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ABSTRACT 12 

We analyze scale-dependent statistics of correlated random hydrogeological variables 13 

and their extremes using neutron porosity data from six deep boreholes, in three diverse 14 

depositional environments, as example. We show that key statistics of porosity increments 15 

behave and scale in manners typical of many earth and environmental (as well as other) 16 

variables. These scaling behaviors include a tendency of increments to have symmetric, non-17 

Gaussian frequency distributions characterized by heavy tails that decay with separation distance 18 

or lag; power-law scaling of sample structure functions (statistical moments of absolute 19 

increments) in midranges of lags; linear relationships between log structure functions of 20 

successive orders at all lags, known as extended self-similarity or ESS; and nonlinear scaling of 21 

structure function power-law exponents with function order, a phenomenon commonly attributed 22 

in the literature to multifractals. Elsewhere we proposed, explored and demonstrated a new 23 

method of geostatistical inference that captures all of these phenomena within a unified 24 

theoretical framework. The framework views data as samples from random fields constituting 25 

scale-mixtures of truncated (monofractal) fractional Brownian motion (tfBm) of fractional 26 

Gaussian noise (tfGn). Important questions not addressed in previous studies concern the 27 

distribution and statistical scaling of extreme incremental values. Of special interest in hydrology 28 

(and many other areas) are statistics of absolute increments exceeding given thresholds, known 29 

as peaks over threshold or POTs. In this paper we explore the statistical scaling of data and, for 30 

the first time, corresponding POTs associated with samples from scale-mixtures of tfBm or tfGn. 31 

We demonstrate that porosity data we analyze possess properties of such samples and thus 32 

follow the theory we proposed. The porosity data are of additional value in revealing a 33 

remarkable cross-over from one scaling regime to another at certain lags. The phenomena we 34 
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uncover are of key importance for the analysis of fluid flow and solute as well as particulate 35 

transport in complex hydrogeologic environments.  36 
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1. INTRODUCTION 37 

Hydrogeologic variables such as log permeability are known to vary with scales of 38 

measurement, observation, domain of investigation, spatial correlation and resolution (Neuman 39 

and Di Federico, 2003). The statistics of these and diverse earth, environmental (as well as 40 

financial, astrophysical, biological and many other) variables are likewise known to vary with 41 

scale. This is especially true of statistics characterizing spatial and/or temporal increments of 42 

these variables. Symptoms of such statistical scaling include irregular spatial variability, 43 

persistence or antipersistence of increments (large and small values tending to either persist or 44 

alternate rapidly in space and/or time); tendency of increments to have symmetric, non-Gaussian 45 

frequency distributions characterized by heavy tails that often decay with separation distance or 46 

lag; power-law scaling of sample structure functions (statistical moments of absolute increments) 47 

in midranges of lags, with breakdown in power-law scaling at small and/or large lags; linear 48 

relationships between log structure functions of successive orders at all lags, also known as 49 

extended self-similarity or ESS; and nonlinear scaling of structure function power-law exponents 50 

with function order. The traditional interpretation of these widely-documented behaviors has 51 

been based on the concept of multifractals. This, however, does not explain observed breakdown 52 

in power-law scaling at small and large lags or extended power-law scaling (Neuman et al., 2013 53 

and references therein). 54 

Of special concern are the statistics of extremes, which have received much attention 55 

among hydrologists (Katz et al., 2002) and others concerned with a wide range of phenomena 56 

including snow avalanches on mountain slopes (Ancey, 2012); rupture events associated with the 57 

propagation of cracks or sliding along faults in brittle materials including rock failure, landslides 58 

and earthquakes (Amitrano, 2012; Lei, 2012; Main and Naylor, 2012) as well as volcanic 59 
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eruptions, landslides, wildfires and floods (Sachs et al., 2012; Schoenberg and Patel, 2012; 60 

Süveges and Davison, 2012); demographic and financial crises (Akaev et al., 2012; Janczura and 61 

Weron, 2012); neuronal avalanches and coherence potentials in the mammalian cerebral cortex 62 

(de Arcangelis, 2012; Plenz, 2012); citations of scientific papers (Golosovsky and Solomon, 63 

2012); and distributions of city sizes (Pisarenko and Sornette, 2012). Extreme values cluster 64 

around heavy tails of data frequency distributions which are often modeled as stretched 65 

exponential, lognormal or power functions. There is growing evidence that these frequency 66 

distributions, as well as other geospatial and/or temporal statistics of many data, vary with scale. 67 

A key related question concerns the scale dependence of frequency distributions (typically 68 

generalized extreme value or GEV in the case of block extrema and generalized Pareto 69 

distribution or GPD in the case of peaks over thresholds or POTs, e.g. Embrechts et al., 1997) 70 

and statistics of extremes at the tails of the original data distributions (e.g. Riva et al., 2013a). 71 

In this paper we explore the statistical scaling of variables and, for the first time, 72 

corresponding POTs using as an example neutron porosity data and their POTs from six deep 73 

boreholes in three different depositional environments. These data are of interest because, as we 74 

show below, (a) they possess statistics that scale in manners typical of many earth, 75 

environmental and other variables and (b) reveal a remarkable cross-over from one scaling 76 

regime to another at certain separation distances or lags. The phenomena we uncover vis-à-vis 77 

neutron porosity data, and corresponding extremes, are of critical importance for the analysis of 78 

fluid flow and solute as well as particulate transport in complex hydrogeologic environments. 79 

This is so because spatial variability of porosity controls fluid flow velocity distributions in 80 

geologic media and has an impact on solute and particulate concentration dynamics. Extreme 81 

values of porosity are particularly relevant to depositional processes responsible for the 82 
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development of preferential flow paths through heterogeneous porous and fractured media. 83 

Neutron porosity logs are widely used to characterize stratigraphic sequences and the 84 

geostatistical description of geological structures of lithotypes in multilayer systems of aquifers 85 

and aquitards (e.g., Barrash and Reboulet, 2004, Tronicke and Holliger, 2005). Combined with 86 

laboratory-determined particle size distributions, porosity data may allow one to infer spatial 87 

distributions (see review of Vuković and Soro, 1992) and covariances (Riva et al., 2014) of 88 

hydraulic conductivity. 89 

Statistical scaling of hydrogeological data such as permeability or hydraulic conductivity 90 

has been studied amongst others by Painter (2001), Meerschaert et al. (2004), Kozubowski et al. 91 

(2006), Siena et al. (2012, 2014), Riva et al. (2013b, 2013c), and Guadagnini et al. (2012, 2013, 92 

2014). Whereas research in the subsurface hydrology literature has not addressed specifically the 93 

distribution and statistical scaling of extreme incremental values, spatial correlations between 94 

values significantly in excess of the mean have been studied vis-à-vis variables such as 95 

transmissivity and their relevance to transport processes has been highlighted. Sanchez-Vila et al. 96 

(1996) conjectured that observed scale dependence of transmissivities estimated from large scale 97 

pumping tests could be related to strong connectivity between regions of elevated transmissivity, 98 

as opposed to spatial persistence of average or low transmissivity values. Spatial correlation of 99 

extreme conductivity values was examined for the first time by Gómez-Hernández and Wen 100 

(1998). In these authors’ opinion the standard multi-Gaussian assumption was not consistent 101 

with observed short solute travel times resulting from fast spatially connected pathways. 102 

Connectivity of high permeability zones thus became an important concept underlying some 103 

modern interpretations of effective conductivity and solute travel time (see for example Meier et 104 

al., 1998; Wen and Gómez-Hernández, 1998; Western et al., 2001; Fogg et al., 2000; Zinn and 105 
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Harvey, 2003; Knudby and Carrera, 2005, 2006; Knudby et al., 2006; Nield, 2008, and 106 

references therein). The above ideas have motivated the development of multi-point 107 

geostatistical methods of analysis such as those described in a recent special issue of the journal 108 

Mathematical Geosciences on 20 years of multi-point statistics (e.g., Renard and Mariethoz 109 

(2014) and Mariethoz and Renard (2014) and references therein). 110 

Notably, attempts by hydrologists to investigate the manner in which statistics of 111 

extremes vary with scale have centered almost exclusively on peak rainfall intensities and stream 112 

flows. Whereas some have found statistical measures of rainfall extremes to exhibit linear 113 

(sometimes termed simple) scaling (Menabde et al., 1999; Garcia-Bartual and Schneider, 2001; 114 

De Michele et al., 2001) under at least some conditions (Burlando and Rosso, 1996; Veneziano 115 

and Furcolo, 2002; Yu et al., 2004), most authors describe them by means of nonlinear (often 116 

called multiscaling) models (Burlando and Rosso, 1996; Veneziano and Furcolo, 2002; Castro et 117 

al., 2004; Langousis and Veneziano, 2007; Mohymont and Demarée, 2006). Statistical measures 118 

of peak stream flows were considered by Javelle et al. (1999), Menabde and Sivapalan (2001) 119 

and Rigon et al. (2011) to scale linearly. Work on the scaling of GEVs and/or GPDs associated 120 

with extreme rainfall and/or stream flow was reported amongst others by Nguyen et al. (1998), 121 

Menabde et al. (1999), Menabde and Sivapalan (2001), Willems (2000), Trefry et al. (2005), 122 

Veneziano et al. (2009) and Veneziano and Yoon (2013). The general tendency has been to 123 

interpret linear scaling as a manifestation of monofractal behavior analogous to that of fractional 124 

Brownian motion (fBm) or fractional Gaussian noise (fGn). Nonlinear scaling has commonly 125 

been attributed to multifractal behavior, a viewpoint espoused originally by Schertzer and 126 

Lovejoy (1987) and expanded on recently by Veneziano and Yoon (2013). 127 
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Work by our group has demonstrated theoretically (Neuman 2010, 2011; Guadagnini and 128 

Neuman, 2011; Siena et al., 2012; Neuman et al., 2013), computationally (Guadagnini et al., 129 

2012; Neuman et al., 2013) and on the basis of varied pedological, hydrological and 130 

hydrogeological data (Siena et al., 2012, 2014; Riva et al., 2013b, 2013c; Guadagnini et al., 131 

2012, 2013, 2014) that statistical scaling behaviors of the kind traditionally attributed to 132 

multifractals can be interpreted more simply and consistently by viewing the data as samples 133 

from stationary sub-Gaussian random fields subordinated to truncated fBm (tfBm) or fGn (tfGn). 134 

Such sub-Gaussian fields are scale mixtures of stationary Gaussian fields with random variances 135 

(Andrews and Mallows, 1974; West, 1987) that we model as being log-normal or Lévy stable 136 

(Samorodnitsky and Taqqu, 1994). In this sense our approach bears partial relationship to 137 

cascades of Gaussian-scale mixtures that Ebtehaj and Foufoula-Georgiou (2011) use to 138 

reproduce coherent structures and extremes of precipitation reflectivity images in the wavelet 139 

domain. 140 

The work is organized as follows. Section 2 describes the source of available data. Key 141 

elements of our theoretical approach and method of inference are summarized in Section 3. In 142 

Sections 4 - 9 we employ our novel method of data interpretation to investigate the scaling of 143 

statistics characterizing vertical increments in borehole neutron porosity data and associated 144 

POTs and demonstrate that these data display statistical scaling consistent with our theoretical 145 

framework. 146 

Our analysis suggests that, quantitatively, the statistics of neutron porosity increments 147 

and their POTs at intra-layer vertical separation scales (or lags) differ from those at inter-layer 148 

scales. Qualitatively, however, the statistics of porosity increments at each of these two scales 149 

behave in a manner that the literature would typically associate with multifractals. This behavior 150 
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includes all statistical scaling symptoms described above. Our alternative interpretation of the 151 

data allows us to obtain maximum likelihood (ML) estimates of all parameters characterizing the 152 

underlying truncated sub-Gaussian fields at both intra- and inter-layer scales. Most importantly, 153 

we offer what appears to be the first data-driven exploration (following a synthetic study of 154 

outliers by Riva et al., 2013a) of how statistics of POTs associated with such families of sub-155 

Gaussian fields vary with scale. 156 

2. SOURCE OF NEUTRON POROSITY DATA 157 

As stated in Section 1, we illustrate and explore our approach on neutron porosity data 158 

from six deep vertical boreholes in three different depositional environments. These are part of a 159 

broader set of geophysical logs from the same boreholes, previously described and analyzed 160 

within a multifractal framework by Dashtian et al. (2011), provided to us courtesy of Professor 161 

Muhammad Sahimi, University of Southern California. Three of the wells (numbered here 1, 2 162 

and 3) are drilled in the Maroon field within which gas drive is used to produce oil and natural 163 

gas, wells 4 and 5 in the Ahwaz oil field, and well 6 in the Tabnak gas field. The Maroon and 164 

Ahwaz fields in southwestern Iran, and the Tabnak field in southern Iran, have distinct geologies. 165 

Whereas carbonate rock content is highest in the Tabnak and lowest in the Maroon and Ahwaz 166 

fields, the opposite is true about sandstone content. Though we do not have information about 167 

the relative geographic locations of the six wells, we note that Dashtian et al. (2011) analyzed 168 

data from each well independently of those from the remaining five wells. We do the same on 169 

the assumption that distances between the wells are sufficiently large to allow treating data from 170 

each well as being statistically independent of the rest. 171 

3. THEORETICAL BASIS AND METHOD OF INFERENCE 172 
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Summary information about the available neutron porosity ( P ) data is listed in Table 1. 173 

As the sampling interval between available values in Well 6 is half of that in Wells 1 - 5, we 174 

disregard every other measurement in analyzing these data, leaving a total of 4,267 values. Most 175 

of our analysis concerns increments in recorded P values at various separation distances or lags, 176 

s, in each well. Lags are taken to be integer multiples, ns s z  , of the vertical spacing, z = 177 

0.1524 m, between recorded values. 178 

As stated in Section 1, we view the data as samples from stationary sub-Gaussian random 179 

fields subordinated to truncated fBm (tfBm) or fGn (tfGn). Sub-Gaussian random variables, 180 

defined in Appendix A, are scale mixtures of Gaussian variables with random variances. We 181 

consider two sub-Gaussian variables, one -stable with Gaussian variances that are /2-stable, 182 

and another normal-lognormal (NLN) variable with lognormal Gaussian variances. There is no 183 

physical basis for their choice, just as there usually is no such basis for working with the 184 

Gaussian distribution. Lévy- (or -) stable probability distributions are frequently employed due 185 

to their ability to interpret heavy tails displayed by empirical distributions of data. While 186 

convenient in this sense, this model has the drawback of being associated with densities with 187 

diverging moments of order larger than , notably the variance (e.g., Neuman et al., 2013 and 188 

references therein). The use of a lognormal subordinator provides us with the ability to represent 189 

tailing behaviors reasonably well with the additional benefit that associated densities possess 190 

finite moments of all orders. Regardless of this choice, our approach is compatible with diverse 191 

types of subordinators. Using maximum likelihood (ML) we compare the ability of the above 192 

two subordinators to (a) capture critical distributional features of our data and (b) and yield 193 

reliable parameters of the underlying sub-Gaussian random fields. 194 
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Statistical scaling of the data is analyzed in part on the basis of sample structure 195 

functions, ( )n

q

NS s , of order q constructed with  nN s  absolute increments at normalized (by z196 

) lags ns , 197 

 
 

 

1

1
)(

nN s
q

n j n

jn

q

N s P s
N

S
s 

   (1) 198 

where  j nP s  is the j-th increment of P values separated by lag ns . The variable P is said 199 

exhibits power-law scaling if ( ))(N nn

q qs sS   where the power or scaling exponent,  q , 200 

depends solely on the order q. The exponent is estimated through linear fits of log( q

NS ) to log( ns201 

) within the range of lags where such linear behavior is indicated. We refer to this approach of 202 

assessing and quantifying power-law scaling as method of moments. 203 

As shown by Neuman et al. (2013 and references therein), another way to assess the 204 

dependence of scaling exponents (q) on q is through extended self-similarity (ESS) or extended 205 

power-law scaling. ESS is an empirical approach originally introduced by Benzi et al. (1993a, 206 

1993b, 1996) to widen the range of lags over which velocities in fully developed turbulence scale 207 

according to Equation (1). The approach calls for plotting the 1q

NS  versus q

NS  for various q 208 

values and quantifying the resulting linear dependence between them (see Neuman et al., 2013 209 

and references therein). In this work we apply both methods to available neutron porosity data. 210 

To estimate parameters characterizing the distribution of the underlying (Gaussian) tfBm 211 

or tfGn, we consider the zero-mean tfBm  ; ,l uG x    defined by Di Federico and Neuman 212 

(1997) as a Gaussian random function of space having variance 213 

     2 2 2,G l u G u G l        , (2) 214 

variogram or semi-structure function of second order  215 
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     ; , ; ;G l u G u G ls s s        , (3) 216 

and integral autocorrelation scale 217 
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where, for ,m l u , 219 

 2 2 / 2H

G m mA H   , (5) 220 

     2; /G m G m ms s      , (6) 221 

A is a coefficient, H is a Hurst scaling exponent and s is lag. The tfBm variogram  ; ,G l us    is 222 

a weighted integral of variograms characterizing stationary Gaussian fields, or modes, having 223 

integral scales   and variances  2 2 / 2HA H   , between lower and upper cutoff scales, l  224 

and u , respectively. Here we consider modes having Gaussian variograms in which case 225 

 
2 2 2

2 2 2
/ 1 exp 1 ,

4 4 4

H

m

m m m

s s s
s H

  
 

  

      
           
       

 0 1H   (7) 226 

where  ,    is the incomplete gamma function. In the limits 0l   and u  ,  ; ,G l us  227 

tends to a power variogram (PV)  2 2Hs Bs   where    
2 /2

/ 4 1 2 / 2 / 2
H

B A H H   ,   228 

being the gamma function. The stationary tfBm  ; ,l uG x    thus tends to nonstationary fBm, 229 

 ;0,G x  , the stationary increments of which,  , ;0,G x x s   , form fGn. It follows that 230 

when u   ,  ; ,G l us    is a truncated power variogram (TPV) characterizing a (stationary) 231 

truncated version of fBm (tfBm). 232 

We treat neutron porosity increments in each borehole as a sample from a zero-mean 233 

random field,  , ; ,l uY x x s    , subordinated to tfBm according to (see Appendix A) 234 
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   1/2, ; ,, , ; l ul uY x x s x xW G s       (8) 235 

where 0s   is lag and the subordinator, W , is a non-negative random variable independent of236 

G  (and of G ). As stated above, we allow W  to be Lévy stable or log-normal. Appendix A 237 

explains that, in the first case, W  is /2-stable totally skewed to the right of zero (hence non-238 

negative) with scale parameter  
2/

4
cosS


  , unit skewness and zero shift. The 239 

corresponding univariate pdf of  , ; ,l uY x x s     is symmetric -stable with zero skewness 240 

and shift. The pdf possesses heavy, power-law tails. In the second case 1/2 VW e  where V is 241 

zero-mean Gaussian with variance  
22 2V   . This renders 1/2 1W   when 2   and its pdf 242 

increasingly skewed to the right as  diminishes. The corresponding univariate normal-243 

lognormal (NLN) pdf of  , ; ,l uY x x s     possesses heavier tails than the exponential tails of 244 

the Gaussian to which NLN tends asymptotically as  increases toward 2. Whereas -stable 245 

variables do not possess finite moments of order ≥ , all moments of NLN variables are finite. 246 

Parameters of the variogram characterizing the underlying Gaussian field are estimated through 247 

ML model calibration, as detailed in Section 7 for the two types of subordinators we consider. 248 

4. FREQUENCY DISTRIBUTIONS OF NEUTRON POROSITY DATA 249 

Figure 1 shows how the neutron porosity data vary with depth in Wells 1, 4, 5 and 6. 250 

Frequency distributions of deviations, aP P P   , from average values, aP , in Wells 1, 4 and 6 251 

are plotted on arithmetic and semi-logarithmic scales in Figure 2. The empirical frequency 252 

distributions exhibit sharp peaks, asymmetry and slight bimodality. Also shown in Figure 2 are 253 

maximum likelihood (ML) fits of a Gaussian and two sub-Gaussian probability density functions 254 

(pdfs) to the empirical frequency distributions. Figure 1 shows that neutron porosity values in 255 

Well 6 exhibit greater variability than in other wells. This could be due to a larger carbonate 256 
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content in formations penetrated by Well 6 than in those penetrated by other wells (see Section 257 

2), rendering the former more heterogeneous than the rest. 258 

ML fits to Gaussian and -stable pdfs is accomplished with a code developed by Nolan 259 

(2001) and to NLN using a code we have written in Matlab. The quality of these fits is variable; 260 

in the case of Well 1, the NLN model is seen to fit the empirical frequency distribution slightly 261 

better than do the other two models but, in the case of Well 6, the -stable model is seen to be 262 

best and Gaussian model worst. Formal Kolmogorov-Smirnov, χ
2
 and Shapiro-Wilk tests 263 

conducted on some of the data tend to reject the Gaussian model at a significance level of 0.05.  264 

5. FREQUENCY DISTRIBUTIONS OF NEUTRON POROSITY INCREMENTS 265 

Rather than presenting results in terms of lag s we report them below in terms of 266 

normalized (by z ) integer values, ns . Figure 3 shows how increments  nP s  at three different 267 

normalized lags ( ns  = 1, 32, 1024) vary with sequential (integer) vertical position in Wells 1 268 

(Maroon field), 4 (Ahwaz field) and 6 (Tabnak field). 269 

Frequency distributions of  nP s  at the same three lags in Wells 1 and 4 are plotted on 270 

semi-logarithmic scale in Figure 4. The empirical frequency distributions exhibit pronounced 271 

symmetry with sharp peaks and heavy tails, which decay toward Gaussian shapes as lags 272 

increase. At all lags, the empirical frequency distributions of increments are represented quite 273 

closely by -stable and NLN models fitted to them by ML. Negative log likelihood (NLL) 274 

measures of best fit associated with these two models as well as values of the Kashyap (1982) 275 

information criterion, KIC, demonstrate that they fit the empirical frequency distributions 276 

equally well (not shown). The same is true for all increments in all other wells. Frequency 277 

distributions of  nP s  plotted for two normalized lags in Well 6 (Figure 5) are likewise 278 



15 
 

symmetric with sharp peaks and heavy tails which, however, do not decay with lag. Empirical 279 

frequency distributions of  nP s  in Well 6 are represented equally well by -stable and NLN 280 

models. 281 

Figure 6 shows how estimates ̂  and ̂  of stability and scale parameters, respectively, 282 

characterizing -stable distribution models (see Appendix A) of neutron porosity increments in 283 

all wells vary with normalized lag. Estimates ̂  of the stability index,  , in Wells 1 - 3 284 

(Maroon field) and 4 - 5 (Ahwaz field) exceed 1 and increase asymptotically toward 2 with 285 

increasing lag, confirming that the increments become Gaussian at large lags. In Well 6 (Tabnak 286 

field) ̂  fluctuates around a value that exceeds 1 by a small amount. Estimates ̂  of the scaling 287 

index  , which measures the width of the -stable distribution, first increase with lag and then 288 

stabilize in all wells. All these behaviors are consistent with sub-Gaussian random fields 289 

associated with -stable subordinators; whether or not   does or does not grow with lag 290 

depends on how these fields are generated (see Riva et al., 2013c and Neuman et al., 2013). We 291 

do not show but note that parameters of NLN distribution models fitted to the increments also 292 

vary with lag in a way that renders them asymptotically Gaussian at large lags, with the 293 

exception of Well 6. 294 

6. STATISTICAL SCALING OF NEUTRON POROSITY INCREMENTS 295 

Next we analyze the scaling behavior of sample structure functions, ( )n

q

NS s , of order q 296 

defined in Equation (1). Figure 7 shows how such structure functions of orders q = 0.5, 1.0 and 297 

2.0 vary with ns  in Wells 1 (Maroon) and 6 (Tabnak). Log-log regression lines fitted to the data 298 

separately at vertical distance scales sn < 10 and sn > 12 suggest, at relatively high levels of 299 

confidence (coefficients of determination, 
2R , ranging from 0.98 to 0.99 at sn < 10 and from 300 
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0.89 to 0.99 at sn > 12), that ( )q

N nS s  varies as a power of ns  in each of these two scale ranges. 301 

Power-law exponents are larger at small (sn < 10) than at large (sn > 12) lags. We thus have a 302 

cross-over between two diverse power-law regimes at distance scales 1.5 - 1.8 m delineated in 303 

Figure 7 by a dashed red line. We interpret the power-law scaling of ( )q

N nS s  with ns  at sn < 10 304 

to represent variability within, and that at sn > 12 variability between, sedimentary layers at each 305 

site. Similar dual power-law scaling behavior is exhibited by structure functions of increments 306 

from Wells 2 - 5 (not shown). The identification of layers of diverse geomaterials is related to 307 

depositional processes which take place over time in any sedimentary basin of the kind we deal 308 

with here. Dashtian et al. (2011) concluded that these formations are layered based on complete 309 

suites of well logs at each of the three sites. We note further that a similar dual-scaling 310 

phenomenon has recently been reported by Siena et al. (2014) vis-a-vis porosities and specific 311 

surface areas imaged using x-ray computer micro-tomography throughout a millimeter-scale 312 

block of Estaillades limestone, at a spatial resolution of 3.3 μm, as well as Lagrangian velocities 313 

computed by solving the Stokes equation in the sample pore space. 314 

Following the most recent examples of Guadagnini et al. (2013, 2014) we use the method 315 

of moments described in Section 3 to obtain estimates, ˆ
wH  and ˆ

bH , of Hurst scaling exponents, 316 

wH  and bH , characterizing the within- and between-layers scaling behaviors of neutron porosity 317 

increments, respectively, in each well. ˆ
wH  and ˆ

bH  are set equal to the slopes, ξw(q = 1) and ξb(q 318 

= 1), of regression lines fitted to 1 ( )N nS s  on log-log scale at sn < 10 and sn > 12, respectively. 319 

Values of these estimates are listed, for all six wells, in Table 2. As ˆ ˆ1/wH   and ˆ ˆ1/bH   320 

in all cases, we conclude that whereas intra-layer variability is persistent (large values tend to 321 

follow large values and small values tend to follow small values), inter-layer variability is 322 
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strongly antipersistent (small and large values tend to alternate rapidly). The latter is likely a 323 

manifestation of strong variations in environments responsible for the deposition of alternating 324 

sedimentary layers. 325 

As no theory other than ours (Siena et al., 2012; Neuman et al., 2013) is known to explain 326 

extended self-similarity (ESS) of variables that do not necessarily satisfy Burger’s equation 327 

(Chakraborty et al., 2010), demonstrating that  nP s  satisfy ESS is akin to verifying that these 328 

data conform to our theoretical scaling framework. That this is indeed the case becomes evident 329 

upon examining the high-confidence (R
2
 = 0.91 - 0.99) straight line relationships between log330 

1q
NS 

 and log q

NS , and corresponding power-law relationships between 
1q

NS 
 and q

NS , at sn < 10 331 

and sn > 12 in Figure 8 for q = 1, 2 and 3 in Wells 1 (Maroon) and 6 (Tabnak). Similar ESS 332 

relationships hold (not shown) in Wells 2 - 5. 333 

Our next step is to compute functional relationships between power exponents ξw(q) and 334 

ξb(q), and the order q, of structure functions that scale as power-laws of lag. In the method of 335 

moments these powers are the slopes of regression lines fitted to log-log plots of ( )q

N nS s  versus 336 

ns , such as those depicted in Figure 7. In the case of ESS we use ξw(q = 1) and ξb(q = 1), 337 

determined by the method of moments, as reference values for the sequential computation of 338 

ξw(q) and ξb(q) at q > 1 based on known power-law relationships between 
1q

NS 
 and q

NS , such as 339 

those given in Figure 8. Corresponding plots of ξw(q) and ξb(q) as functions of q, evaluated by 340 

the method of moments and ESS in Wells 1 and 6 at sn < 10 and sn > 12, are presented in Figure 341 

9. Results obtained by the two methods are, for the most part, very similar. With the exception of 342 

ξw(q) at sn < 10 in Wells 1, 2, and 3 (Maroon field), in all cases (including those corresponding to 343 

Wells 2 - 5, which we do not show) ξw(q) and ξb(q) delineate convex functions that fall below 344 
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straight lines having slopes ˆ
wH  and ˆ

bH , respectively, which pass through the origin. Tradition 345 

has it that whereas such straight lines are characteristic of monofractal (self-affine, additive) 346 

random fields, nonlinear variations of power exponents such as those exhibited by ξw(q) and 347 

ξb(q) in Figure 9 are symptomatic of (multiplicative) multifractals. Yet we have seen that the data 348 

in this paper conform to a statistical scaling theory in which the underlying random fields are 349 

subordinated to truncated versions of monofractal fBm or fGn. As we have previously 350 

demonstrated theoretically (Neuman, 2010, 2011; Neuman et al., 2013) and computationally 351 

(Guadagnini et al., 2012), nonlinear scaling of such data is nothing but a random artifact of 352 

sampling from similar fields. 353 

7. ESTIMATION OF VARIOGRAM PARAMETERS 354 

We saw that our analysis supports treating the neutron porosity data from each well as a 355 

random sample from a stationary sub-Gaussian random field subordinated to tfBm or tfGn. Our 356 

previous ML fits of univariate -stable and NLN pdf models to neutron porosity increments in 357 

each well have yielded estimates of all distributional parameters characterizing these models. We 358 

also found the data to exhibit different modes of scaling at sn < 10 and sn > 12 and obtained 359 

estimates of H for each of these two ranges of lags. All that remains to fully characterize the 360 

multivariate random fields,  , ; ,l uY x x s    , which we take to underlie the incremental data 361 

is to estimate the parameters A, l  and u  (and, optionally, H) of TPVs corresponding to sn < 10 362 

and sn > 12. We do so next for each of the two subordinators we consider. 363 

Assuming first that neutron porosity increments in each well are -stable, one can 364 

estimate the scale parameter  ; ,l us    of their distribution at any lag, s, from the theoretical 365 

relationship (Samorodnitsky and Taqqu, 1994) 366 
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   ˆ ; , ; ,l u G l us s      . (9) 367 

Here we employ this relationship separately for normalized lag ranges sn < 10 and sn > 12. We 368 

saw earlier that structure functions of neutron porosity data in both lag ranges, including second-369 

order structure functions can be closely represented in each well by power laws. In other words, 370 

the TPVs within these lag ranges are effectively PVs. We recall that this happens in the limits as 371 

l  and u  tend, respectively, to zero and infinity. We note further that l should be a fraction of 372 

the measurement scale. In our case, the measurement scale can be considered as smaller than the 373 

0.15 m data resolution scale (in Well 6 data resolution is 0.07 m). When compared to the much 374 

larger length scale of each borehole (on the order of 10
3
 m), l is negligibly small and can be 375 

disregarded. Accordingly, we set l = 0 and u  to a sufficiently large number to ensure that the 376 

TPV  ; ,G l us    reduces, within both working lag ranges, to the PV  2 2Hs Bs  . Then, in a 377 

manner analogous to that outlined most recently by Guadagnini et al. (2013, 2014), we obtain 378 

ML estimates Â  of A in two ways, once by adopting corresponding method-of-moment estimates 379 

ˆ
wH  and ˆ

bH  from Table 2 and once by estimating the latter jointly with A. Both sets of estimates 380 

are obtained upon fitting the theoretical PV  2 2Hs Bs   to sample scale parameters  ˆ
ns  381 

such as those plotted versus ns  in Figure 7b. The fits are depicted graphically in Figure 10 for 382 

Wells 1 and 6. The corresponding parameter estimates and 95% confidence limits are listed, for 383 

all wells and both lag ranges, in Table 3. The two sets of estimates lie within each other’s 95% 384 

confidence intervals, implying that they are equally reliable. 385 

Next we consider the case where neutron porosity increments in each well are NLN. Due 386 

to finiteness of all (statistical) moments associated with this model, structure functions of order q 387 
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= 2 in Figure 7 coincide with twice the variogram of neutron porosity. As shown in Appendix A, 388 

the variogram of  ; ,l uY x    is given by  389 

     2 2; , ; ,Y n l u W W G n l us s          (10) 390 

where W  and 2
W  are defined in Equation (A1). We replace (10) by   2H

Y s Cs   and fit the 391 

latter by ML to second-order sample structure functions of porosity increments in each well, 392 

separately for sn < 10 and sn > 12. Joint estimates of C and H for each range of lags, as well as 393 

ML estimates of C based on method-of-moment estimates ˆ
wH  and ˆ

bH  from Table 2, together 394 

with associated 95% confidence intervals, are listed in Table 4. Corresponding best fits are 395 

depicted graphically in Figure 11. Here again the two sets of estimates lie within each other’s 396 

95% confidence intervals, implying that they are equally reliable. 397 

8. FREQUENCY DISTRIBUTIONS OF PEAKS OVER THRESHOLDS 398 

Extreme value analyses of randomly varying data typically concern block maxima (BM) 399 

and/or peaks over thresholds (POTs). The number of neutron porosity increments,  nP s , 400 

available to us at any normalized lag at any well are insufficient to conduct a statistically 401 

meaningful analysis of BM. For this reason, and for the fact that POTs provide a higher 402 

resolution of maxima than do BM, we focus in this paper exclusively on the former. In way of 403 

illustration we consider absolute increments  nP s  to constitute POTs whenever they exceed a 404 

non-negative threshold, ut, equal to the 95% quantile of  nP s  values in a sample. This 405 

renders about 5% of all sampled  nP s  values POTs. Figure 12 identifies POTs associated 406 

with sequences of porosity increments depicted in Figure 3. 407 
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In each well, sample autocorrelation of non-overlapping neutron porosity increments at 408 

diverse normalized lags diminishes rapidly with the number, n, of these normalized increments 409 

(not shown), in line with theoretical expressions (18) - (20) of Neuman (2010). We expect 410 

autocorrelations between POTs to be weaker, possibly justifying a representation of their 411 

frequency distributions by generalized Pareto distributions (GPDs, see Appendix B) which, 412 

theoretically, apply to independent identically distributed (iid) variables. To test this, we plot in 413 

Figure 13 quantile-quantile (Q-Q) plots of GPD fits to frequency distributions of POTs identified 414 

in Figure 12. Included in Figure 13 are 95% confidence intervals of these fits and p-values of 415 

Kolmogorov-Smirnov (KS) goodness-of-fit tests. A list of POT sample sizes and p-values 416 

associated with the same three lags in all wells is provided in Table 5. The p-value is the 417 

probability of obtaining given data when a null hypothesis is true. As all p-values in Table 5 418 

exceed 0.05, one cannot reject (at a significance level of 0.05) the null hypothesis that all POTs 419 

have GPDs. 420 

Figure 14 shows variations of best fit GPD shape (ξPOT, governing the tail behavior of the 421 

distribution) and scale ( POT , governing the spread of the distribution) parameters with 422 

normalized lag, and corresponding 95% uncertainty bounds, in the same wells as in Figure 13. 423 

With the exception of Well 6 in which ξPOT first diminishes with lag and then stabilizes, this 424 

parameter fluctuates but does not vary systematically with lag. The same applies to the shape 425 

parameter of each fitted GPD. On the other hand POT  in all wells increases as a power of lag 426 

before stabilizing at larger lags, as does the scale parameter of  stable distributions fitted to all 427 

neutron porosity increments in Figure 6b. 428 

9. STATISTICAL SCALING OF PEAKS OVER THRESHOLDS 429 
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We end our analysis by exploring the scaling behavior of q-order sample structure 430 

functions of POT in absolute increments  ,POT j nP s . Following Equation (1), these sample 431 

structure functions are defined as 432 

 
 

 

,

1

1
( )

OT

T

nP

PO

N
q

q

N POT

PO jnT

s

n j nS P
N

s s
s 

   (11) 433 

where  nPOTN s  is the number of POTs at normalized lag ns . We do so as we did earlier for all 434 

increments, according to the methodology summarized in Section 3. Figure 15 depicts variations 435 

of ( )
POT

q

N nS s  with normalized lag for q = 0.5, 1.0, and 2.0 in Wells 1 (Maroon) and 6 (Tabnak). A 436 

red dashed line in the figure demarcates cross-over between two diverse power-law scaling 437 

regimes at sn < 10 and sn > 12. Included in Figure 15 are logarithmic scale regression lines and 438 

corresponding power-law relations between ( )
POT

q

N nS s  and ns  in each well and scaling regime. 439 

The scaling behavior in Figure 15 is similar to that shown previously for all (unfiltered) porosity 440 

increments in Figure 7. Corresponding estimates of Hurst exponent are listed in Table 6; these 441 

too differ little from those obtained earlier for all porosity increments (Table 2) with the 442 

exception of estimates ˆ
bH  which are consistently lower than those associated with unfiltered 443 

increments. Like the latter (Figure 8), POTs exhibit ESS at all lags in the scaling intervals sn < 10 444 

and sn > 12 (not shown). 445 

Our final step is to compute functional relationships between power exponents ξw(q) and 446 

ξb(q), and the order q, of POT structure functions that scale as power-laws of lag. We do so as we 447 

did previously for unfiltered porosity increments. Corresponding plots of ξw(q) and ξb(q) as 448 

functions of q, evaluated by the method of moments and ESS in Wells 1 and 6 at sn < 10 and sn > 449 

12, are presented in Figure 16. Results obtained by the two methods are again, for the most part, 450 
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very similar. Similar behavior has been shown by us elsewhere (Guadagnini et al., 2012) to be 451 

consistent with increments sampled from random fields subordinated to tfBm or tfGn. 452 

10. CONCLUSIONS 453 

After showing that neutron porosity data from six deep boreholes in three geologic 454 

environments have statistical scaling properties characteristic of samples from scale-mixtures of 455 

truncated fractional Brownian motion (tfBm) or fractional Gaussian noise (tfGn), we used these 456 

data to explore the statistical behavior of extreme porosity increments the absolute values of 457 

which exceed certain thresholds. We expect our results to hold for many earth, environmental 458 

and other variables that were shown elsewhere to possess similar statistical scaling properties. 459 

These results include the following: 460 

1. The frequency distributions of neutron porosities in any well, or group of wells in any 461 

one of the three geologic environments, are non-Gaussian with sharp peaks, asymmetry 462 

and slight bimodality. 463 

2. The frequency distributions of neutron porosity increments in any well, or group of wells 464 

at one of the three sites, are zero-mean symmetric with heavy tails that decay with 465 

increasing vertical separation distance or lag. At all lags, the distributions are represented 466 

closely by either  stable or normal-log-normal probability density models that tend to 467 

Gaussian with increasing lag.  468 

3. Order q structure functions of absolute neutron porosity increments grow approximately 469 

as positive powers  w q  of normalized lag, ns , at sn < 10 and as much smaller positive 470 

powers,  b q , of ns  at sn > 12. We interpret this dual power-law scaling to represent 471 

within- or intra-layer variability at sn < 10 and between- or inter-layer variability at sn > 472 
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12. Values of  1w q   and  1b q   provide method-of-moment estimates of Hurst 473 

exponents wH  and bH  for these two power-law scaling ranges, respectively. 474 

4. Structure functions of absolute neutron porosity increments exhibit extended self 475 

similarity (ESS) at all normalized lags within both power-law scaling ranges, sn < 10 and 476 

sn > 12.  477 

5. Values of power-law exponents ξw(q) and ξb(q) associated with absolute neutron porosity 478 

data, computed by the method of moments and by ESS, are for the most part very similar. 479 

Whereas such nonlinear scaling of power-law exponents has traditionally been viewed as 480 

a hallmark of multifractality (or, more recently, of fractional Laplace motion), we find the 481 

neutron porosity data in this paper to behave in a way fully consistent with that of 482 

samples from sub-Gaussian random fields subordinated to truncated (monofractal, self-483 

affine, Gaussian) fractional Brownian motion or fractional Gaussian noise. The latter is 484 

the only view known to be theoretically consistent with ESS in the case of data, such as 485 

those considered here, that do not necessarily satisfy Burger’s equation. 486 

6. Our method of interpretation allows one to fully characterize the sub-Gaussian random 487 

field that underlies a given set of data by estimating the parameters of corresponding 488 

(generally truncated) power variograms. 489 

7. The autocorrelation of neutron porosity increments diminishes rapidly with the number, 490 

n, of non-overlapping increments in a separation distance (lag). This helps explain why 491 

sample distributions of peaks over thresholds (POTs, taken here to be absolute 492 

increments which exceed their 95% quantile) are described reasonably well by a 493 

generalized Pareto distribution (GPD) model, which in theory applies to independent 494 

identically distributed (iid) extrema. Whereas GPD shape parameter estimates do not 495 
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show systematic variations with lag except in one well, corresponding estimates of GPD 496 

shape parameters tend to increase as a power of small lags and stabilize at larger lags. 497 

The same happens with scale parameters of   stable distributions fitted to all 498 

(unfiltered) neutron porosity increments. 499 

8. In all other respects, POTs show statistical scaling very similar to that of unfiltered 500 

increments. Estimates of POT Hurst exponents are very close to those obtained for 501 

unfiltered increments, with the exception of ˆ
bH  that are consistently lower than those 502 

associated with unfiltered increments. Such nonlinear scaling is consistent with our 503 

method of interpreting the data. To our knowledge, this is the first documented example 504 

of POT statistical scaling interpreted on the basis of sub-Gaussian theory. We are not 505 

aware of any known theoretical reason why statistics of POT increments would 506 

necessarily scale in a manner similar to that of their parent population, as they do here. 507 

  508 
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APPENDIX A 509 

Let 
1/2( , ) ( , )Y x x s W G x x s      where x is a spatial (or temporal) coordinate, 0s   is 510 

lag, 
1/2W  is a random variable, and G  is a zero-mean Gaussian random field of increments 511 

with pdf ( )Gf g   and variance 
2

G  dependent on lag, G  and 
1/2W  being statistically 512 

independent of each other at all lags. In this paper we consider W  to be either Lévy stable or 513 

lognormal.  514 

In the first case (e.g., Samorodnitsky and Taqqu, 1994) W  is /2-stable totally skewed to 515 

the right of zero (hence non-negative) with scale parameter  
2/

4
cosS


  , unit skewness and 516 

zero shift. The corresponding pdf of Y  is symmetric -stable with zero skewness and shift. In 517 

the second case we follow Neuman (2011) and Guadagnini et al. (2012) by setting 
1/2 VW e  518 

where V is zero-mean Gaussian with variance  
22 2V   , yielding the following respective 519 

mean and variance expressions for 
1/2W , 520 

2exp( / 2)W V   and    2 2 2exp exp 1W V V    
   (A1) 521 

Correspondingly, the pdf of Y  is 522 

1
( ) ( ) dY U G

y
f y f u f u

u u



 


 
   

 
  (A2) 523 

where 
1/2U W , 

1/2u w . Since 
1/2 0U W   one has 524 

0

1
( ) ( ) dY U G

y
f y f u f u

u u



 

 
   

 
 . (A3) 525 

As 
2~ (0, )GG N   and 

1/2 2~ ln (0, )VU W N  , Equation (A3) becomes 526 
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22

22

(ln ln )

22
20

1 1
( ) d

2

G

V

u

u
Y

V

y

f y e e u
u













    .  (A4) 527 

This is the normal-log-normal (NLN) pdf we refer to in the text. In it G  plays the role of a 528 

scale parameter, and V  of a shape factor. Letting 0V   is tantamount to letting Equation 529 

(A4) converge to a Normal density 

 
2

221
( )

2

G

y

Y

G

f y e












  . The larger is V  the heavier are 530 

the tails and the sharper is the peak of the NLN distribution. Fitting Equation (A4) by maximum 531 

likelihood (ML) to sample frequency distributions of Y  allows one to estimate 
2

G  and 
2

V , 532 

which in turn allows one to estimate W  and 
2

W  according to Equation (A1). The variance of 533 

Y is  2 2 2 2

Y W W G       and the variogram of Y  is 534 

           
22 21/2 2 21 1

( , ) ( , )
2 2

Y W W Gs E Y x s E W E G x s s             
     

 (A5) 535 

where  G s  is the variogram of G . Once W  and 2
W  have been estimated by maximum 536 

likelihood on the basis of Y  data as described above, fitting Equation (A5) to corresponding 537 

second-order sample structure functions allows one to estimate all parameters of  G s . 538 

In case G  has a power variogram,   2H

G s Bs  , of the kind we consider in the 539 

manuscript so does Y, 540 

     2 2 2H
Y W W Gs s Cs      . (A6) 541 

where C is a coefficient. Fitting Equation (A6) to second-order sample structure functions of 542 

corresponding increments allows one to estimate C and H. 543 

  544 
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APPENDIX B 545 

In this work empirical distributions of POTs of absolute neutron porosity increments at 546 

normalized lag ns ,  nP s , are shown to fit well-known two-parameter Generalized Pareto 547 

distributions (GPDs). A GPD is described in terms of the following cumulative distribution 548 

function (CDF) 549 

 
1/

( ) 1 1 /
POT

POT POTH y y


 


   ; y =  nP s   ut  0 (B1) 550 

where ξPOT and POT  are the shape and scale parameters, respectively, governing tail behavior 551 

and spread of the distribution; ut is the predetermined threshold. Equation (B1) reduces to a 552 

Pareto (type-II) distribution when ξPOT > 0, an exponential distribution when ξPOT = 0 and a 553 

generalized Beta distribution (of the first kind) when ξPOT < 0 (Arnold, 2008). 554 

  555 
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Tables 778 

 779 

Table 1: Summary information about available neutron porosity (P) data. 780 

Reservoir Well # 
Sampling 

interval (m) 

Min P 

(%) 

Max P 

(%) 

Mean P 

(%) 

Standard 

Deviation 

SD (%) 

Number of 

data points 

used 

Maroon 1 0.1524 0 46.04 14 6.4 3,567 

(MN) 2 0.1524 0* 74.29 17.27 9.98 4,049 

 
3 0.1524 0* 37.6 15.72 8.54 2,945 

 
1+2+3 0.1524 0* 74.29 15.74 8.62 10,561 

Ahwaz 4 0.1524 0 36.01 16.47 6.82 3,882 

(AZ) 5 0.1524 0 47.91 16.05 8.35 6,949 

Tabnak 

(TBK) 
6 0.0762** 0 96.9 9.28 13.2 4,267 

*  These, being negative and very close to zero, were set equal to zero. 781 
** We disregard every other measurement in analyzing these data. 782 

 783 

 784 

Table 2. Method of moments estimates of H for porosity increments at sn < 10 (denoted by 785 

subscript w) and sn > 12 (subscript b). 786 

Well ˆ
wH  ˆ

bH  

1 (Maroon field) 0.86 0.10 

2 (Maroon field) 0.87 0.08 

3 (Maroon field) 0.85 0.11 

4 (Ahwaz field) 0.70 0.11 

5 (Ahwaz field) 0.66 0.16 

6 (Tabnak field) 0.75 0.17 

 787 
  788 
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Table 3. Estimates Â  of A given estimates Ĥ  of H from Table 2, and joint estimates Â  789 

and Ĥ , of PVs with associated 95% confidence limits (in parenthesis) for all wells at sn < 10 and 790 

sn > 12 in the case of  stable subordinator. 791 

Data source 
Â  estimated using Ĥ  from Table 2  Joint estimates Â  and Ĥ  

Ĥ  Â    Ĥ  Â  

Well 1 sn < 10 0.86 
0.06 

(0.05; 0.07) 
  

0.87 

(0.78; 0.97) 

0.05 

(0.02; 0.13) 

Well 1 sn > 12 0.10 
2.12 

(1.84; 2.45) 
  

0.14 

(0.10; 0.20) 

2.00 

(1.66; 2.43) 

Well 2 sn < 10 0.87 
0.12 

(0.11; 0.13) 
  

0.91 

(0.86; 0.96) 

0.08 

(0.04; 0.16) 

Well 2 sn > 12 0.08 
5.14 

(4.48; 5.90) 
  

0.10 

(0.06; 0.16) 

5.27 

(4.56; 6.08) 

Well 3 sn < 10 0.85 
0.16 

(0.14; 0.17) 
  

0.89 

(0.82 0.96) 

0.11 

(0.05; 0.23) 

Well 3 sn > 12 0.11 
4.02 

(3.60; 4.49) 
  

0.09 

(0.06; 0.14) 

4.02 

(3.59; 4.51) 

Well 4 sn < 10 0.70 
0.21 

(0.19; 0.24) 
  

0.76 

(0.70; 0.83) 

0.16 

(0.11; 0.23) 

Well 4 sn > 12 0.11 
1.80 

(1.67; 1.94) 
  

0.13 

(0.11; 0.16) 

1.74 

(1.59; 1.90) 

Well 5 sn < 10 0.66 
0.18 

(0.15; 0.23) 
  

0.70 

(0.53; 0.93) 

0.15 

(0.06; 0.37) 

Well 5 sn > 12 0.16 
1.36 

(1.13; 1.65) 
  

0.25 

(0.22; 0.30) 

0.84 

(0.64; 1.11) 

Well 6 sn < 10 0.75 
0.09 

(0.08; 0.11) 
  

0.81 

(0.70; 0.94) 

0.06 

(0.03; 0.14) 

Well 6 sn > 12 0.17 
0.86 

(0.78; 0.94) 
  

0.18 

(0.15; 0.22) 

0.80 

(0.66; 0.96) 

 792 

 793 

  794 
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Table 4. Estimates Ĉ  of C given estimates Ĥ  of H from Table 2, and joint estimates Ĉ  795 

and Ĥ , of PVs with associated 95% confidence limits (in parenthesis) for all wells at sn < 10 and 796 

sn > 12 in the case of lognormal subordinator. 797 

Data source 
Ĉ  estimated using Ĥ  from Table 2  Joint estimates Ĉ  and Ĥ  

Ĥ  Ĉ    Ĥ  Ĉ  

Well 1 sn < 10 0.86 
0.52 

(0.46; 0.58) 
  

0.85 

(0.75; 0.96) 

0.53 

(0.40; 0.70) 

Well 1 sn > 12 0.10 
13.22 

(12.36; 14.13) 
  

0.07 

(0.05; 0.08) 

17.877 

(15.44; 20.70) 

Well 2 sn < 10 0.87 
1.35 

(1.18; 1.53) 
  

0.84 

(0.74; 0.96) 

1.43 

(1.07; 1.92) 

Well 2 sn > 12 0.08 
39.31 

(36.17; 42.72) 
  

0.04 

(0.03; 0.07) 

55.61 

(45.31; 68.24) 

Well 3 sn < 10 0.85 
0.87 

(0.76; 1.00) 
  

0.83 

(0.72; 0.95) 

0.91 

(0.67; 1.25) 

Well 3 sn > 12 0.11 
19.96 

(18.30; 21.77) 
  

0.09 

(0.06; 0.12) 

24.88 

(18.72; 33.06) 

Well 4 sn < 10 0.70 
1.09 

(0.92; 1.31) 
  

0.65 

(0.52; 0.80) 

1.23 

(0.85; 1.80) 

Well 4 sn > 12 0.11 
10.02 

(9.48; 10.59) 
  

0.08 

(0.07; 0.09) 

13.01 

(11.66; 14.52) 

Well 5 sn < 10 0.66 
1.59 

(1.35; 1.88) 
  

0.61 

(0.50; 0.75) 

1.78 

(1.25; 2.53) 

Well 5 sn > 12 0.16 
8.69 

(7.73; 9.76) 
  

0.09 

(0.08; 0.11) 

16.05 

(13.83; 18.61) 

Well 6 sn < 10 0.76 
2.52 

(2.15; 2.95) 
  

0.71 

(0.60; 0.84) 

2.77 

(1.98; 3.89) 

Well 6 sn > 12 0.17 
26.90 

(24.45; 29.58) 
  

0.14 

(0.11; 0.17) 

37.02 

(27.90; 49.11) 

 798 
 799 

  800 
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Table 5. POT sample sizes and Kolmogorov-Smirnov p-values associated with three lags in 801 

various wells. 802 

sn Well No. No. of samples No. of POT samples p-value (KS test) 

1 

1 3566 177 0.240 

2 4048 202 0.994 

3 2944 147 0.706 

4 3881 194 0.437 

5 6948 208 0.970 

6 4265 213 0.788 

32 

1 3535 177 0.612 

2 4017 201 0.199 

3 2913 146 0.394 

4 3850 191 0.426 

5 6917 208 0.313 

6 4203 210 0.215 

1024 

1 2543 126 0.089 

2 3025 151 0.530 

3 1921 96 0.928 

4 2858 143 0.473 

5 5925 178 0.072 

6 2219 111 0.590 

 803 

Table 6. Method of moments estimates of H for POTs at sn < 10 (denoted by subscript w) and sn 804 

> 12 (subscript b). 805 

 806 

Well ˆ
wH  ˆ

bH  

1 (Maroon field) 0.84 0.02 

2 (Maroon field) 0.83 0.0001 

3 (Maroon field) 0.80 0.06 

4 (Ahwaz field) 0.61 0.03 

5 (Ahwaz field) 0.60 0.02 

6 (Tabnak field) 0.71 0.11 

 807 

 808 

  809 
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Figure Captions 810 

Figure 1: Variation of neutron porosity (P) with depth in Wells 1 (Maroon field), 4 - 5 (Ahwaz 811 

field) and 6 (Tabnak field). 812 

Figure 2. Frequency distributions on arithmetic and semi-logarithmic scales of aP P P    in 813 

(a)-(b) Well 1 (Maroon field), (c)-(d) Well 4 (Ahwaz field), and (e)-(f) Well 6 (Tabnak 814 

field). Also shown are ML fits of Gaussian (dashed), -stable (solid red), and NLN 815 

(black solid) pdfs. 816 

Figure 3. Increments  nP s  of P at normalized lags sn = 1 (s = 0.15 m), 32 (s = 4.80 m), and 817 

1024 (s = 153.60 m) versus sequential (integer) vertical position in (a) - (c) Well 1 818 

(Maroon field), (d) - (f) Well 4 (Ahwaz field), and (g) - (i) Well 6 (Tabnak field). 819 

Figure 4. Frequency distributions of increments  nP s  of P at normalized lags sn = 1 (s = 0.15 820 

m), 32 (s = 4.80 m), and 1024 (s = 153.60 m) in (a) - (c) Well 1 (Maroon field) and (d) - 821 

(f) Well 4 (Ahwaz field). Also shown are ML fits of Gaussian (dashed), -stable (solid 822 

red), and NLN (black solid) pdfs. 823 

Figure 5. Frequency distributions of increments  nP s  of P at normalized lags sn = 1 (s = 0.15 824 

m) and 1024 (s = 153.60 m) in Well 6 (Tabnak field). Also shown are ML fits of 825 

Gaussian (dashed), -stable (solid red), and NLN (black solid) pdfs. 826 

Figure 6. ML estimates ̂  and ̂  of stability and scale parameters, respectively, characterizing 827 

-stable distribution models of increments  nP s  of P in all wells versus normalized 828 

lag. 829 

Figure 7. ( )q

N nS s  versus normalized lag for q = 0.5, 1.0, and 2.0 in Wells 1 (Maroon) and 6 830 

(Tabnak). Red dashed line demarcates breaks in power-law scaling regimes. Logarithmic 831 
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scale regression lines and corresponding power-law relations between ( )q

N nS s  and ns  are 832 

given in (a) for Well 1 at sn < 10, (b) Well 1 at sn > 12, (c) Well 6 at sn < 10, and (d) Well 833 

6 at sn > 12. 834 

Figure 8. 
1q

NS 
 versus q

NS  for q = 1, 2 and 3 in Wells 1 (Maroon) and 6 (Tabnak). Logarithmic 835 

scale regression lines and corresponding power-law relations between 
1q

NS 
 versus q

NS  are 836 

given in (a) for Well 1 at sn < 10, (b) Well 1 at sn > 12, (c) Well 6 at sn < 10, and (d) Well 837 

6 at sn > 12. 838 

Figure 9. ξw(q) and ξb(q) evaluated as functions of q by the method of moments (M) and ESS in 839 

(a) Well 1 at sn < 10, (b) Well 1 at sn > 12, (c) Well 6 at sn < 10, and (d) Well 6 at sn > 12. 840 

Figure 10. Sample scale parameter square  2ˆ
ns  as functions of ns  (squares), ML fitted PVs 841 

(solid lines) and 95% confidence limits (broken curves) in Wells 1 and 6 based on (a) - 842 

(b) estimates Â  given estimates Ĥ  from Table 2 and (c) - (d) joint estimates of Â  and 843 

Ĥ . 844 

Figure 11. Sample structure functions, 2 ( )N nS s , of order q = 2 as functions of ns  (squares), ML 845 

fitted PVs (solid lines) and 95% confidence limits (broken curves) in Wells 1 and 6 based 846 

on (a) - (b) estimates Ĉ  given estimates Ĥ  from Table 2 and (c) - (d) joint estimates of 847 

Ĉ  and Ĥ . 848 

Figure 12. POTs of absolute increments  nP s  at normalized lags sn = 1, 32, and 1024 versus 849 

sequential (integer) vertical position in (a) - (c) Well 1 (Maroon), (d) - (f) Well 4 850 

(Ahwaz), and (g) - (i) Well 6 (Tabnak). 851 

Figure 13. Quantile-quantile plots of GPD fits to frequency distributions of POTs of porosity 852 

increments at normalized lag sn = 1, 32 and 1024 in (a)-(c) Well 1 (Maroon), (d)-(f) Well 853 
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4 (Ahwaz), and (g)-(i) Well 6 (Tabnak). Also shown are a line of unit slope (solid), 95% 854 

confidence intervals (dashed), and p-values of Kolmogorov-Smirnov tests. 855 

Figure 14. Variations of best fit GPD shape (ξPOT) and scale (σPOT) parameters with normalized 856 

lag in (a) - (b) Well 1 (Maroon), (c) - (d) Well 4 (Ahwaz), and (e)-(f) Well 6 (Tabnak). 857 

Also shown are 95% uncertainty bounds. 858 

Figure 15. ( )
POT

q

N nS s  versus normalized lag for q = 0.5, 1.0, and 2.0 in Wells 1 (Maroon) and 6 859 

(Tabnak). Red dashed line demarcates breaks in power-law scaling regimes. Logarithmic 860 

scale regression lines and corresponding power-law relations between ( )
POT

q

N nS s  and ns  861 

are given in (a) for Well 1 at sn < 10, (b) Well 1 at sn > 12, (c) Well 6 at sn < 10, and (d) 862 

Well 6 at sn > 12. 863 

Figure 16. ξw(q) and ξb(q) evaluated for POTs as functions of q by the method of moments (M) 864 

and ESS in (a) Well 1 at sn < 10, (b) Well 1 at sn > 12, (c) Well 6 at sn < 10, and (d) Well 865 

6 at sn > 12. 866 

  867 
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 868 

Figure 1: Variation of neutron porosity (P) with depth in Wells 1 (Maroon field), 4 - 5 (Ahwaz 869 

field) and 6 (Tabnak field). 870 
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 872 

Figure 2. Frequency distributions on arithmetic and semi-logarithmic scales of aP P P    in 873 

(a)-(b) Well 1 (Maroon field), (c)-(d) Well 4 (Ahwaz field), and (e)-(f) Well 6 (Tabnak field). 874 

Also shown are ML fits of Gaussian (dashed), -stable (solid red), and NLN (black solid) pdfs. 875 
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 877 

Figure 3. Increments  nP s  of P at normalized lags sn = 1 (s = 0.15 m), 32 (s = 4.80 m), and 878 

1024 (s = 153.60 m) versus sequential (integer) vertical position in (a) - (c) Well 1 (Maroon 879 

field), (d) - (f) Well 4 (Ahwaz field), and (g) - (i) Well 6 (Tabnak field). 880 
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 882 

Figure 4. Frequency distributions of increments  nP s  of P at normalized lags sn = 1 (s = 0.15 883 

m), 32 (s = 4.80 m), and 1024 (s = 153.60 m) in (a) - (c) Well 1 (Maroon field) and (d) - (f) Well 884 

4 (Ahwaz field). Also shown are ML fits of Gaussian (dashed), -stable (solid red), and NLN 885 

(black solid) pdfs. 886 
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 888 

 889 
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 891 

 892 

Figure 5. Frequency distributions of increments  nP s  of P at normalized lags sn = 1 (s = 0.15 893 

m) and 1024 (s = 153.60 m) in Well 6 (Tabnak field). Also shown are ML fits of Gaussian 894 

(dashed), -stable (solid red), and NLN (black solid) pdfs. 895 
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 898 

 899 

Figure 6. ML estimates ̂  and ̂  of stability and scale parameters, respectively, characterizing 900 

-stable distribution models of increments  nP s  of P in all wells versus normalized lag. 901 
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 903 

 904 

Figure 7. ( )q

N nS s  versus normalized lag for q = 0.5, 1.0, and 2.0 in Wells 1 (Maroon) and 6 905 

(Tabnak). Red dashed line demarcates breaks in power-law scaling regimes. Logarithmic scale 906 

regression lines and corresponding power-law relations between ( )q

N nS s  and ns  are given in (a) 907 

for Well 1 at sn < 10, (b) Well 1 at sn > 12, (c) Well 6 at sn < 10, and (d) Well 6 at sn > 12. 908 
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 910 

 911 

Figure 8. 
1q

NS 
 versus q

NS  for q = 1, 2 and 3 in Wells 1 (Maroon) and 6 (Tabnak). Logarithmic 912 

scale regression lines and corresponding power-law relations between 
1q

NS 
 versus q

NS  are given 913 

in (a) for Well 1 at sn < 10, (b) Well 1 at sn > 12, (c) Well 6 at sn < 10, and (d) Well 6 at sn > 12. 914 
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 916 

 917 

Figure 9. ξw(q) and ξb(q) evaluated as functions of q by the method of moments (M) and ESS in 918 

(a) Well 1 at sn < 10, (b) Well 1 at sn > 12, (c) Well 6 at sn < 10, and (d) Well 6 at sn > 12. 919 
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 921 

 922 

Figure 10. Sample scale parameters  2ˆ
ns  as functions of ns  (squares), ML fitted PVs (solid 923 

lines) and 95% confidence limits (broken curves) in Wells 1 and 6 based on (a) - (b) estimates 924 

Â  given estimates Ĥ  from Table 2 and (c) - (d) joint estimates of Â  and Ĥ . 925 
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 928 

Figure 11. Sample structure functions, 2 ( )N nS s , of order q = 2 as functions of ns  (squares), ML 929 

fitted PVs (solid lines) and 95% confidence limits (broken curves) in Wells 1 and 6 based on (a) 930 

- (b) estimates Ĉ  given estimates Ĥ  from Table 2 and (c) - (d) joint estimates of Ĉ  and Ĥ . 931 
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estimates     Ĉ
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 934 

 935 

Figure 12. POTs of absolute increments  nP s  at normalized lags sn = 1, 32, and 1024 versus 936 

sequential (integer) vertical position in (a) - (c) Well 1 (Maroon), (d) - (f) Well 4 (Ahwaz), and 937 

(g) - (i) Well 6 (Tabnak). 938 
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 940 

 941 

 942 

Figure 13. Quantile-quantile plots of GPD fits to frequency distributions of POTs of P 943 

increments at normalized lag sn = 1, 32 and 1024 in (a)-(c) Well 1 (Maroon), (d)-(f) Well 4 944 

(Ahwaz), and (g)-(i) Well 6 (Tabnak). Also shown are a line of unit slope (solid), 95% 945 

confidence intervals (dashed), and p-values of Kolmogorov-Smirnov tests. 946 
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 948 

Figure 14. Variations of best fit GPD shape (ξPOT) and scale (σPOT) parameters with normalized 949 

lag in (a) - (b) Well 1 (Maroon), (c) - (d) Well 4 (Ahwaz), and (e)-(f) Well 6 (Tabnak). Also 950 

shown are 95% uncertainty bounds. 951 
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 953 

 954 

Figure 15. ( )
POT

q

N nS s  versus normalized lag for q = 0.5, 1.0, and 2.0 in Wells 1 (Maroon) and 6 955 

(Tabnak). Red dashed line demarcates breaks in power-law scaling regimes. Logarithmic scale 956 

regression lines and corresponding power-law relations between ( )
POT

q

N nS s  and ns  are given in 957 

(a) for Well 1 at sn < 10, (b) Well 1 at sn > 12, (c) Well 6 at sn < 10, and (d) Well 6 at sn > 12. 958 
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 963 

Figure 16. ξw(q) and ξb(q) evaluated for POTs as functions of q by the method of moments (M) 964 

and ESS in (a) Well 1 at sn < 10, (b) Well 1 at sn > 12, (c) Well 6 at sn < 10, and (d) Well 6 at sn 965 

> 12. 966 
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