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Response to Reviewer #1 

February 4
th

, 2015 

 

Revision of Journal Paper 

Title: “Performance and Robustness of Probabilistic River Forecasts Computed with Quantile 

Regression based on Multiple Independent Variables in the North Central U.S.A.” 

Authors: Frauke Hoss, Paul Fischbeck 

 

Dear Reviewer, 

This letter outlines the changes we have made to our journal paper “Ten Strategies to 

Systematically Exploit All Options to Cope with Anthropogenic Climate Change”.  

 

General Comments 

1) The authors are apparently unaware of the first presentation of QR, which pertained to an 

American river, and predated the Weerts et al (2011) paper by several years. Wood et al (2009) 

is a citable conference presentation and is available online through the Amer. Met. Soc. (note the 

paper currently cites one conf. presentation). It is notable because the presentation also presents 

the rationale for using river rise as a predictor in QR, and demonstrates the application to 

operational river forecasts. This paper claims repeatedly to be the first application in an 

American context, which it is not given the earlier work, and also claims to introduce the concept 

of the additional predictors. I recommend that the paper recognize both Wood et al (2009) and 

Weerts et al (2011) as introducing the QR method for streamflow post-processing (until another 

earlier ref. can be found!), recognize the Wood et al inclusion of predictors such as river rise, 

and remove the framing of Weerts et al as the ‘original’ method versus this papers ‘new 

additions’. The authors make a substantial contribution in their detailed examination of river 

rise together with the new predictor – trailing error – and the use of QR to estimate exc. probs. 

The presentation by Wood et al. is great, because it is exactly the type of application that 

motivated me to do this research. I think, it is very valuable that small business provide 

uncertainty estimates as long as the NWS doesn’t. Additionally, they can provide more localized 

services when there is a need/market for it.  

Thank you for referring me to that presentation, I was definitely not aware of it. It is a 

pity that that presentation is so hard to find and watch. It took a while before I found the right 

browser to watch it; on the university network I wasn’t able to watch it at all.  

Throughout the paper, I added in references to the presentation, removed the “first 

application” references, and reworded the “original” additions vs. method “with additions”.  

 



2 

 

2) Though the authors highlight several interesting characteristics about the varying 

performance of predictor combinations, they currently offer little physical explanation for 

outcomes such as the (1) forecast itself being a poor predictor in some cases, or (2) multiple 

predictors faring worse at high thresholds. Physical reasoning would help dispel the possibility 

of simple overtraining, or perhaps mis-aligned training given the sample. I think the paper needs 

a stronger physical or at least statistical discussion to provide insight into the cause of such 

findings. 

I can give more statistical discussion: 

(1) The forecast is not a poor predictor. He just cannot be combined well with the other 

predictors. I explain more in response to your comment 298,7.  

(2) I discuss overfitting in response to your comment 294,7.  

 

3) The paper argues in several places that the exc. prob. forecasts are somehow ‘more useful’ 

for decisions than confidence intervals on forecasts (a widely used output). This arguably 

depends on the user. The position is taken to bolster the author’s claim of an ‘advance’, but it’s 

unnecessary – both are useful, and the author’s can simply note that they have taken a different 

tack than in earlier uses. 

I removed this claim throughout the paper.  

 

4) The results section is somewhat long, and I think the paper could still be effective if the figures 

and tables were trimmed somewhat – but I leave this to the author to decide. 

Given that this isn’t a print journal, I would like to keep the descriptions of all types of analysis 

that we have done. I think, they all add a new insight and their descriptions are concise. 

Additionally, the other reviewer has asked for more figures rather than less.  

 

 

Specific Comments 

282,2 – awkward first sentence: ‘further develops [QR]’? or just ‘applies’, or perhaps ‘further 

develops an application of QR’. I don’t think QR itself is being further developed. also, suggest 

rephrasing “. . .to predict flood stage exceedence probabilities based on post-processing single-

value flood stage forecasts.” 

 I revised sentence to be: 

“This study applies quantile regression (QR) to the prediction of flood stage exceedance 

probabilities based on post-processing single-value flood stage forecasts.” 

 

282,5 – it was not the first, actually – see comment below for 285,6. 

True. I deleted that sentence. 

 

282,8 – suggest avoiding references in the abstract. Also, this statement is not correct – see 

comment on 285,6 below – the first implementation did use additional variables. The Weerts 
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implementation was far more comprehensive, leading to an article, and also added the nice 

feature of flow normalization as an innovation to the approach. 

 I agree. I revised this section of the abstract to be: 

“Besides the forecast itself, this study uses the rate of rise of the river stage in the last 24 

and 48 hours and the forecast error 24 and 48 hours ago as predictors in QR 

configurations. When compared to just using the forecast as independent variable, adding 

the latter four predictors significantly improved the forecasts, as measured by the Brier 

Skill Score (BSS).” 

 

282,17 – I suggest adding one more sentence to the abstract to state the value of the approach – 

ie, that it helps quantify forecast uncertainty for the outputs of a deterministic forecasting 

process, which is currently common practice in many national flood forecasting services. 

 Good idea. I made this the second sentence in the abstract: 

“A computationally cheap technique to predict forecast errors is valuable, because many 

national flood forecasting services, such as the National Weather Service (NWS), only 

publish deterministic single-value forecasts.” 

 

283,3 – “quantify ‘forecast’ uncertainty” 

 Added “forecast” there.  

 

283,13 – perhaps mention that the HEFS system described in Demarge also includes a method 

for post-processing total uncertainty. 

Please see my response to your comment 284,10 below.  

 

283, 23 – ‘serves as’ – perhaps, but who knows? It’s never been verified. Better to say ‘may 

serve as’ 

 The other reviewer suggested removing this section on QPF forecasts, so I did.  

 

284,3 – this is true in the eastern US – in the west, ensemble forecasts go out as long as 2 years. 

This figure could be trimmed to reduce paper length. 

 The other reviewer suggested removing this section on outlooks, so I did. 

 

284,10 – NWS also has a technique called HMOS which is applicable to postprocessing single 

value forecasts. HEFS also includes the EnsPost module, which post-processes total forecast 

uncertainty, and these both should be mentioned. 

Thank you for pointing me to HMOS, I had not considered it yet. I added the text below. 

On a side note, I really don’t understand why NWS does not publish the valuable uncertainty 

information produced by HMOS alongside the deterministic forecast, even though it is a standard 

product of CHPS. Do you know? 
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“HEFS includes two types of post-processors. The Hydrologic Model Output Statistics 

(HMOS) Streamflow Ensemble Processor – which is also a module in NWS’ main 

forecast tool, the Community Hydrologic Prediction System (CHPS) – corrects bias and 

evaluates the uncertainty of each ensemble, while Hydrologic Ensemble Post-Processing 

(EnsPost) corrects bias and lumps the set of ensembles into one uncertainty estimate 

(Demargne et al., 2013; Seo, 2008). HMOS performs a similar task as the QR approach 

presented here, but with two major differences. First, it relies on linear regression based 

on streamflows at various times as predictor, instead of using QR with several types of 

independent variables. Second, it does not compute distributions of water levels from 

which confidence intervals or exceedance probabilities of flood stages can be derived, but 

generates ensembles (Regonda et al., 2013).” 

  

284,13 – again, ‘further developed’? What does this mean exactly? perhaps just use ‘applied’ or 

clarify what aspect of R. Koenker’s method is being ‘further’ developed. 

 That part is not essential to the sentence. So I shortened the sentence to be: 

“In contrast to an ensemble approach such as HEFS, the statistical post-processing in this 

paper does not distinguish between sources of uncertainty, but studies the overall 

uncertainty in a lumped fashion.” 

I also included the following disclaimer: 

“The study does not add to the mathematical method of quantile regression itself.” 

 

285,12 – this view is a bit narrow; certainly many users are concerned with low flow thresholds 

as well, and in any case, confidence bounds on forecasts are directly relatable to risk of 

threshold crossing (high or low).  

Please see answer to general comment 3. 

 

285,6 – QR for streamflow post-processing was introduced both by Wood et al (2009) and 

Weerts et al (2011). The former reference described what was likely the first application of QR 

to streamflow in the ‘US American context’, and possibly anywhere: Wood, AW, M Wiley and B 

Nijssen, 2009, Use of quantile regression for calibration of hydrologic forecasts, 23rd Conf. on 

Hydrology, Phoenix, AZ, Amer. Meteor. Soc., 11.3 [available online at: 

http://ams.confex.com/ams/89annual/wrfredirect.cgi?id=10049] Wood et al. described using QR 

to provide confidence limits for deterministic forecasts of the Lewis River in Washington State 

(e.g., Figure 1). The work emphasized the need for determining the QR error models as a 

function of the rise rate of the river as well as lead time (e.g., Figure 2), and then demonstrated 

the application. An earlier version of this presentation had been given by the same author at the 

2008 HEPEX workshop in Delft, NL on Hydrological Ensemble Post-processing Methods, and 

this was acknowledged as the inspiration for Weerts et al (2011). It is likely that the work was 

not submitted to a journal because the authors worked in the private sector, where publication is 

typically less encouraged than conference presentation. Incidentally, the Wood et al streamflow 

http://ams.confex.com/ams/89annual/wrfredirect.cgi?id=10049
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QR work had in turn been inspired by the application of QR for calibrating temperature 

forecasts, as described by Hopson and Hacker (2008), as well as by applications in the wind 

forecasting industry. Hopson, TM and JP Hacker, 2008, Combined approaches for en-semble 

post-processing,19th Conference on Probability and Statistics, New Orleans, LA, Amer. Meteor. 

Soc., 3.1 [available online at: 

http://ams.confex.com/ams/88Annual/wrfredirect.cgi?id=7501] 

I revised this bit to be the text below. Additionally, I re-worded all references to the 

“original” approach throughout the paper. Please see also my answer to general comment 1.   

“This paper further develops one of the techniques mentioned above: the Quantile 

Regression approach to post-process river forecasts first introduced by Wood et al. 

(2009) and further elaborated by Weerts et al. (2011) and López López et al. (2014). The 

Weerts study achieved impressive results in estimating the 50% and 90% confidence 

interval of river-stage forecasts for three case studies in England and Wales using QR 

with calibration and validation datasets spanning two years each.” 

 

285, 23 – given the previous comment, this statement is incorrect and should be removed. The 

paper should recognize the earlier work and related ideas therein. 

Done.  

 

285,25 – this paragraph summarizes results, and seems out of place. Better to state that QR is 

conditioned on several factors in the study, and say what those are and why they are considered, 

than to the tell the outcome (here) of doing so. 

 I agree. I re-wrote that paragraph: 

“Identifying the best-performing set of independent variables is central to this paper. All 

possible combinations of the following predictors have been studied: forecast, rate of rise 

of water levels in past hours, and the past forecast errors . The performance of these joint 

predictors has been measured and compared using the Brier Skill Score (BSS). This 

exercise has been repeated for various water levels and lead times. Additionally, the 

robustness of the resulting QR configurations across different sizes of training datasets, 

locations, lead times, water levels, and forecast year has been assessed. ” 

 

286,10 – having established earlier that Weerts, and I suggest also Wood, introduced QR, it is 

not necessary to return to it repeatedly in the paper (eg 286, 15, 19 etc). Overall, I think the 

paper should de-emphasize the verbiage about ‘additions’ and ‘further development’ in contrast 

to an ‘original method’, especially since the rise-conditioned error approach actually was the 

first method introduced at a national scientific meeting. Instead, just emphasize what has been 

done, as it is good work, and the paper can stand on its efforts alone, without requiring the label 

of being ‘new’ or ‘first’. 

Thank you for the compliments. Please see my answer to general comment 1. The 

paragraph now reads as follows: 
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“The paper is structured as follows. The Method section reviews quantile regression, 

introduces the performance measure, and discusses the performed analyses and data. The 

Results section first reviews the overall forecast error for the dataset. It then describes the 

results of identifying the best-performing set of independent variables. Finally, it discusses 

the robustness of the studied QR configurations. The fourth and last section presents the 

conclusions and proposes further research ideas.” 

 

286,20 – I would just write here that the work combines elements of Weerts et al and Wood et al, 

and also does [b] and [c] (though take out the word ‘more’ – not needed, and perhaps 

debatable). 

Please see my answer to general comment 1. The paragraph now reads as follows: 

“The use of quantile regression to estimate the error distribution of river-stage forecasts 

has first been introduced by Woods et al. (2009) for the Lewis River in Washington State. 

Later, Weerts et al. (2011) applied it to river catchments in England and Wales. In this 

paper, elements of both studies are combined. However, our predictand is the probability 

of exceeding flood stages rather than confidence bounds. Additionally, this study tests the 

robustness of the technique across locations, lead times, event thresholds, forecast years, 

and the size of training dataset is tested. To develop the different QR configurations and 

to compare their performance, the Brier Skill Score (BSS) is used.” 

 

287, 21 – Here and throughout the rest of the paper, please reframe the presentation of Weerts et 

al (2011) as the ‘original’ implementation focusing only on the forecast as predictor, with an 

‘addition’ being the use of other predictors or conditioning factors – as this addition is quite 

clearly described in the earlier Wood et al (2009). Both work should be recognized, as they are 

citable/viewable by the field, and assigning the term ‘original’ to the second reference is 

misleading. Your paper, as noted above, makes other valuable contributions in addition to 

exploring these ideas, and does not need to work so hard to distinguish itself. Perhaps call the 

Weerts version the ‘forecast-based’ or ‘W11’ approach, versus multiple predictor approaches, 

or any other labeling that seems better. 

Please see my answer to general comment 1. The paragraph now reads as follows: 

“When applying QR to river forecasts, Weerts et al. (2011) transformed the forecast 

values and the corresponding forecast errors into the Gaussian domain using Normal 

Quantile Transformation (NQT) to account for heteroscedasticity. Detailed instructions to 

perform NQT can be found in Bogner et al. (2012).” 

 

289, 16 – again, I object to the characterization that exceedence prob. is ‘more useful’ for 

decisionmaking than confidence intervals. This really depends on the decision, and I have 

actually more often, in forecast office settings, heard users ask about confidence than risk of 

exceedence, though again, it depends on the use. There is no reason to argue this point in the 

paper. Both uses of the uncertainty are valuable, and I support the authors focusing on the risk 
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of exceedence predictand, and stating that is ‘also important’ or even ‘more useful for some 

users’. But the assertion that it is somehow categorically more useful is needlessly provincial, 

and can be removed. 

Please see my answer to general comment 3. I changed this sentence to: 

“First, to be able to optimize model performance it is best to choose a single measure.” 

 

Section 2.3 – as per earlier comments, suggest retitling this ‘Inclusion of additional independent 

variables’. Please reference Wood et al (2009) as described earlier in recognizing the value of 

including rise rate and lead time as variables (this can be done obliquely, eg, “. . .as noted 

earlier, rise rate and lead time have been previously shown to be informative independent 

variables. We assess these factors as well as . . .” etc. Also, please give more detail (ie, an 

update of equations 1 &/or 2) to show mathematically how the additional predictors were 

included. 

 The section now reads: 

“2.3 Identifying the best-performing sets of independent variables 

The challenge is to identify a well-performing set of predictors that is both parsimonious and 

comprehensive. Wood et al. (2009) found rate of rise and lead time to be informative 

independent variables. Weerts et al. (2011) achieved good results using only the forecast itself as 

predictor. Besides these variables, the most obvious predictors to include are the observed water 

level 24 and 48 hours ago, the forecast error 24 and 48 hours ago (i.e., the difference between the 

current water level at issue time of the forecast and the forecast that was produced 24/48 hours 

ago), or the time of the year, e.g., using month or season as categorical predictors. Additional 

potential independent variables are the water levels observed up- and downstream at various 

times, the precipitation upstream of the catchment area, and the precipitation forecast. However, 

requesting the corresponding precipitation and precipitation forecast requires an extensive effort 

or direct access to the database at the National Climatic Data Center (NCDC). 

 In preliminary trials on two case studies (gages HARI2 and HYNI2), it was found that the 

rates of rise and the forecast errors are better predictors than the water levels observed in 

previous days. After all, the observed water levels are used to compute the rates of rise and 

forecast errors, so that these latter variables include the information of the former variable. It was 

also found that season and months are not significant in quantile regression configurations to 

predict the quantiles of the forecast error. Probably, the time of the year is already reflected in 

the observed water levels and forecast errors in the previous days.  

To determine which set of predictors performs best in generating probabilistic forecasts, 

all 31 possible combinations of the forecast (fcst), the rate of rise in the last 24 and 48 hours 

(rr24, rr48), and the forecast error 24 and 48 hours ago (err24, err48) – see Equation 5 – were 

tested for 82 gages that the NCRFC issues forecasts for every morning (Error! Reference 

source not found.). Based on the Bier Skill Score, it was determined which joint predictor on 
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average and most often leads to the best out-of-sample results for various lead times and water 

levels.  

Equation 5: QR configuration without NQT, with percentiles of the forecast error as the 

dependent variable and varying combinations of the five independent variables. This 

equation was used to predict the water level distribution for each day at 82 gages with 

different lead times.  

𝐹𝜏(𝑡) = 𝑓𝑐𝑠𝑡(𝑡) + 𝑎𝑓𝑐𝑠𝑡,𝜏 ∗ 𝑓𝑐𝑠𝑡(𝑡) + 𝑎𝑟𝑟24,𝜏 ∗ 𝑟𝑟24(𝑡) + 𝑎𝑟𝑟48,𝜏 ∗ 𝑟𝑟48(𝑡)

+ 𝑎𝑒𝑟𝑟24,𝜏 ∗ 𝑒𝑟𝑟24(𝑡) + 𝑎𝑒𝑟𝑟48,𝜏 ∗ 𝑒𝑟𝑟48(𝑡) + 𝑏𝜏 

with  Fτ(t)     – estimated forecast associated with percentile τ and time t 

 fcst(t)   – original forecast at time t  

rr24(t), rr48(t)  – rates of rise in the last 24 and 48 hours at time t 

err24(t), err48(t) – forecast errors 24 and 48 hours ago (e.g., the original forecast) at 

time t 

axx,τ , bτ – configuration coefficients; forced to be zero if the predictor is 

excluded from the joint predictor that is being studied.  

Table 1: Joint predictors. “ 

293,16 – again, this is a needlessly narrow view, as what aspects of the forecast PDF are 

required entirely depends on the decision model to which the forecasts may be input. For 

hydropower optimization, for instance, the full PDF of the forecast would be desired, and is 

‘decision relevant’ input. I think all but the last sentence of this paragraph should be removed, 

and the remaining sentence added to the preceding paragraph. 

 Please see my answer to general comment 3. That motivation was superfluous in the 

method section anyways, so I shortened the sentence: 

“Then, we calculate the probability with which various water levels (called event 

thresholds hereafter) will be exceeded.” 

 

294,7 – (1) this is clearly quite a lot of work (which would lessen its operational applicability), 

and a somewhat brute force approach to determining the best functions. Can the authors suggest 

any more expedient alternatives to the more or less ‘trial and error’ search for the best predictor 

combinations? Is there an analogue to ‘stepwise regression’ here, perhaps? In stepwise fit 

approaches to MLR, there is typically a stopping criterion that discourages the addition of new 

predictor variables – would any similar measure be useable here? (2) Later comments in Section 

3.2.2 suggest that there may be overfitting with larger predictor sets.  (3)Overall, the results 

presentation is quite long, although the figures do support a range of conclusions of the paper, 

and most are of interest. I suggest the authors look for chances to remove a few of the figures 
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and/or tables, which may be overkill, especially if they jointly support a conclusions, but I leave 

it up to them. 

(1) Yes, this is definitely a brute force approach. Of course, stepwise regression would be a much 

more elegant method. However, we felt that applying stepwise regression to QR in a 

mathematically responsible way would require too much of our time and resources. Additionally, 

we are not aware of a R-package or example for stepwise QR. Considering the costs and the 

benefits of figuring implementing stepwise QR, we felt that we could get a good idea of how 

different sets of independent variables compare by using the theoretically much simpler brute 

force approach. Our ambition was to improve the application of QR to estimating forecast errors, 

rather than further developing QR itself. Stepwise QR would probably warrant the subject of a 

stand-alone paper, rather than be a detail in a paper on river forecasting. We included this 

suggestion in the section “Further Work”: 

“Finally, this paper uses a brute force approach by simply calculating and comparing all 

possible combinations of independent variables. Mathematically more challenging stepwise 

quantile regression would not only be more elegant, but also provide better safeguards 

against overfitting the data. ” 

 

(2) Regarding overfitting, especially for extreme events, I added the following text in section 

3.2.2.:  

“For moderate and major flood stage, combinations with fewer independent variables rank 

higher on average. The most likely explanation is that extreme events like major and moderate 

flood stage are infrequent. After all, major flood stage equals 90
th

 to 100
th

 percentiles at the 

various gages. This data scarcity can lead to overfitting when using more predictors.” 

I re-ran some of the analysis in-sample, and indeed the model does perform much better 

for the training than for the verification dataset, see figures below. That is sure sign of 

overfitting.  
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Training dataset (in-sample) Verification dataset (out-of-sample) 

  
 

 

 

 

(3) Finally, please refer to my answer to the general comment 4.  

 

298, 7 – (1) Please provide greater insight into why the inclusion of the forecast itself might 

degrade the performance of the post-processed forecasts. (2) Elsewhere, findings that, eg, more 

variables lead to worse performance at higher stages, also bear more physical explanation. 

What aspect of the variables could make them damaging to the high threshold models? (3) Also, 

it’s not entirely clear that figures 11-12 support the assertion that “Without a transformation 

into the normal domain, the forecast does not provide a lot of information for the QR model” – 

giving metrics of these relationships (rˆ2 for instance) may help show that in fact, they are 

significantly different with normalization. There is a lot of scatter in both figs 11 & 12. 

 

(1+3) I clarified the explanation a bit: 

“Without a transformation into the normal domain, the scatterplot of forecast and forecast 

error does not show a trend. After NQT, the percentiles show trends laid out like a fan. In 

contrast, the other four predictors become uniform distributions after NQT 

transformation.  There is no trend detectable anymore. Further research is necessary to 

reconcile these two types of predictors. A possible solution could be to define QR 

configurations for subsets of the transformed dependent and independent variable. “ 

The variables other than the forecast have very similar distributions (see plots below). 

Mapping them onto normal distributions (i.e., “smearing them out more equally”), removes the 
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bit of trend that is visible in the untransformed scatterplots. However, the forecast is very 

differently distributed. Transforming the data does obviously not change the physical 

relationship between these variables, but it does change the statistical relationship bringing out a 

relationship between forecast and forecast error that was not seen before.  

Interestingly, Weerts et al. originally transform the forecast to account for 

heteroscedasticity, but it turns out that quantile regression would have been much more difficult, 

if not impossible, without NQT. So accounting for heteroscedasticity made the approach possible 

at all.  

  

 
 

  

  
 

Showing the R2 of the relationships would not cover what I am trying to say. Even after 

NQT, linear regression would not detect a correlation between forecast and forecast error. But 

there are trends in the percentiles. They “stick out” from the origin in a fan-like fashion. 
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And yes, there is a lot of scatter in these scatterplots. This partly explains the mediocre 

performance of the forecast as shown in Figure 13-17.  

 

(2) Please see my response to comment 294,7 (2).  

 

300,7 – I may be misinterpreting the figures (19,20), but it appears that length of record does 

matter (longer is better) somewhat more than the authors suggest, and more for the lower 

thresholds, which is surprising – I’d think those were better represented in any length record 

than high extremes, given the typical skew of flow distributions. Please comment or provide a 

more nuanced assessment. 

I was not referring to Figure 19 and 20 here, but rather to the regression summarized in Table 4 

(now Table 2). That regression generalizes the results that were illustrated in Figure 19 and 20 

for just two gages. The size of the dataset was the only independent variable that was not 

statistically significant in this regression, meaning that the size of the dataset therefore has at the 

very least much less impact than gage, lead time, and event threshold etc. on forecast 

performance. However, your comment is still valid: Event thresholds are statistically significant 

in that regression, meaning that forecasts for low thresholds perform less well. As a likely 

explanation, I mention that the forecast error is very small for low water levels, so that there is 

little variability to run a regression on. You are right though, that forecast for low event 

thresholds seem to be particularly disappointing when the training set was short. While I did not 

explicitly study these interactions, I qualified my statements a bit. Here are the following 

relevant, updated text experts: 

“Figure 21 and Figure 22 show that training datasets shorter than three years result in 

very low BSSs for low event thresholds (Q10) at Henry and Hardin. For the other event 

thresholds, it barely matters for the BSS how many years are included in the training 

dataset. That is good news, … 

… 

To generalize the result, the same analysis as just described for Hardin and Henry was 

repeated for all 82 gages. Following that, a regression analysis was executed with the 

BSS score as the dependent variable and the river gages and forecast years as factorial 

independent variables and the lead time, event thresholds, and number of training years 

as numerical independent variables (Table 2). The forecast performance was found to 

vary statistically significantly across all those dimensions except the number of training 

years.  

… 

A closer look at the regression coefficients (Table 2) provides interesting insights. For 

low event thresholds, the BSSs are much worse than for high thresholds. The QR 

configurations might be performing less well for low event thresholds, because the 

variance in the dependent variable – the forecast error – is smaller. After all, river 

forecasts have much smaller errors for lower water levels.  The illustrative cases of Henry 
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and Hardin, described above, indicate that using longer time series to predict exceedance 

probabilities of low event thresholds improves forecast performance.” 

 

301,22 – as per earlier comments, Wood et al (2009) preceded this study in the American 

context, and further argued for and demonstrated the use of the ‘additional’ variables of both 

river rise and lead time. Please adjust text appropriately. 

 Please see my answer on general comment 1. I deleted that sentence and updated the 

Conclusions section accordingly. For the sake of brevity, I did not copy the whole Conclusions 

section into this letter. Please refer to the new version of the paper.  

 

301,26 – Instead: “This work confirms a prior finding that including additional predictors such 

as rise rates in the past 24 and 48 h benefits the resolution of the resulting probabilistic 

forecasts. In the first comprehensive assessment of various combinations of. . ., we found that . . . 

” 

This paragraph now reads: 

“When compared to the configuration using only the forecast, it was found that including 

rates of rise in the past 24 and 48 hours and the forecast errors of 24 and 48 hours ago as 

independent variables improves the performance of the QR configuration, as measured by 

the Brier Skill Score. This confirms Wood et al.’s (2009) finding that QR error models 

should be a function of rate of rise and lead time. The configuration with the forecast as 

the only independent variable, as studied by Weerts et al. (2011), produced estimates with 

high reliability. Including the other four predictors mentioned above mainly increases the 

resolution.” 

 

302,10 –It’s inaccurate to call these ‘the new independent variables’ as rise rate was used 

earlier. 

Updated: 

“When forming a joint predictor, the independent variables rates of rise and forecast 

errors do not combine well with the forecast itself.” 

 

 

302,14 – it’s not clear why these variables do not lend themselves to transformation – please be 

more specific and speculate as to why you are finding this. Are they distributed such that the 

transformation reduces their correlation with the predictand? It’s an interesting result, but not 

intuitive why it should be.  

Also, see my answer to comment “298, 7”. 
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We hope that you find that these changes to have satisfactorily addressed the reviewer’s 

concerns. If there are additional changes that you believe are needed, please let us know. 

 

Regards, 

Frauke Hoss, Paul Fischbeck 
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Response to Reviewer #2 

 

February 4
th

, 2015 

 

Revision to Journal Paper 

Title: “Performance and Robustness of Probabilistic River Forecasts Computed with Quantile 

Regression based on Multiple Independent Variables in the North Central U.S.A.” 

Authors: Frauke Hoss, Paul Fischbeck 

 

Dear Jan, 

This letter outlines the changes we have made to our journal paper “Ten Strategies to 

Systematically Exploit All Options to Cope with Anthropogenic Climate Change”.  

 

General Comments: 

1) The manuscript could benefit from a more substantial “hydrological analysis” of the forecasts 

made. Post-processors can be used to find statistical relations between predictors and 

predictands. There needs to be correlation and causality. The paper could benefit from a more 

in-depth analysis of the latter: what does the ‘forecast error’ depend on? Here, the authors 

choose rate of rise and past forecast error: these appear to be more or less randomly chosen, 

and are subsequently applied to all forecasting locations considered. However, I think that an 

analysis of the hydrology of the basins considered, in conjunction with the forecasting models for 

those basins, could reveal important information on how those models are expected to perform. 

How are the models calibrated? What does this mean for extreme events? Is the relation between 

predictors and predictand stationary across ‘normal flow regimes’ and ‘extremes’? This likely 

varies with basin, and therefore one should consider varying post-processing configurations with 

basin also. 

 

(1) How were the independent variables chosen: 

The independent variables were not randomly chosen. It says in the paper:  

“In preliminary trials on two case studies (gages HARI2 and HYNI2), it was found that the rates 

of rise and the forecast errors are better predictors than the water levels observed in previous 

days. After all, the observed water levels are used to compute the rates of rise and forecast errors, 

so that these latter variables include the information of the former variable. It was also found that 

season and months are not significant in quantile regression configurations to predict the 

quantiles of the forecast error. Probably, the time of the year is already reflected in the 

observed water level and forecast error in the previous days. ” 

For the sake of brevity, I did not include the results of these regressions. I rather wanted to 

use those pages to describe our results in depth. I added the bold part to the text excerpt above to 
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clarify my intuition why this choice of variables makes sense. It was also explained that other 

independent variables would be useful, but that that data is hard to come by.  

 

(2) Thoughts on the analysis: 

As I have also explained in my answer to your special comment 7 below, I – like Wood et al. – 

see this post-processor as something that small organizations can use to make quick estimates of 

uncertainty.  

As to extreme events vs. normal flow, I do analyze the performance of QR configurations for 

eight event thresholds separately. I find that a one-size-fits-all approach performs well for all 

gages unless extremely high events are forecasted. In the robustness section, I describe that 

forecast performance depends very much on river gage. So the hydrological circumstances at 

each river gage do seem to make a difference. I comment on basin-based analysis in response to 

your comment 295,7. 

 

2) There is one important assumption underlying the use of statistical post-processors: 

stationarity of the joint predictor, predict and distributions. The paper would benefit from a 

discussion thereof, particularly in relation to the results section, and the ‘robustness’ section 

contained therein. 

Added sentences indicated in bold in “Robustness” section:  

“Figure 21 and Figure 22 show that training datasets shorter than three years result in 

very low BSSs for low event thresholds (Q10) at Henry and Hardin. For the other event 

thresholds, it barely matters for the BSS how many years are included in the training 

dataset. That is good news, if stationarity cannot be assumed (Milly et al., 2008), a step-

change in river regime has occurred, or forecast data have not been archived in the past. 

In those cases, only short training datasets are available. Only needing short time series 

to define a skillful QR configuration implies that the configuration parameters can 

be updated regularly. This way, changing relationships between predictors etc. can 

be taken into account.” 

 

 

3) “First US application” is irrelevant to the science and also incorrect, as Wood et al (see 

reference in Weerts et al, 2011) applied QR previously. This comes back a couple of times in the 

paper. Also, QR was originally devised by Roger Koenker; not by Weerts et al (I wish!). 

I deleted all references of this being the first application of QR to the American context 

throughout the paper and referenced Wood’s presentation throughout the paper. See the letter to 

the other reviewer for more detail.  

In section 2.1 it already said:  

“Quantile Regression was first introduced by Koenker (2005; 1978).” 

 

4) Different users have different needs for uncertainty information; it is not universally true that 

users benefit most from probabilities of exceedence or non-exceedance. Likewise, not all users 

are interested in extreme events per sé. This comes back a couple of times in the paper. 

True. I was writing another paper on emergency management, so that that group of 

clients was dominant in my head. I removed this claim throughout the paper.  
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5) I would recommend to streamline use of terms: 

○ ‘predictor’ or ‘independent variable’ 

○ ‘predictand’ or ‘dependent variable’ 

○ preferably omit use of ‘variable’ in context of statistical post-processors, as its interpretation 

can be ambiguous 

○ ‘configuration’ rather than ‘model’ (to avoid confusion withunderlying hydrological models) 

Updated this throughout the paper.  

 

6) Please consider removing the footnotes. If the text contained therein is important, include it in 

the main body of the paper. If not, youmay want to consider omitting it altogether. 

Footnotes were removed throughout the paper.  

 

7) Practicalities of data access are not too relevant to the science and I would suggest omitting 

descriptions of why certain data sources could (not) be accessed and how much effort that would 

require. Instead, you could turn the argument around and say: “this and this is available and 

we’re trying to assess if there is any signal that can contribute to better probabilistic forecasts.” 

The availability of data is often the reason why I chose certain model configurations. I 

want to make clear, that the data IS accessible, if anybody wishes to continue this study, but that 

I have not used the data because it is so difficult to access. I want readers to be aware that there is 

a way forward if they wish to further develop this technique.  

  

Specific comments 

 

Introduction: 

1) Some elements can be safely omitted from the introduction: 

○ Discussion on QPF forecasts 

○ Discussion of RFC produced “outlooks” 

Okay, I deleted these parts.  

 

2) Verifying by means of BSS only is somewhat limited I think, but it does fit with the authors’ 

wish to verify exceedence probabilities only. Why not, however, use a range of verification 

metrics? See, for example, some of the recent Brown and Seo papers as well as some of my own 

work (where the verification approach was inspired on the 

Brown/Seo papers). 

The reason why I only use one metric, the BSS, is simple. When optimizing, I need an 

objective function. I cannot optimize configuration performance for more than one variable. 

However, to give the reader some sense of how well the configurations perform in terms of other 

metrics, I included Figure 18 (now Figure 20).  

 

3) “Rate of rise” is more commonly used than “rise rate” I think. 

Okay, I changed that.  

 

2.2 Brier Skill Score: 
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4) The ‘method’ section would benefit from a subsection on verification metrics. That section 

would then include the current sub-section on BSS, but also some discussion of other metrics 

now included in the ‘results’ section. 

As described in my comment above, the Brier Skill Score plays a central role in 

optimizing the QR configurations. In my opinion, it needs therefore thorough discussion.  

The other metrics are mentioned in the Results section in order to give the interested 

reader a feeling of what the BSS-based optimization achieves measured by those metric. A very 

short description of each metric is given there. I place those descriptions there, because otherwise 

the reader has to go back to the Method section. I thought that given the brevity of the 

explanations unnecessary.  

 

5) A decomposition of Brier’s probability score is included; what’s missing, is a note on how 

these decompositions are computed in terms of skill. See one of the Brown and Seo papers for 

how that’s done. Also, no quantified decompositions are shown in the results/analysis section? 

I added the equation below. Figure 18 (now Figure 20) already showed the performance in terms 

of quantified decompositions.   

 

“Equation 4 defines the decomposition into resolution and reliability components described 

above (Brown and Seo, 2013). 

Equation 1: Decomposition of Brier Skill Score 

𝐵𝑆𝑆 = 1 −
𝐵𝑆

�̅�(1−�̅�)
=

𝑅𝐸𝑆

�̅�(1−�̅�)
−

𝑅𝐸𝐿

�̅�(1−�̅�)
  

with  BSS  – Brier Skill Score 

BS  – Brier Score 

 RES  – Resolution 

 REL – Reliability 

ō  – Frequency of binary event occurring 

 o̅(1 − o̅) – Climatological variance “ 

 

2.3 Proposed addition 

6) The current title “Proposed addition: more than one independent variable” suggests that it is 

the *number* of predictors that’s important. This is not necessarily so - it’s content, not just 

quantity that’s relevant. Please consider retitling this section. 

The new title is: 

“Identifying the best-performing sets of independent variables” 

 

7) This section could really benefit from some ‘hydrological intelligence’: what are the factors 

determining level of accuracy of model predictions? Are these already included in the model 

itself somehow? If so, how? If not, why not? To me, it is still an open question: what to include in 

a model, and what to include in a post-processor? Where is the boundary between statistical 

modeling and modeling of physical processes? This point is one that the authors should also re-

visit in the discussion/conclusions section. 
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I think, this discussion goes beyond the scope of this paper. Yes, variables as rate of rise 

are at least indirectly included in the “physical” model, referred to as hydrological model 

hereafter. However, I started researching post-processors thinking that small consultancies could 

offer statistical post-processors to clients, such as emergency management agencies. As long as 

NWS is not providing uncertainty information (which it might not do for short-term forecasts for 

many more years), that would be a valuable service. Coincidently, that is exactly the application 

that Wood talks about in his presentation in 2009. In short, I did not see post-processors as part 

of the traditional forecast process taking place at NWS. 

Lastly, the post-processor discussed here has a different objective than the current 

hydrological models. It estimates uncertainty. It is my understanding that the hydrological 

models can only estimate uncertainty by producing ensembles. Since that means running the 

hydrological model with different input etc., the model itself does not produce an uncertainty 

estimate.    

 Having said that, I assume that variables such as rate of rise would have no explanatory 

power, if they had been sufficiently included in the hydrological model, and if that model had 

been well calibrated. As long as those variables add to the performance of the post-processor, I 

do not see why they should not be included. I do not have access to the NWS models, so I cannot 

assess, why those variables have explanatory power in the post-processor, even though they have 

probably at least implicitly been included in the hydrological model.  

 My personal preference would be to build a hydrological model for the whole watershed 

and to use post-processors to improve performance and reduce bias for single gages and flood 

stages. Similarly, I would intuitively opt for including hydrological knowledge of the basin in the 

statistical model and use purely mathematical/statistical methods in the post-processor to remove 

(local) biases, etc. At the end, I don’t think that there can be or should be a strict separation. 

Many statistical methods are based on variables which ultimately have a physical meaning. They 

might add local information that cannot be account for in the larger hydrological model.  

This is such a fundamental discussion that it would warrant a separate discussion paper 

rather than a section in the discussion section of this paper. Let me know if you want to write one 

together! ;) 

 

3) Table 1: “forecast error 24 hours ago”. I understand this to be the difference between the 

current (i.e. at issue time of the forecast) water level and the forecast that was produced 24/48 

hours ago - correct? Maybe good to state this. 

Correct. The following sentence has been added to Table 1 and in section 2.3: 

“The forecast error equals the difference between the current (i.e. at issue time of the 

forecast) water level and the forecast that was produced 24/48 hours ago.” 

 

2.5 Data: 

8) First sentence may be omitted, or moved to the introduction. 

I merged the first two sentences of this section to be:  

“The National Weather Service (NWS)’s daily short-term river forecasts predict the stage 

height in six-hour intervals for up to five days ahead (20 6-hour intervals).” 

 

9) The manuscript would benefit from a custom made map showing the forecasting locations and 

basin delineations. 
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I included the basin sizes in the figure, because those are in my opinion more relevant for 

this study than the delineations: 

 

 Figure 3: River gages for which the North Central River Forecast Centers publishes 

forecasts daily. Henry (HYNI2) and Hardin (HARI2) are  indicated by the upper and lower 

red arrow respectively.  For gages indicated by black dots the basin size is missing. 

 

3.2.2 Best performing combinations 

 

10) The forecasts for extreme conditions perform worse when using multiple predictors. Why - 

overfitting? Some in-depth analysis would be good. 

Yes, that is my intuition, too. I added the following sentence:  

“The most likely explanation is that extreme events like major and moderate flood stage are 

infrequent. After all, major flood stage equals 90
th

 to 100
th

 percentiles at the various gages. This 

data scarcity can lead to overfitting when using more predictors.” 

I re-ran some of the analysis in-sample, and indeed the model does perform much better for the 

training than for the verification dataset, see figures below. That is sure sign of overfitting.  
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Training dataset (in-sample) Verification dataset (out-of-sample) 

  
 

 

3.3 Robustness 

11) I think the ‘robustness’ analysis could, and should, be simplified by using a leave-one-year-

out analysis. Length of training set is less relevant than stationarity of joint predictand, predictor 

distributions. Why not simply use all of the available data most efficiently and then discuss any 

drops in forecast quality? Also, the current analysis results in a difference in sample size and 

this would require an analysis of the uncertainty in resulting BSS – which is likely bigger for 

smaller samples. With a leave-one-year-out analysis, sample size would be equal and the authors 

would be more easily forgiven for not analysing uncertainty. 

I think the length of the training dataset is very important. In an ideal world, one would 

want to build reliable, skillful models on the least amount of data possible. That would not only 

save computation time, but alleviates the problems of non-stationarity as a consequence of 

climate variability and climate change and human intervention. I think, if possible stationarity 

should not be assumed. Urbanization and other human interventions are just too ubiquitous. I 

was interested to find out, how short training time series can be before the results start dropping 

significantly.  

In sum, I prefer sticking with the current method. I added a qualifying statement though, 

that the small size of the training dataset leads to small BSSs for low thresholds (Q10):  

“Figure 21 and Figure 22 show that training datasets shorter than three years result in 

very low BSSs for low event thresholds (Q10) at Henry and Hardin. For the other event 

thresholds, it barely matters for the BSS how many years are included in the training 

dataset. That is good news, … 

… 

To generalize the result, the same analysis as just described for Hardin and Henry was 

repeated for all 82 gages. Following that, a regression analysis was executed with the 

BSS score as the dependent variable and the river gages and forecast years as factorial 

independent variables and the lead time, event thresholds, and number of training years 
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as numerical independent variables (Table 2). The forecast performance was found to 

vary statistically significantly across all those dimensions except the number of training 

years.  

… 

A closer look at the regression coefficients (Table 2) provides interesting insights. For 

low event thresholds, the BSSs are much worse than for high thresholds. The QR 

configurations might be performing less well for low event thresholds, because the 

variance in the dependent variable – the forecast error – is smaller. After all, river 

forecasts have much smaller errors for lower water levels.  The illustrative cases of Henry 

and Hardin, described above, indicate that using longer time series to predict exceedance 

probabilities of low event thresholds improves forecast performance.” 

 

12) Some hydrologic analysis could contribute to explaining why forecast quality is different 

between locations. 

Besides watershed size and location (see comment 295,7) and the predictors mentioned in 

response (2) to your general comment 1, I currently don’t have more data on the individual 

gages. A possible dataset to add in would be GAGES 

(http://water.usgs.gov/GIS/metadata/usgswrd/XML/gagesII_Sept2011.xml), but that is for 

another paper. Like I have written in response to comment 7, that level of detail does not belong 

into a post-processor, in my opinion.  

For your convenience, I plotted part of the upper right plot in Figure 17 onto a map, see below. It 

confirms what I said in response to comment 295,7. 
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“Future work” 

13) Yes, more analysis on which predictors to use could work. Please refer to my earlier 

comments also on statistical modeling versus numerical modeling of physical processes, and on 

using knowledge of the hydrology of basins to determine meaningful predictors. 

Please see my answer to your specific comment 7. 

 

Figures: 

14) The multi-plot figures contain a lot of white space between plots. As some horizontal and 

vertical axes are identical across plots within the figure, I would suggest eliminating the in-

between space altogether. In figures 10 and 11, this can be done for the vertical axes also. In R: 

par(mar = c(.5,0,0,0)) and then plot(…, xaxt=”n”) for plots where you can omit horizontal axis. 

Did so for all figures. Paint was quicker than R in this case.  

 

Additional specific comments 

Additional specific comments are included in attached, annotated PDF. 



24 

 

You reviewed the paper very, very thoroughly. 109 comments! Thank you, this is valuable 

feedback! 

 

282, 14: These are two contradicting statements on the effect of adding four additional 

predictors. 

The configuration adding the other four variables to the forecast does perform better than the 

forecast-only configuration. But the configurations omitting the forecast, perform even better. So 

this is not necessarily a contradiction.  

282,18: as a philosophical side note, I am not sure if *forecasts* are uncertain. the future value 

of the variable of interest is, yes, but isn't the forecast certain as soon as it is issued?as a 

philosophical side note, I am not sure if *forecasts* are uncertain. the future value of the 

variable of interest is, yes, but isn't the forecast certain as soon as it is issued? 

The sentence now reads: “River-stage forecasts are no crystal ball; the future remains uncertain. 

“ 

283,1 This statement doesn't really fit the flow of the paragraph. Would recommend to link it to 

river stage forecasts. 

This sentence now reads:” Including uncertainty in river forecast would therefore be valuable, 

just as has been recommended for weather forecasts in general (e.g., National Research Council, 

2006).” 

283,4: Personally, I prefer “estimate” over “quantify” 

Changed throughout paper. 

283,4: *Certain* sources of uncertainty is somewhat unfortunate. Check the Regonda paper for 

a useful formulation.  

The sentence now reads: “Those addressing major sources of uncertainty individually in the 

output, e.g., input uncertainty and hydrological uncertainty, and those taking into account all 

sources of uncertainty in a lumped fashion.” 

283,10: Define “it”. 

The sentence now reads: “On the downside, the approach is expensive to develop, maintain and 

run.” 

283,15: What are these “major sources”? 

The sentence now reads: “The National Weather Service has chosen to quantify the most 

significant sources of uncertainty using ensemble techniques (Demargne et al., 2013).” 

283,15: 

The sentence now reads: “Currently, the National Weather Service does not routinely publish 

uncertainty information along with their short-term river-stage forecast (Figure 1).” 

283,18 & 283,22 & 283, 26 & 284,8: 

I omitted those sections.  

284,11: What’s the relevance of this paragraph. 
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I deleted the sentence on implementation in the RFCs. The paragraph provides background on 

post-processors used in river forecasting. The editor had explicitly asked for a more 

comprehensive literature review.  

284,16: Do Solomatine and Shrestha provide evidence for this statement, or do they merely state 

this? 

I deleted that sentence. It is not relevant for the argumentation.  

284,18: Publicly available does not equate relatively resources. Please rephrase or better even, 

omit altogether.  

The sentence now reads: “To make this approach useful for actors with limited resources, we 

exclusively use publicly available data to define our configurations.” 

284,23: *metrics* should maybe be *measure*? 

Correct. Changed throughout paper.  

284,26: I am not a fan of “method”, either. How about “technique”? 

Changed throughout paper.  

284,26: I am not a fan of “among others”.  

The sentence now reads: “These techniques differ in a number of ways, including their sub-

setting of data, and the output.” 

285,11: Is that probability of exceedance the dependent variable? Or are you predicting 

distributions and then, from those distributions, determining the probs of exceedance? 

Technically latter, effectively both. The forecast output is the exceedance probability. The 

performance measure only evaluates that final output.  

285,14: Can you substantiate that claim with evidence or a reference? 

I removed this claim throughout the paper.  

285,24: … there have been applications in the US context so your statement needs qualification.  

Changed throughout the paper. See also my answer to general comment 3.  

286,1 & 286,6: 

Reacting to a comment by the other reviewer, I omitted this paragraph.  

286,10: As much as I wish we had introduced QR, I think we merely applied it to hydrologic 

forecasting… 

The sentence now reads: “The paper is structured as follows. The Method section reviews 

quantile regression, introduces the performance measure, and discusses the performed analyses 

and data.” 

286,19: Omit “the”. 

Done. 

286,25: … if you’re extracting Pexc from a QR-estimated distribution then that’s hardly “a way 

to further develop” a technique.  
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Re-phrased paragraph: “. In this paper, elements of both studies are combined. However, our 

predictand is the probability of exceeding flood stages rather than confidence bounds. 

Additionally, this study tests the robustness of the technique across locations, lead times, event 

thresholds, forecast years, and the size of training dataset is tested. To develop the different QR 

configurations and to compare their performance, the Brier Skill Score (BSS) is used.” 

287, 13: QR and OLS regression differ in that assumption of how the data is distributed (non-

parametrically vs. normally distributed).  

That discussion is similar to the comment in 285,11. Technically, you are right. However, I do 

think that effectively QR predicts a percentile while OLS predicts a mean. In any case, I find that 

a very easy-to-understand explanation, so I would like to leave it that way.  

287,18: rationale for probabilistic forecasting should be mentioned in the introduction, and 

surely there are better examples.  

This is a review of the quantile regression itself, not its application to hydrology. I think, there is 

value to show that it has been found to be valuable for many applications, not just hydrology.  

287, 23: A 2012 paper is unlikely to instruct a 2011 paper.  

The sentence now reads: “Detailed instructions to perform NQT can be found in Bogner et al. 

(2012).” 

288, 13: If you are not going to use NQT, then I would omit this elaborate description thereof. 

What’s the point? 

The point is that it later turns out that forecast cannot be combined well with the other 

independent variables exactly because of NQT.  

288,footnote: What’s the relevance of this footnote? 

As suggested by the other reviewer, I omitted all footnotes.  

289,4: This = that of Weerts or yours? 

Ours. Changed.  

289, 8: 

True! Changed.  

289,14: Yes, but why not use additional verification metrics? 

As I have written in answer to one of your earlier comments, the reason why I only use one 

metric, the BSS, is simple. When optimizing, I need an objective function. I cannot optimize 

configuration performance for more than one variable. However, to give the reader some sense 

of how well the configurations perform in terms of other metrics, I included Figure 18 (now 

Figure 20). 

289,21: This uncertainty is different from the predictive uncertainty you are estimating. I would 

add a brief clarification to that extent.  

I added the following sentence: “. This uncertainty is different than the forecast uncertainty that 

the technique studied in this paper estimates. Besides the uncertainty that can be mathematically 

explained, it also includes natural variability.” 
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289, footnote: I would recommend not using footnotes. 

As already suggested by the first reviewer, I omitted all footnotes.  

290, footnote: Wilks, 1995, is unlikely to refer to the R package.  

True. But the R-package is based on Wilks’ work.  

291, 3: The reliability curve for the forecast representing… 

Nice. New sentence: “The reliability curve for the forecast representing perfect reliability would 

follow the diagonal.” 

291,9: In terms of sharpness? All of the scores and decompositions pertain to performance vs. 

climatology. 

Better explained: “Resolution measures the difference between the predicted probability of an 

event on a given day and the observed average probability. When calculated for a time period 

longer than a day, the forecast performs better if the resolution term is higher. For example, for a 

gage where flood stage is exceeded on 5% of the days in a year, simply using the historical 

frequency as the forecast would mean forecasting that the probability of the water level 

exceeding flood stage is 5% on any given day. The accumulated difference between the 

predicted frequency and the historical average across a time period of several days would then be 

zero.”  

291,14: The curve for a forecast  

Changed accordingly.  

291,18: What’s the purpose of this statement pertaining to ROC? 

My adviser thought this was useful, if anybody else was going to try to apply the QR technique 

to different (non-hydrological) types of forecasts. In other fields of study, e.g., safety, the ROC is 

a very common measure of performance, especially in safety professions like emergency 

management.  

292,1: skill less than that of the reference forecast. Theoretically, the reference forecast could be 

very good. It is then unfair to say that the other forecast is devoid of skill maybe? 

The reference forecast is climatology here, i.e., predicting the average probability of an event 

every day. Is this formulation better? 

“A forecast possesses skill, i.e., performs better than the reference forecast (in this case 

climatology), if it is inside the shaded area in Error! Reference source not found.b (now Figure 

5b).” 

292,4: I disagree. The additional information may well constitute noise rather than a signal.  

Point taken. How about this: “The challenge is to identify a well-performing set of predictors that 

is both parsimonious and comprehensive.” 

292,8: rate of rise  

Changed throughout paper.  

292,9: “additional potential independent variables” 

Changed.  
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292,15: I think I know what you mean, but his formulation is ambiguous. Do you mean 

stratifying per month/season? Or using the date as another independent variable somehow? 

Please clarify. 

I meant the latter. The sentence explicitly lists potential predictors, there is no mentioning of 

stratification. I clarified: “…or the time of the year, e.g., using month or season as categorical 

predictors.” 

292,18: True, but this still doesn’t quite explain why rate of rise is a better predictor than water 

level observation.  

See my answer to your first general comment.  

292,19: 2^5 = 32, but one of these (no fcst, err, rr, at all) would not result in climatology, which 

is the baseline for BSS. 

Exactly, that is why that combination is not included, so that there are 31 combinations. The 

combination you describe would mean that the model had no variables, but only a constant.  

292,23: above? 

Correct, changed. 

293,5: at the river AT LOCATION X exceeds 

Good point. Added.  

293,9: Why only use these quantiles? Maybe as well calculate for every percentile, no? 

Especially if you are interpolating after the fact, this may have a positive effective on the 

predicted exc probs 

As I have written in response to your specific comment 7, I envisioned this technique to be used 

by companies like 3Tier where Wood works/worked. The choice to predict only these percentiles 

is the result of a cost-benefit consideration. The computation would take ~5 times longer, if we 

included all percentiles, which would not be justified by the marginal benefit in my opinion.  

293,10: This paragraph would benefit from an equation, to make sure that it is unambiguously 

clear what you are doing. If it helps: you may find the equations in our Lopez-Lopez paper 

useful.  

I started implementing what you suggested. But I came to think that those formulas make the 

paper unnecessarily much longer with limited benefit to clarification. Responding to a suggestion 

by the other reviewer I added the following part: 

“To determine which set of predictors performs best in generating probabilistic forecasts, 

all 31 possible combinations of the forecast (fcst), the rate of rise in the last 24 and 48 

hours (rr24, rr48), and the forecast error 24 and 48 hours ago (err24, err48) – see 

Equation 5 – were tested for 82 gages that the NCRFC issues forecasts for every morning 

(Error! Reference source not found.). Based on the Bier Skill Score, it was determined 

which joint predictor on average and most often leads to the best out-of-sample results for 

various lead times and water levels.  
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Equation 5: QR configuration without NQT, with percentiles of the forecast error as 

the dependent variable and varying combinations of the five independent variables. 

This equation was used to predict the water level distribution for each day at 82 

gages with different lead times.  

𝐹𝜏(𝑡) = 𝑓𝑐𝑠𝑡(𝑡) + 𝑎𝑓𝑐𝑠𝑡,𝜏 ∗ 𝑓𝑐𝑠𝑡(𝑡) + 𝑎𝑟𝑟24,𝜏 ∗ 𝑟𝑟24(𝑡) + 𝑎𝑟𝑟48,𝜏 ∗ 𝑟𝑟48(𝑡)

+ 𝑎𝑒𝑟𝑟24,𝜏 ∗ 𝑒𝑟𝑟24(𝑡) + 𝑎𝑒𝑟𝑟48,𝜏 ∗ 𝑒𝑟𝑟48(𝑡) + 𝑏𝜏 

with  Fτ(t)     – estimated forecast associated with percentile τ and time t 

  fcst(t)   – original forecast at time t  

rr24(t), rr48(t)  – rates of rise in the last 24 and 48 hours at time t 

err24(t), err48(t) – forecast errors 24 and 48 hours ago (e.g., the original 

forecast) at time t 

axx,τ , bτ – configuration coefficients; forced to be zero if the predictor is 

excluded from the joint predictor that is being studied.” 

293,11: use of the term model for each of the estimated quantiles is potentially confusing here. I 

would just refer to quantiles.  

I see what you mean. This is the new sentence: “Each predicted percentile contributes one point 

to that distribution.” 

293,16: This is irrelevant here: (1) You’ve made the point before, and (2) by construction, the 

Brier Score assesses the quality of event probabilities rather than the quality of the probability 

distributions.  

I deleted those two sentences. See also my response to your general comment 4.  

293,23: Not sure what “across all the days” means – does the statement pertain to sample size? 

Yes, it means that I use the forecast for all days in the verification dataset to calculate the BSS. 

New sentence: “To be able to compare various configurations, the Brier Skill Score is 

determined based on forecast exceedance probability for all days in the verification dataset.” 

294,5: four decision-relevant flood stages 

Changed. 

294,12: “four event thresholds” (may as well list the number thereof as you are doing this for all 

other items as well) 

Updated: “The result is 31 BSSs for 82 river gages for four different lead times (one to four 

days) and for eight event thresholds (i.e., flood stages or percentiles of the observed water level).  

” 

295,7:  

(1) It would be interesting (though not strictly required, I think) to analyze whether basin size 

affects forecast quality.  
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Well, we didn’t analyze basin size, but did look into the characteristics of the river gages in the 

regression in Table 4 (now Table 2). Figure 21 (now Figure 23) illustrates that poorer forecast 

performance is correlated with being located upstream a river or close to confluences. The 

position of the gage along the river relates to watershed size. In my opinion though, the sub-

average performance depends less on basin size. Rather, at the upstream gages the model is not 

able to “see” a flood wave coming down the river and at confluences of rivers the hydrology is 

more complex.  

(2) Are all 82 gages/basins you consider independent or do some constitute subbasins of others? 

Again, as you can see in Figure 21 (now Figure 23) and as I describe in the Data section, half of 

the gages is situated along the Mississippi and the Illinois River.  

(3) Not required, but maybe you could show an ecdf of basin size to visualize how basin size is 

distributed.  

I added ecdf in the Data section.  

 

Figure 4: Empirical cumulative density function (ecdf) of sizes of drainage area for the 

river gages that are being forecasted daily by the NCRFC. 

295,9: upstream of 

Added the “of”. 

295,13: I see why you want to include both SI and Imperial units, but do realize that it doesn’t 

contribute to the readability (if that’s a word) of the manuscript.  

Since we are talking about the U.S. in this paper, I deleted the km units.  

295, footnote: References should be included in a bibliography, not in a footnote.  

Footnotes were removed throughout the paper. 

296, 13: I am guessing that the relative error in terms of streamflow rate could be quite high.  
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True. In this paper, I worked with water levels because that is the unit forecasts are published in 

for these gages. For the sake of brevity, I chose only to report the absolute values in Table 2 

(now an ecdf figure), because those seemed more decision-relevant to me.  

296, footnote: i.e., there is a process with a considerable effect on your variable of interest which 

is not actually included in your model, or not modeled according to what happens in reality.  

True. Humans are much more difficult to predict than hydrology. It would be interesting if for 

example the price of electricity would be a good predictor of streamflow, because it drives dam 

operation to some extent.  

297,2: A table would be useful, as I’m not confident I understand what it is you are doing here.  

Isn’t Figure 7 the table you are looking for? I also changed the sentence: “For each lead time 

(i.e., one to four days) and the eight event thresholds (i.e., 10
th

, 25
th

, 75
th

, 90
th

 percentiles as well 

as the four flood stages), we counted at how many river gages each joint predictor resulted in the 

highest and the lowest BSS.” 

297,3: “combination of variables” is better, as “variable combination would imply that 

“variable” is an adjective that qualifies the noun “combination”. 

Changed throughout the paper. 

297,9: flatter? 

Yes, changed.  

297,12: “thus” implies statistical significance. Is there evidence to support this? 

New sentence: “This suggests that the further out one is forecasting, the more important it 

becomes to include more data in the configuration.” 

299,2: a one-size, not a one-size 

Changed. 

299,16: Pls consider not using the term variables, but instead predictors. This prevents possible 

confusion with the noun/adjective and also unambiguously makes clear that we are talking about 

the configuration of the…  

Changed. Updated throughout paper.  

299,21: If resolution increases while maintaining high reliability then yes, your contingency 

table will look better and hence the derived metrics will improve also.  

Yes, of course. I find picturing the improvement along those metrics useful (Figure 18, now 

Figure 20), because other researchers might have been working with those, rather than the BSS. 

And if I picture them, I have to mention them in the text. I did change the word “dimensions” to 

“metrics”. 

299,23: Descriptions of verification metrics and their interpretations belong in a dedicated 

subsection in “approach” section (or similar). In any case, I would not describe these in the 

“results” section.  

Please see my answer to your specific comment 4.  
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300, 5: I'm not sure I fully understand this sentence. Are you training ("calibrating") the models 

on one single year and then applying ("validating") these models to all remaining years? 

The figures don't really clarify this either. I thought I understood the approach from the plots, 

but the caption confuses me. 

That is not correct. I hope the new sentence clarifies it: “Each year between 2003 and 2013 was 

forecast by configurations trained on however many years of archived forecasts were available in 

that year, i.e., the forecasts for 2005 produced by a model trained on less data than those for 

2013. Then, the BSS for that year (e.g., 2005 or 2013) was computed.” 

My recommendation is to either (i) do a leave-one-year out analysis, or (ii) simply compare joint 

predictor, predictand distributions.  

(i) train on all available data except one year, on which you apply the calibrated models. Vary 

the validation year so that after x iterations, you'll have applied your model on all years in your 

dataset. Then calculate your verification metrics. 

(ii) The success of QR, or any post-processing technique for that matter, depends on predictor, 

predictand relations remaining 'as is' during training and validation years. By directly checking 

this assumption, you can predict whether or not QR will do well. I do realise that this check may 

be cumbersome if you have many predictors. 

See my answer to your general comment 7. The objective here is to test how robust the technique 

is to the stationarity assumption. To make this point clear, I added: “We were particularly 

interested in testing how many years of training data are necessary to achieve satisfactory 

forecasting results.” 

300,8: I think it means that for the years chosen, stationarity *can* be assumed. If there were no 

stationarity, your post-processing would have performed poorly. 

That is not correct. If I can include fewer years in my training dataset and still achieve good 

results, I rely less on the stationarity assumption. Stationarity would be much more important, if I 

needed twenty years of data to produce a skillful forecast. The first few of those twenty years are 

likely to be less representative of the coming year. Think for example of progressing 

urbanization. See also my answer to your specific comment 11. 

300,9: That depends on how you're configuring your post-processor. If you have a large 

database, then the QR calibration is unlikely to be affected by a few extreme events. The way 

around this is to calibrate QR on a sub-sample of data only, say on the top 10% of observations 

and associated forecasts and additional predictors. 

Well, just focusing on a subset of your observations does not increase your number of data 

points. The QR already looks at percentiles, so it is not very sensitive to outliers anyways. But 

your estimation of the 10
th

 percentile for example will be better if you have more data points to 

fit your model to. I.e., even if you just look at a sub-set, you would want as many data points as 

possible in it, because any regression benefits from more data points.  

300,25: The use of multiple predictors may result in overfitting of some kind, whereas using a 

single predictor reduces this risk. 

Yes, true. But I am not sure what you are referring to in that sentence/paragraph. I am saying that 

the same joint predictor can result a range of BSS across river gages, event thresholds, etc. That 

does not refer to the number of predictors in the configuration.  

301, 2: Table 3, maybe? 
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No, Table 4 (now Table 2) actually. This paragraph describes the results of the regression 

described in the paragraph before. Table 4 (now Table 2) is the corresponding table for the 

regression. Mainly in response to the other reviewer, I updated this part a bit: 

“To generalize the result, the same analysis as just described for Hardin and 

Henry was repeated for all 82 gages. Following that, a regression analysis was executed 

with the BSS score as the dependent variable and the river gages and forecast years as 

factorial independent variables and the lead time, event thresholds, and number of 

training years as numerical independent variables (Table 2). The forecast performance 

was found to vary statistically significantly across all those dimensions except the 

number of training years. This results in a very wide range of Brier Skill Scores (Figure 

22). Accordingly, for the user, it is particularly difficult to know how much to trust a 

forecast, if the performance depends so much on context. Likewise, this is case for the 

QR configuration based on the forecast only (not shown).  

A closer look at the regression coefficients (Table 2) provides interesting insights. 

For low event thresholds, the BSSs are much worse than for high thresholds. The QR 

configurations might be performing less well for low event thresholds, because the 

variance in the dependent variable – the forecast error – is smaller. After all, river 

forecasts have much smaller errors for lower water levels. The illustrative cases of Henry 

and Hardin, described above, indicate that using longer time series to predict exceedance 

probabilities of low event thresholds improves forecast performance.  

As expected, the BSSs slightly decrease with lead time. Regarding the forecast 

quality for each forecast year, the regression is slightly biased. The earlier years are 

included less often in the dataset with on average less years’ worth of data in their 

training dataset, because, for example, unlike for the year 2013, ten years of training data 

were not available for the year 2006. Nonetheless, the regression indicates that 2008 was 

particularly difficult to forecast and 2012 relatively easy, i.e., they are associated with 

relatively low and high coefficients respectively (Table 2).  

The performance of the forecast additionally depends on the river gage. The 

coefficients of the river gages, included as factors in the regression, have been excluded 

from Table 2 for the sake of brevity. Instead, Figure 23 maps the geographic position of 

the river gages with the color code indicating each gage’s regression coefficient. The 

coefficients are lower, and therefore the Brier Skill Scores are lower, for gages far 

upstream a river and those close to confluences. At least for the gages at confluences, the 

QR model could probably be improved by including the rise rates at the river gages on 

the other joining river into the regression.” 

301,6: Please see my note about the 'leave one year out analysis'. That would omit the need for 

this -imho confusing- analysis. 

This is actually already a different type of analysis, than the one you wanted to change to a 

leave-one-year-out-analysis. Even if I took your suggestion, I would still do this regression, to 
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gain deeper insight into what causes the variability in BSS. The analysis before just visualized 

that there is variation, this regression studies this variation.  

301,11: Why? 

Because adding 82 rows to the table (gages are categorical variables) would have made it a really 

long table. Plus, the visualization in Figure 23 (before Figure 21) adds the very interesting 

geographic component.  

301, 14: Depending on basin size, could it be that for some basins, time of concentration is 

shorter than 48h or even 24h? In that case, the additional predictors pertaining to past error and 

rate of rise at those moments in the past will have little information. 

True. See my answer to your comment 295,7 (1). 

302,2: This conclusion cannot be based on your analysis. changing the configuration of the 

postprocessor doesn't necessarily mean that you're maintaining same levels of reliabiliby. 

Figure 18 (now Figure 20) shows no change in reliability. In reaction to comments by the other 

reviewer, the section now reads:  

“When compared to the configuration using only the forecast, it was found that including 

rates of rise in the past 24 and 48 hours and the forecast errors of 24 and 48 hours ago as 

independent variables improves the performance of the QR configuration, as measured by 

the Brier Skill Score. This confirms Wood et al.’s finding that QR error models should be 

a function of rate of rise and lead time (Wood et al., 2009). The configuration with the 

forecast as the only independent variable, as studied by Weerts et al. (2011), produced 

estimates with high reliability. Including the other four predictors mentioned above 

additionally increases the resolution.” 

302,9: Define 'satisfatorily' 

Replaced that sentence with: “Additionally, customizing the set of predictors to the event 

thresholds does not improve the BSS much.” 

302,15: why not? 

I clarified this part:  

“The combinations including the forecast (indicated by gray vertical lines in Error! 

Reference source not found. and Error! Reference source not found.) perform less 

well than those that exclude it. Plotting the independent variables against the forecast 

error as the dependent variable makes the reason visible (Error! Reference source not 

found., Error! Reference source not found.). Without a transformation into the normal 

domain, the scatterplot of forecast and forecast error does not show a trend. After NQT, 

the percentiles show trends laid out like a fan. In contrast, the other four predictors 

become uniform distributions after NQT transformation.  There is no trend detectable 

anymore. Further research is necessary to reconcile these two types of predictors. A 

possible solution could be to define QR configurations for subsets of the transformed 

dependent and independent variable. ” 
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302,20: see earlier note 

See earlier answer.  

302,27: uncertainty in... what? 

Forecast uncertainty. Added “forecast”.  

303,5: what about applying QR to *streamflow* forecasts instead? 

That is a good idea, especially since streamflow is what is actually calculated by the hydrological 

models. But the archived forecasts used in this study were in water levels and not available as 

streamflow. At this point, I was trying to explain why the technique does not perform well for 

low thresholds. Even expressed in streamflow, the variability in low streamflows is probably 

going to be less than for high streamflows.  

303,6:  it's not scarcity of data per se, but the fact that joint distributions of predictors and 

predictands vary with regime (low flows, medium flows, high flows). since a single set of QR 

parameters was derived from the full sample, low-end or high-end application cannot be 

expected to do really well. this is a problem inherent to the use of post-processing techniques. 

Forecasting extreme events is always limited by the scarcity of data. See my answer to your 

comment 300,9.  

303,12: what models? the predicted probabilities of water level exceedance? 

I meant the performance of the classification trees. I change the sentence to: “Trials with a 

different technique, classification trees, showed that the observed precipitation, the precipitation 

forecast (i.e., POP – probability of precipitation) and the upstream water levels significantly 

improve forecasting performance.” 

304,15: Please refer to this as Wikipedia, 2014. 

Done. 

308,1: Combinations of variables. See earlier comment. 

Called “Joint Predictors” now.  

308,2: (1) what's the difference between the filled circles and the open circles? 

None. Just a visual help, so that you see that the first column does not continue in the second 

column. At the end of the first column, the joint predictor includes two variables, and in the 

beginning of the second column, it includes three variables.  

(2) the use of statistical models *without* the det forecast as an explanatory variable opens up a 

whole new set of considerations... maybe good to comment on this? 

I don’t understand. Which considerations are you referring to? That you can include some 

variables that were of little benefit when you included the forecast? That the forecast does not 

combine well with the other predictors is a finding of the paper. I did not know that starting out. 

This table is part of the method section.  

(3) are any of the errXX and rrXX values used in the hydrological models used to produce a fcst? 

If so, please mention this and comment on what this means. 
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I don’t know, I do not have access to the NWS models. The HMOS post-processor only uses 

streamflow at various time steps as explanatory variables: page 3, http://ac.els-

cdn.com/S0022169413003958/1-s2.0-S0022169413003958-main.pdf?_tid=09b4b0ba-a80c-

11e4-be2a-00000aab0f6c&acdnat=1422573218_6d0fa1b246a9bedfdafc04a172e794f5 

309: Personally, I would show this information as a set of six ECDFs (one for each lead time 

considered) in a four-plot figure (one for each sample/subsample) 

Good idea.  

 

Figure 6: Empirical cumulative distribution function (ecdf) of forecast error at 82 river 

gages for six lead times. Vertical lines show the median forecast error of the corresponding 

subset.  
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310: You'll have realised by now that I'm quite keen on seeing full empirical distributions rather 

than summary values only ;). Again, I would consider presenting this information as ecdfs rather 

than as tables. 

Here you go: 

Figure 16: Empirical cumulative density functions of three QR configurations predicting 

exceedance probabilities of the 10
th

, 25
th

, 75
th

, and 90
th

 percentile: the configuration using 

the transformed forecast as the only independent variable [NQT fcst]; the best performing 

combination for each river gage (upper performance limit) [Best combis]; rates of rise in 

the past 24 and 48 hours and the forecast errors 24 and 48 hours ago as independent 

variable (one-size-fits-all solution) [rr+err24/48].  
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Figure 19: Empirical cumulative density functions of three QR configurations predicting 

exceedance probabilities of the Action, Minor, Moderate, and Major Flood Stage: the 

configuration using the transformed forecast as the only independent variable [NQT fcst]; 

the best performing combination for each river gage (upper performance limit) [Best 

combis]  
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312: Why download this not-so-exciting April forecast in October? 

Because it is not October. If these plots are being archived, I cannot access them. Today’s is 

boring, too: 

 

 

313: These spring outlooks aren't topic of this paper, are they? Omit! 

Omitted. 

314: These long term forecasts aren't topic of this paper, are they? Omit! 

Omitted. 

315: incorrect: outperforms the reference forecast, in this case 'climatology' which is not a 

random guess. 

New caption: 

“Figure 4: Theory behind Brier Skill Score illustrated for an imaginary forecast (red line): (a) 

reliability and resolution; (b) skill. In figure a, the area representing reliability should be as small, 

and for resolution as large as possible. The forecast has skill (BSS > 0), i.e. performs better than 

the reference forecast, if it is inside the shaded area in the figure b. ideally, the forecast would 

follow the diagonal (BSS=1). (Adapted from Hsu and Murphy, 1986; Wilson, n.d.).” 

316: I would rather see a map of all 84 forecasting locations used, and with information about 

the July 10 conditions omitted. 

Okay, here it is: 
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 Figure 3: River gages for which the North Central River Forecast Centers publishes 

forecasts daily. Henry (HYNI2) and Hardin (HARI2) are indicated by the upper and lower 

red arrow respectively.  For gages indicated by black dots the basin size is missing. 

317: This comment applies to various graphs: as both horizontal and vertical axes are identical, 

I would omit the axis labels on hor axes of top two plots, and axis labels on vert axes of two 

right-hand plots. You can then enlarge the actual plots. 

Did so for all figures. 

318: Recommendations: (1) omit duplicate axis labels where possible; (2) 

Did so for all figures. 

322: (1) omit repetitive labels where possible; (2) would also recommend zooming in on coulds, 

at expense of extreme values 
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(1) Did so for all figures.  

(2) I actually would prefer not cutting of the extreme values, keeping the plots symmetric 

and where applicable with the same axis limits.  

325: What are 'perfect variables'? 

Sorry, that picture should have been cropped like all others. It is now.  

332: if you really must include this figure then please consider using a colorscale that better 

clarifies differences between the locations. 

 

Figure 23: Geographical position of rivers. Colors indicate the regression coefficient of 

each station with the Brier Skill Score as dependent variable.  
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We hope that you find that these changes to have satisfactorily addressed the reviewer’s 

concerns.  If there are additional changes that you believe are needed, please let us know. 

 

Regards, 

Frauke Hoss, Paul Fischbeck 
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Performance and Robustness of Probabilistic River Forecasts Computed 1 

with Quantile Regression based on Multiple Independent Variables in the 2 

North Central U.S.A.  3 

Abstract 4 

This study further develops the method ofapplies quantile regression (QR) to the prediction 5 

ofpredict flood stage exceedance probabilities of flood stages by post-processing forecastsbased 6 

on post-processing single-value flood stage forecasts. A computationally cheap technique to 7 

predict forecast errors is valuable, because many national flood forecasting services, such as the 8 

National Weather Service (NWS), only publish deterministic single-value forecasts. Using 9 

dataThe study uses data from the 82 river gages, for which the National Weather Service’sNWS’ 10 

North Central River Forecast Center issues forecasts daily. , this is the first QR application to 11 

U.S. American river gages. Archived forecasts for lead times up to six days from 2001-20013 12 

were analyzed. Earlier implementations of QR used the forecast itself as the only independent 13 

variable . Besides the forecast itself, tThis study adds uses the rise raterate of rise of the river 14 

stage in the last 24 and 48 hours and the forecast error 24 and 48 hours ago to as predictors in the 15 

QR modelconfigurations. Including thoseWhen compared to just using the forecast as 16 

independent variable, adding the latter four variables predictors significantly improved the 17 

forecasts, as measured by the Brier Skill Score (BSS). Mainly, the resolution increases, as the 18 

forecast-only original QR implementation configuration already delivered high reliability. 19 

Combining the forecast with the other four variables predictors results in much less favorable 20 

BSSs. Lastly, the forecast performance does not strongly depend on the size of the training 21 
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dataset, but on the year, the river gage, lead time and event threshold that are being forecast. We 22 

find that each event threshold requires a separate model configuration or at least calibration.  23 

Keywords: River forecasts, quantile regression, probabilistic forecasts, robustness 24 

  25 
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1 Introduction 26 

River-stage forecasts are inherently uncertainare no crystal ball; the future remains uncertain. 27 

The past has shown that unfortunate decisions have been made in ignorance of the potential 28 

forecast errors (Pielke, 1999; Morss, 2010)(e.g., Pielke, 1999; Morss, 2010). For many users, 29 

such as emergency managers, forecasts are most important in extreme extreme situations, such as 30 

droughts and floods. Unfortunately, it is exactly in those situations that forecast errors are 31 

largest, dueDue to the ir infrequency of extreme events and the subsequent scarcity of data, 32 

forecasts have larger errors where accuracy has the most value. Additionally, users might only 33 

experience such an event once or twice in their lifetime, so that they have no experience to what 34 

extent they can rely on deterministic forecasts in such situations. Given the many sources and 35 

complexity of uncertainty and the lacking user experience, it is easy to see how forecast users 36 

find it difficult to estimate the forecast error. Including uncertainty in river forecast would 37 

therefore be valuable, just as has been weather forecasts has been strongly recommended for 38 

weather forecasts in general (e.g., National Research Council, 2006)(e.g., National Research 39 

Council, 2006).  40 

 There are two types of approaches to quantify estimate forecast uncertainty (e.g., Leahy, 41 

2007; Demargne et al., 2013; Regonda et al., 2013)(e.g., Leahy, 2007; Demargne et al., 2013; 42 

Regonda et al., 2013): Those addressing certain major sources of uncertainty individually in the 43 

output, e.g., input uncertainty and hydrological uncertainty, and those taking into account all 44 

sources of uncertainty in a lumped fashion. Both approaches have their advantages. Modelling 45 

each source separately can take into account that the different sources of uncertainty have 46 

different characteristics (e.g., some sources of uncertainty depend on lead time, while others do 47 

not). This approach is likely to result in better performing, more parsimonious 48 
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modelconfigurations. On the downside, it the approach is expensive to develop, maintain and 49 

run. As an alternative, the lumped quantification of uncertainty is a less resource-intensive 50 

approach (Regonda et al., 2013)(Regonda et al., 2013).  51 

The National Weather Service has chosen for ensemble forecasting to quantify the 52 

uncertainty from major sourcesto quantify the most significant sources of uncertainty using 53 

ensemble techniques (Demargne et al., 2013)(Demargne et al., 2013). As of todayCurrently, the 54 

National Weather Service does not routinely publish uncertainty information along with their 55 

short-term river-stage forecast ((Figure 1). Until the NWS has implemented probabilistic 56 

forecasting for short-term products (next few hours and days), the only way that users can get a 57 

sense of the uncertainty is by comparing the quantitative precipitation forecast (QPF) with the 58 

non-QPF forecast. The QPF-forecast includes the precipitation predicted for the next 12 hours 59 

and zero precipitation for the forecasts beyond 12 hours.
1
 The non-QPF forecast assumes no 60 

precipitation. Combined, these two forecasts give an idea of how much difference (a short period 61 

of) precipitation would make for the stage height in the river. The non-QPF serves as a 62 

reasonable lower bound; however, the QPF forecast is not an upper bound (i.e., precipitation 63 

could exceed the forecast values). 64 

As of today, only the “outlooks” produced by the Ensemble Streamflow Prediction part 65 

of the NWS River Forecasting System are probabilistic, i.e., quantify uncertainty: an exceedance 66 

curve for a period of three month and bar plots for each week of a three months period, see  and . 67 

These graphs can be used to determine with which probability each river stage will be exceeded 68 

in those weeks or three-months period. Although the short-term weather forecasts for the next 69 

                                                 
1
 This practice differs from RFC to RFC and also over time. For the ABRFC Welles et al.  

report: ~1993-1994: zero QPF; ~1995-2000 24hr QPF for first 24hrs, zero QPF beyond 24hrs; 

~2001-2003 12hr QPF for first 12hrs, zero QPF beyond 12hrs. 
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few days are much used to prepare for flood events, they have remained deterministic, as shown 92 

in .
2
 93 

Figure 11: Deterministic short-term weather forecast in six hour intervals as published by the NWS 94 

for Hardin, IL on 24 April 2014. 95 

Source:http://water.weather.gov/ahps2/hydrograph.php?wfo=lsx&gage=hari2. 96 

The Figure 12: Probabilistic long-term forecast as published by the NWS for Commerce, OK on 14 97 

December 2012: Exceedance curve for three months period. (Not available for Hardin, IL). Source: 98 

http://water.weather.gov/ahps2/hydrograph.php?wfo=tsa&gage=como2 99 

Figure 3: Probabilistic long-term forecast as published by the NWS for Commerce, OK on 14 100 

December 2012: Bar plot for each week of a three months period. (Not available for Hardin, IL). 101 

Source: http://water.weather.gov/ahps2/hydrograph.php?wfo=tsa&gage=como2 102 

 NWS has developed the Hydrologic Ensemble Forecast Service (HEFS) in to be able to 103 

provide also short-term and medium-term probabilistic forecasts . Its implementation at all 13 104 

river forecasts center is planned to be completed in 2014 (Demargne et al., 2013)(Demargne et 105 

al., 2013).  HEFS includes two types of post-processors. The Hydrologic Model Output Statistics 106 

(HMOS) Streamflow Ensemble Processor – which is also a module in NWS’ main forecast tool, 107 

the Community Hydrologic Prediction System (CHPS) – corrects bias and evaluates the 108 

uncertainty of each ensemble, while Hydrologic Ensemble Post-Processing (EnsPost) corrects 109 

bias and lumps the set of ensembles into one uncertainty estimate (Demargne et al., 2013; Seo, 110 

2008). HMOS performs a similar task as the QR approach presented here, but with two major 111 

differences. First, it relies on linear regression based on streamflows at various times as 112 

predictor, instead of using QR with several types of independent variables. Second, it does not 113 

                                                 
2
 The deterministic forecasts are also available as text or tables. 
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compute distributions of water levels from which confidence intervals or exceedance 114 

probabilities of flood stages can be derived, but generates ensembles (Regonda et al., 2013). 115 

In contrast to the an ensemble approach chosen by the NWSsuch as HEFS, the statistical 116 

post-processing method that is further developed in this paper – quantile regression – does not 117 

distinguish between sources of uncertainty, but studies the overall uncertainty in a lumped 118 

fashion. This choice is motivated by the fact that the total predictive uncertainty, rather than its 119 

different sources, are relevant for decision-making . To further strengthen the main advantage of 120 

this method, i.e., requiring relatively little resources, To make this approach useful for actors 121 

with limited resources, we exclusively use publicly available data to build our modelsdefine our 122 

configurations.  123 

 Most previously developed post-processors to generate probabilistic forecasts share the 124 

overall set-up but differ in their implementation. Explanatory Independent variables such as the 125 

forecasted and observed river stage, river flow or precipitation, and previous forecast errors are 126 

used to predict the forecast error, conditional probability distribution of the forecast error or 127 

other metrics measures of uncertainty for various lead times (e.g., Kelly and Krzysztofowicz, 128 

1997; Montanari and Brath, 2004; Montanari and Grossi, 2008; Regonda et al., 2013; Seo et al., 129 

2006; Solomatine and Shrestha, 2009; Weerts et al., 2011)(e.g., Kelly and Krzysztofowicz, 1997; 130 

Montanari and Brath, 2004; Montanari and Grossi, 2008; Regonda et al., 2013; Seo et al., 2006; 131 

Solomatine and Shrestha, 2009; Weerts et al., 2011). Among others, Tthese methodtechniques 132 

differ in their mathematical methodsin a number of ways, including their sub-setting of data, and 133 

the output metri.c. Please see Regonda et al. (2013)(2013) and Solomatine & Shrestha 134 

(2009)(2009) for a summary of each methodtechnique. In a meta-analysis of four different post-135 

processing methodtechniques to generate confidence intervals, the quantile regression 136 
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methodtechnique was one of the two most reliable methodtechniques (Solomatine and Shrestha, 137 

2009)(Solomatine and Shrestha, 2009), while being the mathematically least complicated method 138 

and requiring few assumptions.  139 

This paper further develops one of the methodtechniques mentioned above: the Quantile 140 

Regression method approach to post-process river forecasts first introduced by Wood et al. 141 

(2009) and further elaborated by Weerts et al. (2011)(2011) and López López et al. (2014). . The 142 

Weertsat study achieved impressive results in estimating the 50% and 90% confidence interval 143 

of river-stage forecasts for three case studies in England and Wales using QR with calibration 144 

and validation datasets spanning two years each. This paper combines elements of the studies 145 

mentioned above.   In some aspects, our approach differs from the original approach by Weerts 146 

et al.  and López López et al. .those three studies. We predict the probabilities that flood stages 147 

are exceededexceedance probabilities of flood stages rather than uncertainty bounds., because 148 

the former are more relevant to decision-making. In an attempt to balance missed alarms and 149 

false alarms, decision-makers are likely to resort to the best estimate (i.e., the deterministic 150 

forecast) rather than basing actions on the 50% or 90% confidence interval. Additionally, 151 

predicting the probability of an event corresponds with other forecasts with which users have 152 

much experience, e.g., the probability of precipitation. Morss et al.  found in a survey of the 153 

general U.S. public that most people are able to base decisions on those forecasts. Additionally, 154 

we are fortunate to have a much larger dataset than the three earlier studies , consisting of 155 

archived forecasts for 82 river gages covering 11 years available. The study does not add to the 156 

mathematical technique of quantile regression itself. 157 
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In this paper, the QR methodtechnique is applied to the 82 river gages of the North 158 

Central River Forecast Center (NCRFC) encompassing (parts of) Illinois, Michigan, Wisconsin, 159 

Minnesota, Indiana, North Dakota, Iowa, and Missouri.
3
  160 

Identifying the best-performing set of independent variables is central to this paper.  To 161 

our knowledge, this paper is the first application of the QR method to the U.S. American context. 162 

All possible combinations of the following predictors have been studied: forecast, the  163 

The method is further developed by demonstrating the benefit – measured by an increase 164 

in Brier Skill Score (BSS) –  of including the rise raterate of rises of water levels in past hours, 165 

and the past forecast errors as independent variables into the quantile regression. The 166 

performance of these joint predictors has been measured and compared using the Brier Skill 167 

Score (BSS).. For extremely high water levels the variable combination has to be customized for 168 

each river gage. For those, sets of few independent variables work best. Variable combinations 169 

for other event thresholds should include as many dependent variables as possible. Using the 170 

same combination for all of them works satisfactorily. Furthermore, it is found that the forecast – 171 

the only independent variable in the original QR method – is difficult to combine with the other 172 

dependent variables. Last, the method is shown to be robust to the size of the training dataset. 173 

However, the forecast performance does vary significantly across locations, lead times, water 174 

levels, and forecast year. This exercise has been repeated for various water levels and lead times. 175 

Additionally, the robustness of the resulting QR configurations across different sizes of training 176 

datasets, locations, lead times, water levels, and forecast year has been assessed.  177 

The paper is structured as follows. The Method section summarizes the additions that this 178 

paper makes to the quantile regression method introduced by Weerts et al. . It reviews the 179 

                                                 
3
 As of spring 2014, the NCRFC does not publish any sort of probabilistic forecasts.  



10 

 

methodquantile regression,  explains the additions, introduces the performance metricmeasure, 180 

and discusses the computations performed analyses and data. The Results section first reviews 181 

the overall forecast error for the dataset. It then compares the proposed method to the original 182 

quantile regression as demonstrated for river gages in Wales and England . It then describes the 183 

results of identifying the best-performing set of independent variables. Finally, it discusses the 184 

robustness of the proposed methodstudied QR configurations. The fourth and last section 185 

presents the conclusions and proposes further research ideas. 186 

2 Method 187 

The use of quantile regression to quantify estimate the error distribution of river-stage forecasts 188 

has first been presented introduced by Woods et al. (2009) for the Lewis River in Washington 189 

State. Later, by Weerts et al. (2011)(2011) applied it to  for river catchments in the England and 190 

Wales.  In this paper, we further develop Weerts’ original method in three ways: a) by including 191 

additional variables instead of using only the forecast itself as an independent variable;elements 192 

of both studies are combined. However, our predictand is the probability of exceeding flood 193 

stages rather than confidence bounds. Additionally, this study tests b) by testing the robustness of 194 

the methodtechnique across locations, lead times, event thresholds, forecast years, and the size of 195 

training dataset is tested. ; c) by estimating the more decision-relevant probability of exceeding 196 

flood stages rather than confidence bounds. To develop the different QR configurations of 197 

quantile regression and to compare their performance, the Brier Skill Score (BSS) is used. 198 

 In the following, the quantile regression itself and , the proposed addition to the 199 

methodanalysis to identify the best-performing set of independent variables , and the undertaken 200 

computations are explained.  201 
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2.1  Quantile Regression 202 

In the context of river forecasts, linear quantile regression has been used to estimate the 203 

distribution of forecast errors as a function of the forecast itself. Weerts et al. (2011)(2011) 204 

summarize this stochastic approach as follows:  205 

 “[It] estimates effective uncertainty due to all uncertainty sources. The approach 206 

is implemented as a post-processor on a deterministic forecast. [It] estimates the 207 

probability distribution of the forecast error at different lead times, by 208 

conditioning the forecast error on the predicted value itself. Once this distribution 209 

is known, it can be efficiently imposed on forecast values.” 210 

 Quantile Regression was first introduced by Koenker (2005; 1978)(2005; 1978). It is 211 

different from ordinary least square regression in that it predicts percentiles rather than the mean 212 

of a dataset. Koenker and Machado (Koenker and Machado, 1999, p.1305)(Koenker and 213 

Machado, 1999, p.1305) and Alexander et al. (2011)(2011) demonstrate that studying the 214 

coefficients and their uncertainty for different percentiles generates new insights, especially for 215 

non-normally distributed data. For example, using quantile regression to analyze the drivers of 216 

international economic growths, Koenker and Machado (1999)(1999) find that benefits of 217 

improving the terms of trade show a monotonously increasing trend across percentiles, thus 218 

benefitting faster-growing countries proportionally more.  219 

In its original application to river forecasts by When applying QR to river forecasts, Weerts 220 

et al. (2011)(2011) transformed, the forecast values and the corresponding forecast errors are 221 

transformed into the Gaussian domain using Normal Quantile Transformation (NQT) to account 222 

for heteroscedasticity. Detailed instructions to perform NQT can be found in, as instructed by 223 

Bogner et al. (2012)(2012).  to account for heteroscedasticity. Building on this study, López 224 
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López et al. (2014)(2014) compare different configurations of QR with the forecast as the only 243 

independent variable, including configurations omitting NQT. They find that no configuration 244 

was consistently superior for a range of forecast quality metrics measures (López López et al., 245 

2014)(López López et al., 2014). To be able to combine predictors variables of different nature, 246 

we build a model based our QR configuration on untransformed variablespredictors. The reason 247 

to do so will be discussed and illustrated later (see Figure 11 and Figure 12).  248 

Using the transformed data, Aa quantile regression is run for each lead time and desired 249 

percentile with the forecast error as the dependent variable and the forecast and other variables as 250 

the independent variables.
4
 To prevent the quantile regression lines from crossing each other, a 251 

fixed effects model is implemented below a certain forecast value. Weerts et al. (2011)(2011) 252 

give a detailed mathematical description for applying QR to river forecasts. Mathematically, the 253 

approach is formulated as follows (with and without NQT): 254 

Equation 1: Original QR implementation configuration with NQT , with percentiles of the forecast 255 

error as the dependent variable and the only one independent variable being the forecast itself, bot 256 

transformed into the normal domain. 257 

𝐹𝜏(𝑡) = 𝑓𝑐𝑠𝑡(𝑡) + 𝑁𝑄𝑇−1[𝑎𝜏 ∗ 𝑉𝑁𝑄𝑇(𝑡) + 𝑏𝜏] 

Equation 2: QR implementation configuration without NQT, with percentiles of the forecast error 258 

as the dependent variable and multiple independent variables.  259 

𝐹𝜏(𝑡) = 𝑓𝑐𝑠𝑡(𝑡) +∑𝑎𝑖,𝜏 ∗ 𝑉𝑖(𝑡)

𝐼

𝑖

+ 𝑏𝜏 

with  Fτ(t)    – estimated forecast associated with percentile τ and time t 260 

                                                 
4
 As mentioned in Weerts et al. (2011), our quantile regression models have likewise a higher 

predictive capacity, if the forecast error rather than the forecast itself is used as the dependent 

variable.  

Field Code Changed
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 fcst(t)  – original forecast at time t  261 

Vi(t)  – the independent variable i (e.g., the original forecast) at time t 262 

Vi;NQT(t)           – the independent variable I transformed by NQT at time t 263 

ai,τ , bτ  – model configuration coefficients 264 

 265 

The second part of the equations stands for the error estimate based on the quantile regression 266 

model configuration for each percentile τ and lead time. In Equation 1, that was used in the 267 

original QR method proposed by Weerts et al. (2011)(2011), this estimation was executed in the 268 

Gaussian domain using only the forecast as independent variable. Our study mainly uses 269 

Equation 2, i.e., it does not transform the predictors and the predictand. All quantile regressions 270 

were done using the command rq() in the R-package “quantreg” (Koenker, 2013).
5
 271 

2.2 Brier Skill Score 272 

The original QR implementation configuration by Weerts et al. (2011)(2011) was evaluated by 273 

determining the fraction of observations that fell into the confidence intervals predicted by the 274 

QR modelconfiguration; i.e., ideally, 9080% of the observations should be larger than the 275 

predicted 10
th

 percentile for that day, and smaller than the predicted 90
th

 percentile. López López 276 

et al. (2014)(2014) used a number of metrics measures to assess model configuration 277 

performance, e.g., the Brier Skill Score (BSS), the mean continuous ranked probability (skill) 278 

score (RPSS), the relative operating characteristic (ROC), and reliability diagrams to compare 279 

QR configurations.  280 

We use the Brier Skill Score – first introduced by Brier (1950) – to compare assess the 281 

different versions of the QR modelconfigurations proposed in this paper. We chose to optimize 282 

                                                 
5
 All quantile regressions were done using the command rq() in the R-package “quantreg” 

(Koenker, 2013). 
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our QR models based on the BSS, first introduced by Brier  for two two reasons.  First, to be able 297 

to optimize model performance it is best to choose a single measure. First, for decision-making 298 

the probability with which a certain water level, e.g., a flood stage, is exceeded is more useful 299 

than confidence intervals. SecondSecond, out of the available measures the Brier Score is 300 

attractive, because it can be decomposed into two different measures of forecast quality (see 301 

Equation 3): Reliability and resolution. The third component is uncertainty, which is a 302 

hydrological characteristic inherent to the river gage. This uncertainty is different than the 303 

forecast uncertainty that the technique studied in this paper estimates. Besides the uncertainty 304 

that can be mathematically explained, it also includes natural variability. ThusIn sum, the BS’ 305 

uncertainty termit is not subject to the forecast quality. Equation 3 gives the definition of the (de-306 

composed) Brier Score (e.g., Jolliffe and Stephenson, 2012; Wikipedia, 2014; WWRP/WGNE, 307 

2009)(e.g., Jolliffe and Stephenson, 2012; Anon, 2014; WWRP/WGNE, 2009).6 308 

Equation 3: Brier Score; de-composed into three terms: reliability, resolution and uncertainty. 309 

𝐵𝑆 =
1

𝑁
∑𝑛𝑘(𝑓𝑘 − �̅�𝑘)

2 −
1

𝑁
∑𝑛𝑘(�̅�𝑘 − �̅�)2 + �̅�(1 − �̅�)

𝐾

𝑘=1

𝐾

𝑘=1

=
1

𝑁
∑(𝑓𝑡 − 𝑜𝑡)

2

𝑁

𝑡=1

 

with  BS  – Brier Score 310 

                                                 
6
 Bröcker (2012)(2012) showed that the conventional decomposition of the Brier Score is biased 

for finite sample sizes. It systematically overestimates reliability, under- or overestimates 

resolution, and underestimates uncertainty. Several authors proposed less biased decompositions 

(e.g., Bröcker, 2012; Ferro and Fricker, 2012)(e.g., Bröcker, 2012; Ferro and Fricker, 2012). 

Additionally, Stephenson et al. (2008)(2008) proved that the Brier Score has two additional 

components when it is computed based on bins, as is usually done. Nonetheless, we chose to 

stick to the conventional decomposition and using bins, as implemented in the R-package 

“verification” (NCAR-Research Applications Laboratory, 2014; Wilks, 1995)(NCAR-Research 

Applications Laboratory, 2014; Wilks, 1995) to ensure that our results can be readily compared 

to other studies like López López et al. (2014)(2014). After all, the Score is mainly used to 

compare model configurations, rather than establishing the absolute performance of each 

modelconfiguration.  

Field Code Changed
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 N – number of forecasts  311 

K  – the number of bins for forecast probability of binary event occurring on each 312 

day 313 

nk  – the number of forecasts falling into each bin 314 

ōk  – the frequency of binary event occurring on days in which forecast falls into bin 315 

k 316 

fk  – forecast probability 317 

ō  – frequency of binary event occurring 318 

ft – forecast probability at time t 319 

ot – observed event at time t (binary: 0 – event did not happen, 1 – event happened) 320 

The Brier Score pertains to binary events, e.g., the exceedance of a certain river stage or 321 

flood stage. Reliability compares the estimated probability of such an event with its actual 322 

frequency. For example, perfect reliability means that on 60% of all days for which it was 323 

predicted that the water level would exceed flood stage with a 60% probability, it actually does 324 

so. A forecast with The reliability curve for the forecast representing perfect reliability would 325 

follow the diagonal in Figure 2, , i.e., the area in Figure 2a representing reliability would equal 326 

zero (Jolliffe and Stephenson, 2012; Wikipedia, 2014; WWRP/WGNE, 2009)(e.g., Jolliffe and 327 

Stephenson, 2012; Anon, 2014; WWRP/WGNE, 2009). The configuration by López López et al. 328 

(2014)(2014) performs well in terms of reliability. When estimating confidence intervals, Weerts 329 

et al. (2011)(2011) achieved good results especially for the more extreme percentiles (i.e., 10
th

 330 

and 90
th

).  331 

Figure 2: Theory behind Brier Skill Score illustrated for an imaginary forecast (red line): (a) 332 

reliability and resolution; (b) skill. In figure a, the area representing reliability should be as small, 333 

and for resolution as large as possible. The forecast has skill (BSS > 0), i.e., performs better than the 334 

reference forecast, if it is inside the shaded area in the figure b. Ideally, the forecast would follow 335 

the diagonal (BSS=1). (Adapted from Hsu and Murphy, 1986; Wilson, n.d.). 336 
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Figure 4: Theory behind Brier Skill Score illustrated for an imaginary forecast (red line): (a) 337 

reliability and resolution; (b) skill. In figure a, the area representing reliability should be as small, 338 

and for resolution as large as possible. The forecast has skill (BSS > 0), i.e. performs better than 339 

random guessing, if it is inside the shaded area in the figure b. Ideally, the forecast would follow the 340 

diagonal (BSS=1). (Adapted from Hsu and Murphy, 1986; Wilson, n.d.).  341 

Resolution pertains to how much better the forecast performs than taking the historical 342 

frequency (climatology) as a forecast.measures the difference between the predicted probability 343 

of an event on a given day and the observed average probability. When calculated for a time 344 

period longer than a day, the forecast performs better if the resolution term is higher.  For 345 

example, for a gage where flood stage is exceeded on 5% of the days in a year, simply using the 346 

historical frequency as the forecast would mean forecasting that the probability of the water level 347 

exceeding flood stage is 5% on any given day. The accumulated difference between the 348 

predicted frequency and the historical average across a time period of several days would then be 349 

zero (e.g., Jolliffe and Stephenson, 2012; Wikipedia, 2014; WWRP/WGNE, 2009)(e.g., Jolliffe 350 

and Stephenson, 2012; Anon, 2014; WWRP/WGNE, 2009). In Figure 2, the curve for a a 351 

forecast with good resolution would be steeper than the dashed line that represents climatology, 352 

i.e., the area in aFigure 2a representing resolution would be maximized. In absolute terms, the 353 

resolution can never exceed the third term in Equation 3 representing the uncertainty inherent to 354 

the river gage. Through the resolution component, the Brier Score is related to the area under the 355 

relative operating characteristic (ROC) curve (for more detail, see Ikeda et al., 2002)(for more 356 

detail, see Ikeda et al., 2002). The latter likewise quantifies how much better a forecast is than 357 

random guessingthe reference forecast (i.e., climatology) a forecast is  in detecting a binary 358 

event; though unlike the Brier Score it focuses on the ratios of false and missed alarms (e.g., 359 



17 

 

Jolliffe and Stephenson, 2012; Wikipedia, 2014; WWRP/WGNE, 2009)(e.g., Jolliffe and 360 

Stephenson, 2012; Anon, 2014; WWRP/WGNE, 2009). 361 

A forecast possesses skill, i.e., performs better than random guessing or climatologythe 362 

reference forecast  (in this case climatology ) , if it is inside the shaded area in bFigure 2b. The 363 

Brier Skill Score (BSS) equals the Brier Score normalized by climatology to make the score 364 

comparable across gages with different frequencies of a binary event. Equation 4 defines the 365 

BSS’ decomposition into the resolution and reliability components described above (Brown and 366 

Seo, 2013). 
7
 The BSS can range from minus infinity to one. A BSS below zero indicates no 367 

skill; the perfect score is one (e.g., Jolliffe and Stephenson, 2012; Wikipedia, 2014; 368 

WWRP/WGNE, 2009)(e.g., Jolliffe and Stephenson, 2012; Anon, 2014; WWRP/WGNE, 2009). 369 

All measures of forecast quality were computed using the R-package “verification” (NCAR, 370 

2014). 371 

Equation 4: Decomposition of Brier Skill Score 372 

𝐵𝑆𝑆 = 1 −
𝐵𝑆

�̅�(1−�̅�)
=

𝑅𝐸𝑆

�̅�(1−�̅�)
−

𝑅𝐸𝐿

�̅�(1−�̅�)
  373 

with  BSS  – Brier Skill Score 374 

BS  – Brier Score 375 

 RES  – Resolution 376 

 REL – Reliability 377 

ō  – Frequency of binary event occurring 378 

 o̅(1 − o̅) – Climatological variance  379 

 380 

                                                 
7
 All measures of forecast quality were computed using the R-package “verification” (NCAR, 

2014). 
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2.3 Proposed addition: More than one independent variableIdentifying the best-performing 381 

sets of independent variables 382 

Intuitively, more information should lead to better prediction of the distribution of the forecast 383 

error, because the regression models would be based on more dataThe challenge is to identify a 384 

well-performing set of predictors that is both parsimonious and comprehensive. Wood et al. 385 

(2009) found rate of rise and lead time to be informative independent variables. Weerts et al. 386 

(2011) achieved good results using only the forecast itself as predictor. Besides these variables, 387 

tThe most obvious variables predictors to include besides the forecast itself are the observed 388 

water level 24 and 48 hours ago, the observed rise in water level in the last 24 and 48 hours 389 

(called rise rate hereafter), the forecast error 24 and 48 hours ago (i.e., the difference between the 390 

current water level at issue time of the forecast and the forecast that was produced 24/48 hours 391 

ago), or the time of the year, e.g., using month or season as categorical predictors. Other 392 

Additional potential variables independent variables are the water levels observed up- and 393 

downstream at various times, the precipitation upstream of the catchment area, and the 394 

precipitation forecast. However, rRequesting the corresponding precipitation and precipitation 395 

forecast requires an extensive effort or direct access to the database.these latter variables are 396 

much more difficult to gather because of the way data is archiveddatabase at the National 397 

Climatic Data Center (NCDC).
8
 398 

                                                 
8
 For the NCRFC, the river forecast and the observed water levels are saved in the same text 

product available at [last accessed July 2014]: 

http://cdo.ncdc.noaa.gov/pls/plhas/HAS.FileAppSelect?datasetname=9957ANX. (Station ID: 

KMSR, Bulletin ID: FGUS5). Requesting the corresponding precipitation and precipitation 

forecast requires an extensive effort or direct access to the database. 
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Table : Variable Combinations 399 

 In preliminary trials on two case studies (gages HARI2 and HYNI2), it was found that the 400 

rates of rise and the forecast errors are better predictors than the water levels observed in 401 

previous days. After all, the observed water levels are used to compute the rates of rise and 402 

forecast errors, so that these latter variables include the information of the former variable. It was 403 

also found that season and months are not significant in quantile regression configurations to 404 

predict the quantiles of the forecast error. Probably, the time of the year is already reflected in 405 

the observed water levels and forecast errors in the previous days. In preliminary trials on two 406 

case studies (gages HARI2 and HYNI2), it was found that season and months are not significant 407 

in quantile regression models to predict the quantiles of the forecast error. It was also found that 408 

the rise rates and the forecast errors are better predictors than the water levels observed in 409 

previous days. After all, the observed water levels are used to compute the rise rates and forecast 410 

errors, so that these latter variables include the information of the former variable.  411 

To determine which set of predictors performs best in generating probabilistic forecasts, 412 

all 31 possible combinations of the forecast (fcst), the rate of rise in the last 24 and 48 hours 413 

(rr24, rr48), and the forecast error 24 and 48 hours ago (err24, err48) – see Equation 5 – were 414 

tested for 82 gages that the NCRFC issues forecasts for every morning (Table 1). Based on the 415 

Bier Skill Score, it was determined which joint predictor on average and most often leads to the 416 

best out-of-sample results for various lead times and water levels.  417 
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Equation 5: QR configuration without NQT, with percentiles of the forecast error as the dependent 418 

variable and varying combinations of the five independent variables. This equation was used to 419 

predict the water level distribution for each day at 82 gages with different lead times.  420 

𝐹𝜏(𝑡) = 𝑓𝑐𝑠𝑡(𝑡) + 𝑎𝑓𝑐𝑠𝑡,𝜏 ∗ 𝑓𝑐𝑠𝑡(𝑡) + 𝑎𝑟𝑟24,𝜏 ∗ 𝑟𝑟24(𝑡) + 𝑎𝑟𝑟48,𝜏 ∗ 𝑟𝑟48(𝑡)

+ 𝑎𝑒𝑟𝑟24,𝜏 ∗ 𝑒𝑟𝑟24(𝑡) + 𝑎𝑒𝑟𝑟48,𝜏 ∗ 𝑒𝑟𝑟48(𝑡) + 𝑏𝜏 

with  Fτ(t)     – estimated forecast associated with percentile τ and time t 421 

 fcst(t)   – original forecast at time t  422 

rr24(t), rr48(t)  – rates of rise in the last 24 and 48 hours at time t 423 

err24(t), err48(t) – forecast errors 24 and 48 hours ago (e.g., the original forecast) at 424 

time t 425 

axx,τ , bτ – configuration coefficients; forced to be zero if the predictor is 426 

excluded from the joint predictor that is being studied.  427 

 428 

To determine which set of variables preforms best in generating probabilistic forecasts, all 31 429 

possible combinations of the forecast (fcst), the rise rate in the last 24 and 48 hours (rr24, rr48), and 430 

the forecast error 24 and 48 hours ago (err24, err48) were tested for 82 gages that the NCRFC 431 

issues forecasts for every morning (). Based on the Bier Skill Score, a metric of forecast quality 432 

explained below, it was determined which variable combination on average and most often leads to 433 

the best out-of-sample results for various lead times and water levels. Table 1: Joint predictors.  434 

 435 

2.4 Computations 436 

The output of our QR application to river forecasts is the probability that a certain water level in 437 

the river or flood stage is exceeded on a given day, e.g., “On the day after tomorrow, the 438 

probability that the river exceeds 15 feet at location X is 60%.” This is done in two steps. First, a 439 

training dataset (first half of the data) is used to build define one quantile regression 440 

modelconfiguration for each each of the following percentiles: π = [0.05, 0.1, 0.15, … , 0.85, 441 
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0.90, 0.95] and each lead time..  The dependent variable is the water level. As described abovein 442 

Equation 5, the forecast itself, the rise ratesrates of rise and forecast errors serve as independent 443 

variables.  444 

In the second step, these QR modelconfigurations are used to predict the water levels 445 

corresponding with each model’s percentile on each day in the verification dataset (the second 446 

half of the dataset). Effectively, for each day in the verification dataset, a discrete probability 447 

distribution of water levels is predicted. Each predicted QR modelpercentile π contributes one 448 

point to that distribution. 449 

 In our opinion, this probability distribution of water levels is too much information to 450 

efficiently make decisions. The model performance should be assessed for a decision-relevant 451 

output. ThereforeThen,  we calculate the probability with which various water levels (called 452 

event thresholds hereafter) will be exceeded. The probability of exceeding each water level is 453 

computed by linearly interpolating between the points of the discrete probability distribution that 454 

was computed in the previous step.
 9
  455 

To be able to compare various model configurations, the Brier Skill Score is determined 456 

across all the days inbased on forecast exceedance probability for all days in the verification 457 

dataset. As explained above, the BSS is based on the difference between the predicted 458 

exceedance probability and the observed exceedance (binary) averaged across all days in the 459 

verification dataset. 460 

To study whether the various combinations of variables predictors perform equally well 461 

for high and low thresholds, these last computational steps (i.e., interpolating to determine the 462 

                                                 
9
 Using the command “approx(x, y, xout, yleft=1,yright=0,ties=mean)” in the R-package “stats” 

(R-Core Team, 2014). 
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exceedance probability for a certain water level and calculating the BSS) were done for the 10
th

, 463 

25
th

, 75
th

, and 90
th

 percentile of observed water levels and the decision-relevant four decision-464 

relevant flood stages (action stage, and minor, moderate, and major flood stage) of each gage. 465 

Flood stages indicated when material damage or substantial hinder is caused by high water 466 

levels. Therefore, the flood stages correspond with different percentiles at different river gages.   467 

To determine the optimalbest-performing set of independent variables, the entire procedure is 468 

repeated for each of the 31 variable combinationjoint predictors in Table 1, thus using a different 469 

set of independent variables each time. To test the robustness of this approach, the procedure was 470 

also repeated for each river gage and for several lead times. The result is 31 BSSs for 82 river 471 

gages for four different lead times (one to four days) and for different eight event thresholds (i.e., 472 

flood stages or percentiles of the observed water level).   473 

 474 

2.5 Data 475 

The National Weather Service (NWS) issues river-stage forecasts for ~4,000 river gages every 476 

day. Such’s daily published short-term river forecasts predict the stage height in six-hour 477 

intervals for up to five days ahead (20 6-hour intervals).
10

 When floods occur and increased 478 

information is needed, the local river forecast center (RFC) can decide to publish river-stage 479 

forecasts more frequently and for more locations. Welles et al.  (2007)(2007) provides a detailed 480 

description of the forecasting process. 481 

                                                 
10

 The river-stage forecasts are produced by one of NWS’ thirteen river forecasts centers (RFCs). 

Every morning the forecasts are forwarded to one of NWS’s 122 local weather forecast offices 

(WFOs), who then disseminate the information to the public through a variety of media channels 

or by issuing warnings. 
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For this paper, all forecasts published by the North Central River Forecast Center 482 

(NCRFC) between 1 May 2001 and 31 December 2013 were requested from the NCDC’s HDSS 483 

Access System (National Climatic Data Center, 2014; Station ID: KMSR, Bulletin ID: 484 

FGUS5).
11

 In total, the NCRFC produces forecasts for 525 gages. (). For 82 of those gages, 485 

forecasts have been published daily for a sufficient number of years, and are not inflow forecasts. 486 

The latter have been excluded from the forecast error analysis because they forecast discharge 487 

rather than water level. About half of the analyzed gages are along the Mississippi River (Figure 488 

3). The Illinois River and the Des Moines River are two other prominent rivers in the region. The 489 

drainage areas of the 82 river gages average 61,500 square miles (minimum 200 sq.miles; 490 

maximum 708,600 sq.miles). Figure 4 shows an empirical cumulative density function of 491 

drainage areas sizes. 492 

Figure 3: River gages for which the North Central River Forecast Centers publishes forecasts daily. 493 

Henry (HYNI2) and Hardin (HARI2) are  indicated by the upper and lower red arrow respectively.  494 

For gages indicated by black dots the basin size is missing. 495 

Figure 4: Empirical cumulative density function (ecdf) of sizes of drainage area for the river gages 496 

that are being forecasted daily by the NCRFC. 497 

 498 

Two river gages serve as an illustration for the points made throughout this paper. 499 

Hardin, IL is just upstream of the confluence of the Illinois River and the Mississippi River 500 

(Figure 3). Therefore, it probably experiences high water levels through backwatering, when the 501 

high water levels in the Mississippi River prevent the Illinois River from draining. Henry, IL is 502 

                                                 
11

 URL [last accessed July 2014]: 

http://cdo.ncdc.noaa.gov/pls/plhas/HAS.FileAppSelect?datasetname=9957ANX; Station ID: 

KMSR, Bulletin ID: FGUS5. 
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located ~200 miles (~320 km) upstream of Hardin, having a difference in elevation of ~25 feet.  521 

(~7.6 m). The Illinois River is ~330 miles (~530 km) long (Illinois Department of Natural 522 

Resources, 2011),
12

 draining an area of ~13,500 square miles (~35,000 km
2
) at Henry (USGS, 523 

2015a)
13

 and ~28,700 square miles (~72,000 km
2
) at Hardin (USGS, 2015b).

14
 524 

Figure 5: Portion of the North Central River Forecast Centers river gages with Henry (HYNI2) and 525 

Hardin (HARI2) indicated by the upper and lower red arrow respectively. Source: 526 

http://www.crh.noaa.gov/ncrfc/ 527 

3 Results 528 

3.1 Forecast error at NCRFC’s gages 529 

In general, the NCRFC’s forecasts are well calibrated across the entire dataset. The average 530 

error, defined as observation minus the forecast, is zero for most gages. For lead times longer 531 

than three days, a slight underestimation by the forecast is noticeable. By a lead time of 6 days 532 

this underestimation averages 0.41 feet only (a, aFigure 5a, Figure 6). Extremely low water 533 

levels, defined as below the 10
th

 percentile of observed water levels, are also well calibrated 534 

(Figure 5b, Figure 6). (b, b). However, when considering higher water levels the picture 535 

changes.
15

 The underestimation becomes more pronounced, averaging 0.29 feet for three days of 536 

lead time and 1.14 feet for six days of lead time, when only observations exceeding the 90
th

 537 

percentile of all observations are considered (Figure 5c, Figure 6). (c, c). When only looking at 538 

                                                 
12

 Illinois Environmental Protection Agency: “Illinois River and Lakes Fact Sheets”, URL 

[accessed 04/24/2014]: http://dnr.state.il.us/education/aquatic/aquaticillinoisrivlakefactshts.pdf 
13

 Source: http://waterdata.usgs.gov/nwis/nwisman/?site_no=05558300&agency_cd=USGS 
14

 Source: http://waterdata.usgs.gov/nwis/nwisman/?site_no=05587060&agency_cd=USGS 

 
15

 The gages MORI2 and MMOI2 are upstream of a dam. It is likely that the forecasts performed 

so poorly there, because the dam operators deviated from the schedules that they provide the 

river forecast centers to base their calculations on.  

Field Code Changed
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observations that exceeded the minor flood stages corresponding to each gage,
16

 the 560 

underestimation averages 0.45 feet for three days of lead time and 1.51 feet for 6 days of lead 561 

time (Figure 5d, Figure 6). (Figure 6d, Table 2d). However, some gages, such as Morris 562 

(MORI2), Marseilles Lock/Dam (MMOI2) – both on the Illinois River – and Marshall Town on 563 

the Iowa River (MIWI4) experience average errors of 5 to 12 feet for water levels higher than 564 

minor flood stage. The gages MORI2 and MMOI2 are upstream of a dam. It is likely that the 565 

forecasts performed so poorly there, because the dam operators deviated from the schedules that 566 

they provide the river forecast centers to base their calculations on. 567 

Figure 65: Forecast error for 82 river gages that the NCRFC publishes daily forecasts for. In anti-568 

clockwise direction starting at the top left: (a) Average error; (b) error on days that the water level 569 

did not exceed the 10
th

 percentile of observations; (c) error on days that the water level exceeded the 570 

90
th

 percentile of observations; (d) error on days that the water level exceeded minor flood stage.  571 

Figure 6: Empirical cumulative distribution function (ecdf) of forecast error at 82 river gages for 572 

six lead times. Vertical lines show the median forecast error of the corresponding subset.  573 

Table 2: Error statistics for the forecast error a) of the whole dataset; b) on days that the water 574 

level did not exceed the 10
th

 percentile of observations; c) on days that the water level exceeded the 575 

90
th

 percentile of observations; d) on days that the water level exceeded minor flood stage. 576 

3.2  Including more variables Identifying the best-performing sets of independent variables 577 

 578 

In total, the Brier Skill Score (BSS) for 31 variable combinationjoint predictors (Table 1) across 579 

various lead times and event threshold have been compared. Across 82 river gages, it has been 580 

                                                 
16

 Flood stages are based on the damage done by previous floods. It depends on the context, e.g., 

the shape of the river bed and the development of the river shores, which water levels cause 

damage. Therefore, it depends on the river gage which percentiles of observed water levels the 

flood stages correspond with.  

Field Code Changed
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analyzed (a) which combinations perform best and worst most often, and (b) which sets of 603 

variablesjoint predictor delivers the best BSSs on average.  604 

3.2.1 Frequency Analysis 605 

For each the four lead time (i.e., one to four days) and various the eight event thresholds (i.e., 606 

10
th

, 25
th

, 75
th

, 90
th

 percentiles as well as the four flood stages), we counted how oftenat how 607 

many river gages each variable combinationjoint predictor resulted in the highest and the lowest 608 

BSS across the 82 river gages. Figure 7 shows that for water levels below the 50
th

 percentile 609 

variable combinationjoint predictors with four or more independent variables return the best 610 

BSSs most often, while those with one and two variables predictors perform worst most often. 611 

For thresholds higher than the 50
th

 percentile the distributions gradually become more flatflatter. 612 

For the 90
th

 percentile, a clear trend is no longer detectable. Given that the frequency 613 

distributions for the extreme events in Figure 7 are relatively uniform, it seems as if extreme 614 

events are characterized by different processes at different gages. The same set of histograms for 615 

the four flood stages (i.e., action, minor, moderate, and major) confirms this (Figure 8). Across 616 

lead times, there is a slight trend noticeable that single variables predictors tend to be the worst 617 

combination more often for longer lead times. This suggests thatus, the further out one is 618 

forecasting, the more important it becomes to include more data in the modelconfiguration.  619 

Figure 7: Histograms of variable combinationjoint predictors returning the best and worst Brier 620 

Skill Scores across 82 river gages. Each row of histograms refers to an event threshold defined as a 621 

percentile of the observed water levels, and each column to a lead time. The dotted vertical lines in 622 

the histograms distinguish variable combinationjoint predictors with different numbers of 623 

independent variables.  624 

Field Code Changed

Field Code Changed
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Figure 8: Histograms of variable combinationjoint predictors returning the best and worst Brier 625 

Skill Scores across 82 river gages. Each row of histograms refers to a flood stage, and each column 626 

to a lead time. The dotted vertical lines in the histograms distinguish variable combinationjoint 627 

predictors with different numbers of independent variables. 628 

3.2.2 Best performing combinations on average 629 

For each river gage, the combinations have been ranked by BSSs. It was found that the more 630 

independent variables are included in a setjoint predictor, the higher that set of variables 631 

predictors will rank on average (Figure 9). However, for extremely high water levels, this trend 632 

gradually reverses (Figure 10). For action stage
17

 and minor flood stage,
18

 a slightly increasing 633 

trend is still visible. For moderate 
19

 and major flood stage,
20

 combinations with fewer 634 

independent variables rank higher on average. The most likely explanation is that extreme events 635 

like major and moderate flood stage are infrequent. After all, major flood stage equals 90
th

 to 636 

100
th

 percentiles at the various gages. This data scarcity can lead to overfitting when using more 637 

predictors.  638 

Considering these findings and those of the frequency analysis earlier, the 639 

modelconfigurations for the various river gages can generally be based on the same variable 640 

combinationjoint predictors of four or more independent variables. But for extremely high water 641 

levels, a modelconfiguration specific to each river gage has to be built in order to achieve high 642 

BSSs. 643 

                                                 
17

 Across the 82 stations, action stage corresponds with water levels between the 60th and 100th 

percentile. 
18

 Across the 82 stations, minor flood stage corresponds with water levels between the 70th and 

100th percentile. 
19

 Across the 82 stations, moderate flood stage corresponds with water levels between the 80th 

and 100th percentile. 
20

 Across the 82 stations, major flood stage corresponds with water levels between the 90th and 

100th percentile. 
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The combinations including the forecast (indicated by gray vertical lines in Figure 9 and 644 

Figure 10) perform less well than those that exclude it. Plotting the independent variables against 645 

the forecast error as the dependent variable makes the reason visible (Figure 11, Figure 12). 646 

Without a transformation into the normal domain, the forecast does not provide a lot of 647 

information for the QR model scatterplot of forecast and forecast error does not show a trend. 648 

After NQT, the percentiles show trends laid out like a fan. . In contrast, the other four variables 649 

do not lend themselves for linear quantile regression after performing NQTthe other four 650 

predictors become uniform distributions after NQT transformation.  There is no trend detectable 651 

anymore. Further research is necessary to reconcile these two types of variablespredictors. A 652 

possible solution could be to build define QR modelconfigurations for subsets of the transformed 653 

dependent and independent variable.  654 

Figure 9: Average rank for each variable combinationjoint predictor for one to four days of lead 655 

time and four percentiles of observed water levels. Vertical gray lines indicate variable 656 

combinationjoint predictors including the forecast. 657 

Figure 10: Average rank for each variable combinationjoint predictor for one to four days of lead 658 

time and four flood stages. Vertical gray lines indicate variable combinationjoint predictors 659 

including the forecast. 660 

Figure 11: Independent variables plotted against the forecast error for Hardin IL with 3 days of 661 

lead time. First row: Forecast; second row: past forecast errors; third row: rise ratesrates of rise. 662 

Figure 12: Independent variables after transforming into the Gaussian domain plotted against the 663 

forecast error for Hardin IL with 3 days of lead time. First row: Forecast; second row: past forecast 664 

errors; third row: rise ratesrates of rise. 665 
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3.2.3 Brier Skill Score  666 

Figure 13 illustrates the BSS when using the forecast as the only predictor as studied by Weerts 667 

et al. (2011). Confirming Wood et al.’s findings (2009), additionally iIncluding the rise raterate 668 

of rise and forecasts errors as independent variables into the QR modelconfiguration improves 669 

the Brier Skill Score (BSS) significantly . .  illustrates the BSS when using the model as 670 

originally introduced by Weerts et al. . Using the best performing variable combinationjoint 671 

predictors  instead, gives an upper bound of the BSSs that can be achieved at best. This 672 

configuration increases the mean and decreases the standard deviation (, ).(Figure 14, Figure 16). 673 

The performance improves most where all model configurations perform worst: at the 10
th

 674 

percentile. Possibly, the configurations do not perform well for low percentiles, because the 675 

dependent variable – the forecast error – exhibits very little variance at those water levels, i.e., 676 

the average error is very small (Figure 16).
21

 The decrease of the BSSs with lead time also 677 

becomes considerably less with this configuration. Additionally, an one-size-fits-all approach 678 

was tested to investigate, whether customizing the QR modelconfiguration to each river gage 679 

would be worth it. In this configuration, the rise ratesrates of rise in the past 24 and 48 hours and 680 

the forecast errors 24 and 48 hours ago serve as the independent variables (combination 30). It 681 

was found that this approach returns only slightly worse results than working with the best 682 

                                                 

21
 Possibly, the modelconfigurations do not perform well for low percentiles, because the dependent 

variable – the forecast error – exhibits very little variance at those water levels, i.e., the average 

error is very small (Figure 6: Empirical cumulative distribution function (ecdf) of forecast error at 

82 river gages for six lead times. Vertical lines show the median forecast error of the corresponding 

subset.  

Table 2).  
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performing configuration for each river gage deviation (Figure 15, Figure 16). (; ). Accordingly, 683 

the same variable combinationjoint predictor can be used for all river gages.  684 

As shown in ,already discussed earlier, this last conclusion is not true for extremely high 685 

water levels. Including more independent variables does improve the BSSs considerably 686 

deviation (Figure 17,18, and 19). ( and ; ). However, for each river gage the best combination of 687 

variablesjoint predictor needs to be identified separately. Because data to build modelsdefine 688 

configurations is scarce for extreme levels, the QR modelconfigurations all perform less well for 689 

each increase in flood stage. 690 

 691 

Table 3: Mean and standard deviation three QR configurations: the original using the transformed 692 

forecast only as independent variable; the best performing combination for each river gage (upper 693 

performance limit); rise rates in the past 24 and 48 hours and the forecast errors 24 and 48 hours 694 

ago as independent variable (one-size-fits-all solution).  695 

Figure 13: Brier Skill Scores of the original forecast-only QR modelconfiguration (i.e., using the 696 

transformed forecast as the only independent variable) for four lead times and percentiles of 697 

observed water levels. 698 

Figure 14: Brier Skill Scores for four lead times and percentiles of observed water levels using the 699 

best variable combinationjoint predictor for each river gage as independent variables in the QR 700 

modelconfiguration. 701 

Figure 15: Brier Skill Scores for four lead times and percentiles of observed water levels using a 702 

one-size-fits-all approach (i.e., rr24, rr48, err24, err48) for the independent variables in the QR 703 

modelconfiguration. 704 

Figure 16: Empirical cumulative density functions of three QR configurations predicting 705 

exceedance probabilities of the 10
th

, 25
th

, 75
th

, and 90
th

 percentile: the configuration using the 706 

transformed forecast as the only independent variable [NQT fcst]; the best performing combination 707 

for each river gage (upper performance limit) [Best combis]; rates of rise in the past 24 and 48 708 
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hours and the forecast errors 24 and 48 hours ago as independent variable (one-size-fits-all 709 

solution) [rr+err24/48].  710 

 711 

Figure 17: Brier Skill Scores of the original forecast-only QR modelconfiguration (i.e., using the 712 

transformed forecast as the only independent variable) for four lead times and flood stages. 713 

Figure 18: Brier Skill Scores for four lead times and flood stages of observed water levels using the 714 

best variable combinationjoint predictor for each river gage as independent variables in the QR 715 

modelconfiguration. 716 

Figure 19: Empirical cumulative density functions of three QR configurations predicting 717 

exceedance probabilities of the Action, Minor, Moderate, and Major Flood Stage: the configuration 718 

using the transformed forecast as the only independent variable [NQT fcst]; the best performing 719 

combination for each river gage (upper performance limit) [Best combis]  720 

 721 

 The fact that the Brier Score can be de-composed into reliability, resolution and 722 

uncertainty allows a closer look at which improvements are being achieved by including more 723 

variablespredictors than just the forecast. Figure 18Figure 20 shows that the original forecast-724 

only QR model configuration as studied by Weerts et al. (2011)(2011) has high reliability (i.e., 725 

the reliability is close to zero). The Brier Score and the Brier Skill Score mainly improve when 726 

using rise ratesrates of rise and forecast errors as independent variables, because the resolution 727 

increases. This confirms the finding by Wood et al. (2009) that QR error models should be based 728 

on rate of rise (as well as lead time). The forecast quality improves along other dimensions 729 

metrics as well, i.e., the areas under the ROC curves and the ranked probability skill score 730 

(RPSS) increase. The first weighs missed alarms against false alarms and has a perfect score 731 

equal to one. The latter is a version of the Brier Skill Score. While the Brier Skill Score pertains 732 
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to a binary event, the RPSS can take into account various event categories. Its perfect score 733 

equals one (e.g., WWRP/WGNE, 2009)(e.g., WWRP/WGNE, 2009). 734 

Figure 1820: Comparison of the original forecast-only QR modelconfiguration (i.e., only 735 

transformed forecast as independent variables) and the one-size-fits-all approach (i.e., rise 736 

ratesrates of rise and forecast errors as independent variables) using various measures of forecast 737 

quality: Brier Score (BS), Brier Skill Score (BSS), Reliability (Rel), Resolution (Res), Uncertainty 738 

(Unc), Area under the ROC curve (ROCA), ranked probability score (RPS), ranked probability 739 

skill score (RPSS). Lead time: 3 days; 75
th

 percentile of observation levels as threshold. The left 740 

figure zooms in on the right figure to make changes in reliability and resolution better visible.  741 

3.3 Robustness 742 

The impact of the length of the training dataset on the modelconfiguration’s performance 743 

measured by the Brier Skill Score (BSS) was assessed for the one-size-fits-all QR 744 

modelconfiguration (i.e., rise ratesrates of rise and forecast errors as independent variables for all 745 

gages) for Hardin and Henry on the Illinois River. We were particularly interested in testing how 746 

many years of training data are necessary to achieve satisfactory forecasting results. Each year 747 

between 2003 and 2013 was forecast by QR modelconfigurations trained on on one year up to 748 

however many years of archived forecasts were availableavailable in that year, i.e., the forecasts 749 

for 2005 is produced by a model trained on less data than those for 2013. Then, the BSS for that 750 

year (e.g., 2005 or 2013) was computed.  751 

Figure 21 and Figure 22 show that training datasets shorter than three years result in very 752 

low BSSs for low event thresholds (Q10) at Henry and Hardin.show that for those gages,  For the 753 

other event thresholds, it does notbarely matters  for the BSS how many years are included in the 754 

training dataset. That is good newnewss, if stationarity cannot be assumed (Milly et al., 755 

2008)(Milly et al., 2008), a step-change in river regime has occurred, or forecast data have not 756 
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been archived in the past. In those cases, only short training datasets are available. Only needing 757 

short time series to define a skillful QR configuration implies that the configuration parameters 758 

can be updated regularly. This way, changing relationships between predictors etc. can be taken 759 

into account.  760 

 However, the BSS varies considerably for what year is being forecast. The forecast 761 

performance varies greatly, especially for the 10
th

 and 25
th

 percentile of observed water levels. It 762 

is likely, that a very large dataset, including more infrequent events, would improve these results. 763 

However, most river forecast centers only recently started archiving forecasts in a text-format, so 764 

that even having ten years’ worth of data is an exception. To illustrate that point, the National 765 

Climatic Data Center has archived data from 2001 onwards available in their HDSS Access 766 

System. 
22

 767 

To generalize the result, the same analysis as just described for Hardin and Henry was 768 

repeated for all 82 gages. Following that, a regression analysis was executed with the BSS score 769 

as the dependent variable and the river gages and forecast years as factorial independent 770 

variables and the lead time, event thresholds, and number of training years as numerical 771 

independent variables (Table 2). The forecast performance was found to vary statistically 772 

significantly across all those dimensions except the number of training years. This results in a 773 

very wide range of Brier Skill Scores (Figure 22). Accordingly, for the user, it is particularly 774 

difficult to know how much to trust a forecast, if the performance depends so much on context. 775 

Likewise, this is case for the QR configuration based on the forecast only (not shown).  776 

                                                 
22

 To illustrate that point, the National Climatic Data Center has archived data from 2001 

onwards available in their HDSS Access System.  
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A closer look at the regression coefficients (Table 2) provides interesting insights. For 777 

low event thresholds, the BSSs are much worse than for high thresholds. The QR configurations 778 

might be performing less well for low event thresholds, because the variance in the dependent 779 

variable – the forecast error – is smaller. After all, river forecasts have much smaller errors for 780 

lower water levels. The illustrative cases of Henry and Hardin, described above, indicate that 781 

using longer time series to predict exceedance probabilities of low event thresholds improves 782 

forecast performance.  783 

As expected, the BSSs slightly decrease with lead time. Regarding the forecast quality for 784 

each forecast year, the regression is slightly biased. The earlier years are included less often in 785 

the dataset with on average less years’ worth of data in their training dataset, because, for 786 

example, unlike for the year 2013, ten years of training data were not available for the year 2006. 787 

Nonetheless, the regression indicates that 2008 was particularly difficult to forecast and 2012 788 

relatively easy, i.e., they are associated with relatively low and high coefficients respectively 789 

(Table 2).  790 

The performance of the forecast additionally depends on the river gage. The coefficients 791 

of the river gages, included as factors in the regression, have been excluded from Table 2 for the 792 

sake of brevity. Instead, Figure 23 maps the geographic position of the river gages with the color 793 

code indicating each gage’s regression coefficient. The coefficients are lower, and therefore the 794 

Brier Skill Scores are lower, for gages far upstream a river and those close to confluences. At 795 

least for the gages at confluences, the QR model could probably be improved by including the 796 

rise rates at the river gages on the other joining river into the regression. 797 

  798 
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Figure 2119: Brier Skill Score for various forecast years and various sizes of training dataset across 799 

different lead times (colors) and event thresholds (plots) for Hardin, IL (HARI2).  The filled-in end 800 

point of each line indicates the BSS for the forecast year on the x-axis with one year in the training 801 

dataset. Each point further to the left stands for one additional training  year for that same forecast 802 

year. 803 

Figure  2220: Brier Skill Score for various forecast years and various sizes of training dataset 804 

across different lead times (colors) and event thresholds (plots) for Henry, IL (HNYI2). The filled-805 

in end point of each line indicates the BSS for the forecast year on the x-axis with one year in the 806 

training dataset. Each point further to the left stands for one additional training  year for that same 807 

forecast year. 808 

Figure 2123: Geographical position of rivers. Colors indicate the regression coefficient of each 809 

station with the Brier Skill Score as dependent variable.  810 

Figure 2224: Minimum (black) and maximum (red) Brier Skill Scores for various lead times and 811 

event thresholds across locations, size of training dataset and forecast years.  812 

4 Conclusion 813 

In this study, quantile regression (QR) has been applied to estimate the probability of the river 814 

water level exceeding various event thresholds (i.e., 10
th

, 25
th

, 75
th

, 90
th

 percentiles of observed 815 

water levels as well as the four flood stages of each river gage). This is the first study applying 816 

this method to the U.S. American context. Additionally, itIt further develops the method 817 

application of QR to estimating river forecast uncertainty by (a) including morecomparing 818 

different sets of independent variables, (b) and testing the methodtechnique’s robustness across 819 

locations, lead times, event thresholds, forecast years and sizes of training dataset.  820 

  821 

Most importantlyWhen compared to the configuration using only the forecast, it was found that 822 

including rise ratesrates of rise in the past 24 and 48 hours and the forecast errors of 24 and 48 823 

hours ago as independent variables improves the performance of the QR modelconfiguration, as 824 
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measured by the Brier Skill Score. This confirms Wood et al.’s (2009) finding that QR error 825 

models should be a function of rate of rise and lead time. Since the reliability was already high 826 

with the original QR method as proposed by Weerts et al. , The configuration with the forecast as 827 

the only independent variable, as studied by Weerts et al. (2011), produced estimates with high 828 

reliability. Including the other four predictors mentioned above mainlythe new configuration 829 

mainly increases the resolution. 830 

 For extremely high water levels, the combinations of independent variables that perform best 831 

vary across stations. On those days, combinations of fewer independent variables perform better 832 

than those that include more. The most likely explanation is that QR configurations based on 833 

large joint predictors result in overfitting the data. In contrast to these extremely high event 834 

thresholds, larger sets of variables predictors work better than smaller ones for non-extreme and 835 

low event thresholds. Additionally, customizing the set of predictors to the event thresholds does 836 

not improve the BSS much. a one-size-fits-all approach (i.e. the rise rates and forecasts errors as 837 

independent variables) performs satisfactorily for those cases.  838 

When forming a joint predictor, the independent variables rates of rise and forecast errors do 839 

not combine well with the forecast itself. To account for heteroscedasticity, the forecast was 840 

transformed into the Gaussian domain. However, no trend is detectable anymore between 841 

forecast error and the rates of rise or the previous forecast errors after applying NQT to those 842 

variables. Therefore, it is difficult to combine these two predictors. A possible solution could be 843 

to define QR configurations for subsets of the transformed data. However, such an approach 844 

drastically decreases the amount of data available for each configuration.  845 

 846 
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The new independent variables – rise rates and forecast errors – do not combine well with 847 

forecast itself. The latter was the only variable included in the original QR configuration as 848 

studied by Weerts et al.  and López López et al. . To account for heteroscedasticity, the forecast 849 

was transformed into the Gaussian domain. However, the rise rates and the forecast errors do not 850 

lend themselves for linear quantile regression after such a transformation. Therefore, it is 851 

difficult to combine these two variables. A possible solution could be to build regression models 852 

for subsets of the transformed data. However, such an approach drastically decreases the amount 853 

of data available for each model.  854 

The proposed studied QR method configurations areis relatively robust to the size of training 855 

dataset, which is convenient if stationarity cannot be assumed (Milly et al., 2008)(Milly et al., 856 

2008), a step-change in the river regime has occurred, or – as is the case for most river forecast 857 

centers – only recent forecast data have been archived. However, the performance of the 858 

methodtechnique does dependdepends heavily on the river gage, the lead time, event threshold 859 

and year that are being forecast. This results in a very wide range of Brier Skill Scores. This 860 

means that the danger remains that forecast users make good experiences with a forecast one 861 

year or at one location and assume it is equally reliable in other locations and every year. As is 862 

the case with most other forecasts, an indication of forecast uncertainty needs to be 863 

communicated alongside the exceedance probabilities generated by our approach.  864 

The proposed studied QR approach configurations performs less well for longer lead times, 865 

for gages far upstream a river or close to confluences, for low event thresholds and extremely 866 

high ones. The QR modelconfigurations might be performing less well for low event thresholds, 867 

because the variance in the dependent variable – the forecast error – is smaller. After all, river 868 
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forecasts have much smaller errors for lower water levels. In turn, for extremely high water 869 

levels, the scarcity of data decreases the modelconfiguration’s performance.  870 

Future Work 871 

Thise methodtechniques can be further developed in several ways to achieve higher Brier Skill 872 

Scores and more robustness. First, more independent variables can be added. Trials with a 873 

different methodtechnique, classification trees, showed that the observed precipitation, the 874 

precipitation forecast (i.e., POP – probability of precipitation) and the upstream water levels 875 

significantly improve modelsforecasting performance. Presumably, this is the case, because the  876 

QPF-forecast used in this study includes the precipitation forecast only for only the next 12 877 

hours. However, currently, the precipitation data and forecasts can only be requested in chunks 878 

of a month, three chunks per day, from the NCDC’s HDSS Access System.
23

 For a period of 12 879 

years, requesting such data for several weather stations
24

 is obviously time-consuming; n. ot 880 

least, because the geographical units of the weather forecasts bulletins do not correspond with 881 

those of the river forecast bulletins. Upstream water levels can easily be included after manually 882 

determining the upstream gage(s) for each of the 82 NCRFC gages. To improve model 883 

performance at gages close to river confluences, the upstream water level of the gages on the 884 

joining river should be included as well.  885 

Different approaches of sub-setting the data to improve models resultsperformance also 886 

warrant consideration. Particularly, clustering the data by variability seems promising. However, 887 

early trials indicated that this methodtechnique is very sensitive to the training dataset. 888 

                                                 
23

 URL [accessed July 2014]: 

http://cdo.ncdc.noaa.gov/pls/plhas/HAS.FileAppSelect?datasetname=9957ANX 
24

 The geographical units of the weather forecasts bulletins do not correspond with those of the 

river forecast bulletins. 



39 

 

As mentioned above, the QR method approach works less well for low than for high event 889 

thresholds. Further study should investigate, why that is the case, and identify possible solutions. 890 

The current study focused on extremely high event thresholds, i.e., flood stages, but not on lower 891 

ones, i.e., below the 50
th

 percentile of observed water levels. 892 

LastAdditionally, the proposed studied methodtechnique would need to be verified for gages 893 

for which the NCRFC does not publish daily forecasts. Ignorance of the uncertainty inherent in 894 

river forecasts have has had some of the most unfortunate impacts on decision-making in Grand 895 

Forks, ND and Fargo, ND (Pielke, 1999; Morss, 2010)(Pielke, 1999; Morss, 2010). Both of those 896 

stages are discontinuously forecast NCRFC gages.  897 

Finally, this paper uses a brute force approach by simply calculating and comparing all 898 

possible combinations of independent variables. Mathematically more challenging stepwise 899 

quantile regression would not only be more elegant, but also provide better safeguards against 900 

overfitting the data.  901 
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Tables 

 

Table 1: Variable CombinationJoint predictors 

Combi fcst err24 err48 rr24 rr48  Combi fcst err24 err48 rr24 rr48 

1       16      

2       17      

3       18      
4       19      

5       20      

6       21      
7       22      

8       23      
9       24      
10       25      

11       26      

12       27      
13       28      
14       29      
15       30      

       31      
fcst = forecast; rr24, rr48 = rise raterate of rise in the past 24 and 48 hours;  

err24, err 48 = forecast error 24 and 48 hours ago 

The forecast error equals the difference between the current (i.e., at issue time of the forecast) 

water level and the forecast that was produced 24/48 hours ago. 

 

  



50 

 

Table 2: Error statistics for the forecast error a) of the whole dataset; b) on days that the water 

level did not exceed the 10
th

 percentile of observations; c) on days that the water level exceeded the 

90
th

 percentile of observations; d) on days that the water level exceeded minor flood stage. 

Average errors  Lead Time 

of 82 gages Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 

a) ALL OBSERVATIONS 

Minimum  -0.21 -0.08 -0.09 -0.07 -0.04 0.02 

Median 0.01 0.02 0.06 0.13 0.22 0.30 

Mean 0.01 0.04 0.10 0.18 0.30 0.41 

Maximum 0.19 0.21 0.76 1.65 2.62 3.47 

b) OBSERVATIONS < 10
th

 PERCENTILE 

Minimum  -1.2 -0.35 -0.38 -0.41 -0.38 -0.39 

Median -0.03 -0.04 -0.05 -0.05 -0.04 -0.04 

Mean -0.06 -0.06 -0.06 -0.06 -0.05 -0.04 

Maximum 0.03 0.04 0.05 0.12 0.17 0.25 

c) OBSERVATIONS > 90
th

 PERCENTILE  

Minimum  -0.11 -0.23 -0.31 -0.38 -0.38 -0.27 

Median -0.01 0.02 0.15 0.32 0.55 0.81 

Mean 0.01 0.09 0.29 0.55 0.82 1.14 

Maximum 0.34 1.01 3.12 5.13 6.81 8.56 

d) OBSERVATIONS > FLOOD STAGE 

Minimum  -0.20 -0.30 -0.44 -0.63 -0.78 -0.80 

Median -0.02 -0.03 0.22 0.45 0.78 1.10 

Mean 0.01 0.17 0.45 0.80 1.14 1.51 

Maximum 0.65 2.44 5.70 8.37 10.40 11.74 
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Table 3: Mean and standard deviation three QR configurations: the original using the transformed 

forecast only as independent variable; the best performing combination for each river gage (upper 

performance limit); rise rates in the past 24 and 48 hours and the forecast errors 24 and 48 hours 

ago as independent variable (one-size-fits-all solution).  

 Q10 Q25 Q75 Q90  Q10 Q25 Q75 Q90 

 Day 1  Day 2 

NQT-fcst 0.34 (0.52) 0.65 (0.36) 0.90 (0.07) 0.88 (0.08)  0.24 (0.57) 0.59 (0.35) 0.85 (0.10) 0.82 (0.12) 

Best combi.s 0.54 (0.34) 0.78 (0.18) 0.93 (0.05) 0.91 (0.06)  0.49 (0.36) 0.74 (0.19) 0.90 (0.05) 0.87 (0.07) 

Rise rate 24/48  

+error 24/48* 

0.49 (0.41) 0.77 (0.18) 0.92 (0.05) 0.93 (0.06)  0.42 (0.44) 0.73 (0.19) 0.90 (0.06) 0.86 (0.09) 

 Day 3  Day 4 

NQT-fcst 0.20 (0.61) 0.56 (0.33) 0.81 (0.10) 0.75 (0.15)  0.19 (0.55) 0.55 (0.31) 0.77 (0.13) 0.69 (0.18) 

Best combi.s 0.47 (0.37) 0.74 (0.17) 0.89 (0.05) 0.85 (0.09)  0.46 (0.37) 0.73 (0.18) 0.89 (0.05) 0.84 (0.09) 

Rise rate 24/48  

+error 24/48* 

0.40 (0.44) 0.72 (0.19) 0.88 (0.06) 0.84 (0.11)  0.39 (0.43) 0.71 (0.20) 0.88 (0.05) 0.82 (0.20) 

 Action Minor Moderate Major  Action Minor Moderate Major 

 Day 1  Day 2 

NQT-fcst 0.81 (0.27) 0.42 (1.12) 0.38 (1.02) -0.80 (2.07)  0.68 (0.59) 0.41 (0.90) 0.25 (1.2) -1.30 (1.96) 

Best combi.s 0.86 (0.26) 0.78 (0.27) 0.73 (0.24) 0.36 (0.66)  0.82 (0.29) 0.73 (0.28) 0.68 (0.24)  0.26 (0.67) 

 Day 3  Day 4 

NQT-fcst 0.67 (0.37) 0.37 (0.87) -0.09 (1.42) -1.69 (2.24)  0.62 (0.35) 0.22 (1.00) -0.07 (1.05) -1.52 (1.96) 

Best combi.s 0.81 (0.26) 0.71 (0.31)  0.64 (0.23)  0.19 (0.76)  0.79 (0.26) 0.69 (0.30)  0.60 (0.23)  0.13 (0.72) 

* Combination 30 

Table 2: Regression results 

 Coef. St.Dev.  

Intercept -0.206 0.031 *** 

Event thresholds 0.265 0.003 *** 

Lead Times -0.021 0.003 *** 

Forecast Years    

2004 -0.266 0.020 *** 

2005 -0.081 0.018 *** 

2006 -0.125 0.017 *** 

2007 -0.129 0.017 *** 

2008 -0.203 0.017 *** 

2009 -0.125 0.016 *** 

2010 -0.140 0.017 *** 

2011 -0.128 0.016 *** 
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2012 0.056 0.017 *** 

2013 -0.054 0.016 *** 

Number of Years in Training Dataset 0.001 0.001  

River Gages 

    For the sake of brevity, the 82 river gages included in the regression as factors are omitted here. 
*** 

R
2
  0.26  

Adjusted R
2
  0.25  

P-Values:      *** – <0.001;      ** – 0.01;      * – 0.05;      . – 0.1 



 

53 

 

Figures 

 

Figure 1: Deterministic short-term weather forecast in six hour intervals as published by the NWS 

for Hardin, IL on 24 April 2014. 

Source:http://water.weather.gov/ahps2/hydrograph.php?wfo=lsx&gage=hari2. 
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Figure 2: Probabilistic long-term forecast as published by the NWS for Commerce, OK on 

December 14th, 2012: Exceedance curve for three months period. (Not available for Hardin, IL). 

Source: http://water.weather.gov/ahps2/hydrograph.php?wfo=tsa&gage=como2 

 

Figure 3: Probabilistic long-term forecast as published by the NWS for Commerce, OK on 

December 14th, 2012: Bar plot for each week of a three months period. (Not available for Hardin, 

IL). Source: http://water.weather.gov/ahps2/hydrograph.php?wfo=tsa&gage=como2 
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Figure 24: Theory behind Brier Skill Score illustrated for an imaginary forecast (red line): (a) 

reliability and resolution; (b) skill. In figure a, the area representing reliability should be as small, 

and for resolution as large as possible. The forecast has skill (BSS > 0), i.e., performs better than 

random guessingthe reference forecast, if it is inside the shaded area in the figure b. Ideally, the 

forecast would follow the diagonal (BSS=1). (Adapted from Hsu and Murphy, 1986; Wilson, 
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n.d.)(Adapted from Hsu and Murphy, 1986; Wilson, n.d.). 
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 Figure 35: Portion River gages for which the of the North Central River Forecast Centers river 

gages withpublishes forecasts daily. Henry (HYNI2) and Hardin (HARI2) are  indicated by the 

upper and lower red arrow respectively.  For gages indicated by black dots the basin size is 

missing.Source:  
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Figure 4: Empirical cumulative density function (ecdf) of sizes of drainage area for the river gages 

that are being forecasted daily by the NCRFC. 
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60 

 

Figure 56: Forecast error for 82 river gages that the NCRFC publishes daily forecasts for. In anti-

clockwise direction starting at the top left: (a) Average error; (b) error on days that the water level 

did not exceed the 10
th

 percentile of observations; (c) error on days that the water level exceeded the 

90
th

 percentile of observations; (d) error on days that the water level exceeded minor flood stage.  

 

Figure 6: Empirical cumulative distribution function (ecdf) of forecast error at 82 river gages for 

six lead times. Vertical lines show the median forecast error of the corresponding subset.  
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Figure 7: Histograms of variable combinationjoint predictors returning the best and worst Brier 

Skill Scores across 82 river gages. Each row of histograms refers to an event threshold defined as a 

percentile of the observed water levels, and each column to a lead time. The dotted vertical lines in 

the histograms distinguish variable combinationjoint predictors with different numbers of 

independent variables.  
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Figure 8: Histograms of variable combinationjoint predictors returning the best and worst Brier 

Skill Scores across 82 river gages. Each row of histograms refers to a flood stage, and each column 

to a lead time. The dotted vertical lines in the histograms distinguish variable combinationjoint 

predictors with different numbers of independent variables. 
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Figure 9: Average rank for each variable combinationjoint predictor for one to four days of lead 

time and four percentiles of observed water levels. Vertical gray lines indicate variable 

combinationjoint predictors including the forecast. 
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Figure 10: Average rank for each variable combinationjoint predictor for one to four days of lead 

time and four flood stages. Vertical gray lines indicate variable combinationjoint predictors 

including the forecast. 
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Figure 11: Independent variables plotted against the forecast error for Hardin IL with 3 days of 

lead time. First row: Forecast; second row: past forecast errors; third row: rise ratesrates of rise. 
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Figure 12: Independent variables after transforming into the Gaussian domain plotted against the 

forecast error for Hardin IL with 3 days of lead time. First row: Forecast; second row: past forecast 

errors; third row: rise ratesrates of rise. 
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Figure 16: Empirical cumulative density functions of three QR configurations predicting 

exceedance probabilities of the 10
th

, 25
th

, 75
th

, and 90
th

 percentile: the configuration using the 

transformed forecast as the only independent variable [NQT fcst]; the best performing combination 

for each river gage (upper performance limit) [Best combis]; rates of rise in the past 24 and 48 

hours and the forecast errors 24 and 48 hours ago as independent variable (one-size-fits-all 

solution) [rr+err24/48].  
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Figure 19: Empirical cumulative density functions of three QR configurations predicting 

exceedance probabilities of the Action, Minor, Moderate, and Major Flood Stage: the configuration 

using the transformed forecast as the only independent variable [NQT fcst]; the best performing 

combination for each river gage (upper performance limit) [Best combis]  
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Figure 13: Brier Skill Scores of the original 

forecast-only QR modelconfiguration (i.e., 

using the transformed forecast as the only 

independent variable) for four lead times 

and percentiles of observed water levels. 

 

Figure 14: Brier Skill Scores for four lead 

times and percentiles of observed water 

levels using the best variable 

combinationjoint predictor for each river 

gage as independent variables in the QR 

modelconfiguration. 

 

 

 

Figure 15: Brier Skill Scores for four lead 

times and percentiles of observed water 

levels using a one-size-fits-all approach (i.e., 

rr24, rr48, err24, err48) for the independent 

variables in the QR modelconfiguration. 
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Figure 176: Brier Skill Scores of the forecast-only original QR 

modelconfiguration (i.e., using the transformed forecast as the only 

independent variable) for four lead times and flood stages. 

 

Figure 187: Brier Skill Scores for four lead times and flood stages 

of observed water levels using the best variable combinationjoint 

predictor for each river gage as independent variables in the QR 

modelconfiguration. 
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Figure 2018: Comparison of the forecast-only original QR modelconfiguration (i.e., only transformed forecast as independent variables) 

and the one-size-fits-all approach (i.e., rise ratesrates of rise and forecast errors as independent variables) using various measures of 

forecast quality: Brier Score (BS), Brier Skill Score (BSS), Reliability (Rel), Resolution (Res), Uncertainty (Unc), Area under the ROC 

curve (ROCA), ranked probability score (RPS), ranked probability skill score (RPSS). Lead time: 3 days; 75
th

 percentile of observation 

levels as threshold. The left figure zooms in on the right figure to make changes in reliability and resolution better visible.  
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Figure 2119: Brier Skill Score for various forecast years and 

various sizes of training dataset across different lead times (colors) 

and event thresholds (plots) for Hardin, IL (HARI2).  The filled-in 

end point of each line indicates the BSS for the forecast year on the 

x-axis with one year in the training dataset. Each point further to 

the left stands for one additional training  year for that same 

forecast year. 

 

Figure 220: Brier Skill Score for various forecast years and various 

sizes of training dataset across different lead times (colors) and 

event thresholds (plots) for Henry, IL (HNYI2). The filled-in end 

point of each line indicates the BSS for the forecast year on the x-

axis with one year in the training dataset. Each point further to the 

left stands for one additional training  year for that same forecast 

year. 
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Figure 231: Geographical position of rivers. Colors indicate the regression coefficient of each 

station with the Brier Skill Score as dependent variable.  
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Figure 242: Minimum (black) and maximum (red) Brier Skill Scores for various lead times and 

event thresholds across locations, size of training dataset and forecast years.  


