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ABSTRACT 12 

We analyze scale-dependent statistics of correlated random hydrogeological variables 13 

and their extremes using neutron porosity data from six deep boreholes, in three diverse 14 

depositional environments, as example. We show that key statistics of porosity increments 15 

behave and scale in manners typical of many earth and environmental (as well as other) 16 

variables. These scaling behaviors include a tendency of increments to have symmetric, non-17 

Gaussian frequency distributions characterized by heavy tails that decay with separation distance 18 

or lag; power-law scaling of sample structure functions (statistical moments of absolute 19 

increments) in midranges of lags; linear relationships between log structure functions of 20 

successive orders at all lags, known as extended self-similarity or ESS; and nonlinear scaling of 21 

structure function power-law exponents with function order, a phenomenon commonly attributed 22 

in the literature to multifractals. Elsewhere we proposed, explored and demonstrated a new 23 

method of geostatistical inference that captures all of these phenomena within a unified 24 

theoretical framework. The framework views data as samples from random fields constituting 25 

scale-mixtures of truncated (monofractal) fractional Brownian motion (tfBm) of fractional 26 

Gaussian noise (tfGn). Important questions not addressed in previous studies concern the 27 

distribution and statistical scaling of extreme incremental values. Of special interest in hydrology 28 

(and many other areas) are statistics of absolute increments exceeding given thresholds, known 29 

as peaks over threshold or POTs. In this paper we explore the statistical scaling of data and, for 30 

the first time, corresponding POTs associated with samples from scale-mixtures of tfBm or tfGn. 31 

We demonstrate that porosity data we analyze possess properties of such samples and thus 32 

follow the theory we proposed. The porosity data are of additional value in revealing a 33 

remarkable cross-over from one scaling regime to another at certain lags. The phenomena we 34 
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uncover are of key importance for the analysis of fluid flow and solute as well as particulate 35 

transport in complex hydrogeologic environments.  36 
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1. INTRODUCTION 37 

Hydrogeologic variables such as log permeability are known to vary with scales of 38 

measurement, observation, domain of investigation, spatial correlation and resolution (Neuman 39 

and Di Federico, 2003). The statistics of these and diverse environmental (as well as earth, 40 

financial, astrophysical, biological and many other) variables are likewise known to vary with 41 

scale. This is especially true of statistics characterizing spatial and/or temporal increments of 42 

these variables. Symptoms of such statistical scaling include irregular spatial variability, 43 

persistence or antipersistence of increments (large and small values tending to either persist or 44 

alternate rapidly in space and/or time); tendency of increments to have symmetric, non-Gaussian 45 

frequency distributions characterized by heavy tails that often decay with separation distance or 46 

lag; power-law scaling of sample structure functions (statistical moments of absolute increments) 47 

in midranges of lags, with breakdown in power-law scaling at small and/or large lags; linear 48 

relationships between log structure functions of successive orders at all lags, also known as 49 

extended self-similarity or ESS; and nonlinear scaling of structure function power-law exponents 50 

with function order. The traditional interpretation of these widely-documented behaviors has 51 

been based on the concept of multifractals. This, however, does not explain observed breakdown 52 

in power-law scaling at small and large lags or extended power-law scaling (Neuman et al., 2013 53 

and references therein). 54 

Of special concern are the statistics of extremes, which have received much attention 55 

among hydrologists (Katz et al., 2002) and others concerned with a wide range of phenomena 56 

including snow avalanches on mountain slopes (Ancey, 2012); rupture events associated with the 57 

propagation of cracks or sliding along faults in brittle materials including rock failure, landslides 58 

and earthquakes (Amitrano, 2012; Lei, 2012; Main and Naylor, 2012) as well as volcanic 59 
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eruptions, landslides, wildfires and floods (Sachs et al., 2012; Schoenberg and Patel, 2012; 60 

Süveges and Davison, 2012); demographic and financial crises (Akaev et al., 2012; Janczura and 61 

Weron, 2012); neuronal avalanches and coherence potentials in the mammalian cerebral cortex 62 

(de Arcangelis, 2012; Plenz, 2012); citations of scientific papers (Golosovsky and Solomon, 63 

2012); and distributions of city sizes (Pisarenko and Sornette, 2012). Extreme values cluster 64 

around heavy tails of data frequency distributions which are often modeled as stretched 65 

exponential, lognormal or power functions. There is growing evidence that these frequency 66 

distributions, as well as other geospatial and/or temporal statistics of many data, vary with scale. 67 

A key related question concerns the scale dependence of frequency distributions (typically 68 

generalized extreme value or GEV in the case of block extrema and generalized Pareto 69 

distribution or GPD in the case of peaks over thresholds or POTs, e.g. Embrechts et al., 1997) 70 

and statistics of extremes at the tails of the original data distributions (e.g. Riva et al., 2013a). 71 

In this paper we explore the statistical scaling of variables and, for the first time, 72 

corresponding POTs using as an example neutron porosity data and their POTs from six deep 73 

boreholes in three different depositional environments. These data are of interest because, as we 74 

show below, (a) they possess statistics that scale in manners typical of many earth, 75 

environmental and other variables and (b) reveal a remarkable cross-over from one scaling 76 

regime to another at certain separation distances or lags. The phenomena we uncover vis-à-vis 77 

neutron porosity data, and corresponding extremes, are of critical importance for the analysis of 78 

fluid flow and solute as well as particulate transport in complex hydrogeologic environments. 79 

This is so because spatial variability of porosity controls fluid flow velocity distributions in 80 

geologic media and has an impact on solute and particulate concentration dynamics. Extreme 81 

values of porosity are particularly relevant to depositional processes responsible for the 82 
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development of preferential flow paths through heterogeneous porous and fractured media. 83 

Neutron porosity logs are widely used to characterize stratigraphic sequences and the 84 

geostatistical description of geological structures of lithotypes in multilayer systems of aquifers 85 

and aquitards (e.g., Barrash and Reboulet, 2004, Tronicke and Holliger, 2005). Combined with 86 

laboratory-determined particle size distributions, porosity data may allow one to infer spatial 87 

distributions (see review of Vuković and Soro, 1992) and covariances (Riva et al., 2014) of 88 

hydraulic conductivity. 89 

Statistical scaling of hydrogeological data such as permeability or hydraulic conductivity 90 

has been studied amongst others by Painter (2001), Meerschaert et al. (2004), Kozubowski et al. 91 

(2006), Siena et al. (2012, 2014), Riva et al. (2013b, 2013c), and Guadagnini et al. (2012, 2013, 92 

2014). Whereas research in the subsurface hydrology literature has not addressed specifically the 93 

distribution and statistical scaling of extreme incremental values, spatial correlations between 94 

values significantly in excess of the mean have been studied vis-à-vis variables such as 95 

transmissivity and their relevance to transport processes has been highlighted. Sanchez-Vila et al. 96 

(1996) conjectured that observed scale dependence of transmissivities estimated from large scale 97 

pumping tests could be related to strong connectivity between regions of elevated transmissivity, 98 

as opposed to spatial persistence of average or low transmissivity values. Spatial correlation of 99 

extreme conductivity values was examined for the first time by Gómez-Hernández and Wen 100 

(1998). In these authors’ opinion the standard multi-Gaussian assumption was not consistent 101 

with observed short solute travel times resulting from fast spatially connected pathways. 102 

Connectivity of high permeability zones thus became an important concept underlying some 103 

modern interpretations of effective conductivity and solute travel time (see for example Meier et 104 

al., 1998; Wen and Gómez-Hernández, 1998; Western et al., 2001; Fogg et al., 2000; Zinn and 105 
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Harvey, 2003; Knudby and Carrera, 2005, 2006; Knudby et al., 2006; Nield, 2008, and 106 

references therein). The above ideas have motivated the development of multi-point 107 

geostatistical methods of analysis such as those described in a recent special issue of the journal 108 

Mathematical Geosciences on 20 years of multi-point statistics (e.g., Renard and Mariethoz 109 

(2014) and Mariethoz and Renard (2014) and references therein). 110 

Notably, attempts by hydrologists to investigate the manner in which statistics of 111 

extremes vary with scale have centered almost exclusively on peak rainfall intensities and stream 112 

flows. Whereas some have found statistical measures of rainfall extremes to exhibit linear 113 

(sometimes termed simple) scaling (Menabde et al., 1999; Garcia-Bartual and Schneider, 2001; 114 

De Michele et al., 2001) under at least some conditions (Burlando and Rosso, 1996; Veneziano 115 

and Furcolo, 2002; Yu et al., 2004), most authors describe them by means of nonlinear (often 116 

called multiscaling) models (Burlando and Rosso, 1996; Veneziano and Furcolo, 2002; Castro et 117 

al., 2004; Langousis and Veneziano, 2007; Mohymont and Demarée, 2006). Statistical measures 118 

of peak stream flows were considered by Javelle et al. (1999), Menabde and Sivapalan (2001) 119 

and Rigon et al. (2011) to scale linearly. Work on the scaling of GEVs and/or GPDs associated 120 

with extreme rainfall and/or stream flow was reported amongst others by Nguyen et al. (1998), 121 

Menabde et al. (1999), Menabde and Sivapalan (2001), Willems (2000), Trefry et al. (2005), 122 

Veneziano et al. (2009) and Veneziano and Yoon (2013). The general tendency has been to 123 

interpret linear scaling as a manifestation of monofractal behavior analogous to that of fractional 124 

Brownian motion (fBm) or fractional Gaussian noise (fGn). Nonlinear scaling has commonly 125 

been attributed to multifractal behavior, a viewpoint espoused originally by Schertzer and 126 

Lovejoy (1987) and expanded on recently by Veneziano and Yoon (2013). 127 
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Work by our group has demonstrated theoretically (Neuman 2010, 2011; Guadagnini and 128 

Neuman, 2011; Siena et al., 2012; Neuman et al., 2013), computationally (Guadagnini et al., 129 

2012; Neuman et al., 2013) and on the basis of varied pedological, hydrological and 130 

hydrogeological data (Siena et al., 2012, 2014; Riva et al., 2013b, 2013c; Guadagnini et al., 131 

2012, 2013, 2014) that statistical scaling behaviors of the kind traditionally attributed to 132 

multifractals can be interpreted more simply and consistently by viewing the data as samples 133 

from stationary sub-Gaussian random fields subordinated to truncated fBm (tfBm) or fGn (tfGn). 134 

Such sub-Gaussian fields are scale mixtures of stationary Gaussian fields with random variances 135 

(Andrews and Mallows, 1974; West, 1987) that we model as being log-normal or Lévy stable 136 

(Samorodnitsky and Taqqu, 1994). In this sense our approach bears partial relationship to 137 

cascades of Gaussian-scale mixtures that Ebtehaj and Foufoula-Georgiou (2011) use to 138 

reproduce coherent structures and extremes of precipitation reflectivity images in the wavelet 139 

domain. 140 

Our analysis suggests that, quantitatively, the statistics of neutron porosity increments 141 

and their POTs at intra-layer vertical separation scales (or lags) differ from those at inter-layer 142 

scales. Qualitatively, however, the statistics of porosity increments at each of these two scales 143 

behave in a manner that the literature would typically associate with multifractals. This behavior 144 

includes all statistical scaling symptoms described above. Our alternative interpretation of the 145 

data allows us to obtain maximum likelihood (ML) estimates of all parameters characterizing the 146 

underlying truncated sub-Gaussian fields at both intra- and inter-layer scales. Most importantly, 147 

we offer what appears to be the first data-driven exploration (following a synthetic study of 148 

outliers by Riva et al., 2013a) of how statistics of POTs associated with such families of sub-149 

Gaussian fields vary with scale. 150 
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2. SOURCE OF NEUTRON POROSITY DATA 151 

As stated in Section 1, we illustrate and explore our approach on neutron porosity data 152 

from six deep vertical boreholes in three different depositional environments. These are part of a 153 

broader set of geophysical logs from the same boreholes, previously described and analyzed 154 

within a multifractal framework by Dashtian et al. (2011), provided to us courtesy of Professor 155 

Muhammad Sahimi, University of Southern California. Three of the wells (numbered here 1, 2 156 

and 3) are drilled in the Maroon field within which gas drive is used to produce oil and natural 157 

gas, wells 4 and 5 in the Ahwaz oil field, and well 6 in the Tabnak gas field. The Maroon and 158 

Ahwaz fields in southwestern Iran, and the Tabnak field in southern Iran, have distinct geologies. 159 

Whereas carbonate rock content is highest in the Tabnak and lowest in the Maroon and Ahwaz 160 

fields, the opposite is true about sandstone content. Though we do not have information about 161 

the relative geographic locations of the six wells, we note that Dashtian et al. (2011) analyzed 162 

data from each well independently of those from the remaining five wells. We do the same on 163 

the assumption that distances between the wells are sufficiently large to allow treating data from 164 

each well as being statistically independent of the rest. 165 

3. THEORETICAL BASIS AND METHOD OF INFERENCE 166 

Summary information about the available neutron porosity ( P ) data is listed in Table 1. 167 

As the sampling interval between available values in Well 6 is half of that in Wells 1 - 5, we 168 

disregard every other measurement in analyzing these data, leaving a total of 4,267 values. Most 169 

of our analysis concerns increments in recorded P values at various separation distances or lags, 170 

s, in each well. Lags are taken to be integer multiples, ns s z  , of the vertical spacing, z = 171 

0.1524 m, between recorded values. 172 
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As stated in Section 1, we view the data as samples from stationary sub-Gaussian random 173 

fields subordinated to truncated fBm (tfBm) or fGn (tfGn). Sub-Gaussian random variables, 174 

defined in Appendix A following standard statistical terminology (e.g., Samorodnitsky and 175 

Taqqu, 1994), are scale mixtures of Gaussian variables with random variances. We consider two 176 

sub-Gaussian variables, one -stable with Gaussian variances that are /2-stable, and another 177 

normal-lognormal (NLN) variable with lognormal Gaussian variances. There is no physical basis 178 

for their choice, just as there usually is no such basis for working with the Gaussian distribution. 179 

Lévy- (or -) stable probability distributions are frequently employed due to their ability to 180 

interpret heavy tails displayed by empirical distributions of data. While convenient in this sense, 181 

this model has the drawback of being associated with densities with diverging moments of order 182 

larger than , notably the variance (e.g., Neuman et al., 2013 and references therein). The use of 183 

a lognormal subordinator provides us with the ability to represent tailing behaviors reasonably 184 

well with the additional benefit that associated densities possess finite moments of all orders. 185 

Regardless of this choice, our approach is compatible with diverse types of subordinators. Using 186 

maximum likelihood (ML) we compare the ability of the above two subordinators to (a) capture 187 

critical distributional features of our data and (b) and yield reliable parameters of the underlying 188 

sub-Gaussian random fields. 189 

Statistical scaling of the data is analyzed in part on the basis of sample structure 190 

functions, ( )n

q

NS s , of order q. Structure functions are moments of order q of absolute increments 191 

(e.g. Frisch, 1995). The corresponding sample moments are constructed with  nN s  absolute 192 

increments at normalized (by z ) lags ns , 193 

 
 

 

1

1
)(

nN s
q

n j n

jn

q

N s P s
N

S
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   (1) 194 
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where  j nP s  is the j-th increment of P values separated by lag ns . The variable P is said 195 

exhibits power-law scaling if ( ))(N nn

q qs sS   where the power or scaling exponent,  q , 196 

depends solely on the order q. The exponent is estimated through linear fits of log( q

NS ) to log( ns197 

) within the range of lags where such linear behavior is indicated. We refer to this approach of 198 

assessing and quantifying power-law scaling as method of moments. 199 

As shown by Neuman et al. (2013 and references therein), another way to assess the 200 

dependence of scaling exponents (q) on q is through extended self-similarity (ESS) or extended 201 

power-law scaling. ESS is an empirical approach originally introduced by Benzi et al. (1993a, 202 

1993b, 1996) to widen the range of lags over which velocities in fully developed turbulence scale 203 

according to Equation (1). The approach calls for plotting the 1q

NS  versus q

NS  for various q 204 

values and quantifying the resulting linear dependence between them (see Neuman et al., 2013 205 

and references therein). In this work we apply both methods to available neutron porosity data. 206 

To estimate parameters characterizing the distribution of the underlying (Gaussian) tfBm 207 

or tfGn, we consider the zero-mean tfBm  ; ,l uG x    defined by Di Federico and Neuman 208 

(1997) as a Gaussian random function of space having variance 209 

     2 2 2,G l u G u G l        , (2) 210 

variogram or semi-structure function of second order  211 

     ; , ; ;G l u G u G ls s s        , (3) 212 

and integral autocorrelation scale 213 

 
1 2 1 2

2 2
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where, for ,m l u , 215 
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 2 2 / 2H

G m mA H   , (5) 216 

     2; /G m G m ms s      , (6) 217 

A is a coefficient, H is a Hurst scaling exponent and s is lag. The tfBm variogram  ; ,G l us    is 218 

a weighted integral of variograms characterizing stationary Gaussian fields, or modes, having 219 

integral scales   and variances  2 2 / 2HA H   , between lower and upper cutoff scales, l  220 

and u , respectively. Here we consider modes having Gaussian variograms in which case 221 

 
2 2 2

2 2 2
/ 1 exp 1 ,

4 4 4

H

m

m m m

s s s
s H

  
 

  

      
           
       

 0 1H   (7) 222 

where  ,    is the incomplete gamma function. In the limits 0l   and u  ,  ; ,G l us  223 

tends to a power variogram (PV)  2 2Hs Bs   where    
2 /2

/ 4 1 2 / 2 / 2
H

B A H H   ,   224 

being the gamma function. The stationary tfBm  ; ,l uG x    thus tends to nonstationary fBm, 225 

 ;0,G x  , the stationary increments of which,  , ;0,G x x s   , form fGn. It follows that 226 

when u   ,  ; ,G l us    is a truncated power variogram (TPV) characterizing a (stationary) 227 

truncated version of fBm (tfBm). 228 

We treat neutron porosity increments in each borehole as a sample from a zero-mean 229 

random field,  , ; ,l uY x x s    , subordinated to tfBm according to (see Appendix A) 230 

   1/2, ; ,, , ; l ul uY x x s x xW G s       (8) 231 

where 0s   is lag and the subordinator, W , is a non-negative random variable independent of232 

G  (and of G ). As stated above, we allow W  to be Lévy stable or log-normal. Appendix A 233 

explains that, in the first case, W  is /2-stable totally skewed to the right of zero (hence non-234 
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negative) with scale parameter  
2/

4
cosS


  , unit skewness and zero shift. The 235 

corresponding univariate pdf of  , ; ,l uY x x s     is symmetric -stable with zero skewness 236 

and shift. The pdf possesses heavy, power-law tails. In the second case 1/2 VW e  where V is 237 

zero-mean Gaussian with variance  
22 2V   . This renders 1/2 1W   when 2   and its pdf 238 

increasingly skewed to the right as  diminishes. The corresponding univariate normal-239 

lognormal (NLN) pdf of  , ; ,l uY x x s     possesses heavier tails than the exponential tails of 240 

the Gaussian to which NLN tends asymptotically as  increases toward 2. Whereas -stable 241 

variables do not possess finite moments of order ≥ , all moments of NLN variables are finite. 242 

Parameters of the variogram characterizing the underlying Gaussian field are estimated through 243 

ML model calibration, as detailed in Section 7 for the two types of subordinators we consider. 244 

4. FREQUENCY DISTRIBUTIONS OF NEUTRON POROSITY DATA 245 

Figure 1 shows how the neutron porosity data vary with depth in Wells 1, 4, 5 and 6. 246 

Frequency distributions of deviations, aP P P   , from average values, aP , in Wells 1, 4 and 6 247 

are plotted on arithmetic and semi-logarithmic scales in Figure 2. The empirical frequency 248 

distributions exhibit sharp peaks, asymmetry and slight bimodality. Also shown in Figure 2 are 249 

maximum likelihood (ML) fits of a Gaussian and two sub-Gaussian probability density functions 250 

(pdfs) to the empirical frequency distributions. Figure 1 shows that neutron porosity values in 251 

Well 6 exhibit greater variability than in other wells. This could be due to a larger carbonate 252 

content in formations penetrated by Well 6 than in those penetrated by other wells (see Section 253 

2), rendering the former more heterogeneous than the rest. 254 

ML fits to Gaussian and -stable pdfs is accomplished with a code developed by Nolan 255 

(2001) and to NLN using a code we have written in Matlab. The quality of these fits is variable; 256 



14 
 

in the case of Well 1, the NLN model is seen to fit the empirical frequency distribution slightly 257 

better than do the other two models but, in the case of Well 6, the -stable model is seen to be 258 

best and Gaussian model worst. Formal Kolmogorov-Smirnov, χ
2
 and Shapiro-Wilk tests 259 

conducted on some of the data tend to reject the Gaussian model at a significance level of 0.05.  260 

5. FREQUENCY DISTRIBUTIONS OF NEUTRON POROSITY INCREMENTS 261 

Rather than presenting results in terms of lag s we report them below in terms of 262 

normalized (by z ) integer values, ns . Figure 3 shows how increments  nP s  at three different 263 

normalized lags ( ns  = 1, 32, 1024) vary with sequential (integer) vertical position in Wells 1 264 

(Maroon field), 4 (Ahwaz field) and 6 (Tabnak field). 265 

Frequency distributions of  nP s  at the same three lags in Wells 1 and 4 are plotted on 266 

semi-logarithmic scale in Figure 4. The empirical frequency distributions exhibit pronounced 267 

symmetry with sharp peaks and heavy tails, which decay toward Gaussian shapes as lags 268 

increase. At all lags, the empirical frequency distributions of increments are represented quite 269 

closely by -stable and NLN models fitted to them by ML. Negative log likelihood (NLL) 270 

measures of best fit associated with these two models as well as values of the Kashyap (1982) 271 

information criterion, KIC, demonstrate that they fit the empirical frequency distributions 272 

equally well (not shown). The same is true for all increments in all other wells. Frequency 273 

distributions of  nP s  plotted for two normalized lags in Well 6 (Figure 5) are likewise 274 

symmetric with sharp peaks and heavy tails which, however, do not decay with lag. Empirical 275 

frequency distributions of  nP s  in Well 6 are represented equally well by -stable and NLN 276 

models. 277 
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Figure 6 shows how estimates ̂  and ̂  of stability and scale parameters, respectively, 278 

characterizing -stable distribution models (see Appendix A) of neutron porosity increments in 279 

all wells vary with normalized lag. Estimates ̂  of the stability index,  , in Wells 1 - 3 280 

(Maroon field) and 4 - 5 (Ahwaz field) exceed 1 and increase asymptotically toward 2 with 281 

increasing lag, confirming that the increments become Gaussian at large lags. In Well 6 (Tabnak 282 

field) ̂  fluctuates around a value that exceeds 1 by a small amount. Estimates ̂  of the scaling 283 

index  , which measures the width of the -stable distribution, first increase with lag and then 284 

stabilize in all wells. All these behaviors are consistent with sub-Gaussian random fields 285 

associated with -stable subordinators; whether or not   does or does not grow with lag 286 

depends on how these fields are generated (see Riva et al., 2013c and Neuman et al., 2013). We 287 

do not show but note that parameters of NLN distribution models fitted to the increments also 288 

vary with lag in a way that renders them asymptotically Gaussian at large lags, with the 289 

exception of Well 6. 290 

6. STATISTICAL SCALING OF NEUTRON POROSITY INCREMENTS 291 

Next we analyze the scaling behavior of sample structure functions, ( )n

q

NS s , of order q 292 

defined in Equation (1). Figure 7 shows how such structure functions of orders q = 0.5, 1.0 and 293 

2.0 vary with ns  in Wells 1 (Maroon) and 6 (Tabnak). Log-log regression lines fitted to the data 294 

separately at vertical distance scales sn < 10 and sn > 12 suggest, at relatively high levels of 295 

confidence (coefficients of determination, 
2R , ranging from 0.98 to 0.99 at sn < 10 and from 296 

0.89 to 0.99 at sn > 12), that ( )q

N nS s  varies as a power of ns  in each of these two scale ranges. 297 

Power-law exponents are larger at small (sn < 10) than at large (sn > 12) lags. We thus have a 298 

cross-over between two diverse power-law regimes at distance scales 1.5 - 1.8 m delineated in 299 
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Figure 7 by a dashed red line. We interpret the power-law scaling of ( )q

N nS s  with ns  at sn < 10 300 

to represent variability within, and that at sn > 12 variability between, sedimentary layers at each 301 

site. Similar dual power-law scaling behavior is exhibited by structure functions of increments 302 

from Wells 2 - 5 (not shown). The identification of layers of diverse geomaterials is related to 303 

depositional processes which take place over time in any sedimentary basin of the kind we deal 304 

with here. Dashtian et al. (2011) concluded that these formations are layered based on complete 305 

suites of well logs at each of the three sites. We note further that a similar dual-scaling 306 

phenomenon has recently been reported by Siena et al. (2014) vis-a-vis porosities and specific 307 

surface areas imaged using x-ray computer micro-tomography throughout a millimeter-scale 308 

block of Estaillades limestone, at a spatial resolution of 3.3 μm, as well as Lagrangian velocities 309 

computed by solving the Stokes equation in the sample pore space. 310 

Following the most recent examples of Guadagnini et al. (2013, 2014) we use the method 311 

of moments described in Section 3 to obtain estimates, ˆ
wH  and ˆ

bH , of Hurst scaling exponents, 312 

wH  and bH , characterizing the within- and between-layers scaling behaviors of neutron porosity 313 

increments, respectively, in each well. ˆ
wH  and ˆ

bH  are set equal to the slopes, ξw(q = 1) and ξb(q 314 

= 1), of regression lines fitted to 1 ( )N nS s  on log-log scale at sn < 10 and sn > 12, respectively. 315 

Values of these estimates are listed, for all six wells, in Table 2. As ˆ ˆ1/wH   and ˆ ˆ1/bH   316 

in all cases, we conclude that whereas intra-layer variability is persistent (large values tend to 317 

follow large values and small values tend to follow small values), inter-layer variability is 318 

strongly antipersistent (small and large values tend to alternate rapidly). The latter is likely a 319 

manifestation of strong variations in environments responsible for the deposition of alternating 320 

sedimentary layers. 321 
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As no theory other than ours (Siena et al., 2012; Neuman et al., 2013) is known to explain 322 

extended self-similarity (ESS) of variables that do not necessarily satisfy Burger’s equation 323 

(Chakraborty et al., 2010), demonstrating that  nP s  satisfy ESS is akin to verifying that these 324 

data conform to our theoretical scaling framework. That this is indeed the case becomes evident 325 

upon examining the high-confidence (R
2
 = 0.91 - 0.99) straight line relationships between log326 

1q
NS 

 and log q

NS , and corresponding power-law relationships between 
1q

NS 
 and q

NS , at sn < 10 327 

and sn > 12 in Figure 8 for q = 1, 2 and 3 in Wells 1 (Maroon) and 6 (Tabnak). Similar ESS 328 

relationships hold (not shown) in Wells 2 - 5. 329 

Our next step is to compute functional relationships between power exponents ξw(q) and 330 

ξb(q), and the order q, of structure functions that scale as power-laws of lag. In the method of 331 

moments these powers are the slopes of regression lines fitted to log-log plots of ( )q

N nS s  versus 332 

ns , such as those depicted in Figure 7. In the case of ESS we use ξw(q = 1) and ξb(q = 1), 333 

determined by the method of moments, as reference values for the sequential computation of 334 

ξw(q) and ξb(q) at q > 1 based on known power-law relationships between 
1q

NS 
 and q

NS , such as 335 

those given in Figure 8. Corresponding plots of ξw(q) and ξb(q) as functions of q, evaluated by 336 

the method of moments and ESS in Wells 1 and 6 at sn < 10 and sn > 12, are presented in Figure 337 

9. Results obtained by the two methods are, for the most part, very similar. With the exception of 338 

ξw(q) at sn < 10 in Wells 1, 2, and 3 (Maroon field), in all cases (including those corresponding to 339 

Wells 2 - 5, which we do not show) ξw(q) and ξb(q) delineate convex functions that fall below 340 

straight lines having slopes ˆ
wH  and ˆ

bH , respectively, which pass through the origin. Tradition 341 

has it that whereas such straight lines are characteristic of monofractal (self-affine, additive) 342 

random fields, nonlinear variations of power exponents such as those exhibited by ξw(q) and 343 
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ξb(q) in Figure 9 are symptomatic of (multiplicative) multifractals. Yet we have seen that the data 344 

in this paper conform to a statistical scaling theory in which the underlying random fields are 345 

subordinated to truncated versions of monofractal fBm or fGn. As we have previously 346 

demonstrated theoretically (Neuman, 2010, 2011; Neuman et al., 2013) and computationally 347 

(Guadagnini et al., 2012), nonlinear scaling of such data is nothing but a random artifact of 348 

sampling from similar fields. 349 

7. ESTIMATION OF VARIOGRAM PARAMETERS 350 

We saw that our analysis supports treating the neutron porosity data from each well as a 351 

random sample from a stationary sub-Gaussian random field subordinated to tfBm or tfGn. Our 352 

previous ML fits of univariate -stable and NLN pdf models to neutron porosity increments in 353 

each well have yielded estimates of all distributional parameters characterizing these models. We 354 

also found the data to exhibit different modes of scaling at sn < 10 and sn > 12 and obtained 355 

estimates of H for each of these two ranges of lags. All that remains to fully characterize the 356 

multivariate random fields,  , ; ,l uY x x s    , which we take to underlie the incremental data 357 

is to estimate the parameters A, l  and u  (and, optionally, H) of TPVs corresponding to sn < 10 358 

and sn > 12. We do so next for each of the two subordinators we consider. 359 

Assuming first that neutron porosity increments in each well are -stable, one can 360 

estimate the scale parameter  ; ,l us    of their distribution at any lag, s, from the theoretical 361 

relationship (Samorodnitsky and Taqqu, 1994) 362 

   ˆ ; , ; ,l u G l us s      . (9) 363 

Here we employ this relationship separately for normalized lag ranges sn < 10 and sn > 12. We 364 

saw earlier that structure functions of neutron porosity data in both lag ranges, including second-365 
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order structure functions can be closely represented in each well by power laws. In other words, 366 

the TPVs within these lag ranges are effectively PVs. We recall that this happens in the limits as 367 

l  and u  tend, respectively, to zero and infinity. We note further that l should be a fraction of 368 

the measurement scale. In our case, the measurement scale can be considered as smaller than the 369 

0.15 m data resolution scale (in Well 6 data resolution is 0.07 m). When compared to the much 370 

larger length scale of each borehole (on the order of 10
3
 m), l is negligibly small and can be 371 

disregarded. Accordingly, we set l = 0 and u  to a sufficiently large number to ensure that the 372 

TPV  ; ,G l us    reduces, within both working lag ranges, to the PV  2 2Hs Bs  . Then, in a 373 

manner analogous to that outlined most recently by Guadagnini et al. (2013, 2014), we obtain 374 

ML estimates Â  of A in two ways, once by adopting corresponding method-of-moment estimates 375 

ˆ
wH  and ˆ

bH  from Table 2 and once by estimating the latter jointly with A. Both sets of estimates 376 

are obtained upon fitting the theoretical PV  2 2Hs Bs   to sample scale parameters  ˆ
ns  377 

such as those plotted versus ns  in Figure 7b. The fits are depicted graphically in Figure 10 for 378 

Wells 1 and 6. The corresponding parameter estimates and 95% confidence limits are listed, for 379 

all wells and both lag ranges, in Table 3. The two sets of estimates lie within each other’s 95% 380 

confidence intervals, implying that they are equally reliable. 381 

Next we consider the case where neutron porosity increments in each well are NLN. Due 382 

to finiteness of all (statistical) moments associated with this model, structure functions of order q 383 

= 2 in Figure 7 coincide with twice the variogram of neutron porosity. As shown in Appendix A, 384 

the variogram of  ; ,l uY x    is given by  385 

     2 2; , ; ,Y n l u W W G n l us s          (10) 386 
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where W  and 2
W  are defined in (A1). We replace (10) by   2H

Y s Cs   and fit the latter by 387 

ML to second-order sample structure functions of porosity increments in each well, separately 388 

for sn < 10 and sn > 12. Joint estimates of C and H for each range of lags, as well as ML 389 

estimates of C based on method-of-moment estimates ˆ
wH  and ˆ

bH  from Table 2, together with 390 

associated 95% confidence intervals, are listed in Table 4. Corresponding best fits are depicted 391 

graphically in Figure 11. Here again the two sets of estimates lie within each other’s 95% 392 

confidence intervals, implying that they are equally reliable. 393 

8. FREQUENCY DISTRIBUTIONS OF PEAKS OVER THRESHOLDS 394 

Extreme value analyses of randomly varying data typically concern block maxima (BM) 395 

and/or peaks over thresholds (POTs). The number of neutron porosity increments,  nP s , 396 

available to us at any normalized lag at any well are insufficient to conduct a statistically 397 

meaningful analysis of BM. For this reason, and for the fact that POTs provide a higher 398 

resolution of maxima than do BM, we focus in this paper exclusively on the former. In way of 399 

illustration we consider absolute increments  nP s  to constitute POTs whenever they exceed a 400 

non-negative threshold, ut, equal to the 95% quantile of  nP s  values in a sample. This 401 

renders about 5% of all sampled  nP s  values POTs. Figure 12 identifies POTs associated 402 

with sequences of porosity increments depicted in Figure 3. 403 

In each well, sample autocorrelation of non-overlapping neutron porosity increments at 404 

diverse normalized lags diminishes rapidly with the number, n, of these normalized increments 405 

(not shown), in line with theoretical expressions (18) - (20) of Neuman (2010). We expect 406 

autocorrelations between POTs to be weaker, possibly justifying a representation of their 407 

frequency distributions by generalized Pareto distributions (GPDs, see Appendix B) which, 408 
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theoretically, apply to independent identically distributed (iid) variables. To test this, we plot in 409 

Figure 13 quantile-quantile (Q-Q) plots of GPD fits to frequency distributions of POTs identified 410 

in Figure 12. Included in Figure 13 are 95% confidence intervals of these fits and p-values of 411 

Kolmogorov-Smirnov (KS) goodness-of-fit tests. A list of POT sample sizes and p-values 412 

associated with the same three lags in all wells is provided in Table 5. The p-value is the 413 

probability of obtaining given data when a null hypothesis is true. As all p-values in Table 5 414 

exceed 0.05, one cannot reject (at a significance level of 0.05) the null hypothesis that all POTs 415 

have GPDs. 416 

Figure 14 shows variations of best fit GPD shape (ξPOT, governing the tail behavior of the 417 

distribution) and scale ( POT , governing the spread of the distribution) parameters with 418 

normalized lag, and corresponding 95% uncertainty bounds, in the same wells as in Figure 13. 419 

With the exception of Well 6 in which ξPOT first diminishes with lag and then stabilizes, this 420 

parameter fluctuates but does not vary systematically with lag. The same applies to the shape 421 

parameter of each fitted GPD. On the other hand POT  in all wells increases as a power of lag 422 

before stabilizing at larger lags, as does the scale parameter of  stable distributions fitted to all 423 

neutron porosity increments in Figure 6b. 424 

9. STATISTICAL SCALING OF PEAKS OVER THRESHOLDS 425 

We end our analysis by exploring the scaling behavior of q-order sample structure 426 

functions of POT in absolute increments  ,POT j nP s . Following Equation (1), these sample 427 

structure functions are defined as 428 
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where  nPOTN s  is the number of POTs at normalized lag ns . We do so as we did earlier for all 430 

increments, according to the methodology summarized in Section 3. Figure 15 depicts variations 431 

of ( )
POT

q

N nS s  with normalized lag for q = 0.5, 1.0, and 2.0 in Wells 1 (Maroon) and 6 (Tabnak). A 432 

red dashed line in the figure demarcates cross-over between two diverse power-law scaling 433 

regimes at sn < 10 and sn > 12. Included in Figure 15 are logarithmic scale regression lines and 434 

corresponding power-law relations between ( )
POT

q

N nS s  and ns  in each well and scaling regime. 435 

The scaling behavior in Figure 15 is similar to that shown previously for all (unfiltered) porosity 436 

increments in Figure 7. Corresponding estimates of Hurst exponent are listed in Table 6; these 437 

too differ little from those obtained earlier for all porosity increments (Table 2) with the 438 

exception of estimates ˆ
bH  which are consistently lower than those associated with unfiltered 439 

increments. Like the latter (Figure 8), POTs exhibit ESS at all lags in the scaling intervals sn < 10 440 

and sn > 12 (not shown). 441 

Our final step is to compute functional relationships between power exponents ξw(q) and 442 

ξb(q), and the order q, of POT structure functions that scale as power-laws of lag. We do so as we 443 

did previously for unfiltered porosity increments. Corresponding plots of ξw(q) and ξb(q) as 444 

functions of q, evaluated by the method of moments and ESS in Wells 1 and 6 at sn < 10 and sn > 445 

12, are presented in Figure 16. Results obtained by the two methods are again, for the most part, 446 

very similar. Similar behavior has been shown by us elsewhere (Guadagnini et al., 2012) to be 447 

consistent with increments sampled from random fields subordinated to tfBm or tfGn. 448 

10. CONCLUSIONS 449 

After showing that neutron porosity data from six deep boreholes in three geologic 450 

environments have statistical scaling properties characteristic of samples from scale-mixtures of 451 

truncated fractional Brownian motion (tfBm) or fractional Gaussian noise (tfGn), we used these 452 
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data to explore the statistical behavior of extreme porosity increments the absolute values of 453 

which exceed certain thresholds. We expect our results to hold for many earth, environmental 454 

and other variables that were shown elsewhere to possess similar statistical scaling properties. 455 

These results include the following: 456 

1. The frequency distributions of neutron porosities in any well, or group of wells in any 457 

one of the three geologic environments, are non-Gaussian with sharp peaks, asymmetry 458 

and slight bimodality. 459 

2. The frequency distributions of neutron porosity increments in any well, or group of wells 460 

at one of the three sites, are zero-mean symmetric with heavy tails that decay with 461 

increasing vertical separation distance or lag. At all lags, the distributions are represented 462 

closely by either  stable or normal-log-normal probability density models that tend to 463 

Gaussian with increasing lag.  464 

3. Order q structure functions of absolute neutron porosity increments grow approximately 465 

as positive powers  w q  of normalized lag, ns , at sn < 10 and as much smaller positive 466 

powers,  b q , of ns  at sn > 12. We interpret this dual power-law scaling to represent 467 

within- or intra-layer variability at sn < 10 and between- or inter-layer variability at sn > 468 

12. Values of  1w q   and  1b q   provide method-of-moment estimates of Hurst 469 

exponents wH  and bH  for these two power-law scaling ranges, respectively. 470 

4. Structure functions of absolute neutron porosity increments exhibit extended self 471 

similarity (ESS) at all normalized lags within both power-law scaling ranges, sn < 10 and 472 

sn > 12.  473 
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5. Values of power-law exponents ξw(q) and ξb(q) associated with absolute neutron porosity 474 

data, computed by the method of moments and by ESS, are for the most part very similar. 475 

Whereas such nonlinear scaling of power-law exponents has traditionally been viewed as 476 

a hallmark of multifractality (or, more recently, of fractional Laplace motion), we find the 477 

neutron porosity data in this paper to behave in a way fully consistent with that of 478 

samples from sub-Gaussian random fields subordinated to truncated (monofractal, self-479 

affine, Gaussian) fractional Brownian motion or fractional Gaussian noise. The latter is 480 

the only view known to be theoretically consistent with ESS in the case of data, such as 481 

those considered here, that do not necessarily satisfy Burger’s equation. 482 

6. Our method of interpretation allows one to fully characterize the sub-Gaussian random 483 

field that underlies a given set of data by estimating the parameters of corresponding 484 

(generally truncated) power variograms. 485 

7. The autocorrelation of neutron porosity increments diminishes rapidly with the number, 486 

n, of non-overlapping increments in a separation distance (lag). This helps explain why 487 

sample distributions of peaks over thresholds (POTs, taken here to be absolute 488 

increments which exceed their 95% quantile) are described reasonably well by a 489 

generalized Pareto distribution (GPD) model, which in theory applies to independent 490 

identically distributed (iid) extrema. Whereas GPD shape parameter estimates do not 491 

show systematic variations with lag except in one well, corresponding estimates of GPD 492 

shape parameters tend to increase as a power of small lags and stabilize at larger lags. 493 

The same happens with scale parameters of   stable distributions fitted to all 494 

(unfiltered) neutron porosity increments. 495 
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8. In all other respects, POTs show statistical scaling very similar to that of unfiltered 496 

increments. Estimates of POT Hurst exponents are very close to those obtained for 497 

unfiltered increments, with the exception of ˆ
bH  that are consistently lower than those 498 

associated with unfiltered increments. Such nonlinear scaling is consistent with our 499 

method of interpreting the data. To our knowledge, this is the first documented example 500 

of POT statistical scaling interpreted on the basis of sub-Gaussian theory. We are not 501 

aware of any known theoretical reason why statistics of POT increments would 502 

necessarily scale in a manner similar to that of their parent population, as they do here. 503 

  504 
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APPENDIX A 505 

Let 
1/2( , ) ( , )Y x x s W G x x s      where x is a spatial (or temporal) coordinate, 0s   is 506 

lag, 
1/2W  is a random variable acting as subordinator, and G  is a zero-mean Gaussian random 507 

field of increments with pdf ( )Gf g   and variance 
2

G  dependent on lag, G  and 
1/2W  being 508 

statistically independent of each other at all lags. In this paper we consider W  to be either Lévy 509 

stable or lognormal. 510 

In the first case (e.g., Samorodnitsky and Taqqu, 1994) W  is /2-stable totally skewed to 511 

the right of zero (hence non-negative) with scale parameter  
2/

4
cosS


  , unit skewness and 512 

zero shift. The corresponding pdf of Y  is symmetric -stable with zero skewness and shift. In 513 

the second case we follow Neuman (2011) and Guadagnini et al. (2012) by setting 
1/2 VW e  514 

where V is zero-mean Gaussian with variance  
22 2V   , yielding the following respective 515 

mean and variance expressions for 
1/2W , 516 

2exp( / 2)W V   and    2 2 2exp exp 1W V V    
   (A1) 517 

Correspondingly, the pdf of Y  is 518 

1
( ) ( ) dY U G

y
f y f u f u

u u



 


 
   

 
  (A2) 519 

where 
1/2U W , 

1/2u w . Since 
1/2 0U W   one has 520 

0

1
( ) ( ) dY U G

y
f y f u f u

u u



 

 
   

 
 . (A3) 521 

As 
2~ (0, )GG N   and 

1/2 2~ ln (0, )VU W N  , Equation (A3) becomes 522 
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    .  (A4) 523 

This is the normal-log-normal (NLN) pdf we refer to in the text. In it G  plays the role of a 524 

scale parameter, and V  of a shape factor. Letting 0V   is tantamount to letting Equation 525 

(A4) converge to a Normal density 

 
2

221
( )

2

G

y

Y

G

f y e












  . The larger is V  the heavier are 526 

the tails and the sharper is the peak of the NLN distribution. Fitting Equation (A4) by maximum 527 

likelihood (ML) to sample frequency distributions of Y  allows one to estimate 
2

G  and 
2

V , 528 

which in turn allows one to estimate W  and 
2

W  according to Equation (A1). The variance of 529 

Y is  2 2 2 2

Y W W G       and the variogram of Y  is 530 

           
22 21/2 2 21 1

( , ) ( , )
2 2

Y W W Gs E Y x s E W E G x s s             
     

 (A5) 531 

where  G s  is the variogram of G . Once W  and 2
W  have been estimated by maximum 532 

likelihood on the basis of Y  data as described above, fitting (A5) to corresponding second-533 

order sample structure functions allows one to estimate all parameters of  G s . 534 

In case G  has a power variogram,   2H

G s Bs  , of the kind we consider in the 535 

manuscript so does Y, 536 

     2 2 2H
Y W W Gs s Cs      . (A6) 537 

where C is a coefficient. Fitting Equation (A6) to second-order sample structure functions of 538 

corresponding increments allows one to estimate C and H. 539 

APPENDIX B 540 
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In this work empirical distributions of POTs of absolute neutron porosity increments at 541 

normalized lag ns ,  nP s , are shown to fit well-known two-parameter Generalized Pareto 542 

distributions (GPDs). A GPD is described in terms of the following cumulative distribution 543 

function (CDF) 544 

 
1/

( ) 1 1 /
POT

POT POTH y y


 


   ; y =  nP s   ut  0 (B1) 545 

where ξPOT and POT  are the shape and scale parameters, respectively, governing tail behavior 546 

and spread of the distribution; ut is the predetermined threshold. Equation (B1) reduces to a 547 

Pareto (type-II) distribution when ξPOT > 0, an exponential distribution when ξPOT = 0 and a 548 

generalized Beta distribution (of the first kind) when ξPOT < 0 (Arnold, 2008). 549 

  550 
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Tables 774 

 775 

Table 1: Summary information about available neutron porosity (P) data. 776 

Reservoir Well # 
Sampling 

interval (m) 

Min P 

(%) 

Max P 

(%) 

Mean P 

(%) 

Standard 

Deviation 

SD (%) 

Number of 

data points 

used 

Maroon 1 0.1524 0 46.04 14 6.4 3,567 

(MN) 2 0.1524 0* 74.29 17.27 9.98 4,049 

 
3 0.1524 0* 37.6 15.72 8.54 2,945 

 
1+2+3 0.1524 0* 74.29 15.74 8.62 10,561 

Ahwaz 4 0.1524 0 36.01 16.47 6.82 3,882 

(AZ) 5 0.1524 0 47.91 16.05 8.35 6,949 

Tabnak 

(TBK) 
6 0.0762** 0 96.9 9.28 13.2 4,267 

*  These, being negative and very close to zero, were set equal to zero. 777 
** We disregard every other measurement in analyzing these data. 778 

 779 

 780 

Table 2. Method of moments estimates of H for porosity increments at sn < 10 (denoted by 781 

subscript w) and sn > 12 (subscript b). 782 

Well ˆ
wH  ˆ

bH  

1 (Maroon field) 0.86 0.10 

2 (Maroon field) 0.87 0.08 

3 (Maroon field) 0.85 0.11 

4 (Ahwaz field) 0.70 0.11 

5 (Ahwaz field) 0.66 0.16 

6 (Tabnak field) 0.75 0.17 

 783 
  784 
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Table 3. Estimates Â  of A given estimates Ĥ  of H from Table 2, and joint estimates Â  785 

and Ĥ , of PVs with associated 95% confidence limits (in parenthesis) for all wells at sn < 10 and 786 

sn > 12 in the case of  stable subordinator. 787 

Data source 
Â  estimated using Ĥ  from Table 2  Joint estimates Â  and Ĥ  

Ĥ  Â    Ĥ  Â  

Well 1 sn < 10 0.86 
0.06 

(0.05; 0.07) 
  

0.87 

(0.78; 0.97) 

0.05 

(0.02; 0.13) 

Well 1 sn > 12 0.10 
2.12 

(1.84; 2.45) 
  

0.14 

(0.10; 0.20) 

2.00 

(1.66; 2.43) 

Well 2 sn < 10 0.87 
0.12 

(0.11; 0.13) 
  

0.91 

(0.86; 0.96) 

0.08 

(0.04; 0.16) 

Well 2 sn > 12 0.08 
5.14 

(4.48; 5.90) 
  

0.10 

(0.06; 0.16) 

5.27 

(4.56; 6.08) 

Well 3 sn < 10 0.85 
0.16 

(0.14; 0.17) 
  

0.89 

(0.82 0.96) 

0.11 

(0.05; 0.23) 

Well 3 sn > 12 0.11 
4.02 

(3.60; 4.49) 
  

0.09 

(0.06; 0.14) 

4.02 

(3.59; 4.51) 

Well 4 sn < 10 0.70 
0.21 

(0.19; 0.24) 
  

0.76 

(0.70; 0.83) 

0.16 

(0.11; 0.23) 

Well 4 sn > 12 0.11 
1.80 

(1.67; 1.94) 
  

0.13 

(0.11; 0.16) 

1.74 

(1.59; 1.90) 

Well 5 sn < 10 0.66 
0.18 

(0.15; 0.23) 
  

0.70 

(0.53; 0.93) 

0.15 

(0.06; 0.37) 

Well 5 sn > 12 0.16 
1.36 

(1.13; 1.65) 
  

0.25 

(0.22; 0.30) 

0.84 

(0.64; 1.11) 

Well 6 sn < 10 0.75 
0.09 

(0.08; 0.11) 
  

0.81 

(0.70; 0.94) 

0.06 

(0.03; 0.14) 

Well 6 sn > 12 0.17 
0.86 

(0.78; 0.94) 
  

0.18 

(0.15; 0.22) 

0.80 

(0.66; 0.96) 

 788 

 789 

  790 
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Table 4. Estimates Ĉ  of C given estimates Ĥ  of H from Table 2, and joint estimates Ĉ  791 

and Ĥ , of PVs with associated 95% confidence limits (in parenthesis) for all wells at sn < 10 and 792 

sn > 12 in the case of lognormal subordinator. 793 

Data source 
Ĉ  estimated using Ĥ  from Table 2  Joint estimates Ĉ  and Ĥ  

Ĥ  Ĉ    Ĥ  Ĉ  

Well 1 sn < 10 0.86 
0.52 

(0.46; 0.58) 
  

0.85 

(0.75; 0.96) 

0.53 

(0.40; 0.70) 

Well 1 sn > 12 0.10 
13.22 

(12.36; 14.13) 
  

0.07 

(0.05; 0.08) 

17.877 

(15.44; 20.70) 

Well 2 sn < 10 0.87 
1.35 

(1.18; 1.53) 
  

0.84 

(0.74; 0.96) 

1.43 

(1.07; 1.92) 

Well 2 sn > 12 0.08 
39.31 

(36.17; 42.72) 
  

0.04 

(0.03; 0.07) 

55.61 

(45.31; 68.24) 

Well 3 sn < 10 0.85 
0.87 

(0.76; 1.00) 
  

0.83 

(0.72; 0.95) 

0.91 

(0.67; 1.25) 

Well 3 sn > 12 0.11 
19.96 

(18.30; 21.77) 
  

0.09 

(0.06; 0.12) 

24.88 

(18.72; 33.06) 

Well 4 sn < 10 0.70 
1.09 

(0.92; 1.31) 
  

0.65 

(0.52; 0.80) 

1.23 

(0.85; 1.80) 

Well 4 sn > 12 0.11 
10.02 

(9.48; 10.59) 
  

0.08 

(0.07; 0.09) 

13.01 

(11.66; 14.52) 

Well 5 sn < 10 0.66 
1.59 

(1.35; 1.88) 
  

0.61 

(0.50; 0.75) 

1.78 

(1.25; 2.53) 

Well 5 sn > 12 0.16 
8.69 

(7.73; 9.76) 
  

0.09 

(0.08; 0.11) 

16.05 

(13.83; 18.61) 

Well 6 sn < 10 0.76 
2.52 

(2.15; 2.95) 
  

0.71 

(0.60; 0.84) 

2.77 

(1.98; 3.89) 

Well 6 sn > 12 0.17 
26.90 

(24.45; 29.58) 
  

0.14 

(0.11; 0.17) 

37.02 

(27.90; 49.11) 

 794 
 795 

  796 
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Table 5. POT sample sizes and Kolmogorov-Smirnov p-values associated with three lags in 797 

various wells. 798 

sn Well No. No. of samples No. of POT samples p-value (KS test) 

1 

1 3566 177 0.240 

2 4048 202 0.994 

3 2944 147 0.706 

4 3881 194 0.437 

5 6948 208 0.970 

6 4265 213 0.788 

32 

1 3535 177 0.612 

2 4017 201 0.199 

3 2913 146 0.394 

4 3850 191 0.426 

5 6917 208 0.313 

6 4203 210 0.215 

1024 

1 2543 126 0.089 

2 3025 151 0.530 

3 1921 96 0.928 

4 2858 143 0.473 

5 5925 178 0.072 

6 2219 111 0.590 

 799 

Table 6. Method of moments estimates of H for POTs at sn < 10 (denoted by subscript w) and sn 800 

> 12 (subscript b). 801 

 802 

Well ˆ
wH  ˆ

bH  

1 (Maroon field) 0.84 0.02 

2 (Maroon field) 0.83 0.0001 

3 (Maroon field) 0.80 0.06 

4 (Ahwaz field) 0.61 0.03 

5 (Ahwaz field) 0.60 0.02 

6 (Tabnak field) 0.71 0.11 

 803 

 804 

  805 
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Figure Captions 806 

Figure 1: Variation of neutron porosity (P) with depth in Wells 1 (Maroon field), 4 - 5 (Ahwaz 807 

field) and 6 (Tabnak field). 808 

Figure 2. Frequency distributions on arithmetic and semi-logarithmic scales of aP P P    in 809 

(a)-(b) Well 1 (Maroon field), (c)-(d) Well 4 (Ahwaz field), and (e)-(f) Well 6 (Tabnak 810 

field). Also shown are ML fits of Gaussian (dashed), -stable (solid red), and NLN 811 

(black solid) pdfs. 812 

Figure 3. Increments  nP s  of P at normalized lags sn = 1 (s = 0.15 m), 32 (s = 4.80 m), and 813 

1024 (s = 153.60 m) versus sequential (integer) vertical position in (a) - (c) Well 1 814 

(Maroon field), (d) - (f) Well 4 (Ahwaz field), and (g) - (i) Well 6 (Tabnak field). 815 

Figure 4. Frequency distributions of increments  nP s  of P at normalized lags sn = 1 (s = 0.15 816 

m), 32 (s = 4.80 m), and 1024 (s = 153.60 m) in (a) - (c) Well 1 (Maroon field) and (d) - 817 

(f) Well 4 (Ahwaz field). Also shown are ML fits of Gaussian (dashed), -stable (solid 818 

red), and NLN (black solid) pdfs. 819 

Figure 5. Frequency distributions of increments  nP s  of P at normalized lags sn = 1 (s = 0.15 820 

m) and 1024 (s = 153.60 m) in Well 6 (Tabnak field). Also shown are ML fits of 821 

Gaussian (dashed), -stable (solid red), and NLN (black solid) pdfs. 822 

Figure 6. ML estimates ̂  and ̂  of stability and scale parameters, respectively, characterizing 823 

-stable distribution models of increments  nP s  of P in all wells versus normalized 824 

lag. 825 

Figure 7. ( )q

N nS s  versus normalized lag for q = 0.5, 1.0, and 2.0 in Wells 1 (Maroon) and 6 826 

(Tabnak). Red dashed line demarcates breaks in power-law scaling regimes. Logarithmic 827 
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scale regression lines and corresponding power-law relations between ( )q

N nS s  and ns  are 828 

given in (a) for Well 1 at sn < 10, (b) Well 1 at sn > 12, (c) Well 6 at sn < 10, and (d) Well 829 

6 at sn > 12. 830 

Figure 8. 
1q

NS 
 versus q

NS  for q = 1, 2 and 3 in Wells 1 (Maroon) and 6 (Tabnak). Logarithmic 831 

scale regression lines and corresponding power-law relations between 
1q

NS 
 versus q

NS  are 832 

given in (a) for Well 1 at sn < 10, (b) Well 1 at sn > 12, (c) Well 6 at sn < 10, and (d) Well 833 

6 at sn > 12. 834 

Figure 9. ξw(q) and ξb(q) evaluated as functions of q by the method of moments (M) and ESS in 835 

(a) Well 1 at sn < 10, (b) Well 1 at sn > 12, (c) Well 6 at sn < 10, and (d) Well 6 at sn > 12. 836 

Figure 10. Sample scale parameter square  2ˆ
ns  as functions of ns  (squares), ML fitted PVs 837 

(solid lines) and 95% confidence limits (broken curves) in Wells 1 and 6 based on (a) - 838 

(b) estimates Â  given estimates Ĥ  from Table 2 and (c) - (d) joint estimates of Â  and 839 

Ĥ . 840 

Figure 11. Sample structure functions, 2 ( )N nS s , of order q = 2 as functions of ns  (squares), ML 841 

fitted PVs (solid lines) and 95% confidence limits (broken curves) in Wells 1 and 6 based 842 

on (a) - (b) estimates Ĉ  given estimates Ĥ  from Table 2 and (c) - (d) joint estimates of 843 

Ĉ  and Ĥ . 844 

Figure 12. POTs of absolute increments  nP s  at normalized lags sn = 1, 32, and 1024 versus 845 

sequential (integer) vertical position in (a) - (c) Well 1 (Maroon), (d) - (f) Well 4 846 

(Ahwaz), and (g) - (i) Well 6 (Tabnak). 847 

Figure 13. Quantile-quantile plots of GPD fits to frequency distributions of POTs of porosity 848 

increments at normalized lag sn = 1, 32 and 1024 in (a)-(c) Well 1 (Maroon), (d)-(f) Well 849 
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4 (Ahwaz), and (g)-(i) Well 6 (Tabnak). Also shown are a line of unit slope (solid), 95% 850 

confidence intervals (dashed), and p-values of Kolmogorov-Smirnov tests. 851 

Figure 14. Variations of best fit GPD shape (ξPOT) and scale (σPOT) parameters with normalized 852 

lag in (a) - (b) Well 1 (Maroon), (c) - (d) Well 4 (Ahwaz), and (e)-(f) Well 6 (Tabnak). 853 

Also shown are 95% uncertainty bounds. 854 

Figure 15. ( )
POT

q

N nS s  versus normalized lag for q = 0.5, 1.0, and 2.0 in Wells 1 (Maroon) and 6 855 

(Tabnak). Red dashed line demarcates breaks in power-law scaling regimes. Logarithmic 856 

scale regression lines and corresponding power-law relations between ( )
POT

q

N nS s  and ns  857 

are given in (a) for Well 1 at sn < 10, (b) Well 1 at sn > 12, (c) Well 6 at sn < 10, and (d) 858 

Well 6 at sn > 12. 859 

Figure 16. ξw(q) and ξb(q) evaluated for POTs as functions of q by the method of moments (M) 860 

and ESS in (a) Well 1 at sn < 10, (b) Well 1 at sn > 12, (c) Well 6 at sn < 10, and (d) Well 861 

6 at sn > 12. 862 

  863 
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 864 

Figure 1: Variation of neutron porosity (P) with depth in Wells 1 (Maroon field), 4 - 5 (Ahwaz 865 

field) and 6 (Tabnak field). 866 
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 868 

Figure 2. Frequency distributions on arithmetic and semi-logarithmic scales of aP P P    in 869 

(a)-(b) Well 1 (Maroon field), (c)-(d) Well 4 (Ahwaz field), and (e)-(f) Well 6 (Tabnak field). 870 

Also shown are ML fits of Gaussian (dashed), -stable (solid red), and NLN (black solid) pdfs. 871 

  872 

0.0001

0.001

0.01

0.1

1

-20 0 20 40

0.00

0.02

0.04

0.06

0.08

0.10

-20 0 20 40

P
ro

b
ab

il
it

y
 d

en
si

ty
 d

is
tr

ib
u

ti
o

n

P' = P Pa

 Sample density

(a)

NLN model

Normal model

-stable model

P
ro

b
ab

il
it

y
 d

en
si

ty
 d

is
tr

ib
u

ti
o

n

 Sample density

(b)

NLN model

Normal model

-stable model

Well 1 Well 1

P' = P  Pa

0.0001

0.001

0.01

0.1

1

-20 0 20 40

0.00

0.02

0.04

0.06

0.08

0.10

-20 0 20 40

P
ro

b
ab

il
it

y
 d

en
si

ty
 d

is
tr

ib
u

ti
o

n

 Sample density

(c)

NLN model

Normal model

-stable model
P

ro
b

ab
il

it
y

 d
en

si
ty

 d
is

tr
ib

u
ti

o
n

 Sample density

(d)

NLN model

Normal model

-stable model

Well 4 Well 4

P' = P  Pa P' = P  Pa

0.0001

0.001

0.01

0.1

1

-20 0 20 40 60 80 100

0.00

0.02

0.04

0.06

0.08

0.10

0.12

-20 0 20 40 60 80 100

P
ro

b
ab

il
it

y
 d

en
si

ty
 d

is
tr

ib
u

ti
o

n

 Sample density

(e)

NLN model

Normal model

-stable model

P
ro

b
ab

il
it

y
 d

en
si

ty
 d

is
tr

ib
u

ti
o

n

 Sample density

(f)

NLN model

Normal model

-stable model

Well 6 Well 6

P' = P  Pa P' = P  Pa



49 
 

 873 

Figure 3. Increments  nP s  of P at normalized lags sn = 1 (s = 0.15 m), 32 (s = 4.80 m), and 874 

1024 (s = 153.60 m) versus sequential (integer) vertical position in (a) - (c) Well 1 (Maroon 875 

field), (d) - (f) Well 4 (Ahwaz field), and (g) - (i) Well 6 (Tabnak field). 876 
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 878 

Figure 4. Frequency distributions of increments  nP s  of P at normalized lags sn = 1 (s = 0.15 879 

m), 32 (s = 4.80 m), and 1024 (s = 153.60 m) in (a) - (c) Well 1 (Maroon field) and (d) - (f) Well 880 

4 (Ahwaz field). Also shown are ML fits of Gaussian (dashed), -stable (solid red), and NLN 881 

(black solid) pdfs. 882 
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 884 

 885 

 886 

 887 

 888 

Figure 5. Frequency distributions of increments  nP s  of P at normalized lags sn = 1 (s = 0.15 889 

m) and 1024 (s = 153.60 m) in Well 6 (Tabnak field). Also shown are ML fits of Gaussian 890 

(dashed), -stable (solid red), and NLN (black solid) pdfs. 891 
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 894 

 895 

Figure 6. ML estimates ̂  and ̂  of stability and scale parameters, respectively, characterizing 896 

-stable distribution models of increments  nP s  of P in all wells versus normalized lag. 897 
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 899 

 900 

Figure 7. ( )q

N nS s  versus normalized lag for q = 0.5, 1.0, and 2.0 in Wells 1 (Maroon) and 6 901 

(Tabnak). Red dashed line demarcates breaks in power-law scaling regimes. Logarithmic scale 902 

regression lines and corresponding power-law relations between ( )q

N nS s  and ns  are given in (a) 903 

for Well 1 at sn < 10, (b) Well 1 at sn > 12, (c) Well 6 at sn < 10, and (d) Well 6 at sn > 12. 904 
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 906 

 907 

Figure 8. 
1q

NS 
 versus q

NS  for q = 1, 2 and 3 in Wells 1 (Maroon) and 6 (Tabnak). Logarithmic 908 

scale regression lines and corresponding power-law relations between 
1q

NS 
 versus q

NS  are given 909 

in (a) for Well 1 at sn < 10, (b) Well 1 at sn > 12, (c) Well 6 at sn < 10, and (d) Well 6 at sn > 12. 910 
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 912 

 913 

Figure 9. ξw(q) and ξb(q) evaluated as functions of q by the method of moments (M) and ESS in 914 

(a) Well 1 at sn < 10, (b) Well 1 at sn > 12, (c) Well 6 at sn < 10, and (d) Well 6 at sn > 12. 915 
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 917 

 918 

Figure 10. Sample scale parameters  2ˆ
ns  as functions of ns  (squares), ML fitted PVs (solid 919 

lines) and 95% confidence limits (broken curves) in Wells 1 and 6 based on (a) - (b) estimates 920 

Â  given estimates Ĥ  from Table 2 and (c) - (d) joint estimates of Â  and Ĥ . 921 
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from Table 2Ĥ
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 924 

Figure 11. Sample structure functions, 2 ( )N nS s , of order q = 2 as functions of ns  (squares), ML 925 

fitted PVs (solid lines) and 95% confidence limits (broken curves) in Wells 1 and 6 based on (a) 926 

- (b) estimates Ĉ  given estimates Ĥ  from Table 2 and (c) - (d) joint estimates of Ĉ  and Ĥ . 927 
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 930 

 931 

Figure 12. POTs of absolute increments  nP s  at normalized lags sn = 1, 32, and 1024 versus 932 

sequential (integer) vertical position in (a) - (c) Well 1 (Maroon), (d) - (f) Well 4 (Ahwaz), and 933 

(g) - (i) Well 6 (Tabnak). 934 
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 936 

 937 

 938 

Figure 13. Quantile-quantile plots of GPD fits to frequency distributions of POTs of P 939 

increments at normalized lag sn = 1, 32 and 1024 in (a)-(c) Well 1 (Maroon), (d)-(f) Well 4 940 

(Ahwaz), and (g)-(i) Well 6 (Tabnak). Also shown are a line of unit slope (solid), 95% 941 

confidence intervals (dashed), and p-values of Kolmogorov-Smirnov tests. 942 

  943 

0

2

4

6

8

0 2 4 6 8
0

5

10

15

20

25

0 5 10 15 20 25

0

10

20

30

40

50

0 10 20 30 40 50
POTs of P increments

G
P

D
 f

it

(a)Well 1

sn = 1

p-value = 0.24

(b)Well 1

sn = 32
(c)Well 1

sn = 1024

p-value = 0.61 p-value = 0.09

POTs of P increments
G

P
D

 f
it

POTs of P increments

G
P

D
 f

it

0

10

20

30

40

50

0 10 20 30 40 50

0

20

40

60

0 20 40 60

0

10

20

30

0 10 20 30

0

5

10

15

20

0 5 10 15 20

0

10

20

30

0 10 20 30

0

5

10

15

0 5 10 15

POTs of P increments

G
P

D
 f

it

(d)Well 4

sn = 1

p-value = 0.44

(e)Well 4

sn = 32
(f)Well 4

sn = 1024

(g)Well 6

sn = 1

(h)Well 6

sn = 32

(i)Well 6

sn = 1024

p-value = 0.43 p-value = 0.47

POTs of P increments

G
P

D
 f

it

POTs of P increments

G
P

D
 f

it

p-value = 0.42 p-value = 0.22

p-value = 0.59

POTs of P increments

G
P

D
 f

it

POTs of P increments

G
P

D
 f

it

POTs of P increments

G
P

D
 f

it

 data

95% CI

1:1 line



60 
 

 944 

Figure 14. Variations of best fit GPD shape (ξPOT) and scale (σPOT) parameters with normalized 945 

lag in (a) - (b) Well 1 (Maroon), (c) - (d) Well 4 (Ahwaz), and (e)-(f) Well 6 (Tabnak). Also 946 

shown are 95% uncertainty bounds. 947 
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 949 

 950 

Figure 15. ( )
POT

q

N nS s  versus normalized lag for q = 0.5, 1.0, and 2.0 in Wells 1 (Maroon) and 6 951 

(Tabnak). Red dashed line demarcates breaks in power-law scaling regimes. Logarithmic scale 952 

regression lines and corresponding power-law relations between ( )
POT

q

N nS s  and ns  are given in 953 

(a) for Well 1 at sn < 10, (b) Well 1 at sn > 12, (c) Well 6 at sn < 10, and (d) Well 6 at sn > 12. 954 
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 958 

 959 

Figure 16. ξw(q) and ξb(q) evaluated for POTs as functions of q by the method of moments (M) 960 

and ESS in (a) Well 1 at sn < 10, (b) Well 1 at sn > 12, (c) Well 6 at sn < 10, and (d) Well 6 at sn 961 

> 12. 962 
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