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Abstract

Precipitation events are expected to become substantially more intense under global
warming, but few global comparisons of observations and climate model simulations
are available to constrain predictions of future changes in precipitation extremes.
We present a systematic global-scale comparison of changes in historical (1901—
2010) annual-maximum daily precipitation between station observations (compiled in
HadEX2) and the suite of global climate models contributing to the fifth phase of the
Coupled Model Inter-comparison Project (CMIP5). We use both parametric and non-
parametric methods to quantify the strength of trends in extreme precipitation in obser-
vations and models, taking care to spatially and temporally sample them in comparable
ways. We find that both observations and models show generally increasing trends in
extreme precipitation since 1901 with largest changes in deep tropics, although annual-
maximum daily precipitation has increased faster in the observations than in most of
the CMIP5 models. Global average of observational annual-maximum daily precipi-
tation has increased about 5.73 mm over the last 110 years or 8.5 % in relative terms
and has increased by approximately 10 % per K of global warming since 1901, which is
larger than the average of climate models with 8.3 % K. The average rate of increase
in extreme precipitation per K of warming in models and observations is higher than the
rate of increase in atmospheric water vapor content per K of warming expected from
the Clausius—Clapeyron equation. We expect our findings to help inform assessments
of precipitation-related hazards such as flooding, droughts and storms.

1 Introduction

Trends in extreme meteorological events have received considerable attention in re-
cent years due to the numerous extreme events such as hurricanes, droughts and
floods observed (Easterling et al., 2000). Changes in global climate and alteration of
Earth’s hydrological cycle (Allen and Ingram, 2002; Held and Soden, 2006; Wentz et al.,
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2007) have resulted in increased heavy precipitation with consequent increased sur-
face runoff and flooding risk (Trenberth, 1999, 2011), which is likely to continue in the
future (Dankers et al., 2013). Anthropogenic climate change is expected to change the
distribution, frequency and intensity of precipitation and result in increased intensity
and frequency of floods and droughts with damaging effects on environment and so-
ciety (Dankers et al., 2013; Field, 2012; Min et al., 2011; O’Gorman and Schneider,
2009; Solomon et al., 2007; Trenberth, 2011; Trenberth et al., 2003).

As a result of greenhouse gas (GHG) build-up in the atmosphere, global mean near-
surface temperature shows an increasing trend since the beginning of the 20th century
(Angeles et al., 2007; Campbell et al., 2011; Singh, 1997; Solomon et al., 2007; Taylor
et al., 2007), with greater increases in mean minimum temperature than in mean max-
imum temperature (Alexander et al., 2006; Peterson, 2002). The Fourth Assessment
Report of Inter-Governmental Panel on Climate Change (IPCC) indicates that globally,
near-surface air temperature has increased by approximately 0.74+0.18 °C since 1901
with greater trend slope in recent decades (Solomon et al., 2007).

As a result of global warming, climate models and satellite observations both indi-
cate that atmospheric water vapor content has increased at a rate of approximately
7%K! warming (Allen and Ingram, 2002; Held and Soden, 2006; Trenberth et al.,
2005; Wentz et al., 2007), as expected from the Clausius—Clapeyron equation under
stable relative humidity (Held and Soden, 2006; Pall et al., 2006). Increasing availabil-
ity of moisture in the atmosphere can be expected to result in increased intensity of
extreme precipitation (Allan and Soden, 2008; Allen and Ingram, 2002; O’Gorman and
Schneider, 2009; Trenberth, 2011; Trenberth et al., 2003), with proportionally greater
impact than for mean precipitation (Pall et al., 2006). An increase in frequency and in-
tensity of extreme precipitation has already been identified in observations (Alexander
et al., 2006; Min et al., 2011; Solomon et al., 2007; Westra et al., 2013) as well as in
simulations of climate models (Kharin et al., 2013; Toreti et al., 2013). Climate models
also indicate that greater increases in extreme precipitation would be expected over the
next decades (Kharin et al., 2007, 2013; O’Gorman and Schneider, 2009; Pall et al.,
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2006; Toreti et al., 2013) while moist regions become wetter and dry regions drier (Allan
and Soden, 2008; Wentz et al., 2007; Zhang et al., 2007).

Although climate models generally indicate an increase in precipitation and its ex-
tremes, the rate of this increase seems to be underestimated (Allan and Soden, 2008;
Allen and Ingram, 2002; Min et al., 2011; O’Gorman and Schneider, 2009; Sillmann
et al., 2013; Wan et al., 2013; Wentz et al., 2007; Zhang et al., 2007), which implies
that future projections of changes in precipitation extremes may also be under pre-
dicted (Allan and Soden, 2008). This underestimation can be a result of differences in
scale between climate models’ grids and observational data (Chen and Knutson, 2008;
Sillmann et al., 2013; Toreti et al., 2013; Wan et al., 2013; Zhang et al., 2011) and/or
limitations in moist convection or other parameterizations in the models (O’Gorman
and Schneider, 2009; Wilcox and Donner, 2007). Assessments of climate models also
reveal that the rate of increase in precipitation extremes varies greatly among mod-
els, especially in tropical zones (Kharin et al., 2007; O’Gorman and Schneider, 2009),
which makes it especially important to compare modelled trends with those identified
in observations. However few global comparisons of observations and climate model
simulations are available to constrain predictions of future changes in precipitation ex-
tremes. Out of the available global scale studies, some use older versions of climate
models or observations and/or use only one or a few climate models (Allan and Soden,
2008; Min et al., 2011; O’'Gorman and Schneider, 2009; Wentz et al., 2007; Zhang
et al., 2007). Temporal and spatial differences in data coverage between climate mod-
els and observations also further challenge the comparison of the results.

In this paper, we present a systematic comparison of changes in annual-maximum
daily precipitation in station observations between weather stations (compiled in
HadEX2) and 15 models from the suite of global climate models contributing to the
latest phase of the Coupled Model Inter-comparison Project (CMIP5) (Taylor et al.,
2012), as the largest and most recent set of global climate model runs. Both parametric
(linear regression) and non-parametric (the Mann—Kendall as well as Sen’s slope esti-
mator) methods are utilized to quantify the strength of trends in extreme precipitation in
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observations and models, taking care to spatially and temporally sample them in com-
parable ways. We also calculate the rate of change in defined extreme precipitation in-
dex per K of global warming in both observations and models to investigate the relation
between global warming and precipitation extremes. Climate models and observation
datasets do not provide the same temporal coverage for precipitation data, leading in
some uncertainties in comparison of the results. In the present study, precipitation data
for years/grids of climate models which do not have corresponding observational data
are excluded, resulting in an equal weighted precipitation time series for both observa-
tions and climate models which leads into a comparable sampling approach for both
datasets.

2 Data and methodology

Hadley Centre global land-based gridded climate extremes data set (HadEX2) pre-
cipitation dataset is based on daily observations from about 11600 precipitation sta-
tions gridded on a 2.5° x 3.75° grid from 1901 to 2010 (Donat et al., 2013). Here,
gridded HadEX2 annual maximum 1 day precipitation data (Rx1day) is analyzed as
the observation dataset. The extreme precipitation index (Rx1day) here is defined
as the annual-maximum daily precipitation, in which the maximum one day precip-
itation amount is selected for each year. The same index is also obtained for the
climate models’ simulations. Precipitation simulations of 15 models (overall 19 runs)
with complete temporal data coverage have been retrieved from the fifth phase of
the Coupled Model Inter-comparison Project (CMIP5) (Taylor et al., 2012), as the
largest and most recent set of global climate model (GCM) runs. The historical data
for projections from 1901 to 2005 and the high radiative forcing path scenario (rep-
resentative concentration pathway, RCP) RCP8.5 (Moss et al., 2010) for projections
from 2006 to 2010 is selected. The aforementioned 15 CMIP5 models provided by the
IRI/LDEO Climate Data Library are: BCC-CSM1-1, CMCC-CM, CMCC-CMS, CNRM-
CM5, GFDL-CM3, GFDL-ESM2G, HadGEM2-CC, IPSL-CM5A-LR, IPSL-CM5A-MR,
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IPSL-CM5B-LR, MIROCS5 (3 runs), MPI-ESM-LR (3 runs), MPI-ESM-MR, MRI-CGCM3
and NorESM1-M.

Climate models produce precipitation simulations for all years of a specified time
interval, covering all coordinates of the globe thoroughly, even the oceans and polar
zones, which is completely different from the spatial and temporal coverage of station
observation datasets, such as HadEX2, where usually cover only a certain part of the
continents with missing data for a considerable number of years. This results in some
difficulties in comparison of the two datasets.

As a solution for this issue, a new subsampled dataset is created for each of the 19
CMIP5 climate models in which each of the HadEX2 grid-cells take the GCM precip-
itation data of the grid-cell that its geo-referenced coordinates fit in. The new dataset
is created with the same resolution and same data availability pattern of HadEX2,
which means only data of the grids/years will be assigned to the new dataset for which
HadEX2 has recorded precipitation data for that year for the corresponding grid. In this
way of sampling model output, if HadEX2 dataset does not have recorded precipitation
data for a specified year, the newly created dataset will not have data for that year
either. The newly created dataset is called the subsampled CMIP5 dataset.

As stated above, most grid-cells do not have recorded precipitation data for most of
the years. A sensitivity analysis of global averaged maximum precipitation and trend
slope to the minimum number of years with precipitation data required shows that these
values do not change drastically (Fig. 1a and b). Selection of only stations with longer
records may strengthen the confidence with which trends are quantified, but limits the
calculations to smaller spatial coverage of the globe, which is not in line with scope of
this study to evaluate global changes in precipitation. We chose to use only the grid-
cells with at least 30 years of available precipitation data over the last 110 years, which
included more than 90 % of the 766 HadEX2 data grid-cells (Fig. 1c and d).

Tests for the trend detection in climatologic time series can be classified as para-
metric and non-parametric methods. Parametric trend tests require independence and
normal distribution in the data, while non-parametric trend tests require only that the
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data be independent. The trend slope (b) obtained from the linear regression method is
utilized for trend strength analysis and comparison of the datasets. The relative change
in extreme precipitation is defined as the trend slope divided by the average of extreme
precipitation of the grid-cell (b/P). The change in extreme precipitation per K of warm-
ing is also calculated as an index for the relation between changes in precipitation
extremes of each grid-cell with global mean near-surface temperature, which indicates
the percentage of change in extreme precipitation per K global warming. Linear regres-
sion is utilized to calculate this parameter, in which global annual mean near-surface
temperature, obtained from NASA-GISS (Hansen et al., 2010) is selected as the pre-
dictor and the natural logarithm of extreme precipitation time series is chosen as re-
sponse.

The Z score (Z) obtained from the Mann—Kendall test (Kendall, 1975; Mann, 1945)
and Q-median (Q,eq) from the Sen’s slope estimator (Sen, 1968) are also applied
in order to support the results of linear regression using non-parametric trend detec-
tion approaches. The trend tests are applied for each grid-cell’s extreme precipitation
time series. The obtained values have been averaged globally as well as by conti-
nent in order to present the general trend of precipitation extremes in different regions.
Continents studied comprise Africa, Asia, Europe, North America, South America and
Oceania. The subcontinent of India has results shown separately and is also included
in Asia. Results are also averaged by latitude to investigate changes in the tropics vs.
northern/southern mid-latitudes.

3 Results

Linear regression indicates that 66.2 % of the studied grids show a positive trend in
annual-maximum daily precipitation during the past 110years including 18 % that are
statistically significant at 95 % confidence level. On the other hand, 33.8 % of the stud-
ied grids show a negative trend including only 4 % that are statistically significant
at 95% confidence level. Thus the global record of extreme precipitation shows a

11375

Jladed uoissnasiq | Jadeq uoissnosiq | Jeded uoissnosiq | Jaded uoissnosiqg

HESSD
11, 11369-11393, 2014

Global trends in
extreme precipitation

B. Asadieh and
N. Y. Krakauer

' III III


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/11369/2014/hessd-11-11369-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/11369/2014/hessd-11-11369-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

meaningful increase over the last century. This increase might be expected to con-
tinue over the next decades based on physical arguments and modeling (Kharin et al.,
2007, 2013; O’Gorman and Schneider, 2009; Pall et al., 2006; Toreti et al., 2013).

Table 1 presents the statistics of global averaged trend parameters of annual-
maximum daily precipitation for HadEX2 and 19 subsampled CMIP5 runs (from 15
models) from 1901 to 2010. Observation is only one dataset hence it has one global
average for each parameter. The 19 climate models give 19 global averages of which
we present the minimum, maximum, median, mean and SD in the Table 1. Figure 2 il-
lustrates the results presented in Table 1 as boxplots of trend parameters and average
precipitation for annual-maximum daily precipitation for all 19 subsampled datasets of
CMIPS5 for global as well as continental scales, showing observations (HadEX2) as blue
circles. The boxplots show the minimum, 25th percentile, median, 75th percentile and
maximum value obtained from the climate models. As seen in Fig. 2a, the global aver-
age of extreme precipitation data shows higher value than the largest value obtained
from the climate models, which indicates that all of the climate models underestimate
the annual-maximum daily precipitation. This underestimation can be seen on conti-
nental scales as well and is expected given the difference in spatial scale.

The mean linear regression slope (b) for HadEX2 observation data globally shows
a positive trend of 0.052 mm day'1 yr'1 in extreme precipitation over the last 110years
(Table 1). This positive trend is captured by the climate models but is significantly un-
derestimated since HadEX2 shows a greater mean value of b than all but one of the
values obtained from CMIP5 models. This underestimation is also seen in the conti-
nents of America, Europe and Oceania as well as the subcontinent of India. The global
average of relative change in precipitation (b/P) for HadEX2 is close to the 75th per-
centile of the GCMs, which indicates that approximately 75 % of the CMIP5 models
have underestimated the relative change in extreme precipitation, but is close to the
average value of the models. This can be linked to the large and positive skew scatter
among the results obtained from the models and the large inter-model SD (Table 1).
Table 1 also shows relatively large variations of the extreme precipitation trend results
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among the climate models in global scale. The observational relative changes in ex-
treme precipitation for North America and Europe are higher than the maximum values
obtained from the climate models, but for the South America, Oceania, Asia and Africa
are lower than the median of the models suggesting that there are coherent spatial
patterns in the model bias (Fig. 2).

The last column of Table 1 presents relative change in extreme precipitation per K of
global warming (% K‘1). Global average of observed annual-maximum daily precipita-
tion has increased by approximately 10 % per K of global warming since 1901, which
is larger than the average of climate models with 8.3 % K. The Clausius—Clapeyron
equation under stable relative humidity indicates that atmospheric water vapor content
will increase at a rate of approximately 7 % K™ warming (Held and Soden, 2006; Pall
et al., 2006). The rate of increase in extreme precipitation per K warming in both mod-
els and observations are higher than the rate of increase in atmospheric water vapor
content per K warming expected from the Clausius—Clapeyron equation. Observational
relative change in extreme precipitation with respect to global warming is also higher
than the modelled values for the North America and Europe and is higher than the
median for South America, Africa and India, but is lower than the median of the models
for Asia and Oceania (Fig. 5c).

Values of Z score and _median indices obtained from the Mann—Kendall and Sen’s
trend tests, respectively, show the non-parametric confidence level of statistical signifi-
cance in the identified trends in the data. The expectation might be that observational
data would have lower confidence level in the identified trends due to higher level of
noise in observations compared to climate model simulations. However, Table 1 shows
that the global average value of Z and Q4 for HadEX2 is higher than the largest
and second largest value obtained from the climate models, respectively, which means
the CMIP5 climate models’ simulations generally show lower level of confidence in the
trends compared to the HadEX2 observations.

Figure 3 depicts the global maps of precipitation (P), slope (b) and relative change
in precipitation (b/P) for HadEX2 (Fig. 3a—c, respectively) as well as the grid-average

11377

Jladed uoissnasiq | Jadeq uoissnosiq | Jeded uoissnosiq | Jaded uoissnosiqg

HESSD
11, 11369-11393, 2014

Global trends in
extreme precipitation

B. Asadieh and
N. Y. Krakauer

' III III


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/11369/2014/hessd-11-11369-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/11369/2014/hessd-11-11369-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

of the subsampled CMIP5 datasets (Fig. 3d—f, respectively). Stippling means the grid-
cell has a significant trend at 95 % confidence level. In cases of CMIP5 average maps,
filled/empty stippling indicates positive/negative trend on average. The larger marker
size means larger number of models agreeing on the presented trend, with the largest
one indicating only 7 out of 19 datasets agreeing on the presented trend significance,
which also illustrates the discrepancy between the climate models.

Figure 4 shows the average value of precipitation (P), trend slope (b) and relative
change in precipitation (b/P) at each 2.5° latitudinal window. The figure presents the
result of HadEX2 dataset with the average result of CMIP5 datasets as well as their
mean + SD. As seen in Fig. 4a, average extreme precipitation observed and simulated
in the Northern Hemisphere (NH) shows a lower rate than the Southern Hemisphere
(SH), and the underestimation of the extreme precipitation by the climate models can
also be seen.

Tropical zones of the globe show much higher ranges of fluctuations observed and
simulated for extreme precipitation trend comparing to mid-latitudes, as well as larger
discrepancy between the observations and simulations (Fig. 4). There is larger uncer-
tainty regarding the results in tropics, due to fewer numbers of cells with observational
data in these regions. The failure of climate models to capture changes in tropical
zones has been reported by previous studies as well (Kharin et al., 2007; O’Gorman
and Schneider, 2009).

Figure 5 depicts relative change in extreme precipitation per K of global warming.
The Figure depicts the maps for HadEX2 observations (Fig. 5a) and average CMIP5
(Fig. 5b), as well as box-plots of climate models (Fig. 5¢) and average parameter value
at each 2.5° latitudinal window (Fig. 5d).

4 Discussion

Results show that both observations and climate models show generally increas-
ing trends in extreme precipitation intensity since 1901. Although the climate models

11378

Jladed uoissnasiq | Jadeq uoissnosiq | Jeded uoissnosiq | Jaded uoissnosiqg

HESSD
11, 11369-11393, 2014

Global trends in
extreme precipitation

B. Asadieh and
N. Y. Krakauer

' III III


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/11369/2014/hessd-11-11369-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/11369/2014/hessd-11-11369-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

reproduce the signs observational trends on global and continental scales, the rate
of change seems to be underestimated in models. Similar discrepancies between ob-
servations and climate models have also been reported in earlier studies (Allan and
Soden, 2008; Allen and Ingram, 2002; Min et al., 2011; O’Gorman and Schneider,
2009; Sillmann et al., 2013; Wan et al., 2013; Wentz et al., 2007; Zhang et al., 2007).
Tropical latitudes show higher ranges of fluctuations observed and simulated for ex-
treme precipitation trends comparing to mid-latitudes, as well as larger discrepancy
between the observations and simulations (Fig. 4). The high variation of the results for
observations as well as models might be due to the small number of data available
for those regions. However the larger discrepancy between observations and models
in tropics might also be as a result of inaccuracy of the climate models in simulation
of tropical climate and of precipitation generated by deep convection, as reported by
previous studies (O’Gorman and Schneider, 2009). The continents of North America,
Europe and Asia contain about 22, 18 and 34 % of total global data grid-cells (Fig. 1c).
The trend results averaged for the continents of North America and Europe are gen-
erally in line with global averaged results. The subcontinent of India generally shows
different results from the Asia average, in both observations and models (Figs. 2 and 5).

The Clausius—Clapeyron equation indicates that atmospheric water vapor content
increases at a rate of 7%K™" of warming (Held and Soden, 2006; Pall et al., 2006).
Although change in global-mean precipitation with respect to warming does not scale
with the Clausius—Clapeyron equation and from energy balance consideration the rate
of increase might be expected to be around 2 % K (Held and Soden, 2006), impact of
global warming on extreme precipitation is expected to be stronger (Pall et al., 2006).
The results of the present study show that global average of extreme precipitation since
1901 has increased by approximately 10 % per K of global warming in observations
and averagely 8.3 % K™ in climate models over land areas with station observations
available (Table 1). North and South America as well as Europe show even stronger in-
crease in extreme precipitation with respect to global warming (Fig. 5). These numbers
are considerably larger than the 7 % K= of the Clausius—Clapeyron equation which
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further emphasizes the impact of changes in the Earth’s global temperature on precip-
itation extremes.

As stated earlier, increased availability of moisture in the atmosphere results in
greater increase in intensity of extreme precipitation than for mean precipitation (Pall
et al., 2006). Faster change in extreme precipitation than mean precipitation implies the
change in precipitation pattern, where the climate shifts to less rainy days and more
intense precipitation. This can affect the availability of fresh water resources throughout
the year. Such changes in precipitation pattern can affect the capability of reservoirs
to capture excessive surface run-off and result in increased flooding events. Failure of
the available reservoirs to capture the designed amounts the annual surface run-off
might also result in less total annual amount of water stored in the reservoir hence less
available fresh water resources. Design of the newly constructed reservoirs strongly
depends on the appropriate prediction of future climate, extreme precipitations and
flooding, but the available climate models seem to underestimate those.

5 Conclusions

This study presented a systematic global-scale comparison of changes in historical
annual-maximum daily precipitation between the HadEX2 observational records and
CMIP5 ensemble of global climate models. The climate models were spatially and tem-
porally subsampled like the observations and trends were analyzed for grid-cells with
at least 30 years of extreme precipitation data over the past 110 years. Both parametric
and non-parametric methods were used to quantify the strength of trends in extreme
precipitation as well as the confidence level of the identified trends. Results show that
both observations and climate models show generally increasing trends in extreme pre-
cipitation since 1901 with larger changes in tropical zones, although annual-maximum
daily precipitation has increased faster in the observations than in most of the CMIP5
models. Observations indicate that approximately one-fifth of the global data-covered
land area had significant increasing maximum precipitation recorded during the last
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century. This is more than 4 times larger than the areas with significant decreasing
record, which indicates that the global record of extreme precipitation show a mean-
ingful increase over the last century. Global average of observational annual-maximum
daily precipitation has increased about 5.73 mm day’1 over the last 110years or 8.53 %
in relative terms. Global average of observational annual-maximum daily precipitation
has increased by approximately 10 % per K of global warming since 1901 which is
larger than the average of climate models with 8.3 % K~'. The rate of increase in ex-
treme precipitation per K of warming in both models and observations are higher than
the rate of increase in atmospheric water vapor content per K of warming expected from
the Clausius—Clapeyron equation which is approximately 7 % K‘1, which highlights the
importance of extreme precipitation trends for water resources planning.

Appendix A: Non-parametric trend tests

A1 Mann-Kendall trend test

The MK test is a non-parametric rank based test (Kendall, 1975; Mann, 1945). The
Mann—Kendall test statistic S is calculated as:

=ni ﬁ sgn (x; — x;) (A1)

where n is the number of data points, x; and x; are the data values in time series / and
J (J > 1), respectively, and sgn (x; — x;) is the sign function:

+1 ifx;-x; >0
sgn (x;—x;) =40 if Xj—x;=0. (A2)
-1 ifx;—x;<0
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The variance is computed using the equation below:

n(n=1)2n+5) =37 t:(t; - 1)(2t; +5)

Var (S) = 18

(A3)

where n is the number of data points, m is the number of tied groups and t; is the
number of ties of extent /. A tied group is a set of sample data having the same value. In
cases where the sample size n > 10, the standard normal test statistic Zg is computed
as:

S _ ifS>0
Var (S)
Zs=10, ifS=0. (A4)
S+l ifS<0
Var (S)

The sign of Zg indicates the trend in the data series, where positive values of Z5 means
increasing trend, while negative Zg values show decreasing trends. For the tests at
a specific a significance level, if |Zg| > Z;_, /», the null hypothesis is rejected and the
time series has a statistically significant trend. Z_, /, is obtained from the standard
normal distribution table, where at the 5% significance level (a = 0.05), trend is sta-
tistically significant if |[Zg| > 1.96 and at the 1% significance level (a = 0.01), trend is
statistically significant if |[Zg| > 2.576.

A2 Sen’s slope estimator

The non-parametric procedure for estimating the slope of trend in the sample of N pairs
of data is developed by Sen (1968) as:

Xj— Xy )
Q; = Tk fori=1,...,N (A5)
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where x; and x, are the data values at times j and k (j > k), respectively. N is defined

as 2221 ‘where n is the number of time periods.

If the N values of Q, are ranked from smallest to largest, the parameter Qg IS
computed as the median of the Q; vector. The Q.4 Sign reflects the direction of trend,
while its value indicates the magnitude of the trend. To determine whether the median
slope is statistically different than zero, the confidence interval of Q.4 at a specific
probability should be computed as follow (Gilbert, 1987; Hollander and Wolfe, 1973):

Co = Z1—a/2 V Var (5) (A6)

where Var (S) is defined before and Z;_,, is obtained from the standard normal dis-

tribution table. Then, M; = 5% and M, = X4Fe

= are computed. The lower and upper
limits of the confidence interval, Q,,i, and Q.. are the M, th largest and the (M, + 1)th
largest of the N ordered slope estimates (Gilbert, 1987). The slope Q,,cq is statistically

different than zero if the two limits Q,;, and Q. have the same sign.

The Supplement related to this article is available online at
doi:10.5194/hessd-11-11369-2014-supplement.
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Table 1. Statistics of variation of global extreme precipitation for HadEX2 and the 19 Subsam-
pled CMIP5 models from 1901 to 2010. The table presents the statistics for the global average
of the parameters. The 19 Climate models give 19 global averages of which the minimum,
maximum, median, mean and SD are presented.

Qmed Z score  Slope of Average of Relative Change per
change (b) extreme change degree warming
(mmday~"yr™")  precipitation (P) (b/P) (%K™
(mmday™) (%yr™"
CMIP5 Model Min 0.0005 0.0944 0.0023 29.31 0.0118 4.37
(subsampled)
Model Max 0.0648 0.7050 0.1592 48.46 0.3849 28.67
Model Median 0.0218 0.3056 0.0271 37.89 0.0606 7.3
Model SD 0.0133 0.1555 0.0326 5.08 0.0774 5.16
Model Average  0.0230 0.3330 0.0314 37.85 0.0797 8.43
HadEX2 - 0.0504 0.7242  0.0521 55.03 0.0775 9.99
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Figure 1. Minimum number of years with extreme precipitation data available vs. the global
averaged extreme precipitation (a) and trend slope (b), Map of the number of annual extreme
precipitation records (1901-2010) (¢) and minimum number of years with extreme precipitation
data available vs. the percentage of the grid-cells with corresponding coverage (d).

11389

| Jadeq uoissnosigq | Jedeq uoissnosiq | Jaded uoissnosiqg

Jaded uoissnosiq

HESSD
11, 11369-11393, 2014

Global trends in
extreme precipitation

B. Asadieh and
N. Y. Krakauer

(8
K ()


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/11369/2014/hessd-11-11369-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/11369/2014/hessd-11-11369-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

a Average Precipi (mm/day) - CMIPS Models Results - Max PRCP 1901-2010
@ Hadexa Average]
.
100~
80- - ]
M * e {
60 H H H
; . E
wea = T - H I =
T . — T
20- , = 4
] H]
2 g
5
0 £ £ s
i £ g g £ ] ©
2 B 2 s ] £ ki 2
8 E H H 2 £ 2 2
b Average b Notched-Plot (mm/day. yeav") - SubSampled CMIP5 Models Results - Max PRCP 1901-2010
"
o. @ HadEX2 Average
015" _
f . ;
04F ? T i o |
. T i -
o = H . E g B =)
o — - - = ; H 4
© I3 H H H
8 £ - - i
5 5 4
E &
005 - = < g 3 o
£ £ E g H 8 3 K]
g 2 8 & 2 = 2 E
¢ Average bi<P> Notched-Plot (% . year ') - SubSampled CMIPS Models Results - Max PRCP 1901-2010
06 ® HadEX2 Average|
04 | . 1
0.2~ N - - - 1
& T H B
= o Hd g/ B S
0 g = T - iy T ¥
| 4
@ ® =
g g
H 5
£ E o
] o
02— < z 4 T 3
2 3 3 g 3 £ 3 2
[ 2 8 o z < 2 2

Figure 2. Boxplots of CMIP5 model run averaged results (minimum, 25th percentile, median,
75th percentile and maximum of the 19 model runs) as well as average of HadEX2 observa-
tional data (shown as blue circles) for 1901-2010 extreme precipitation data in global and con-
tinental scale — annual-averaged daily extreme precipitation (mm day™") (a), slope of change in
annual-averaged daily extreme precipitation (mm day‘1 yr‘1) (b), and relative change in annual-
averaged daily extreme precipitation (% yr'1) (c).
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Figure 3. HadEX2 observational data vs. CMIP5 averaged results of global extreme precip-
itation data 1901-2010 — annual-averaged daily extreme precipitation map (mm day‘1) for
HadEX2 (a) and average CMIP5 (d), slope of change in annual-averaged daily extreme pre-
cipitation map (mmday ™" yr™') for HadEX2 (b) and average CMIP5 (e), and relative change
in annual-averaged daily extreme precipitation (%yr‘1) map for HadEX2 (¢) and average
CMIP5 (f) — the maps show the underestimation of the trends in historical extreme precipi-
tation trends in the climate models comparing to the observations. Stippling inside the grids
indicates significance of calculated trend at 95 % confidence level. In cases of CMIP5 average
maps, filled/empty stippling indicates positive/negative trend on average. The larger marker size
means larger number of models agreeing on the presented trend, with the largest one indicat-
ing only 7 out of 19 datasets agreeing on the presented trend significance, which also implies
the discrepancy between the climate models. Maps are also shown separately in Figs. S1-6 in
the Supplement.
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Figure 4. Average parameter value at each 2.5 latitudinal window — annual-averaged daily ex-
treme precipitation (mmday™") for HadEX2 and average CMIP5 (a), slope of change in annual-
averaged daily extreme precipitation (mm day'1 yr'1) for HadEX2 and average CMIP5 (b), and
relative change in extreme precipitation (% yr~') for HadEX2 and average CMIP5 (c). Values
for the climate models are averages of the 19 runs and the dashed lines are the median of the
models plus/minus the SD of the models. The gap between the lines in the tropics indicates the
lack of grid-cells with more than 30 years of precipitation data available in those zones.

11392

Jladed uoissnasiq | Jadeq uoissnosiq | Jeded uoissnosiq | Jaded uoissnosiqg

HESSD
11, 11369-11393, 2014

Global trends in
extreme precipitation

B. Asadieh and
N. Y. Krakauer

' III III


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/11369/2014/hessd-11-11369-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/11369/2014/hessd-11-11369-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

a
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Figure 5. Relative change in extreme precipitation per K of global warming (% K™"). The Figure
depicts the maps for HadEX2 observations (a) and average CMIP5 (b), as well as box-plots of
climate models (c) and average parameter value at each 2.5° latitudinal window (d). Maps are
also shown separately in Figs. S7-8 in the Supplement.
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