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Abstract 13 

The ability of radar-rain gauge merging algorithms to precisely analyse convective 14 

precipitation patterns is of high interest for many applications, e. g. hydrological modelling, 15 

thunderstorm warnings, and, as a reference, to spatially validate numerical weather prediction 16 

models. However, due to drawbacks of methods like cross-validation and due to the limited 17 

availability of reference datasets on high temporal and spatial scale, an adequate validation is 18 

usually hardly possible, especially on an operational basis. The present study evaluates the 19 

skill of very high resolution and frequently updated precipitation analyses (rapid-INCA) by 20 

means of a very dense weather station network (WegenerNet), operated in a limited domain of 21 

the south-eastern parts of Austria (Styria). Based on case studies and a longer term validation 22 

over the convective season 2011, a general underestimation of the rapid-INCA precipitation 23 

amounts is shown by both continuous and categorical verification measures, although the 24 

temporal and spatial variability of the errors is - by convective nature - high. The contribution 25 

of the rain gauge measurements to the analysis skill is crucial. However, the capability of the 26 

analyses to precisely assess the convective precipitation distribution predominantly depends 27 

on the representativeness of the stations under the prevalent convective condition. 28 

 29 



 2 

1 Introduction 1 

Reliable precipitation analyses and forecasts with both high temporal update frequency and 2 

high spatial resolution are essential for many applications. For example, hydrological models 3 

usually require gridded precipitation fields on small scales and short lead times which form 4 

the major component of flood warning systems (Komma et al., 2007). In climate research, 5 

precipitation re-analyses performed over decades are employed to estimate return periods or 6 

other extreme value statistics and often are of high social and economic relevance. Gridded 7 

precipitation analyses are also gaining importance in the field of spatial verification of 8 

numerical weather prediction (NWP) models, especially since convection-resolving models 9 

allow for simulating small-scale convective storms.  10 

A variety of methods exists which aim at generating realistic and skillful precipitation 11 

analyses. Goudenhoofdt and Delobbe (2009) have shown that the combination of both radar 12 

derived precipitation estimates and rain gauge measurements is superior to the individual 13 

fields because particular strengths are emphasized, and weaknesses are compensated. 14 

Although it is unquestionable that generally, such combination methods improve the skill of 15 

quantitative precipitation analysis, their results strongly depend on the precipitation character, 16 

the local environment (e.g. orography), the quality of the radar and rain gauge data, the scale 17 

of interest (e.g. for catchment size scales) and the respective application of the precipitation 18 

analysis (Rossa et al., 2005). Thus, the impact on validation results of NWP models can be 19 

large and should be taken into account (Rezacova and Sokol, 2002) depending on e.g. the 20 

radar-rain gauge combination scheme and the diverse application fields. An overview of 21 

radar-rain gauge merging algorithms has been elaborated within the COST 717 project (Rossa 22 

et al., 2005), some of them employ bias adjustments schemes (Pereira et al., 1998; 23 

Chumchean et al., 2006; Overeem et al., 2009), Kriging approaches (Krajewski, 1987; Sun et 24 

al., 2000) also including Bayesian techniques (Handcock and Stein, 1993) and regression-type 25 

algorithms (Gregow et al., 2013). A few merging algorithms are of multi-source nature, 26 

including radar and rain gauge data and additional components like NWP data to improve the 27 

analysis skill (e.g. NIMROD system by Golding (1998); INCA system by Haiden et al. 28 

(2011)).  29 

The Integrated Nowcasting through Comprehensive Analysis (INCA) system has been 30 

developed at the Central Institute for Meteorology and Geodynamics in Vienna, Austria 31 

(ZAMG) and is in operational use since spring 2004. Besides precipitation (the most 32 
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traditional nowcasting parameter) many different parameters are computed by INCA (e.g. 1 

precipitation type, temperature, humidity, wind etc.). The techniques for computing analyses 2 

and nowcasts vary from parameter to parameter, as well as temporal resolution and update 3 

frequency. 4 

A common way of validating the skill of precipitation analyses is the method of leave-one-out 5 

cross-validation. However, this method has drawbacks: It is computationally expensive, it 6 

assumes a random distribution of the stations with respect to climatology and topography, the 7 

results depend on the local conditions of the stations, and - due to the often inhomogeneous 8 

and sparse station networks - small-scale features are usually not captured. 9 

Due to its limited representativeness, traditional point-wise verification against station 10 

measurements is not adequate and is amended by spatial verification methods like the 11 

Structure-Amplitude-Location (SAL) method (Wernli et al., 2008). These novel verification 12 

methods require gridded precipitation analyses, preferably model-independent, of high quality 13 

as a reference. Wittmann et al. (2010) have used high resolution precipitation analyses to 14 

validate the skill of different limited area models (LAM) during a convective season. 15 

Similarly, Sattler and Feddersen (2005) have applied daily precipitation analyses to evaluate 16 

the quality of a limited area and a global ensemble system during heavy precipitation events. 17 

In the present article, the INCA precipitation analyses are validated against the independent 18 

dataset of the WegenerNet climate station network (operated by the Wegener Center for 19 

Climate and Global Change, University of Graz, Austria; (Kirchengast et al., 2014)). Rather 20 

than the development of new verification measures, this article applies well-established 21 

verification standards (e.g. cross-validation and feature-based metrics) based on this dense 22 

station network. The WegenerNet dataset has already been successfully applied to validate 23 

temperature, humidity, and wind speed analyses in an operational context (Kann et al., 2011). 24 

Furthermore, the dense station network allows for a thorough evaluation of INCA 25 

precipitation for small-scale, convective precipitation patterns. 26 

Section 2 introduces the rapid-INCA analysis module and the station network WegenerNet. 27 

Section 3 briefly illustrates the synoptic conditions of selected cases with heavy precipitation 28 

in August and September 2011, and their skill scores of verification. Section 4 describes the 29 

results of a long-term validation during the whole convective period from April to September 30 

2011, followed by a conclusion. 31 

 32 
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2 Data and methods 1 

2.1 The rapid-INCA precipitation analysis 2 

The rapid-INCA system is an extension of INCA, specifically developed for precipitation 3 

nowcasting with a 5-minute accumulation period and update frequency (in contrast to 15 4 

minutes in the original INCA version). Radar data from the Austrian weather radar network as 5 

well as measurements from the Austrian automatic weather stations network 6 

(Teilautomatische Wetterstationen, TAWES) are available every five minutes and therefore 7 

allow for rapid-INCA updates at this frequency. In situations with rapidly changing weather 8 

conditions, such as fast developing thunderstorms, rapid-INCA is a helpful tool (both, in 9 

analysis and nowcasting mode) as it provides new assessments of the spatial precipitation 10 

distribution every five minutes. However, the focus of the present study is on the rapid-INCA 11 

analysis procedure, not on nowcasting. 12 

The rapid-INCA precipitation algorithm merges rain gauge measurements from 13 

approximately 270 TAWES stations with radar derived precipitation estimates. The synthesis 14 

is designed to combine the strengths of both data sources, i.e. the quantitative accuracy of the 15 

station measurements and the detailed spatial information of the radar image. However, the 16 

algorithmic synthesis has also to cope with the weaknesses and error sources of both 17 

measurement methods and – as far as possible – to compensate for them. These weaknesses 18 

are predominantly the potentially low representativeness of site-specific measurements and 19 

the general quantitative uncertainty of precipitation estimates from radar reflectivity. 20 

The precipitation analysis consists of the following steps (cf. Haiden et al. (2011) for a 21 

detailed description): 22 

1. Radar derived quantitative precipitation estimates (QPE): The Austrian radar network 23 

consists of two lowland and three mountain radar stations operated by the Austrian 24 

aviation service (Austro Control). Each radar scans the atmosphere in 5-minute intervals 25 

with 16 customized elevation angles up to an angle of 67° and to a range of 224 km. A 26 

MaxCAPPI (Maximum Constant Altitude Plan Position Indicator) product is provided for 27 

each radar station, which is computed from three-dimensional radar volumes by projecting 28 

the maximum value within a vertical column to a two-dimensional plane. The data are 29 

ground clutter corrected by Doppler processing and multi-temporal/multi-parameter 30 
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statistical filters. No further correction on the beam is done, therefore radar data derived 1 

products may be influenced by measurement errors, such as bright band, signal 2 

attenuation, scan strategy, radar miscalibration, radome wetting, and errors due to non-3 

meteorological echoes. The MaxCAPPI data are provided on a Cartesian grid with a 4 

horizontal resolution of 1 km and reduced to 14 reflectivity classes (‘no rain’, 11.8, 14.0, 5 

19.5, 22.0, 26.7, 30.0, 34.2, 38.0, 41.8, 46.0, 50.2, 54.3, 58.0 [dBZ]). Reflectivities are 6 

operationally converted to rainfall intensities by using the Marshall-Palmer relation Z = 7 

200 R
1.6

 (Marshall and Palmer, 1948). Further details about the radar stations and 8 

specifications can be found in Kaltenboeck (2012) and Kaltenboeck and Steinheimer 9 

(2014). At ZAMG, for lack of radial data, a pattern recognition filter is applied on the 10 

MaxCAPPI data to correct R-LAN signals. As the data are only corrected for ground 11 

clutter and R-LAN, beside residual clutter, all other error sources have to be considered 12 

when radar QPE is used. These errors are reflected in the MaxCAPPI data. As in the 13 

MaxCAPPI calculation always the maximum value of a vertical column is used, 14 

especially bright band effects in stratiform rain and the hail core in thunderstorms lead to 15 

overestimated rainfall intensities. Other important aspects are partial and total beam 16 

shielding and beam broadening with increasing distance to the radar station. In the target 17 

region the minimum height which is seen by the radar network is around 2000 m above 18 

ground (Figure 2b). Rainfall close to the ground, which is measured by ground stations, is 19 

not captured in the radar signals, so that potential rainfall intensification or evaporation 20 

processes and size sorting due to wind shear on the way to the ground are missed. 21 

Furthermore, with the closest radar stations at distances of approx. 100 km (the mountain 22 

site Zirbitzkogel) and approx. 135 km (lowland site Rauchenwarth) the 1° beam widths 23 

become as broad as 1.7 km and 2.35 km, respectively. The large radar bin volumes, 24 

together with the high variability of precipitation in space and time, potentially lead to 25 

inhomogeneous beam-filling problems and unrepresentative precipitation values. Finally, 26 

the fixed Z-R relationship, which does not take into account the variety of different drop-27 

size distributions, and the restricted data resolution of 14 intensity classes are further 28 

considerable limitations for radar-predicted rainfall intensities. Still, the MaxCAPPI 29 

product is the best available data source for INCA. With all the restrictions of radar-based 30 

QPE, radar data have the advantage to capture the precipitation structure in general, so 31 

that this information may be added to the local point measurements. INCA reads the 32 

MaxCAPPI data provided by each radar and generates a composite by selecting the 33 
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highest value at each grid point. The MaxCAPPI composite is bi-linearly interpolated onto 1 

the INCA grid. A pre-scaling of the radar data is conducted before a high quality analysis 2 

can be calculated as precipitation estimates of the radar may underlie important systematic 3 

errors. The local scaling factor results from the ratio of monthly precipitation sums of 4 

station interpolation to monthly precipitation sums of radar derived QPE. To avoid 5 

unrealistically high scaling factors a maximum value of 2 is set. In addition to the fixed 6 

scaling, a latest-data scaling procedure is applied using recent radar and observation data. 7 

2. Interpolation of rain gauge data: The 1-minute measurements are aggregated to 5-minute 8 

sums and interpolated by inverse-distance weighting (IDW) onto the 1km INCA grid by 9 

using the eight nearest stations. Note that only those measurements are used which fulfill 10 

several quality control criteria including time-series control, comparison with radar data 11 

and with neighboring stations. Figure 2 shows the operational rapid-INCA domain and the 12 

distribution of automatic stations as well as the position of the five radar locations. 13 

3. Combination of weather station interpolation and re-scaled radar field: The combined 14 

field is generated by a weighted relation between both fields and leads to a better 15 

precipitation distribution in space than each individual field. It is assured that the observed 16 

measurement at the station location is reproduced (within the resolution limits). The larger 17 

the distance to the stations, the higher are the weights of the (scaled) radar field. On the 18 

other hand, lower radar data quality due to topographic shielding gives higher weight to 19 

the interpolated station data. Additionally, elevation effects are parameterized accounting 20 

for the increase of precipitation amounts with height (Haiden and Pistotnik, 2009). Figure 21 

3 illustrates the combination algorithm in the case of 13 September 2014, 02:40 UTC. In 22 

areas with low radar quality, the combination algorithm assigns large weights to the 23 

station interpolation. The radar derived QPE contributes with small-scale convective cells 24 

which were not captured by TAWES stations of ZAMG. 25 

 26 

2.2 The WegenerNet 27 

This brief description of the station network WegenerNet, operated by the Wegener Center for 28 

Climate and Global Change of the University of Graz, Austria, is based on Kirchengast et al. 29 

(2014) and Kabas (2012), wherein detailed further information can be found. The 30 

WegenerNet comprises 151 meteorological stations within an area of about 20 km × 15 km in 31 

southeastern Styria, Austria (centered near the city of Feldbach, 46.93°N, 15.90°E), a region 32 



 7 

with high weather variability (Kabas et al., 2011a, 2011b).  The stations are arranged on a 1 

quasi-regular 1.4 km × 1.4 km grid (Figure 1) and measure the parameters air temperature, 2 

relative humidity, and precipitation amount. Selected stations additionally provide 3 

measurements of wind and soil parameters. Furthermore, air pressure and net radiation are 4 

observed at one reference station. The collected data are processed by the automatic 5 

WegenerNet Processing System (WPS). The raw data are stored by Internet loggers 6 

(GeoPrecision GmbH, Germany; www.geoprecision.com) and transferred via GPRS to the 7 

database at the Wegener Center Graz. The GPRS transmission is performed hourly, with 8 

subsets of about 30 stations transferring in stacked 5-minute batches during the first half of 9 

the hour. 10 

The incoming data files are stored in a database and are checked by the Quality Control 11 

System (QCS). The QCS is run hourly and it checks for each of the 151 stations the 12 

availability and correctness as well as the technical and physical plausibility of the measured 13 

data in eight quality-control (QC) layers (Table 1). 14 

QC layers 0 and 1 check for data availability, QC layers 2, 5, and 7 are fairly common types 15 

of checks, on bounds and deviations, whereas the inter-station check of QC layer 6, which is 16 

made to detect implausible “jumps” of parameter values between stations, is unique to this 17 

type of dense station grid. For precipitation data, layers 2, 4, 5, and 6 are key: Layer 2 checks 18 

for rain rates exceeding sensor specifications, in layer 4 rain rates higher than climatological 19 

bounds are detected, and layer 5 looks for inconsistencies between rain gauges at a single 20 

station. Layer 6 is able to detect partially or totally blocked funnels, flushes due to sudden 21 

opening of blocked funnels, and in general unusual deviations from the values at neighboring 22 

stations. If all QC layers are passed without any detection, the data receive a QC flag of 0, 23 

indicating the highest quality. In the present study, only such flag 0 data were used. Further 24 

details about the QCS and all implemented checks can be found in Kirchengast et al. (2014) 25 

and Scheidl (2014). 26 

In the Data Product Generator, gridded data of the main parameters are derived on a regular 27 

200 m × 200 m Universal Transverse Mercator (UTM) grid from individual station 28 

measurements by IDW. Subsequently, station data and gridded data (at 5-minute resolution) 29 

are also averaged (summed up for precipitation) to various weather and climate data products 30 

(from half-hourly up to annual). 31 

http://www.geoprecision.com/
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For application purposes the resulting data and further information on the station network are 1 

available for users at the WegenerNet data portal (www.wegenernet.org) in near-real time 2 

(data latency less than 30 minutes to 90 minutes). The WegenerNet provides highly resolved 3 

individual station data and regular grids since 01 January 2007 as a new data source for 4 

research projects investigating local-scale weather and climate and environmental change. 5 

Moreover, the data records serve as information source for various applications in the study 6 

region (Kirchengast et al., 2014; Kabas et al., 2011b). 7 

 8 

2.3 Method 9 

The WegenerNet measurements (5-minute precipitation sums) serve as reference in the 10 

present study and thus most of the standard comparison techniques are carried out at these 11 

station locations. The INCA related fields, rapid-INCA analyses, radar derived QPE and rain 12 

gauge measurements (TAWES), are interpolated bi-linearly from the 1 km x 1 km INCA grid 13 

to the WegenerNet station locations. This interpolation method has been chosen, because the 14 

WegenerNet grid is nearly regular with a spatial resolution comparable to the rapid-INCA 15 

grid resolution. 16 

Besides bias, mean absolute error (MAE) and root mean squared error (RMSE), the skill 17 

scores Equitable Thread Score (ETS), True Skill Score (TSS) and Frequency Bias Index 18 

(FBI), which are commonly used for validating precipitation, have been computed for a 19 

threshold of 0.5 mm per 5 minutes (Table 2). 20 

For spatial comparisons, IDW interpolation has been applied to obtain WegenerNet 21 

measurements on the INCA grid. A quadratic distance weighting function has been chosen by 22 

taking into account the five nearest neighbors as the station density of WegenerNet in the 23 

target region is relatively high and the respective observations should not be smoothed too 24 

much. The resulting field has been processed to obtain the spatial verification indicators 25 

structure, amplitude and location (SAL; Wernli et al., 2008), but also to demonstrate the 26 

spatial patterns of standard verification measures. 27 

 28 
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3 Heavy precipitation case studies 1 

For the selection of cases with heavy precipitation during the convective season of 2011 the 2 

definition of Wussow (1922) for integration times smaller than 30 minutes has been followed: 3 











24

2

5
t
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n

,         (1) 4 

where t is the time in minutes and hn the amount of precipitation in millimeter. Thus, a heavy 5 

precipitation event is characterized by precipitation amounts exceeding 5 mm in 5 minutes, 7 6 

mm in 10 minutes or 12 mm in 30 minutes. 7 
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3.1 Synoptic situations 9 

Four cases with heavy precipitation over the WegenerNet region were selected. Figure 4 10 

shows 2-hour sums of the 5-minute rapid-INCA analyses of these selected cases. The synoptic 11 

situation for each of the cases is illustrated in Figure 5.  12 

- 03 August 2011, 21:00 UTC - 23:00 UTC 13 

A trough northwest of Ireland and high pressure centered over the Baltics bring a 14 

warm upper-level flow from the southwest into Austria. At 18:00 UTC an eastwards-15 

propagating ridge in relative topography (represented by the orange line in Figure 5, 16 

top left) indicates high values of temperature and humidity in the south-eastern part of 17 

Austria.  CAPE values in the WegenerNet area amount to more than 2000 J/kg and the 18 

lifted index (LI) is around -6 K, thus indicating a potential for convective 19 

developments. A convergence line gradually approaches from the west and leads to 20 

the formation of thunderstorms in the western alpine regions of Austria but also in the 21 

south-eastern parts of the country.  22 

- 15 August 2011, 15:00 - 17:00 UTC 23 

The surface pressure analysis at 12:00 UTC (Figure 5, top right)  shows a low pressure 24 

system centered over Iceland, with secondary lows over southern Sweden and Ireland, 25 

whereas rather high pressure and weak gradients prevail over large parts of central 26 

Europe. A cold front associated with the trough over southern Sweden crosses Austria 27 

in the course of the day. At 15:00 UTC, INCA temperature analyses show 28 
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temperatures above 30°C in the easternmost parts of Austria (33° in western Hungary) 1 

and below 16° only a few kilometers west of the WegenerNet. A few hours ahead of 2 

the event, Deep Layer Shear (DLS) values range to approximately 12 m/s according to 3 

the 03:00 UTC sounding at 40 km-distant station ‘Graz Thalerhof’ (WMO ID 11240). 4 

CAPE (2000 J/kg) and LI (-4 K) values at 15:00 UTC are highest within the Alpine 5 

region.  6 

- 19 August 2011, 13:00 - 15:00 UTC 7 

A cold front associated with a low over the southern Baltic Sea approaches the 8 

northern Alpine rim from the northwest (Fig. 5, bottom left), with its forward motion 9 

being gradually decreased. Nevertheless cold air is advected in higher levels, whereas 10 

a northerly low level jet with a maximum in 925 hPa brings warm moist air into the 11 

target area. Thunderstorms were widespread on that day. In the vicinity of the 12 

WegenerNet, DLS values were around 10 m/s and CAPE close to 1400 J/kg in the 13 

afternoon. 14 

- 01 September 2011, 16:00 - 18:00 UTC 15 

A very shallow surface pressure distribution with weak frontal signals dominates over 16 

most parts of Central and Eastern Europe. The air mass over the WegenerNet was 17 

generally moist and unstable with an increased potential for convective developments 18 

(LI around -4 K, DLS=12 m/s). The thunderstorm initiation might be attributed to a 19 

recent crossing of a weak warm front in northerly direction: In the warm sector the 20 

advection of warm air aloft is gradually cut off while the forcing at the ground is given 21 

through radiative heating.  22 

 23 

3.2 5-minute rapid-INCA analyses for the selected cases 24 

Figure 6 shows the spatio-temporal distribution of 5-minute rapid-INCA precipitation 25 

analyses in the region of the WegenerNet which is indicated by the black rectangle. On 03 26 

August 2011, the maximum precipitation amounts are between 2 and 3 mm per 5 min at 22:05 27 

UTC, and then decrease with time. The precipitation cells on 15 August 2011 are gradually 28 

expanded and intensified with time to 6 mm per 5 min. On 19 August 2011, a heavy 29 

precipitation cell moves slowly across the northern part of the WegenerNet area, and on 01 30 

September 2011, extremely high precipitation amounts are reached (>10 mm/5 min) before 31 

the precipitation cells leave the WegenerNet domain to the south-east. 32 
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3.3 Time series and verification of rapid-INCA analyses for the selected cases 1 

The precipitation rates (per five minutes) of WegenerNet measurements, rapid-INCA, radar 2 

derived QPE, and TAWES station measurements have been averaged over the WegenerNet 3 

domain to show the temporal evolution of the precipitation cells in the four selected cases 4 

(Figure 7). Within the WegenerNet area, only two TAWES stations are located (see Figure 1) 5 

and contribute to the interpolated stations field. Predominantly, both the onset and evolution 6 

of rapid-INCA precipitation amounts follow the WegenerNet observations. However, rapid-7 

INCA underestimates the average precipitation rate in three of the cases, and shows an earlier 8 

onset and overestimation in the last case (01 September 2011). The latter situation is triggered 9 

by a slight overestimation of radar derived QPE. 10 

On the first three example days, widespread rain systems with embedded intensified 11 

precipitation regions and convection cross the target region from south-west/west. In these 12 

cases, signal attenuation in the extensive rain regions between radar station and target region 13 

and wetted radomes can contribute to the underestimated rain intensities in the radar QPE. On 14 

01 September 2011, mainly one intense thunderstorm with severe hail at the ground is 15 

observed crossing the target region. The rainfall overestimation in this case may be attributed 16 

to uncorrected hail signals while the signal attenuation is negligible. Even if this simple 17 

validation approach is not suitable for a detailed quantitative analysis, it gives a qualitative 18 

view of the four cases under investigation. 19 

The verification measures relative bias, MAE, and RMSE (scaled by the mean observed 20 

precipitation at each of the WegenerNet stations) have been computed and averaged over 21 

space to evaluate the error characteristics of rapid-INCA. Only time steps with a minimum 22 

observed precipitation of 0.1mm/5min have been selected for the computations. Figure 8 23 

shows the resulting error measures along with the standard deviation indicated by the error 24 

bars. A negative bias is visible for all rapid-INCA constituents except for the TAWES station 25 

interpolation on 15 August 2011. This is in accordance with the findings in Figure 7. The 26 

error measures MAE and RMSE are similar for rapid-INCA and radar derived QPE, 27 

indicating that the radar derived QPE errors predominantly contribute to the rapid-INCA 28 

analysis errors. In certain cases (e.g. 15 August 2011 and 01 September 2011), the rapid-29 

INCA analysis error is larger than the radar derived QPE error. It indicates that the inclusion 30 

of the TAWES station observations may decrease the skill, i.e. the TAWES station 31 

observations are not representative for this specific precipitation event.  32 
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Moreover, the variation in the error measures across the WegenerNet domain is large for the 1 

TAWES stations, specifically on 15 August 2011 (only two TAWES stations are located 2 

within the WegenerNet area and constitute the interpolated stations field; see Figure 1). The 3 

comparison with the WegenerNet stations results in high variability of bias, MAE, and RMSE 4 

on 15 August 2011 and 01 September 2011, which demonstrates the low representativeness of 5 

the TAWES station field. In such cases, the rapid-INCA analysis (i.e. combination of station 6 

interpolation and radar derived QPE) yields worse error measures than the pure radar derived 7 

QPE. The high variability of rain gauge measurements (TAWES) can also be seen in the 8 

spatio-temporal distribution as shown in Figure 9. The two TAWES stations are hit by a 9 

heavy (localized) precipitation cell on 01 September 2011 at 16:45 UTC, and the interpolation 10 

results in an exaggeration of the precipitation field (compared to the rapid-INCA analysis in 11 

Figure 6). In this case, an IDW interpolation with an exponent higher than 2 (instead of 1/r
2
), 12 

would limit the spatial influence of the TAWES stations and improve the results in regimes 13 

with local convection.  14 

Averaged skill scores, FBI, TSS, and ETS, (for a threshold of 0.5 mm/5 min at WegenerNet 15 

stations) are shown in Figure 10. In the case of low representativeness of the TAWES station 16 

interpolation (01 September 2011), the scores FBI and ETS from radar derived QPE yield 17 

better values than those of rapid-INCA. Hence, the station contribution is decreasing the skill. 18 

However, in the majority of cases, the skill of rapid-INCA is higher than of pure radar derived 19 

QPE. Higher thresholds than 0.5 mm/5 min lead to worse results of the scores which can 20 

partly be explained by the decreasing sample size. Another reason might be the tendency to 21 

miss heavy precipitation events with rapid-INCA. 22 

For an objective analysis of the four cases, we applied the Structure-Amplitude-Location 23 

(SAL) method (Wernli et al., 2008) to each time step within the respective 2-hour intervals. 24 

The results are averaged and plotted in Figure 11 with error bars indicating the standard 25 

deviation of the SAL time series. As already emphasized in previous figures, the amplitude 26 

values of rapid-INCA show an underestimation of the observed precipitation in all but one 27 

case. Radar derived QPE exhibits a higher underestimation than rapid-INCA which 28 

demonstrates the positive effect of merging interpolated rain gauge measurements (TAWES) 29 

with data of radar QPE. Only on 01 September 2011 did the TAWES station data significantly 30 

overestimate precipitation, and in turn over-compensate the radar derived QPE 31 

underestimation to finally yield a positive amplitude value of rapid-INCA. Positive structure 32 
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values indicate too large and/or too flat precipitation cells. rapid-INCA overestimates the 1 

extent of precipitation cells (on average, as does the TAWES station interpolation). Radar 2 

derived QPE in contrast yields negative structure values, and thus underestimates the extent of 3 

the cells. These results suggest that the interpolation method of rain gauge measurements 4 

(TAWES) should take into account the current convective situation to be more confined for 5 

cases of heavy precipitation (e.g. IDW with a higher exponent, or more sophisticated 6 

interpolation methods such as Kriging by using radar data fingerprints).  7 

The location indicator of Figure 11 does not yield conclusive results as it is relatively low for 8 

each of the rapid-INCA constituents. This behavior may be explained by the small area under 9 

investigation and thus limited errors in displacement of cells.  10 

 11 

4 Long-term validation results using WegenerNet data as reference 12 

For the long-term validation, rapid-INCA analyses, radar derived QPE, and interpolated 13 

TAWES station measurements from the convective season in 2011 (01 April 2011 to 30 14 

September 2011) at 5-minute time steps have been interpolated to the WegenerNet stations 15 

(see section 2.3). The relative bias, MAE, and RMSE (scaled by mean measured WegenerNet 16 

precipitation) have been computed for each of the WegenerNet stations and, for better spatial 17 

representation, interpolated to the INCA domain (by IDW). 18 

Only time steps with measured WegenerNet precipitation exceeding a certain threshold have 19 

been used to avoid falsifying the error measures with precipitation-free time steps. The Figure 20 

12 presents the results for a selected threshold of 0.5 mm/5 min. 21 

The bias shows substantial underestimation of the radar derived QPE, with no specific spatial 22 

variation. Of course, interpolated rain gauge measurements exhibit a better agreement to 23 

observations in the vicinity of the two TAWES stations than elsewhere. The rapid-INCA field 24 

also shows an underestimation of precipitation higher than 0.5 mm/5 min but with better 25 

results near the stations. Especially the TAWES station of Feldbach (further north) has a 26 

positive impact on the bias of rapid-INCA. Note that the larger positive bias at one location in 27 

the northern part of the area is due to erroneous measurements of the corresponding 28 

WegenerNet station. 29 
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MAE and RMSE are similar error measures and also show similar characteristics in Figure 1 

12. With RMSE emphasizing large errors, the spatial distribution of the errors is more 2 

pronounced. Again, no significant spatial variation can be indicated for radar derived QPE, 3 

whereas interpolated TAWES station data and rapid-INCA exhibit a better performance 4 

around the Feldbach station. The TAWES station further south (Bad Gleichenberg) yields 5 

worse results which may be attributed to the topography in this region: Bad Gleichenberg is 6 

surrounded by hills to the north, east, and west (Figure 1). With the closest radars are as far as 7 

100 km and 135 km, the large scan volumes in the areas of interest reduce the spatial 8 

variability which can be resolved in the radar measurement. The minimum visible height of 9 

2000 m above ground adds further estimation errors for ground precipitation. But local 10 

differences cannot be attributed to local beam shielding effects (compare Figure 2b). 11 

Figure 13 shows the skill score results for a threshold of 0.5 mm/5 min. Obviously, there is a 12 

tendency to underestimate the precipitation amounts (FBI < 1) for all components; the best 13 

results for FBI are obtained close to the TAWES station of Feldbach. TSS indicates more hits 14 

than misses (TSS closer to 1) near the stations. ETS yields best results for the rapid-INCA 15 

analysis.  16 

To investigate the influence of the threshold on the error measures and skill scores, mean 17 

values of the error measures and skill scores have been calculated for several thresholds 18 

(Figure 14). The bias of rapid-INCA increases for increasing thresholds of the selected data. 19 

Thus, there is a pronounced underestimation of heavy precipitation events. Interpolated rain 20 

gauge measurements yield a lower negative bias compared to rapid-INCA which can be 21 

attributed to the relatively better performance near the stations, whereas rapid-INCA shows a 22 

spatially more homogenous distribution of the bias (compare Figure 12). Generally, the 23 

variation in error measures and skill scores for the TAWES station data is much higher than 24 

for rapid-INCA analysis and radar derived QPE. Averaging over the WegenerNet domain can 25 

lead to better performance of the error measures and skill scores. 26 

Note that the MAE increases with the threshold whereas the RMSE is decreasing. This 27 

behavior indicates that large errors mostly occur for samples including light precipitation 28 

amounts (with RMSE putting higher weight on outliers). The coarse resolution of the radar 29 

data with a minimum detected signal of 11.8 dBZ (approximately 0.2 mm/h) and the reduced 30 

visibility in the target region can be reasons for the underestimation of light precipitation in 31 

rapid-INCA analyses. 32 
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For thresholds of up to 1 mm (FBI), 0.5 mm (TSS), and 0.2 mm (ETS) the skill scores show 1 

best results for rapid-INCA. At higher thresholds the TAWES stations exhibit better scores 2 

than the combined product. During heavy precipitation events, the interpolated rain gauge 3 

measurements usually overestimate the spatial precipitation amount and yield better scores 4 

than the radar derived QPE which usually underestimates the precipitation field. Additionally, 5 

the merging of radar QPE and TAWES station data consists of non-linear algorithms which 6 

cause rapid-INCA to converge to the radar QPE for heavy precipitation (due to the non-7 

representative behavior of rain gauge measurements during convective events). As long as no 8 

hail effects are involved in the measurement, it is likely that convective rainfall intensities are 9 

underestimated in the radar QPE due to the fixed Marshall-Palmer relation, which is used to 10 

convert radar reflectivities to rainfall intensities. It has been concluded in several studies, that 11 

different rain types would need different Z-R relationships (Austin, 1987; Atlas, 1999; Steiner 12 

et al., 2003). The Marshall-Palmer relation has been found to yield good results in stratiform 13 

rain, but can fail in convective rain (Foote, 1965; and following from the findings in Austin, 14 

1987; Steiner et al., 2004).  15 

 16 

5 Conclusions 17 

In the present study, the performance of short-duration, high-resolution precipitation analyses 18 

has been elaborated by means of a set of convective events and a long-term validation 19 

covering the convective season in 2011 (01 April 2011 - 30 September 2011). In order to 20 

point out the small-scale features of convective events, the dense station network of 21 

WegenerNet, which is located in the south-eastern parts of Austria (Styria), has been used as a 22 

reference.  23 

The validation results show a general underestimation of rapid-INCA and its constituents 24 

(radar derived QPE and rain gauge measurements of TAWES). The spatial variation in error 25 

measures is highest for the interpolated TAWES station data. Results from the four selected 26 

cases in August and September 2011 show that the contribution from TAWES station 27 

interpolation can either have a positive or negative impact on the rapid-INCA skill, depending 28 

on the representativeness of the station measurements. Merging TAWES station data with 29 

radar derived QPE is able to reduce this effect, but is not able to avoid it completely. Another 30 
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reason for the underestimation might be the tendency to miss heavy precipitation with rapid-1 

INCA. 2 

This study indicates that the station contributions play a crucial part in the performance of the 3 

rapid-INCA analyses or, in general in any radar - gauge merging method. Depending on the 4 

prevalent synoptic situation, e.g. local convection or large scale precipitation, it may prove 5 

useful to adapt the station interpolation algorithm accordingly. Instead of a static IDW with 6 

both a fixed number of included nearest stations and a fixed exponent it could be 7 

advantageous to apply an IDW with dynamically adjusted parameters. Thus, further studies 8 

are needed to investigate the influence of IDW parameters as well as modifications in the 9 

combination algorithm on the validation results. Also an improved pre-scaling of radar QPE 10 

may be useful since radar QPE shows a strong underestimation over the whole dataset. As it 11 

has been outlined in detail already 35 years ago in Wilson and Brandes (1979) and more 12 

recently in Krajewski et al. (2010), radar QPE is prone to a number of measurement errors. 13 

 For rapid-INCA analyses, the MaxCAPPI product is used as the best available information 14 

source. As the data are only corrected for ground clutter and R-LAN, beside residual clutter, 15 

all other error sources have to be considered when radar QPE is used. Topographically 16 

complex domains will always face the problem of locally reduced radar visibilities and 17 

elevated radar locations on mountain massifs. However, the recent upgrade of the Austrian 18 

radar network to dual-pol technology provides possibilities for more sophisticated methods of 19 

quality control and data correction, which promise more accurate radar QPE products. Apart 20 

from further improvements by applying more sophisticated radar - rain gauge blending 21 

methods, the quantification of the uncertainties related to the representativeness problem is a 22 

key issue in the generation of an ensemble of precipitation analyses. 23 

The present study reveals that the WegenerNet, which offers high-quality station 24 

measurements on very high temporal and spatial resolution, is ideally suited to further 25 

improve precipitation analyses and to assess their skill and uncertainty. 26 

 27 
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Table 1. Overview of the WegenerNet data quality-control (QC) layers. 1 

 

QC layer 

 

Description 

0: check regarding station operation Check if station is currently in operations 

1: check of data availability 
Check if expected sensor data values are 

available 

2: check of sensor functioning 
Check if measurement value exceeds permitted 

range of technical sensor specifications 

3: check of climatological plausibility 
Check if measurement value exceeds plausibly 

set maximum climatological bounds  

4: check of temporal variability 
Check if measurement value shows too high or 

too little variation (“jumps”, “constancy”)  

5: check of intra-station consistency 
Check if measurement value is not properly 

consistent with related parameters  

6: check of inter-station consistency 
Check if measurement value deviates too much 

from values at neighbor stations  

7: check against external reference 
Check (for pressure) if measurement value 

deviates too much from ZAMG reference  

2 
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Table 2. Skill scores used for validation (Wilks, 2006). See also WMO Joint Working Group 1 

on Forecast Verification Research, e.g.: http://www.cawcr.gov.au/projects/verification/ 2 

 ETS (Equitable Threat 

Score) 

True Skill Score 

(TSS) 

Frequency bias Index 

(FBI) 

Range -1/3 to 1, 0: no skill -1 to 1, 0: no skill 0 to ∞ 

Perfect score 1 1 1 

Answers the 

question: 

How well did the 

forecast "yes" events 

correspond to the 

observed "yes" 

events? 

How well did the 

forecast separate the 

"yes" events from the 

"no" events? 

How did the forecast 

frequency of "yes" 

events compare to the 

observed frequency of 

"yes" events? 

3 
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 1 

 2 

Figure 1. rapid-INCA topography in the WegenerNet region. Blue circles represent 3 

WegenerNet stations, red crosses are the TAWES stations (Teilautomatische Wetterstationen) 4 

Feldbach (north) and Bad Gleichenberg (south) of ZAMG. 5 

6 
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(a) 1 

 2 

(b) 3 

 4 

Figure 2. (a) Operational rapid-INCA domain, orography and rain gauge stations (TAWES) 5 

measuring precipitation in 5-minute intervals (white/blue dots). Additionally, the locations of 6 

the five radars are marked (red triangles) as well as the WegenerNet region (red square).  7 

(b) Relative height of the lowest available radar beam above orography, in combination with 8 

the location of the WegenerNet (red box) and the locations of the radars Rauchenwarth 9 

(RAU) and Zirbitzkogel (ZIR) (red diamonds). 10 
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 1 

Figure 3. Example of a 5-minute precipitation analysis (rapid-INCA) based on the 2 

combination of rain gauge data and radar derived QPE on 13 September 2014, 02:40 UTC. (a) 3 

scaled radar field,  (b) interpolated rain gauge measurements (TAWES), (c) final rapid-INCA 4 

precipitation analysis and (d) difference between rapid-INCA and radar derived QPE. 5 

 6 

 7 

 8 
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 1 

Figure 4. 2-hour precipitation accumulations of the 5-minute rapid-INCA analyses on four 2 

days (top left: 03 August 2011, top right: 15 August 2011, bottom left: 19 August 2011, 3 

bottom right: 01 September 2011) in the respective time spans. The WegenerNet region is 4 

marked by a small black rectangle, the red triangle represents the radar (Zirbitzkogel) within 5 

this zoom. 6 

 7 
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    1 

    2 

Figure 5. Satellite image, surface pressure analysis and frontal zones on the four selected 3 

days. Top left: 03 August 2011, 18:00 UTC; top right: 15 August 2011, 12:00 UTC; bottom 4 

left: 19 August 2011, 18:00 UTC; bottom right: 01 September 2011, 18:00 UTC. 5 

 6 
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 1 

Figure 6. Spatio-temporal distribution of rapid-INCA precipitation (mm/5min) in the region 2 

of the WegenerNet indicated by the black rectangle (time is given in UTC). 3 
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 1 

Figure 7. Temporal evolution of precipitation rates for WegenerNet (WegNet), rapid-INCA, 2 

radar derived QPE (Radar), and TAWES station and four selected cases. 3 
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 1 

Figure 8. Relative bias, MAE, and RMSE (weighted by the mean observed precipitation of 2 

WegenerNet). Values have been computed for each of the WegenerNet stations (151 stations) 3 

and then averaged over space. Error bars represent the standard deviation of obtained 4 

verification measures at each WegenerNet station. 5 
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 1 

Figure 9. Spatio-temporal distribution of 15-minute interpolated TAWES station 2 

measurements (mm/15min) on 01.09.2011 between 16:15 and 16:45 UTC (region of 3 

WegenerNet is shown by the black rectangle and the two TAWES stations of ZAMG are 4 

marked with a cross). 5 
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 1 

Figure 10. Skill scores for threshold of 0.5 mm/5 min. Scores are computed at each 2 

WegenerNet station and then averaged over space. Error bars indicate the standard deviation 3 

of the scores. 4 
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 1 

Figure 11. Structure, Amplitude, and Location computed for each time step within the 2-hour 2 

intervals at each date and subsequently averaged. Error bars indicate the standard deviation of 3 

S, A, L time series 4 
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 1 

Figure 12. Relative bias, MAE, and RMSE for rapid-INCA, radar and TAWES stations at 2 

each WegenerNet station. Only those data points are included where the WegenerNet station 3 

measured more than 0.5 mm/5 min. Circles represent exact values at the WegenerNet stations, 4 

the image is obtained by IDW interpolation to the INCA grid 5 
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 2 

Figure 13. Skill scores for rapid-INCA, radar, and TAWES stations at each WegenerNet 3 

station. Circles represent the exact values; the image is obtained by interpolation to the INCA 4 

grid 5 
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 1 

  

Figure 14. Mean relative error scores (bias, MAE, RMSE) and mean skill scores (FBI, TSS, 2 

ETS) computed for several thresholds. 3 
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