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Abstract 1 

Precipitation events are expected to become substantially more intense under global warming, 2 

but few global comparisons of observations and climate model simulations are available to 3 

constrain predictions of future changes in precipitation extremes. We present a systematic 4 

global-scale comparison of changes in historical (1901-2010) annual-maximum daily 5 

precipitation between station observations (compiled in HadEX2) and the suite of global 6 

climate models contributing to the fifth phase of the Coupled Model Inter-comparison Project 7 

(CMIP5). We use both parametric and non-parametric methods to quantify the strength of 8 

trends in extreme precipitation in observations and models, taking care to spatially and 9 

temporally sample them in comparable ways. We find that both observations and models 10 

show generally increasing trends in extreme precipitation since 1901, with largest changes in 11 

deep tropics. Annual-maximum daily precipitation (Rx1day) has increased faster in the 12 

observations than in most of the CMIP5 models. On global scale, the observational annual-13 

maximum daily precipitation has increased by an average of 5.73 mm over the last 110 years 14 

or 8.5% in relative terms. This corresponds to an increase of 10% per K of global warming 15 

since 1901, which is larger than the average of climate models with 8.3%/K. The average rate 16 

of increase in extreme precipitation per K of warming in both models and observations is 17 

higher than the rate of increase in atmospheric water vapor content per K of warming 18 

expected from the Clausius-Clapeyron equation. We expect our findings to help inform 19 

assessments of precipitation-related hazards such as flooding, droughts and storms. 20 

 21 

22 
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1 Introduction 1 

Trends in extreme meteorological events have received considerable attention in recent years 2 

due to the numerous extreme events such as hurricanes, droughts and floods observed 3 

(Easterling et al., 2000). Changes in global climate and alteration of Earth’s hydrological 4 

cycle (Allen and Ingram, 2002; Held and Soden, 2006; Wentz et al., 2007) have resulted in 5 

increased heavy precipitation with consequent increased surface runoff and flooding risk 6 

(Trenberth, 1999, 2011), which is likely to continue in the future (Dankers et al., 2013). 7 

Anthropogenic climate change is expected to change the distribution, frequency and intensity 8 

of precipitation and result in increased intensity and frequency of floods and droughts, with 9 

damaging effects on environment and society (Dankers et al., 2013; Field, 2012; Min et al., 10 

2011; O’Gorman and Schneider, 2009; Solomon et al., 2007; Trenberth, 2011; Trenberth et 11 

al., 2003). 12 

As a result of greenhouse gas (GHG) build-up in the atmosphere, global mean near-surface 13 

temperature shows an increasing trend since the beginning of the 20th century (Angeles et al., 14 

2007; Campbell et al., 2011; Singh, 1997; Solomon et al., 2007; Taylor et al., 2007), with 15 

greater increases in mean minimum temperature than in mean maximum temperature 16 

(Alexander et al., 2006; Peterson, 2002). The Fifth Assessment Report of Inter-Governmental 17 

Panel on Climate Change (IPCC) indicates that globally, near-surface air temperature has 18 

increased by approximately 0.78°C [0.72 to 0.85] since 1900 with greater trend slope in 19 

recent decades (Stocker et al., 2013). 20 

As a result of global warming, climate models and satellite observations both indicate that 21 

atmospheric water vapor content has increased at a rate of approximately 7% per K warming 22 

(Allen and Ingram, 2002; Held and Soden, 2006; Trenberth et al., 2005; Wentz et al., 2007), 23 

as expected from the Clausius-Clapeyron equation under stable relative humidity (Held and 24 

Soden, 2006; Pall et al., 2006). Increasing availability of moisture in the atmosphere can be 25 

expected to result in increased intensity of extreme precipitation (Allan and Soden, 2008; 26 

Allen and Ingram, 2002; O’Gorman and Schneider, 2009; Trenberth, 2011; Trenberth et al., 27 

2003), with proportionally greater impact than for mean precipitation (Lambert et al., 2008; 28 

Pall et al., 2006). An increase in frequency and intensity of extreme precipitation has already 29 

been identified in observations (Alexander et al., 2006; Min et al., 2011; Solomon et al., 2007; 30 

Westra et al., 2013) as well as in simulations of climate models (Kharin et al., 2013; 31 

Scoccimarro et al., 2013; Toreti et al., 2013). Climate models also indicate that further 32 
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increases in extreme precipitation would be expected over the next decades (Kharin et al., 1 

2007, 2013; O’Gorman and Schneider, 2009; Pall et al., 2006; Toreti et al., 2013) while in 2 

terms of mean precipitation moist regions become wetter and dry regions drier (Allan and 3 

Soden, 2008; Chou and Neelin, 2004; Wentz et al., 2007; Zhang et al., 2007).  4 

Although climate models generally indicate an increase in precipitation and its extremes, the 5 

rate of this increase seems to be underestimated (Allan and Soden, 2008; Allen and Ingram, 6 

2002; Min et al., 2011; O’Gorman and Schneider, 2009; Sillmann et al., 2013; Wan et al., 7 

2013; Wentz et al., 2007; Zhang et al., 2007), which implies that future projections of changes 8 

in precipitation extremes may also be under-predicted (Allan and Soden, 2008). This 9 

underestimation can be a result of differences in scale between climate model grids and 10 

observational data (Chen and Knutson, 2008; Sillmann et al., 2013; Toreti et al., 2013; Wan et 11 

al., 2013; Zhang et al., 2011) and/or limitations in moist convection or other 12 

parameterizations in the models (O’Gorman and Schneider, 2009; Wilcox and Donner, 2007). 13 

Assessments of climate models also reveal that the rate of increase in precipitation extremes 14 

varies greatly among models, especially in tropical zones (Kharin et al., 2007; O’Gorman and 15 

Schneider, 2009), which makes it especially important to compare modelled trends with those 16 

identified in observations. However few global comparisons of observations and climate 17 

model simulations are available to constrain predictions of future changes in precipitation 18 

extremes. Out of the available global scale studies, some use older versions of climate models 19 

or observations and/or use only one or a few climate models (Allan and Soden, 2008; Min et 20 

al., 2011; O’Gorman and Schneider, 2009; Wentz et al., 2007; Zhang et al., 2007). Spatial and 21 

temporal differences in data coverage between climate models and observations also 22 

challenge comparisons. 23 

In this paper, we present a systematic comparison of changes in annual-maximum daily 24 

precipitation in weather station observations (compiled in HadEX2) with 15 models from the 25 

suite of global climate models contributing to the latest phase of the Coupled Model Inter-26 

comparison Project (CMIP5) (Taylor et al., 2012), as the largest and most recent set of global 27 

climate model runs. Both parametric (linear regression) and non-parametric (the Mann-28 

Kendall (Appendix A1) as well as Sen’s slope estimator (Appendix A2) methods are utilized 29 

to quantify the strength of trends in extreme precipitation in observations and models, taking 30 

care to spatially and temporally sample them in comparable ways. We also calculate the rate 31 

of change in the defined extreme precipitation index per K of global warming in both 32 
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observations and models to investigate the relation between global warming and precipitation 1 

extremes. Climate models and observation datasets do not provide the same spatial and 2 

temporal coverage for precipitation data, leading to some uncertainties in the comparison of 3 

the results. In the present study, precipitation data for years/grids of climate models which do 4 

not have corresponding observational data are excluded, resulting in a comparable sampling 5 

approach for both datasets. 6 

2 Data and Methodology 7 

Precipitation data in the Hadley Centre global land-based gridded climate extremes data set 8 

(HadEX2) is based on daily observations from about 11600 precipitation stations gridded on a 9 

2.5° x 3.75° grid from 1901 to 2010 (Donat et al., 2013). Here, gridded HadEX2 annual 10 

maximum 1-day precipitation data (Rx1day) is analyzed as the observation dataset. The 11 

extreme precipitation index Rx1day is defined as the annual-maximum daily precipitation, in 12 

which the maximum one day precipitation amount is selected for each year. The same index is 13 

also obtained for the climate model simulations. Daily precipitation amounts from simulations 14 

with 15 models (overall 19 runs) with complete temporal data coverage have been retrieved 15 

from the fifth phase of the Coupled Model Inter-comparison Project (CMIP5) (Taylor et al., 16 

2012), as the largest and most recent set of global climate model (GCM) runs. The historical 17 

data for projections from 1901 to 2005 and the high radiative forcing path scenario 18 

(representative concentration pathway, RCP) RCP8.5 (Moss et al., 2010) for projections from 19 

2006 to 2010 is selected. The aforementioned 15 CMIP5 models, provided by the IRI/LDEO 20 

Climate Data Library, are BCC-CSM1-1, CMCC-CM, CMCC-CMS, CNRM-CM5, GFDL-21 

CM3, GFDL-ESM2G, HadGEM2-CC, IPSL-CM5A-LR, IPSL-CM5A-MR, IPSL-CM5B-LR, 22 

MIROC5 (3 runs), MPI-ESM-LR (3 runs), MPI-ESM-MR, MRI-CGCM3 and NorESM1-M.  23 

Climate models produce simulated precipitation fields for all years of a specified time 24 

interval, covering all coordinates of the globe thoroughly, even the oceans and polar zones. 25 

This is completely different from the spatial and temporal coverage of station observation 26 

datasets, such as HadEX2, where usually cover only a certain part of the continents with 27 

missing data for a considerable number of years. This difference in coverage results in some 28 

difficulties in comparison of the two datasets.   29 

As a solution for this issue, a new subsampled dataset is created for each of the 19 CMIP5 30 

climate models in which each of the HadEX2 grid-cells take the GCM precipitation data of 31 

the grid-cell in which its geo-referenced coordinates fit. The new dataset is created with the 32 
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same resolution and same data availability pattern of HadEX2, which means that only data of 1 

the grids/years will be assigned to the new dataset for which HadEX2 has recorded 2 

precipitation data for that year for the corresponding grid cell. The newly created dataset is 3 

called the subsampled CMIP5 dataset.  4 

As stated above, most grid-cells in HadEX2 do not have recorded precipitation data for most 5 

of the years. A sensitivity analysis of global averaged maximum precipitation and trend slope 6 

to the minimum number of years with precipitation data required for a grid-cell to be 7 

considered shows that these values do not change drastically (Figs 1.a,b). Selection of only 8 

stations with longer records may strengthen the confidence with which trends are quantified, 9 

but limits the calculations to smaller spatial coverage of the globe, which is not in line with 10 

scope of this study to evaluate global changes in precipitation. We chose to use the grid-cells 11 

with at least 30 years of available precipitation data over the last 110 years, which includes 12 

more than 90% of the 766 HadEX2 grid-cells that had any Rx1day data (Fig. 1c and d). 13 

Tests for trend detection in time series can be classified as parametric and non-parametric 14 

methods. Parametric trend tests require independence and a particular distribution in the data, 15 

while non-parametric trend tests require only that the data be independent. The trend slope (b) 16 

obtained from the linear regression method, which assumes that the data variability follows a 17 

normal distribution, is utilized for trend strength analysis and comparison of the datasets. The 18 

relative change in extreme precipitation is defined as the trend slope divided by the average 19 

extreme precipitation of the grid-cell (b/P). The relative change in extreme precipitation per K 20 

of warming is also calculated as an index for the relation between changes in precipitation 21 

extremes of each grid-cell with global mean near-surface temperature, which indicates the 22 

percentage change in extreme precipitation per K global warming. Linear regression is 23 

utilized to calculate this parameter, in which global annual mean near-surface temperature, 24 

obtained from NASA-GISS (Hansen et al., 2010) is selected as the predictor and the natural 25 

logarithm of extreme precipitation time series is chosen as response. 26 

The Z-score (Z) obtained from the Mann-Kendall test (Kendall, 1975; Mann, 1945) and Q-27 

median (Qmed) from the Sen’s slope estimator (Sen, 1968) are also applied in order to support 28 

the results of linear regression using non-parametric trend detection approaches. It is 29 

important to compare the non-parametric trend estimates with those obtained from linear 30 

regression since the extreme precipitation time series need not follow the normal distribution 31 

but may instead be better represented by, for example, the generalized extreme value 32 
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distribution (Katz, 1999; Westra et al., 2013). The trend tests are applied for each grid-cell’s 1 

extreme precipitation time series. The obtained values are averaged globally as well as by 2 

continent in order to present the general trend of precipitation extremes in different regions. 3 

Continents studied comprise Africa, Asia, Europe, North America, South America and 4 

Oceania. The subcontinent of India has results shown separately and is also included in Asia. 5 

Results are also averaged by latitude to investigate changes in the tropics versus 6 

Northern/Southern mid-latitudes. 7 

Statistical significance of the trends, presented in the text as well as the figures, at 95 percent 8 

confidence level is based on P-value less than 0.05 from the linear regression. The statistical 9 

significance of trends estimated from the Mann-Kendall and Sen’s methods is evaluated 10 

differently (Appendix A). 11 

3 Results 12 

Linear regression indicates that 66.2% of the studied grid-cells show a positive trend in 13 

annual-maximum daily precipitation during the past 110 years, including 18% that are 14 

statistically significant at 95 percent confidence level. On the other hand, 33.8% of the studied 15 

grids show a negative trend including only 4% that are statistically significant at 95 percent 16 

confidence level. The results are very similar to those found by Westra et al., 2013 for the 17 

same HadEX2 dataset (64% positive and 36% negative). Thus the global record of extreme 18 

precipitation shows a meaningful increase over the last century. This increase is expected to 19 

continue over the next decades based on physical arguments and modeling (Kharin et al., 20 

2007, 2013; O’Gorman and Schneider, 2009; Pall et al., 2006; Toreti et al., 2013).  21 

Table 1 presents the statistics of global averaged trend parameters of annual-maximum daily 22 

precipitation for HadEX2 and 19 subsampled CMIP5 model runs (from 15 models) from 1901 23 

to 2010. Observation is only one dataset; hence it has one global average for each parameter. 24 

The 19 climate model runs give 19 global averages, of which we present the minimum, 25 

maximum, median, mean, and standard deviation in Table 1. Figure 2 illustrates the results 26 

presented in Table 1 as boxplots of trend parameters and average precipitation for annual-27 

maximum daily precipitation for all 19 subsampled datasets of CMIP5 on global as well as 28 

continental scales, showing observations (HadEX2) as blue circles. The boxplots show the 29 

minimum, 25
th

 percentile, median, 75
th

 percentile and maximum value obtained from the 30 

climate models. As seen in Fig. 2.a., the global average of extreme precipitation data shows 31 

higher value than the largest value obtained from the climate models, which indicates that all 32 
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of the climate models underestimate the annual-maximum daily precipitation. This 1 

underestimation can be seen in continental scale averages as well, and is expected given the 2 

difference in spatial scale between GCMs and station precipitation gauges. 3 

The mean linear regression slope (b) for HadEX2 observation data globally shows a positive 4 

trend of 0.052 mm.day
-1

 per year in extreme precipitation over the last 110 years (Table 1). 5 

This positive trend is captured by the climate models but is significantly underestimated, since 6 

HadEX2 shows a greater mean value of b than all but one of the values obtained from CMIP5 7 

models. This underestimation is seen particularly in the continents of America, Europe and 8 

Oceania as well as the subcontinent of India. The global average of relative change in 9 

precipitation (b/P) for HadEX2 is close to the 75
th

 percentile of the GCMs, which indicates 10 

that approximately 75% of the CMIP5 models have underestimated the relative change in 11 

extreme precipitation, but is close to the average value of the CMIP5 models. This substantial 12 

difference between the CMIP5 average and median value can be linked to the large and 13 

positive skew scatter among the results obtained from the models and the large inter-model 14 

standard deviation (Table 1). The observational relative changes in extreme precipitation for 15 

North America and Europe are higher than the values obtained from any of the CMIP5 16 

climate models, but for the South America, Oceania, Asia and Africa are lower than the 17 

median of the CMIP5 models, suggesting that there may be coherent spatial patterns in the 18 

model bias (Fig. 2) analogous to those seen for changes in mean precipitation (Krakauer and 19 

Fekete, 2014). 20 

Similar to the linear regression slope (b), Qmed from Sen’s test shows the direction and 21 

magnitude of the trend in a time series, having the advantage of using a non-parametric 22 

method for trend test. The global average of Qmed for observations is 0.050 mm.day
-1

 per year 23 

(Table 1), very close to average value of b obtained from the linear regression, which further 24 

supports increasing trend in observational annual-maximum daily precipitation. Considering 25 

the similar trend magnitudes from parametric and non-parametric methods, similar values for 26 

the relative change in annual-maximum daily precipitation are also expected from the two 27 

methods. As seen in Figure 2, the boxplots of the distribution of b and Qmed over the climate 28 

models show very similar results on global and continental scale (Fig 2.c and d, respectively). 29 

The last column of Table 1 presents relative change in extreme precipitation per K of global 30 

warming (%/K). On global scale, the observed annual-maximum daily precipitation has 31 

increased by averagely 10% per K of global warming since 1901, which is larger than the 32 
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average of climate models with 8.3%/K. The Clausius-Clapeyron equation under stable 1 

relative humidity indicates that atmospheric water vapor content will increase at a rate of 2 

approximately 7% per K warming (Held and Soden, 2006; Pall et al., 2006). The rate of 3 

increase in extreme precipitation per K warming in both models and observations are higher 4 

than the rate of increase in atmospheric water vapor content per K warming expected from the 5 

Clausius-Clapeyron equation. Observational relative change in extreme precipitation with 6 

respect to global warming is also higher than all of the modelled values for North America 7 

and Europe and is higher than the model median for South America, Africa and India, but is 8 

lower than the median of the models for Asia and Oceania (Fig. 8.a). 9 

Values of Z-score index obtained from the Mann-Kendall method shows the non-parametric 10 

confidence level of statistical significance in the identified trends in the data. The expectation 11 

might be that observational data would have lower confidence level in the identified trends 12 

due to higher level of noise in observations compared to climate model simulations. However, 13 

Table 1 shows that the global average value of Z-score for HadEX2 is higher than the largest 14 

value obtained from the climate models, indicating that the CMIP5 climate models’ 15 

simulations generally show lower level of confidence in the trends compared to the HadEX2 16 

observations. This interesting finding that the level of internal variability in climate models 17 

appears to be too high compared to observations warrants further investigation. 18 

Figure 3 depicts the global maps of average of annual-maximum daily precipitation (P) for 19 

HadEX2 (3.a) as well as the average of CMIP5 model runs (3.b). Figure 4 shows the linear 20 

regression slope (b) for HadEX2 (4.a) and the average of CMIP5 model runs (4.b). Relative 21 

change in extreme precipitation (b/P) for HadEX2 as well as the average of CMIP5 model 22 

runs are illustrated in Figs. 5.a and 5.b, respectively. Stippling in Figs. 4 and 5 means the grid-23 

cell has a significant trend at 95% confidence level. In cases of CMIP5 average maps, 24 

filled/empty stippling indicates positive/negative trend on average. While larger marker size 25 

means larger number of models agreeing on the presented trend, the largest marker size 26 

shown indicates only 7 out of 19 model simulations agreeing on the presented trend 27 

significance, which also illustrates the discrepancy in the trend significance between the 28 

climate models. 29 

Figure 6 shows the average value of extreme precipitation (P), linear regression trend slope 30 

(b) and relative change in extreme precipitation (b/P) at each 2.5° latitudinal window (Figs 31 

6.a,b and c, respectively). The figure presents the result of HadEX2 dataset with the average 32 
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result of CMIP5 datasets as well as their mean+/-st.dev. As seen in Fig. 6.a, average extreme 1 

precipitation observed and simulated in the Northern Hemisphere (NH) is lower than in the 2 

Southern Hemisphere (SH), and the underestimation of extreme precipitation by the climate 3 

models can also be seen. Figures 6.b and c depict that SH shows larger percentage changes in 4 

extreme precipitation than NH. Tropical zones of the globe show much higher ranges of 5 

fluctuations in both observed and simulated extreme precipitation trend compared to mid-6 

latitudes, as well as larger discrepancy between the observations and simulations (Fig 6). 7 

There is larger uncertainty regarding the results in tropics, due to fewer numbers of cells with 8 

observational data in these regions. The failure of climate models to capture changes in 9 

tropical zones has been reported by previous studies as well (Kharin et al., 2007; O’Gorman 10 

and Schneider, 2009). 11 

Figure 7 depicts the relative change in extreme precipitation per K of global warming maps 12 

for HadEX2 observations (7.a) and grid-average of CMIP5 model runs (7.b). Boxplots of 13 

CMIP5 model runs results as well as HadEX2 observational data (shown as blue circles) for 14 

relative change in extreme precipitation per K of global warming on global and continental 15 

scale are shown in Figure 8.a. Figure 8.b shows the relative change in extreme precipitation 16 

per K of global warming at each 2.5° latitudinal window. As seen in Figure 8.b, the southern 17 

hemisphere shows higher ranges of relative changes in extreme precipitation per K global 18 

warming than the northern hemisphere. Similar behavior in fluctuations in observational 19 

extreme precipitation per K warming can also be seen in Westra et al., 2013 in the HadEX2 20 

dataset for 1900-2009, although the aforementioned study presents the results as the median 21 

of the trends across grid-cells instead of the average. 22 

4 Discussion 23 

Results show that both observations and climate models show generally increasing trends in 24 

extreme precipitation intensity since 1901. Although the climate models reproduce the 25 

direction of observational trends on global and continental scales, the rate of change seems to 26 

be underestimated in most models, though the observations fall within the range of inter-27 

model variability at least for the global mean relative change (b/P). Similar discrepancies 28 

between observations and climate models have also been reported in earlier studies (Allan and 29 

Soden, 2008; Allen and Ingram, 2002; Min et al., 2011; O’Gorman and Schneider, 2009; 30 

Sillmann et al., 2013; Wan et al., 2013; Wentz et al., 2007; Zhang et al., 2007). 31 



 11 

The global average of trends from the non-parametric method (Qmed from Sen’s slope 1 

estimator) show similar values to those obtained from the parametric method (b from the 2 

linear regression) in observations, confirming the results of the parametric method, which 3 

further supports increasing trend in observational annual-maximum daily precipitation (Table 4 

1 and Fig. 2.c and d). Also the boxplots of b and Qmed for climate models are very similar on 5 

global and continental scale for different percentiles (Fig 2.c and d, respectively). 6 

Tropical latitudes show higher ranges of fluctuations observed and simulated for extreme 7 

precipitation trends compared to mid-latitudes, as well as larger discrepancy between the 8 

observations and simulations (Fig. 6). The high variation of the results for observations as 9 

well as models might be due to the small number of data available for those regions, given 10 

that the models are sub-sampled the same way as the available observations. However, the 11 

larger discrepancy between observations and models in tropics might also be a result of 12 

inaccuracy of the climate models in simulation of tropical climate and of precipitation 13 

generated by deep convection, as reported by previous studies (O’Gorman and Schneider, 14 

2009). The continents of North America, Europe and Asia respectively contain about 22, 18 15 

and 34 percent of total global data grid-cells (Fig. 1.c). The trend results averaged for the 16 

continents of North America and Europe are generally in line with global averaged results. 17 

The subcontinent of India generally shows different results from the Asia average, in both 18 

observations and models (Figures 2 and 8.a). 19 

The Clausius-Clapeyron equation indicates that atmospheric water vapor content increases at 20 

a rate of 7% per K of warming (Held and Soden, 2006; Pall et al., 2006). Although change in 21 

global-mean precipitation with respect to warming does not scale with the Clausius-22 

Clapeyron equation and from energy balance consideration the rate of increase might be 23 

expected to be around 2%/ K (Held and Soden, 2006), impact of global warming on extreme 24 

precipitation is expected to be close to the Clausius-Clapeyron slope (Pall et al., 2006). The 25 

results of the present study show that on average, extreme precipitation since 1901 has 26 

increased by 10% per K of global warming in observations and 8.3%/K in climate models 27 

over land areas with available station observations (Table 1). North and South America as 28 

well as Europe show even stronger increase in extreme precipitation with respect to global 29 

warming (Fig. 8.a). These numbers are considerably larger than the 7%/K of the Clausius-30 

Clapeyron equation, which further emphasizes the impact of changes in the Earth’s global 31 

temperature on precipitation extremes. 32 
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As stated earlier, increased availability of moisture in the atmosphere is expected to result in 1 

greater increase in intensity of extreme precipitation than for mean precipitation (Lambert et 2 

al., 2008; Pall et al., 2006). Faster change in extreme precipitation than mean precipitation 3 

implies a change in precipitation pattern, where the climate shifts to fewer rainy days and 4 

more intense precipitation. This can affect the availability of fresh water resources throughout 5 

the year. Such changes in precipitation pattern can affect the capability of reservoirs to 6 

capture excessive surface run-off and result in increased flooding events. Failure of the 7 

available reservoirs to capture the designed amount of annual surface run-off might also result 8 

in less total annual amount of water stored in the reservoir, hence less available fresh water 9 

resources. Design of newly constructed reservoirs strongly depends on the appropriate 10 

prediction of future climate and precipitation extremes, but the available climate models seem 11 

to underestimate those for at least some regions. The consequences of changes in both mean 12 

and extreme precipitation for water resource system reliability deserve to be investigated 13 

further. 14 

5 Conclusion 15 

This study presented a systematic global-scale comparison of changes in historical annual-16 

maximum daily precipitation between the HadEX2 observational records and CMIP5 17 

ensemble of global climate models. The climate models were spatially and temporally 18 

subsampled like the observations and trends were analyzed for grid-cells with at least 30 years 19 

of extreme precipitation data over the past 110 years. Both parametric and non-parametric 20 

methods were used to quantify the strength of trends in extreme precipitation as well as the 21 

confidence level of the identified trends. Results from both parametric and non-parametric 22 

tests show that both observations and climate models show generally increasing trends in 23 

extreme precipitation since 1901 with larger changes in tropical zones, although annual-24 

maximum daily precipitation has increased faster in the observations than in most of the 25 

CMIP5 models. Observations indicate that approximately one-fifth of the global data-covered 26 

land area had significant increasing maximum precipitation recorded during the last century. 27 

This is more than 4 times larger than the areas with significant decreasing record, which 28 

indicates that the global record of extreme precipitation shows a meaningful increase over the 29 

last century. On global scale, the observational annual-maximum daily precipitation has 30 

increased by an average of 5.73 mm.day
-1

 over the last 110 years or 8.53% in relative terms. 31 

The observational annual-maximum daily precipitation has also increased by an average of 32 
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10% per K of global warming since 1901 which is larger than the average of climate models 1 

with 8.3%/K. The rate of increase in extreme precipitation per K of warming in both models 2 

and observations are higher than the rate of increase in atmospheric water vapor content per K 3 

of warming expected from the Clausius-Clapeyron equation which is approximately 7%/K, 4 

which highlights the importance of extreme precipitation trends for water resources planning. 5 

 6 

Appendix A: Non-parametric trend tests 7 

A1: Mann-Kendall trend test 8 

The MK test is a non-parametric rank based test (Kendall, 1975; Mann, 1945). The Mann-9 

Kendall test statistic S is calculated as: 10 

1

1 1

sgn( )
n n

j i

i j i

S x x


  

            (A1) 11 

where n is the number of data points, xi and xj are the data values in time series i and j (j>i), 12 

respectively, and sgn(xj − xi) is the sign function: 13 
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         (A2) 14 

The variance is computed using the equation below: 15 
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where n is the number of data points, m is the number of tied groups and ti is the number of 17 

ties of extent i. A tied group is a set of sample data having the same value. In cases where the 18 

sample size n>10, the standard normal test statistic ZS is computed as: 19 
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 14 

The sign of ZS indicates the trend in the data series, where positive values of ZS means 1 

increasing trend, while negative ZS values show decreasing trends. For the tests at a specific α 2 

significance level, if 1 /2SZ Z  , the null hypothesis is rejected and the time series has a 3 

statistically significant trend. 

 
1 /2Z   is obtained from the standard normal distribution table, 4 

where at the 5% significance level (α=0.05), trend is statistically significant if  1.96SZ   and 5 

at the 1% significance level (α=0.01), trend is statistically significant if 2.576SZ  . 6 

A2: Sen's slope estimator 7 

The non-parametric procedure for estimating the slope of trend in the sample of N pairs of 8 

data is developed by (Sen, 1968) as: 9 

       1, ,
j k

i

x x
Q for i N

j k


  


          (A5) 10 

where xj and xk are the data values at times j and k (j>k), respectively. N is defined as 
( 1)

2

n n 
 11 

, where n is the number of time periods.  12 

If the N values of Qi are ranked from smallest to largest, the parameter Qmed is computed as 13 

the median of the Qi vector. The Qmed sign reflects the direction of trend, while its value 14 

indicates the magnitude of the trend. To determine whether the median slope is statistically 15 

different than zero, the confidence interval of Qmed at a specific probability should be 16 

computed as follow (Gilbert, 1987; Hollander and Wolfe, 1973): 17 

1 /2 ( )C Z Var S             (A6) 18 

where Var(S) is defined before and 1 /2Z   is obtained from the standard normal distribution 19 

table. Then, 

 
1

2

N C
M 

  and 2
2

N C
M 

  are computed. The lower and upper limits of 20 

the confidence interval, Qmin and Qmax, are the M1th largest and the (M2+1)th largest of the N 21 

ordered slope estimates (Gilbert, 1987). The slope Qmed is statistically different than zero if 22 

the two limits Qmin and Qmax have the same sign. 23 

 24 
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Figure Captions: 1 

Figure 1. (a) Global averaged extreme precipitation and (b) linear regression trend slope 2 

averaged over HadEX2 grid cells with different minimum number of years with extreme 3 

precipitation data available. (c) Map of the number of annual extreme precipitation records in 4 

HadEX2 (1901-2010). (d) Minimum number of years with extreme precipitation data 5 

available versus the percentage of the grid-cells with corresponding coverage. 6 

Figure 2. Boxplots of CMIP5 model runs averaged results (minimum, 25
th

 percentile, median, 7 

75
th

 percentile and maximum of the 19 model runs) as well as average of HadEX2 8 

observational data (shown as blue circles) for 1901–2010 extreme precipitation data in global 9 

and continental scale - (a) Annual-maximum daily precipitation (mm.day
-1

), (b) relative 10 

change in annual- maximum daily precipitation (%.year
-1

), (c) linear regression slope of 11 

change in annual- maximum extreme precipitation (mm.day
-1

.year
-1

), and (d) trend slope from 12 

the Sen’s test (Qmed) (mm.day
-1

.year
-1

). The red markers outside the boxes represent model 13 

outliers. 14 

Figure 3. HadEX2 observational data versus CMIP5 averaged results of global extreme 15 

precipitation 1901-2010 - Annual-maximum daily precipitation map (mm.day
-1

) for (a) 16 

HadEX2 and (b) average of CMIP5 model runs. 17 

Figure 4. HadEX2 observational data versus CMIP5 averaged results of global extreme 18 

precipitation 1901-2010 - Linear regression slope of change in annual- maximum daily 19 

precipitation map (mm.day
-1

.year
-1

) for (a) HadEX2 and (b) average of CMIP5 model runs . 20 

Stippling indicates significance of calculated trend at 95% confidence level. In cases of 21 

CMIP5 average maps, filled/empty stippling indicates positive/negative trend on average. The 22 

larger marker size means larger number of models agreeing on the presented trend, with the 23 

largest one indicating only 7 out of 19 model runs agreeing on the presented trend 24 

significance, which also implies the discrepancy in the trend significance between the climate 25 

models. 26 

Figure 5. HadEX2 observational data versus CMIP5 averaged results of global extreme 27 

precipitation 1901-2010 - Relative change in annual-maximum daily precipitation (%.year
-1

) 28 

map for (a) HadEX2 and (b) average of CMIP5 model runs. Stippling indicates significance 29 

of calculated trend at 95% confidence level.  In cases of CMIP5 average maps, filled/empty 30 



 21 

stippling indicates positive/negative trend on average. The larger marker size means larger 1 

number of models agreeing on the presented trend, with the largest one indicating only 7 out 2 

of 19 model runs agreeing on the presented trend significance. 3 

Figure 6. Average parameter value at each 2.5° latitudinal window - (a) Annual- maximum 4 

daily precipitation (mm.day
-1

) for HadEX2 and average CMIP5, (b) Slope of change in 5 

annual- maximum daily extreme precipitation (mm.day
-1

.year
-1

) for HadEX2 and average 6 

CMIP5, and (c) relative change in extreme precipitation (%.year
-1

) for HadEX2 and average 7 

CMIP5. Values for the climate models are averages of the 19 runs and the dashed lines are the 8 

median of the models plus/minus the standard deviation of the models. The gap in the tropics 9 

indicates the lack of grid-cells with more than 30 years of precipitation data available in those 10 

zones. 11 

Figure 7. Relative change in extreme precipitation per K of global warming (%/K) maps for 12 

1901–2010 for (a) HadEX2 observations and (b) average of CMIP5 model runs.  13 

Figure 8. Relative change in extreme precipitation per K of global warming (%/K) 1901–2010 14 

- (a) Boxplots of CMIP5 model runs averaged results (minimum, 25
th

 percentile, median, 75
th

 15 

percentile and maximum of the 19 model runs) as well as average of HadEX2 observational 16 

data (shown as blue circles) on global and continental scale and (b) average changes at each 17 

2.5° latitudinal window. 18 

19 



 22 

Table 1. Statistics of variation of global average extreme precipitation for HadEX2 and the 19 1 

subsampled CMIP5 model runs from 1901 to 2010. The 19 climate model runs give 19 global 2 

averages, of which the minimum, maximum, median, mean, and standard deviation are 3 

presented. 4 

  

Qmed 

(mm.day

-1
.year

-1
) 

Z – 

score 

(-) 

Slope of 

Change (b) 

(mm.day
-

1
.year

-1
) 

Average of 

extreme 

precipitation 

(P) (mm.day
-1

) 

Relative 

change 

(b/ P) 

(% . year
-1

) 

Change per 

degree 

warming 

(%/K) 

CMIP5 

(Subsampled) 

Model 

Min 
0.0005 0.0944 0.0023 29.31 0.0118 4.37 

Model 

Max 
0.0648 0.7050 0.1592 48.46 0.3849 28.67 

Model 

Median 
0.0218 0.3056 0.0271 37.89 0.0606 7.30 

Model St. 

Deviation 
0.0133 0.1555 0.0326 5.08 0.0774 5.16 

Model 

Average 
0.0230 0.3330 0.0314 37.85 0.0797 8.43 

HadEX2 - 0.0504 0.7242 0.0521 55.03 0.0775 9.99 
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