect to the compared TRMM products.425

According to the equitable threat score (ETS), the two
compared TRMM products perform more or less similar. The
declining graphs in the bottom row of Fig. 3 underpin the
general deterioration of the precipitation estimates if the fo-
cus of interest is shifted towards more extreme events.430

4.3 Simulated runoff for different rainfall estimates

The quality of stream flow simulations with different precip-
itation estimates is summarised in Table 9. Except for the
numbers in parenthesis, all results were obtained with model
parameters optimised for the respective rainfall forcing. It435

has to be noted that the flow rates at Tikarpara and Mundali
are heavily influenced by the release from the Hirakud dam.
Consequently, the simulated discharge at these two gauges is
naturally less sensitive to the model’s rainfall input.

According to Table 9, the match between simulated and440

observed stream flow is generally higher for the rain gauge
data (G24, G3) as compared to the TRMM estimates (SG,
SRC). For the two gauge-based data sets, the difference in
performance was found to be weak. Only for the smallest
sub-catchment (cf. Table 5), the disaggregated 3 hourly data445

(G3) clearly seem to outperform the daily data (G24). At all
but one gauge, the gauge-adjusted TRMM data (SG) allowed
for a slightly better fit of the hydrological model than the
bias-corrected real-time TRMM data (SRC).

Table 9. Nash–Sutcliffe Index of simulated stream flow for different
precipitation estimates (labels according to Table 2). Numbers in
parenthesis were obtained with the SG and SRC input, respectively,
but using model parameters optimised for G3.

Precipitation estimate
Catchment G24 G3 SG SRC

Salebhata 0.82 0.86 0.71 (0.69) 0.67 (0.66)
Kesinga 0.77 0.76 0.70 (0.70) 0.65 (0.58)
Kantamal 0.87 0.88 0.78 (0.75) 0.77 (0.69)
Tikarpara 0.88 0.89 0.88 (0.90) 0.90 (0.89)
Mundali 0.94 0.93 0.88 (0.87) 0.86 (0.83)

A closer look at Table 9 reveals that the mentioned dif-450

ferences in model performance are reproduced, even if the
model is not re-calibrated to the individual precipitation es-
timates (numbers in parenthesis). Nevertheless, it becomes
obvious that re-calibration is necessary to achieve the best
possible fit.455

A graphical representation of Table 9 (without numbers in
parenthesis) is provided as Fig. 4. In addition to the over-
all Nash–Sutcliffe Indices (bars), the figure also illustrates
the inter-annual variability of the goodness-of-fit. The very
low Nash-Sutcliffe Indices obtained in some years for SG460

and SRC input (gauges Kesinga and Salebhata) are largely
due to occasions of severe rainfall overestimation by the two
satellite-based products.

Note again that the high Nash-Sutcliffe Indices obtained
at Tikarpara and Mundali for all precipitation estimates are465

mainly due to the insertion of known reservoir release rates
in the model (cf. Section 3.3.4).

The bias corresponding to the Nash–Sutcliffe Indices re-
ported in Table 9 is usually small. In all cases where the
model was calibrated to the respective rainfall input, the470

percentage bias was almost negligible (< 2%, except for
Mundali). However, significant negative biases of up to
−25 % were obtained for the cases where the model was fed
with TRMM data but its parameters were optimised for rain
gauge input (G3).475

Apart from a quantitative assessment of the goodness-of-
fit (Table 9, Fig. 4), it is quite informative to visually inspect
model outputs for selected events and sites. Here, simula-
tion results are presented for the annual maximum floods at
Kantamal (Fig. 5). While the hydrographs produced with rain480

gauge data (G24, G3) seem to outperform the satellite-based
counterparts (SG, SRC) in years like 2007 and 2008, the pic-
ture is less clear in other years (e.g. 2003, 2005, and 2006).

5 Discussion

According to the results presented in Sect. 4.2, the TRMM485

precipitation estimates are only moderately correlated with
ground observations (Table 8). This is so, even though the
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analysis was carried out on the daily scale and for spatially
aggregated data. The evaluation of the POD and FAR scores
(Fig. 3) suggests that the TRMM data suffer from a se-490

vere underestimation of higher rainfall intensities at the basin
scale. At the same time, rainfall amounts are frequently over-
estimated across the whole range of intensities.

One has to keep in mind that areal precipitation estimates
derived from local observations were used as the reference495

data set. This ground truth itself may be subject to uncer-
tainty owing to errors in recording and deficits of regionali-
sation, for example. Because of the rather dense network of
rain gauges (cf. Fig. 2), however, there is a good chance that
ground truth is worthy of that name in the majority of cases.500

This assumption is finally supported by the results of the hy-
drological validation (Sect. 4.3).

In the hydrological simulation experiments, the closest
agreement between observed and simulated discharges was
obtained using the rain gauge data as model input (Table 9,505

Fig. 4). With the exception of the smallest sub-catchment
(gauge Salebhata), the temporal resolution of the rainfall
time series (3 h vs. 24 h) was found to be of little influence.
On the one hand this might be explained by the smoothing ef-
fects of spatial averaging or retention becoming more impor-510

tant at larger scales. On the other hand, the chosen approach
to disaggregation might not always be accurate enough.

As already expected from the analysis of areal precipita-
tion estimates, the satellite-based data generally performed
worse than the rain gauge data. Furthermore, a consistent dif-515

ference in the quality of simulated discharge was observed
for the gauge-adjusted TRMM data and the real-time data.
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The latter performed worse at all but one gauge. Apparently,
the monthly gauge-adjustment and/or the more advanced cal-
ibration of the microwave sensors applied to the 3B42 prod-520

uct (Huffman and Bolvin, 2013) contribute to the quality of
precipitation estimates in a significant way.

It is well known that the choice of parameter values can
partly compensate for errors in a hydrological model’s pre-
cipitation input (Heistermann and Kneis, 2011). Hence, there525

is no guarantee that a difference in the quality of two precip-
itation estimates can be inferred from a comparison of the
errors in simulated runoff. Fortunately, the studied case ap-
pears to be well-behaved in the sense that the findings of hy-
drological validation (Sect. 4.3) are in good agreement with530

the analysis of the rainfall data alone (Sect. 4.2). Further-
more, the ranking of the precipitation estimates according to
the error in simulated runoff was reproducible for different
model parameterisations (Table 9).

Although the results of the hydrological simulations seem535

plausible and consistent, a number of deficits in both the hy-
drological model and data is known. For example, the var-
ious effects of irrigation (withdrawal of river water, evapo-
transpiration from impounded rice fields) are not currently
simulated due to missing quantitative information. In addi-540

tion, calibration and validation of the hydrological model are
negatively affected by the low temporal resolution or sam-
pling frequencies of hydro-meteorological data. Last but not
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least, one has to expect significant errors in stream flow data
due to (very) wide gaging cross-sections in non-consolidated545

river beds.

6 Conclusions

The quality of satellite-based, 3 hourly precipitation esti-
mates produced by the tropical rainfall measuring mission
was examined for a part of the Mahanadi River Basin. The550

direct comparison of the remote sensing data with ground
observations and the conducted hydrological simulation ex-
periments yielded a consistent sight on data quality. Accord-
ing to the analysed statistics, the satellite-based precipitation
estimates suffer from deficiencies in the registration of in-555

tense rainfall events. At the same time, the remote sensing
data frequently overestimate rainfall amounts observed at the
ground. The latter fact is responsible for a relevant number of
flaws in the hydrological simulations. In accordance with ex-
pectations, the real-time estimates (3B42-RT product) were560

found to be more uncertain than the gauge-adjusted 3B42 es-
timates which are disseminated with a delay of a few months.
For the study area, the real-time data took profit from a sim-
ple bias correction. However, the remaining random errors
still exceeded those of the retrospective 3B42 estimates.565

The conclusions drawn from the statistical analyses do not
necessarily apply to individual events. Although the remotely
sensed precipitation estimates often perform worse compared
to those inferred from rain gauges, the opposite was found
to be true in some cases. Further analyses are required to570

explore those instances.
The study was carried out in a catchment with a rather

dense network of rain gauges. It is expected that the remotely
sensed precipitation estimates will be of higher “value” in re-
gions with a more sparse network of observation sites. This575

hypothesis might be tested, for example, by repeating the hy-
drological validation after “thinning out” the rain gauge data
base artificially. In any case, the TRMM data appear to be
a reasonable source of information for “ungauged basins” in
terms of rainfall.580

Due to dissemination in real time, the TRMM 3B42-RT
data set has the potential of being used in operational runoff
prediction. This is especially interesting for regions where
rain gauge data are not (timely) available. An assessment
of the 3B42-RT data in the context of hydrological forecast-585

ing was not part of this study. A realistic assessment would
require the implementation of a framework for stream flow
assimilation by the hydrological model and the evaluation
of a long array of hindcasts. However, the POD and FAR
scores (Fig. 3) suggest that significant forecast errors must590

be expected even if the hydrological model was perfectly ini-
tialised through continuous updating.
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