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Performance and Robustness of Probabilistic River Forecasts Computed 1 

with Quantile Regression based on Multiple Independent Variables in the 2 

North Central U.S.A.  3 

Abstract 4 

This study applies Quantile Regression (QR) to predict exceedance probabilities of various water 5 

levels, including flood stages, with combinations of deterministic forecasts, past forecast errors 6 

and rates of water level rise as independent variables. A computationally cheap technique to 7 

estimate forecast uncertainty is valuable, because many national flood forecasting services, such 8 

as the National Weather Service (NWS), only publish deterministic single-valued forecasts. The 9 

study uses data from the 82 river gages, for which the NWS’ North Central River Forecast 10 

Center issues forecasts daily. Archived forecasts for lead times up to six days from 2001-2013 11 

were analyzed. Besides the forecast itself, this study uses the rate of rise of the river stage in the 12 

last 24 and 48 hours and the forecast error 24 and 48 hours ago as predictors in QR 13 

configurations. When compared to just using the forecast as independent variable, adding the 14 

latter four predictors significantly improved the forecasts, as measured by the Brier Skill Score 15 

and the Continuous Ranked Probability Score. Mainly, the resolution increases, as the forecast-16 

only QR configuration already delivered high reliability. Combining the forecast with the other 17 

four predictors results in much less favorable performance. Lastly, the forecast performance does 18 

not strongly depend on the size of the training dataset, but on the year, the river gage, lead time 19 

and event threshold that are being forecast. We find that each event threshold requires a separate 20 

configuration or at least calibration. 21 

Keywords: River forecasts, quantile regression, probabilistic forecasts, robustness 22 
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1 Introduction 23 

River-stage forecasts are no crystal ball; the future remains uncertain. The past has shown that 24 

unfortunate decisions have been made, because of users’ unawareness of the magnitude of 25 

potential forecast errors (Pielke, 1999; Morss, 2010). For many users, such as emergency 26 

managers, forecasts are most important in extreme situations, such as droughts and floods. 27 

Unfortunately, it is exactly in those situations that forecast are the most uncertain, i.e., forecast 28 

errors are the largest, due to the infrequency and the subsequent scarcity of data.  29 

Currently, the National Weather Service does not routinely publish uncertainty 30 

information along with their deterministic short-term river-stage forecast (Figure 1). Given the 31 

many sources and complexity of uncertainty and the lacking user experience, it is easy to see 32 

how forecast users find it difficult to estimate the forecast error. Additionally, users might only 33 

experience such an event once or twice in their lifetime, so that they have no experience to what 34 

extent they can rely on forecasts in such situations. Including uncertainty in river forecast would 35 

therefore be valuable, just as has been recommended for weather forecasts in general (e.g., 36 

National Research Council, 2006). Hopefully, decision-makers would then consider the whole 37 

bandwidth of possible future water levels, rather than focusing on the best estimate that is 38 

currently being published.  39 

Figure 1: Deterministic short-term weather forecast in six hour intervals as published by the NWS 40 

for Hardin, IL on 24 April 2014. 41 

Source:http://water.weather.gov/ahps2/hydrograph.php?wfo=lsx&gage=hari2. 42 

 There are two types of approaches to estimate forecast uncertainty (e.g., Leahy, 2007; 43 

Demargne et al., 2013; Regonda et al., 2013): Those addressing major sources of uncertainty 44 

individually, e.g., input uncertainty and hydrological uncertainty, and those taking into account 45 

all sources of uncertainty in a lumped fashion. Both approaches have their advantages and 46 
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disadvantages. When source of uncertainty are modelled separately, their different characteristics 47 

can be taken into account (e.g., some sources of uncertainty depend on lead time, while others do 48 

not). Consequently, the approach addressing major source of output uncertainty is likely to result 49 

in better performing, more parsimonious model configurations. On the downside, this approach 50 

is expensive to develop, maintain and run. The alternative, i.e., the lumped quantification of 51 

uncertainties, is a less demanding in development and computation run-time, but glosses over 52 

many of the finer details of uncertainties (Regonda et al., 2013).  53 

Most previously developed post-processors to generate probabilistic forecasts share the 54 

overall set-up but differ in their implementation. Independent variables such as the forecasted 55 

and observed river stage, river flow or precipitation, and previous forecast errors are used to 56 

predict the forecast error, conditional probability distribution of the forecast error or other 57 

measures of uncertainty for various lead times (e.g., Kelly and Krzysztofowicz, 1997; Montanari 58 

and Brath, 2004; Montanari and Grossi, 2008; Regonda et al., 2013; Seo et al., 2006; Solomatine 59 

and Shrestha, 2009; Weerts et al., 2011). These techniques differ in a number of ways, including 60 

their sub-setting of data, and the output metric. Please see Regonda et al. (2013) and Solomatine 61 

& Shrestha (2009) for a summary of each technique.  62 

The National Weather Service has chosen to quantify the most significant sources of 63 

uncertainty using ensemble techniques (Demargne et al., 2013). The NWS has developed the 64 

Hydrologic Ensemble Forecast Service (HEFS) to be able to provide short-term and medium-65 

term probabilistic forecasts (Demargne et al., 2013). HEFS includes a post-processor, the 66 

Hydrologic Ensemble Post-Processing (EnsPost). It models the hydrological uncertainty by 67 

estimating the probability distribution for each of the ensemble members which have been 68 

produced with varying input to account for input uncertainty (NWS-OHD, 2013). The 69 
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Experimental ensemble forecast service (XEFS) additionally features the more parsimonious 70 

Hydrologic Model Output Statistics (HMOS) Streamflow Ensemble Processor, which estimates 71 

the total uncertainty (input and hydrological uncertainty) of single-valued streamflow forecasts 72 

based on conditional probability distributions (U.S. Department of Commerce/NOAA, 2012). 73 

 This paper further develops one of the techniques mentioned above: the Quantile 74 

Regression approach to post-process river forecasts first introduced by Wood et al. (2009) and 75 

further elaborated by Weerts et al. (2011) and López López et al. (2014). In a comparative 76 

analysis of four different post-processing techniques to generate confidence intervals, the 77 

quantile regression technique was one of the two most reliable techniques (Solomatine and 78 

Shrestha, 2009), while being the mathematically least complicated and requiring few 79 

assumptions. After Wood et al. (2009) presented the proof-of-concept for the Lewis River in 80 

Washington State at a conference, Weerts et al. (2011) published a formal study of quantile 81 

regression to compute confidence intervals for river-stage forecasts. Weerts et al. (2011) 82 

achieved impressive results in estimating the 50% and 90% confidence interval of river-stage 83 

forecasts for three case studies in England and Wales using QR with calibration and validation 84 

datasets spanning two years each. When applying QR to river forecasts, Weerts et al. (2011) 85 

transformed the deterministic forecasts and the corresponding forecast errors into the Gaussian 86 

domain using Normal Quantile Transformation (NQT) to account for heteroscedasticity. 87 

Building on Weerts et al. (2011) study, López López et al. (2014) compare different 88 

configurations of QR with the forecast as the only independent variable, including configurations 89 

without NQT and preventing the crossing of quantiles. They found that no configuration was 90 

consistently superior for a range of forecast quality measures (López López et al., 2014).  91 
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This paper combines elements of the studies mentioned above. In some aspects, our 92 

approach differs from those three studies. We predict the exceedance probabilities of flood stages 93 

rather than uncertainty bounds. Additionally, we are fortunate to have a much larger dataset than 94 

the three earlier studies, consisting of archived forecasts for 82 river gages covering 11 years. 95 

Furthermore, we introduce additional predictors, as was suggested by López López et al. (2014). 96 

This study does not add to the mathematical technique of quantile regression itself.  97 

The proposed QR approach is similar to the HMOS approach, but it differs in the 98 

following ways. First, HMOS uses ordinary linear regression instead of quantile regression. 99 

Second, the QR method uses the single-valued forecast, rates of rise and past forecast errors as 100 

independent variables, while HMOS includes recently observed and current flows, and 101 

quantitative precipitation forecasts (QPF) as predictors. Third, in this paper QR models are built 102 

for a number of event thresholds, whereas HMOS develops models for subsets of forecasted 103 

streamflows (Regonda et al., 2013).  104 

Identifying the best-performing set of independent variables is central to this paper. All 105 

possible combinations of the following predictors have been studied: forecast, the rate of rise of 106 

water levels in past hours, and the past forecast errors. Additionally, the robustness of the 107 

resulting QR configurations across different sizes of training datasets, locations, lead times, 108 

water levels, and forecast year has been assessed.  109 

The paper is structured as follows. The Data section describes the used data and reviews the 110 

overall forecast error for the dataset. The Method section introduces quantile regression and the 111 

performance measures, and discusses the performed analyses. The Results describes the results 112 

of identifying the best-performing set of independent variables. Additionally, it discusses the 113 
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robustness of the studied QR configurations. The fourth and last section presents the conclusions 114 

and proposes further research ideas. 115 

2 Data 116 

The National Weather Service (NWS)’s daily short-term river forecasts predict the stage height 117 

in six-hour intervals for up to six days ahead (20 6-hour intervals). When floods occur and 118 

increased information is needed, the local river forecast center (RFC) can decide to publish river-119 

stage forecasts more frequently and for more locations. Welles et al. (2007) provides a detailed 120 

description of the forecasting process. 121 

For this paper, all forecasts published by the North Central River Forecast Center 122 

(NCRFC) between 1 May 2001 and 31 December 2013 were requested from the NCDC’s HDSS 123 

Access System (National Climatic Data Center, 2014; Station ID: KMSR, Bulletin ID: FGUS5). 124 

In total, the NCRFC produces forecasts for 525 gages. For 82 of those gages, forecasts have been 125 

published daily for at least two years, and are not inflow forecasts. The latter have been excluded 126 

from the forecast error analysis because they forecast discharge rather than water level. About 127 

half of the analyzed gages are along the Mississippi River (Figure 2). The Illinois River and the 128 

Des Moines River are two other prominent rivers in the region. The drainage areas of the 82 river 129 

gages average 61,500 square miles (minimum 200 sq.miles; maximum 708,600 sq.miles). Figure 130 

3 shows an empirical cumulative density function of drainage areas sizes. 131 

Figure 2: River gages for which the North Central River Forecast Centers publishes forecasts daily. 132 

Henry (HYNI2) and Hardin (HARI2) are indicated by the upper and lower red arrow respectively. 133 

For gages indicated by black dots the basin size is missing. The color scale for basin size in square 134 

miles is logarithmic.   135 

Figure 3: Empirical cumulative density function (ecdf) of sizes of drainage area for the river gages 136 

that are being forecasted daily by the NCRFC.  137 
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Two river gages serve as an illustration for the points made throughout this paper. These 138 

two gages were chosen to capture different, but representative conditions. Hardin, IL is just 139 

upstream of the confluence of the Illinois River and the Mississippi River (Figure 2). Therefore, 140 

it can experience backwatering, when the high water levels in the Mississippi River prevent the 141 

Illinois River from draining. Henry, IL is located ~200 miles upstream of Hardin, having a 142 

difference in elevation of ~25 feet. The Illinois River is ~330 miles long (Illinois Department of 143 

Natural Resources, 2011), draining an area of ~13,500 square miles at Henry (USGS, 2015a) and 144 

~28,700 square miles at Hardin (USGS, 2015b). The number of case studies has been limited to 145 

two because of computation time.   146 

In general, the NCRFC’s forecasts are well calibrated across the entire dataset. The 147 

average error, defined as observation minus the forecast, is zero for most gages (Figure 4). For 148 

lead times longer than three days, a slight underestimation by the forecast is noticeable. By a lead 149 

time of 6 days this underestimation averages 0.41 feet (Figure 4a, Figure 5). Extremely low 150 

water levels, defined as below the 10
th

 percentile of observed water levels, are also well 151 

calibrated (Figure 4b, Figure 5). However, when considering higher water levels the picture 152 

changes. When only observations exceeding the 90
th

 percentile of all observations are 153 

considered, the underestimation becomes more pronounced, averaging 0.29 feet for three days of 154 

lead time and 1.14 feet for six days of lead time (Figure 4c, Figure 5). When only looking at 155 

observations that exceeded the minor flood stages corresponding to each gage, the 156 

underestimation averages 0.45 feet for three days of lead time and 1.51 feet for 6 days of lead 157 

time (Figure 4d, Figure 5). However, some gages, such as Morris (MORI2), Marseilles 158 

Lock/Dam (MMOI2) – both on the Illinois River – and Marshall Town on the Iowa River 159 

(MIWI4) experience average errors of 5 to 12 feet for water levels higher than minor flood stage. 160 
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The gages MORI2 and MMOI2 are upstream of a dam. Possibly, the forecasts performed so 161 

poorly there, because the dam operators deviated from the schedules that they provide the river 162 

forecast centers to base their calculations on. In sum, predicting the forecast error distribution as 163 

is done in this paper has much added value for forecast users, because the forecast error can 164 

amount to several feet.  165 

Figure 4: Forecast error for 82 river gages that the NCRFC publishes daily forecasts for. In anti-166 

clockwise direction starting at the top left: (a) Average error; (b) error on days that the water level 167 

did not exceed the 10th percentile of observations; (c) error on days that the water level exceeded the 168 

90th percentile of observations; (d) error on days that the water level exceeded minor flood stage  169 

Figure 5: Empirical cumulative distribution function (ecdf) of forecast error at 82 river gages for 170 

six lead times. Vertical lines show the median forecast error of the corresponding subset. 171 

3 Method 172 

Quantile Regression (QR) is used to estimate the distribution of river-stage forecasts for each 173 

forecast point in time and location. This information can be published in a number of formats to 174 

suit the needs of the forecast users. Wood et al. (2009) and Weerts et al. (2011) chose to study 175 

confidence intervals. A confidence interval is the range between two points on the estimated 176 

forecast distribution, e.g., between the 10
th

 and 90
th

 percentile. Our paper differs in that our 177 

output is the probability of exceeding a flood stage. A flood stage and the corresponding 178 

probability of it being exceeded are represented by a single point on the estimated forecast 179 

distribution. Assessing forecast performance for a single point rather than for two points on the 180 

estimated distribution allows for scrutinizing forecast performance more closely, not least 181 

because the method is not necessarily equally successful in both tails of the distribution.  182 

 In the following, quantile regression itself and the analysis to identify the best-performing 183 

set of independent variables are explained.  184 
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3.1  Quantile Regression 185 

In the context of river forecasts, linear quantile regression has been used to estimate the 186 

distribution of forecast errors as a function of the forecast itself. Weerts et al. (2011) summarize 187 

this stochastic approach as follows:  188 

 “[It] estimates effective uncertainty due to all uncertainty sources. The approach 189 

is implemented as a post-processor on a deterministic forecast. [It] estimates the 190 

probability distribution of the forecast error at different lead times, by 191 

conditioning the forecast error on the predicted value itself. Once this distribution 192 

is known, it can be efficiently imposed on forecast values.” 193 

 Quantile Regression was first introduced by Koenker (2005; 1978). It is different from 194 

ordinary least square regression in that it predicts percentiles rather than the mean of a dataset. 195 

Koenker and Machado (Koenker and Machado, 1999, p.1305) and Alexander et al. (2011) 196 

demonstrate that studying the coefficients and their uncertainty for different percentiles generates 197 

new insights, especially for non-normally distributed data.  198 

 López López et al. (2014) did not find that the quantile regression method produces better 199 

forecasts if the variables are subject to NQT beforehand, as was practiced by Weerts et al. 200 

(2011). We chose not to apply NQT, because four of five of our independent variables are 201 

already approximately normally distributed; only the forecast itself is not.  202 

A quantile regression is run for each lead time and desired percentile with the forecast error 203 

as the dependent variable and the forecast and other variables as independent variables. To 204 

prevent the quantile regression lines from crossing each other, a fixed-effects model is 205 

implemented below a certain forecast value. Weerts et al. (2011) give a detailed mathematical 206 

description for applying QR to river forecasts. Detailed instructions to perform NQT can be 207 



11 

 

found in Bogner et al. (2012). Mathematically, the approach is formulated as follows (with and 208 

without NQT): 209 

Equation 1: QR configuration with NQT , with percentiles of the forecast error as the dependent 210 

variable and the one independent variable, bot transformed into the normal domain.  211 

 212 

Equation 2: QR configuration without NQT, with percentiles of the forecast error as the dependent 213 

variable and multiple independent variables.  214 

 215 

with  Fτ(t)    – estimated forecast associated with percentile τ and time t 216 

 fcst(t)  – original forecast at time t  217 

Vi(t)  – the independent variable i (e.g., the original forecast) at time t 218 

Vi;NQT(t)           – the independent variable I transformed by NQT at time t 219 

ai,τ , bτ  – configuration coefficients 220 

 221 

The second part of the equations stands for the error estimate based on the quantile 222 

regression configuration for each error percentile τ and lead time. In Equation 1, that was used by 223 

Weerts et al. (2011), this estimation was executed in the Gaussian domain using only the forecast 224 

as independent variable. Our study mainly uses Equation 2, i.e., it does not transform the 225 

predictors and the predictand. All quantile regressions were done using the command rq() in the 226 

R-package “quantreg” (Koenker, 2013). 227 
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3.2 Verification Measures 228 

The QR configuration by Weerts et al. (2011) was evaluated by determining the fraction of 229 

observations that fell into the confidence intervals predicted by the QR configuration; i.e., 230 

ideally, 80% of the observations should be larger than the predicted 10
th

 percentile for that day, 231 

and smaller than the predicted 90
th

 percentile. López López et al. (2014) used a number of 232 

measures to assess configuration performance, e.g., the Brier Skill Score (BSS), the mean 233 

continuous ranked probability (skill) score (CRPSS), the relative operating characteristic (ROC), 234 

and reliability diagrams to compare QR configurations.  235 

We focus on the Brier Skill Score (BSS) – first introduced by Brier (1950) – to assess QR 236 

configurations for two reasons. First, to be able to determine the best set of predictors it is easiest 237 

to choose a single measure. Second, the BSS allows us to study forecast performance at 238 

individual event thresholds. Third, out of the available measures the Brier Score is attractive, 239 

because it can be decomposed into two different measures of forecast quality (see Equation 3): 240 

Reliability and resolution. The third component is uncertainty. This type of uncertainty describes 241 

the uncertainty inherent in an event caused by natural variability. It is narrower than forecast 242 

uncertainty, because the latter additionally includes the uncertainty that is caused by 243 

imperfections of the forecast model, i.e., the variables that could explain some of the uncertainty 244 

have not been identified or correctly parameterized yet. In sum, the BS’ uncertainty term is not 245 

subject to the forecast quality. Equation 3 gives the definition of the (de-composed) Brier Score 246 

(e.g., Jolliffe and Stephenson, 2012; Wikipedia, 2014; WWRP/WGNE, 2009). 247 

Equation 3: Brier Score; de-composed into three terms: reliability, resolution and uncertainty. 248 

 249 
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with  BS  – Brier Score 250 

N – number of forecasts 251 

K  – the number of bins for forecast probability of binary event occurring on each 252 

day 253 

nk  – the number of forecasts falling into each bin 254 

ōk  – the frequency of binary event occurring on days in which forecast falls into bin 255 

k 256 

fk  – forecast probability 257 

ō  – frequency of binary event occurring 258 

ft – forecast probability at time t 259 

ot – observed event at time t (binary: 0 – event did not happen, 1 – event happened) 260 

The Brier Score pertains to binary events, e.g., the exceedance of a certain river stage or 261 

flood stage. Reliability compares the estimated probability of such an event with its actual 262 

frequency. For example, perfect reliability means that on 60% of all days for which it was 263 

predicted that the water level would exceed flood stage with a 60% probability, it actually does 264 

so. The reliability curve for the forecast representing perfect reliability would follow the diagonal 265 

in Figure 6, i.e., the area in Figure 6a representing reliability would equal zero (Jolliffe and 266 

Stephenson, 2012; Wikipedia, 2014; WWRP/WGNE, 2009).  267 

Figure 6: Theory behind Brier Skill Score illustrated for an imaginary forecast (red line): (a) 268 

reliability and resolution; (b) skill. In figure a, the area representing reliability should be as small, 269 

and for resolution as large as possible. The forecast has skill (BSS > 0), i.e., performs better than the 270 

reference forecast, if it is inside the shaded area in the figure b. Ideally, the forecast would follow 271 

the diagonal (BSS=1). (Adapted from Hsu and Murphy, 1986; Wilson, n.d.).  272 

Resolution measures the difference between the predicted probability of an event on a 273 

given day and the historically observed average probability. For example, imagine a gage where 274 

flood stage has historically been exceeded on 5% of the days in a year. If every day at that gage 275 

the probability of exceeding flood stage is forecasted to be 5%, the resolution of those forecasts 276 

would be zero. After all, the difference between the predicted frequency and the historical 277 

average is zero. So a forecast with higher resolution is better. (e.g., Jolliffe and Stephenson, 278 
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2012; Wikipedia, 2014; WWRP/WGNE, 2009). In Figure 6, the curve for a forecast with good 279 

resolution would be steeper than the dashed line that represents the historically observed 280 

frequency (climatology). It follows that forecasters should strive to maximize the area in Figure 281 

6a representing resolution. In absolute terms, the resolution can never exceed the uncertainty 282 

inherent to the river gage, as represented by the third term in Equation 3. (e.g., Jolliffe and 283 

Stephenson, 2012; Wikipedia, 2014; WWRP/WGNE, 2009). 284 

A forecast performs better than the reference forecast (in this case the historically 285 

observed frequency), if it (the red line) is inside the shaded area in Figure 6b. Then the forecast is 286 

said to have “skill”. The Brier Skill Score (BSS) equals the Brier Score normalized by the 287 

historically observed frequency, i.e., the resolution and reliability terms are being divided by the 288 

uncertainty term (Equation 4). In contrast to the Brier Score, this makes the Brier Skill Score 289 

comparable across gages with different frequencies of a binary event. The BSS can range from 290 

minus infinity to one. A BSS below zero indicates no skill; the perfect score is one (e.g., Jolliffe 291 

and Stephenson, 2012; Wikipedia, 2014; WWRP/WGNE, 2009).  292 

Equation 4: Decomposition of Brier Skill Score 293 

 294 

with  BSS  – Brier Skill Score 295 

BS  – Brier Score 296 

 RES  – Resolution 297 

 REL – Reliability 298 

ō  – Frequency of binary event occurring 299 

      300 – Climatological variance  300 

 301 

To verify that the results hold up for verification measures other than the BSS, we 302 

additionally use the Continuous Ranked Probability Score (CRPS). The BSS assesses forecast 303 

performance for one point on the forecast distribution, i.e., one event threshold. In contrast, the 304 
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CRPS, defined by Equation 5, measures the forecast performance for the forecast distribution as 305 

the whole. Therefore, the CRPS cannot detect whether the forecast does better or worse in the 306 

tails. Instead, it is a measure of the forecast’s overall performance. The CRPS’ perfect score 307 

equals zero (e.g., Jolliffe and Stephenson, 2012; WWRP/WGNE, 2009).  308 

All measures of forecast quality were computed using the R-package “verification” 309 

(NCAR, 2014). 310 

Equation 5: 311 

 312 
with  CRPS  – Continuous Ranked Probability Score 313 

 Fn
f
 (x) – Forecast probability distribution (cdf) for the n-th forecast case 314 

Fn
o
 (x) – Observation for n-th forecast case (feet) 315 

N – Number of forecast cases, i.e., length of time series 316 

3.3 Choice of independent variables 317 

The challenge is to identify a well-performing QR model with a set of predictors that is both 318 

parsimonious and comprehensive. Wood et al. (2009) found rate of rise and lead time to be 319 

informative independent variables. Weerts et al. (2011) achieved good results using only the 320 

forecast itself as predictor. Besides these variables, the most obvious predictors to include are the 321 

current water levels and those observed 24 and 48 hours ago, and the forecast error 24 and 48 322 

hours ago (i.e., the difference between the current water level at issue time of the forecast that the 323 

error distribution is being predicted for, and the forecasts that were produced 24 and 48 hours 324 

earlier to predict the current water level). Additional potential independent variables are the 325 

water levels observed at gages up- and downstream at various times, the precipitation upstream 326 

of the catchment area, and the precipitation forecast.  327 

 Rates of rise and forecast errors were chosen to complement the forecast as independent 328 

variables for the following reasons. So instead of using it as an independent variable, separate 329 
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QR models have been built for each lead time. After all, the best choice of independent variables 330 

might depend on lead time. Precipitation and precipitation forecast were not available for this 331 

study, because without direct access to the database at the National Climatic Data Center 332 

(NCDC) requesting that data is a very lengthy effort.  333 

 Forecasts and observed water levels were readily accessible from NCDC databases. 334 

Rates of rise and forecast errors can be derived from those two. As will be shown in section 4.3, 335 

it is mathematically challenging to combine independent variables with different distributions 336 

into a joint predictor. Forecast and observed water levels have a skewed distribution, because 337 

low water levels occur more frequently than extremely high water levels, while rates of rise and 338 

forecast error are approximately normally distributed. Accordingly, either forecasts and 339 

observations can easily be combined into a joint predictor, or rates of rise and forecast errors. For 340 

this study the latter option was chosen for the following reasons. Observed water levels are 341 

systematically included in the NWS forecast model. Assuming a well-defined NWS forecast 342 

model, there should not be statistical relationship between forecast error and observed water 343 

levels. In comparison, rates of rise and forecast error are only included in the NWS model at the 344 

discretion of the individual forecaster. Therefore, these latter two variables are likely to 345 

contribute more information to predicting the distribution of forecast errors than the forecasts 346 

and observed water levels. Nonetheless, forecasts were included as predictor in this study to 347 

demonstrate the difficulty of combining variables with a skewed distribution with normally 348 

distributed variables into a joint predictor, and because it served as the only independent variable 349 

in previous studies (Weerts et al., 2011; López López et al., 2014).   350 

To determine which set of predictors performs best in generating probabilistic forecasts, 351 

all 31 possible combinations of the forecast (fcst), the rate of rise in the last 24 and 48 hours 352 
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(rr24, rr48), and the forecast error 24 and 48 hours ago (err24, err48) – see Equation 5 – were 353 

tested for 82 gages that the NCRFC issues forecasts for every morning (Table 1). Based on the 354 

Bier Skill Score, it was determined which joint predictor delivers on average the best out-of-355 

sample forecast performance for various lead times and water levels.  356 

Equation 5: QR configuration without NQT, with percentiles of the forecast error as the dependent 357 

variable and varying combinations of the five independent variables. This equation was used to 358 

predict the water level distribution for each day at 82 gages with different lead times.  359 

 360 

with  Fτ(t)     – estimated forecast associated with percentile τ and time t 361 

 fcst(t)   – original forecast at time t  362 

rr24(t), rr48(t)  – rates of rise in the last 24 and 48 hours at time t 363 

err24(t), err48(t) – forecast errors 24 and 48 hours ago (e.g., the original forecast) at 364 

time t 365 

axx,τ , bτ – configuration coefficients; forced to be zero if the predictor is 366 

excluded from the joint predictor that is being studied.  367 

Table 1: Joint predictors 368 

3.4 Computational process 369 

The final output of the computational process is the probability that a certain water level in the 370 

river or flood stage is exceeded on a given day, e.g., “On the day after tomorrow, the probability 371 

that the river exceeds 15 feet at location X is 60%.” This is done in two steps. First, a training 372 

dataset (first half of the data) is used to define one quantile regression configuration for each 373 

percentile of the error distribution π = [0.05, 0.1, 0.15, … , 0.85, 0.90, 0.95] and each lead time. 374 

The dependent variable is the forecast error, i.e. the difference between forecast and observed 375 

water level. To recap, depending on configuration (Table 1) the forecast itself, the rates of rise 376 

and forecast errors serve as independent variables.  377 
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In the second step, these QR configurations are used to predict percentile by percentile 378 

the distribution of forecast error for each day in the verification dataset (the second half of the 379 

dataset). Effectively, for each day in the verification dataset, a discrete probability distribution of 380 

forecast errors is predicted. Adding the single-valued forecast to the forecast error distribution 381 

results in a distribution of predicted water levels. Each estimated percentile π contributes one 382 

point to that distribution. 383 

 Then, we calculate the probability with which various water levels (called event 384 

thresholds hereafter) will be exceeded. The probability of exceeding each water level is 385 

computed by linearly interpolating between the points of the discrete probability distribution that 386 

was computed in the previous step. Next, the Brier Skill Score is determined based on predicted 387 

exceedance probability for all days in the verification dataset. 388 

To study whether the various combinations of predictors perform equally well for high 389 

and low thresholds, these last computational steps (i.e., interpolating to determine the exceedance 390 

probability for a certain water level and calculating the BSS) were repeated for eight event 391 

thresholds: the 10
th

, 25
th

, 75
th

, and 90
th

 percentile of observed water levels and the four decision-392 

relevant flood stages (action stage, and minor, moderate, and major flood stage) of each gage. 393 

Flood stages indicated when material damage or substantial hinder is caused by high water 394 

levels. Therefore, the flood stages correspond with different percentiles at different river gages.  395 

To determine the best-performing set of independent variables, the entire procedure is repeated 396 

for each of the 31 joint predictors in Table 1, thus using a different set of independent variables 397 

each time. The robustness of the technique was tested analyzing its performance for 82 gage 398 

locations using different lengths of data sets for five different lead times.  399 
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4 Results 400 

In total, the Brier Skill Score (BSS) for 31 joint predictors (Table 1) across various lead times 401 

and event threshold have been compared. Across 82 river gages, it has been analyzed which joint 402 

predictor delivers the best BSSs on average. When informative, the CRPS has been used as an 403 

additional measure of forecast performance.  404 

4.1 Identifying best performing joint predictors on average 405 

For each river gage, the combinations have been ranked by BSSs. The best performing 406 

combination was ranked first, the worst performing 31
st
. It was found that the more independent 407 

variables are included in a joint predictor, the higher that set of predictors will rank on average 408 

(Figure 7, Table 2a). Apparently, every additional independent variable does add information. In 409 

other words, the future forecast error is a function of rates of rise and past forecast errors. Rising 410 

water levels are difficult to anticipate and therefore a common source of forecast error, because 411 

precipitation is a major source of input uncertainty. For example, it is never completely certain 412 

into which river basin the rain will fall. Additionally, only the expected precipitation for the 413 

coming 12 hours is currently included in forecasts, regardless of lead time. The past forecast 414 

errors are a measure of the magnitude of impact those unanticipated developments are likely to 415 

have.  416 

For extremely high water levels, this trend favoring larger joint predictors gradually 417 

reverses (Figure 8). The trend remains statistically significant, but its coefficient decreases for 418 

higher event thresholds (Table 2a) until it changes signs for major flood stages (Table 2b). A 419 

possible explanation is that combinations with more variables suffer from overfitting for extreme 420 

event thresholds characterized by data scarcity.  421 
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Table 2: Results of regression analyses to determine the impact of including more variables and the 422 

forecast into the joint predictor 423 

Figure 7: Average rank for each joint predictor for one to four days of lead time and two 424 

percentiles of observed water levels. Vertical gray lines correspond to the configurations that 425 

include forecast as one of the predictors. The y-axis is reversed, so that an increasing trend 426 

indicates increasing performance. 427 

Figure 8: Average rank for each joint predictor for one to four days of lead time and the two 428 

highest flood stages. Vertical gray lines correspond to the configurations that include forecast as 429 

one of the predictors. The y-axis is reversed, so that an increasing trend indicates increasing 430 

performance. 431 

The results hold up when CRPS instead of BSS is used as a measure of forecast 432 

performance. The average rank of joint predictors based on CRPS is proportional to the average 433 

rank as measured by the BSS previously (Figure 9). However, scores themselves are not 434 

proportional (Figure 10), because the BSS assesses one point on the estimated distribution, while 435 

the CRPS measures the forecast performance for the distribution as a whole. Figure 10 shows 436 

that BSS and CRPs correspond well for event thresholds Q25 and Q75. However, the BSS 437 

indicates that in the tails (Q10, Q90) the forecast does not perform as well, i.e., despite equally 438 

good CRPS scores the BSS varies widely.  439 

Figure 9: Comparing average rank across 82 gages based on Brier Skill Score and CRPS.  440 

Figure 10: Comparing the performance of combination 30 [err24, err48, rr24, rr48] as measured 441 

Brier Skill Score and as measured by the Continuous Ranked Probability Score. Each data point 442 

corresponds with a gage at a certain lead time. Since the CRPS’ perfect score equals zero, the y-axis 443 

has been reversed.  444 

4.2 Combining differently distributed variables into a joint predictor 445 

The combinations including the forecast (indicated by gray vertical lines in Figure 7 and Figure 446 

8) perform significantly better than those that exclude it (Table 2). This disadvantageous impact 447 

of forecast as an independent variable is less pronounced for very high or low event thresholds 448 
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(Table 2a). Including the forecast into the joint predictor is even beneficial for major flood stages 449 

(Table 2b), when joint predictors with less rather than more variables perform better.  450 

The forecast is difficult to combine with the other four predictors (err24/48, rr24/48), 451 

because their statistical distributions are different. Unlike the dependent variable (forecast error), 452 

the forecasts are highly skewed towards the left, because low water levels occur more frequently. 453 

Due to its skewed distribution, the forecast becomes a better predictor in a quantile regression 454 

predicting a normally distributed dependent variable after a NQT transformation, as successfully 455 

used by Weerts et al. (2011). Without a transformation into the normal domain, the scatterplot of 456 

forecast and forecast error does not show obvious quantile trends (Figure 11a). After NQT, the 457 

percentiles show distinct quantile trends laid out like a fan (Figure 12a).  458 

In contrast, errors and rise rates are already approximately normally distributed. There are 459 

no quantile trends visually detectable anymore after the other four predictors have been subjected 460 

to NQT (Figure 11 b-e). In sum, forecast performance in this study is better without NQT, 461 

because four of the five independent variables were approximately normally distributed already. 462 

Further research is necessary to reconcile predictors with different distributions. Possible 463 

solutions could be to define QR configurations for subsets of the transformed dependent and 464 

independent variables or to experiment with subjecting only some, but not all predictors to NQT. 465 

Figure 11: Independent variables plotted against the forecast error for Hardin IL with 3 days of 466 

lead time. First row: Forecast; second row: past forecast errors; third row: rates of rise. 467 

Figure 12: Independent variables after transforming into the Gaussian domain plotted against the 468 

forecast error for Hardin IL with 3 days of lead time. First row: Forecast; second row: past forecast 469 

errors; third row: rates of rise. 470 
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4.3 Improvement in forecast performance 471 

Using the best performing joint predictor at each river gage gives an upper bound of the BSSs 472 

that can be achieved at best. Confirming Wood et al.’s findings (2009), additionally including the 473 

rates of rise and forecasts errors as independent variables into the QR configuration improves the 474 

Brier Skill Score (BSS) significantly. Figure 13 illustrates the BSS when using the forecast as the 475 

only predictor as studied by Weerts et al. (2011), while Figure 14 shows the performance for the 476 

best joint predictor at each gage.  477 

Figure 13: Brier Skill Scores (BSS) for forecast-only configuration for different lead times and 478 

event thresholds. The BSS’ perfect score equals one. A BSS of zero indicates a forecast without 479 

skill.  480 

Figure 14: Brier Skill Scores (BSS) for best performing the joint predictor at each gage for 481 

different lead times and event thresholds. The BSS’ perfect score equals one. A BSS of zero 482 

indicates a forecast without skill.  483 

Figure 15: Empirical cumulative density functions of three QR configurations predicting 484 

exceedance probabilities of the Action, Minor, Moderate, and Major Flood Stage: the configuration 485 

using the transformed forecast as the only independent variable [NQT fcst]; the best performing 486 

combination for each river gage (upper performance limit) [Best combis] 487 

Figures 13 to 15 indicate that the QR method performs better for higher than for lower 488 

water levels. Due to the skewed distribution of water levels, the ranges between percentiles in the 489 

left tail (lower water levels) correspond with much smaller ranges of water levels (feet) than in 490 

the right tail. Therefore, achieving good performance in forecasting exceedance probabilities of 491 

low event thresholds requires much better prediction of forecast error in feet than for higher 492 

event thresholds.  493 

Additionally, Figures 13 to 15 show that forecast performance also decreases with 494 

increasing lead time, because variables such as rates of rise and past forecast error become 495 

proportionally less representative with lead time.  496 
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Paired T-tests for each combination of lead time and event threshold indicate that using 497 

the best joint predictor at each gage increased average BSS across all gages statistically 498 

significantly (Table 3). The performance improves most where forecasts tend to perform worst. 499 

The average increase in BSS is largest for extreme water levels, most notably moderate and 500 

major flood stages and the 10
th

 percentile of water levels (Table 3). The average increase of BSS 501 

for major flood stage is even larger than one, meaning that the method did frequently not have 502 

skill before, i.e., negative BSSs. Additionally, predictions with longer lead times experience 503 

larger increases in BSS. Compared to using only the forecast as an independent variable, using 504 

the best combinations of forecast, rates of rise and past forecast errors as predictors at each gage 505 

not only increases the mean BSS, but also decreases the standard deviation of skill scores across 506 

gages, i.e., performance becomes more consistent (Figures 13 and 14).  507 

Table 3: Results of paired t-tests comparing the QR method`s performance with only forecast as 508 

predictor and the best-performing combination of five predictors for each river gage 509 

As expected, the CRPS improves as well when using the best joint predictor at each gage 510 

instead of forecast as the only predictor. The average CRPS and its standard deviation decrease. 511 

The improvement is more pronounced for longer lead times (Figure 16). Moving away from 512 

average CRPS, Table 4 reveals that the best joint predictors for high event thresholds (Q75, Q90) 513 

do not benefit the average CRPS. The fact that the average CRPS does not improve implies that 514 

the best joint predictors for high event thresholds increase forecast performance less for high 515 

event thresholds than it worsens performance for low event thresholds. The best joint predictors 516 

for low event thresholds (Q10, Q25) do improve average CRPS. So they must be improving the 517 

forecast so substantially that the average CRPS increases, even though those best predictors 518 

might not perform well for high event thresholds. This is congruent with the finding that average 519 

BSS increases much more for percentiles Q10 and Q25 than for Q75 and Q90, as shown in Table 520 
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3.  This reinforces the finding that separate QR models should be configured for individual event 521 

thresholds based on the BSS, rather than for the whole distribution based the CRPS.  522 

Figure 16: Continuous Ranked Probability Score (CRPS) for the forecast-only configuration and 523 

for the best performing the joint predictor at each gage for different lead times and event 524 

thresholds. The CRPS’ perfect score equals zero.  525 

Table 4: Results of paired t-tests comparing the QR method`s performance with only forecast as 526 

predictor and the best-performing combination of five predictors for each river gage for the Brier 527 

score. 528 

The fact that the Brier Score can be de-composed into reliability, resolution and 529 

uncertainty allows a closer look at which improvements are being achieved by including more 530 

predictors than just the forecast. Table 4 summarizes the results of paired t-tests comparing the 531 

forecast-only and the best performing joint predictor for each gage for the components of the 532 

BSS as well as the CRPS.  533 

The Brier Score and the Brier Skill Score mainly improve, because the resolution increases 534 

when using the best-performing set of independent variables at each gage (Table 4). Visualizing 535 

the improvement in forecast performance for a lead time of three days and the 75
th

 percentile 536 

threshold (Q75), Figure 17 illustrates that the forecast-only QR configuration as studied by 537 

Weerts et al. (2011) has high reliability (i.e., the reliability is close to zero). So reliability 538 

improves statistically significantly for lower water levels (Q10, Q25), but the magnitude of 539 

improvement in reliability is by one order smaller than the improvement in resolution (Table 4).     540 

Figure 17: Comparison of the forecast-only QR configuration (i.e., only transformed forecast as 541 

independent variables) and using the best-performing joint predictor at each gage along various 542 

measures of forecast quality: Brier Score (BS), Brier Skill Score (BSS), Reliability (Rel), Resolution 543 

(Res), and continuous ranked probability score (CRPS). Lead time: 3 days; 75
th

 percentile of 544 

observation levels as threshold.  545 
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4.4 One-size-fits-all approach – Brier Skill Score 546 

Combing these findings, the configurations for the various river gages can generally be based on 547 

the same joint predictor of the four independent variables excluding the forecast itself 548 

(combination 30). But for extremely high water levels, a configuration specific to each river gage 549 

has to be built in order to achieve high BSSs.  550 

Verifying this finding, a one size-fits-all approach was tested to investigate, whether 551 

customizing the QR configuration to each river gage would be worth it. The rates of rise in the 552 

past 24 and 48 hours and the forecast errors 24 and 48 hours ago (combination 30 in Table 1) 553 

serve as independent variables for this approach. This combination of predictors has been 554 

chosen, because it performed well for most gages (see section 4.1). Furthermore, less important 555 

predictors in the combination will get small coefficients in the quantile regression. So additional 556 

variables are unlikely to do harm, but can improve the estimates at various stages. The price of 557 

opting for a joint predictor with more variables is an increase of the risk of overfitting.  558 

Paired t-tests have been executed to investigate whether this one-size-fits all approach 559 

performs statistically significantly worse than using the best combination of predictors for each 560 

gage. It was found that this approach on average performs statistically significantly not as well as 561 

using the best-performing combination of predictors. But the difference in average BSS is small, 562 

ranging between 0.003 and 0.075 (Table 5).  563 

However, using the best joint predictors results in much better performance for major 564 

flood stages than the one-size-fits-all approach. The average difference between average BSSs 565 

amounts to 0.21 to 0.38 (Table 5). Given that a BSS for a forecast with skill ranges between one 566 

and zero, this is a substantial difference. In sum, the same joint predictor can be used for all river 567 

gages without much loss in performance, except for extremely high water levels.  568 
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Table 5: Results of paired t-test comparing best combinations of predictors with one-size-fits-all 569 

approach.   570 

4.5 Robustness 571 

4.5.1 Minimum length of training dataset 572 

Stationarity cannot always be assumed (Milly et al., 2008). River regimes can change through 573 

natural processes like sedimentation or human intervention. Those changes can occur gradually 574 

or as step-changes. This analysis of robustness is meant to determine the minimum length of the 575 

training dataset to be able to produce skillful forecasts again after a step-change using the QR 576 

method. Additionally, the analysis is meant to find out to which length the forecaster should limit 577 

the training dataset when gradual change is occurring. After all, in such a case each year further 578 

in the past is less representative of the year ahead, so that training dataset should be as short as 579 

possible.  580 

The impact of the length of the training dataset on the configuration’s performance 581 

measured by the BSS was assessed for the best joint predictor (i.e., rates of rise and forecast 582 

errors as independent variables for all gages) for Hardin and Henry on the Illinois River. Each 583 

year between 2003 and 2013 was forecast by QR configurations trained on however many years 584 

of archived forecasts were available in that year, i.e., the forecasts for 2005 is produced by a 585 

model trained on less data than those for 2013. Then, the BSS for that year (e.g., 2005 or 2013) 586 

was computed.  587 

Figure 18 and Figure 19 show that at Henry and Hardin it barely matters for the BSS how 588 

many years are included in the training dataset. This finding is congruent with the fact that 589 

Weerts et al. (2011) were able to achieve outstanding results with the QR method using training 590 

datasets that were only two years long. Only needing short time series to define a skillful QR 591 

configuration implies (i) skillful forecasts can be produced not long after a step-change, and that 592 
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(ii) the configuration parameters can be updated regularly so that gradually changing 593 

relationships between predictors etc. can be taken into account. 594 

Figure 18: Brier Skill Score for various forecast years and various sizes of training dataset across 595 

different lead times (colors) and event thresholds (plots) for Hardin, IL (HARI2).  The filled-in end 596 

point of each line indicates the BSS for the forecast year on the x-axis with one year in the training 597 

dataset. Each point further to the left stands for one additional training year for that same forecast 598 

year. 599 

Figure 19: Brier Skill Score for various forecast years and various sizes of training dataset across 600 

different lead times (colors) and event thresholds (plots) for Henry, IL (HNYI2). The filled-in end 601 

point of each line indicates the BSS for the forecast year on the x-axis with one year in the training 602 

dataset. Each point further to the left stands for one additional training  year for that same forecast 603 

year. 604 

4.5.2 Sensitivity Analysis 605 

Furthermore, we aim to identify the factors that impact forecast skill as quantified by the Brier 606 

Skill Score (BSS) and to generalize the result regarding training data length described for Hardin 607 

and Henry above. To do so, the same analysis as for Hardin and Henry was repeated for all 82 608 

gages. Following that, a regression analysis was executed with the BSS as the dependent variable 609 

and event thresholds (Q10, Q25, Q75, Q90), the river gages and forecast years as independent 610 

nominal variables, and the lead time (one to four days) and number of training years as 611 

independent ratio variables. This regression is meant to identify the factors to which the forecast 612 

performance as measured by the BSS is sensitive to, i.e., which factors statistically significantly 613 

impact forecast performance.  614 

The forecast performance was found to vary statistically significantly across all tested 615 

dimensions, except the number of training years (Table 6). This results in a very wide range of 616 

BSSs (Figure 13 and 14). Accordingly, for the user, it is particularly difficult to know how much 617 
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to trust a forecast, if the performance depends so much on context. Likewise, this is case for the 618 

QR configuration based on the forecast only (not shown).  619 

Table 6: Regression results sensitivity analysis 620 

A closer look at the regression coefficients (Table 6) provides interesting insights. For 621 

low event thresholds, the BSSs are much worse than for high thresholds. As mentioned above, 622 

for such low event thresholds the forecast has to predict the water levels much more accurately to 623 

achieve similar forecast performance than for higher water levels due to the skewed distribution 624 

of water levels. In the lower tail, each percentile corresponds with a much shorter span of water 625 

levels than in the upper tail. Using higher resolution in the lower tail is therefore advisable.  626 

As expected, the BSSs slightly decrease with lead time, because independent variables 627 

such as rates of rise and past forecast error gradually become less representative of the days to be 628 

forecasted.  629 

Regarding the forecast quality for each forecast year, the regression is slightly biased. 630 

The earlier years are included less often in the dataset with on average less years’ worth of data 631 

in their training dataset, because, for example, unlike for the year 2013, ten years of training data 632 

were not available for the year 2006. Nonetheless, the regression indicates that 2008 was 633 

particularly difficult to forecast and 2012 relatively easy, i.e., they are associated with relatively 634 

low and high coefficients respectively (Table 6).  635 

The performance of the forecast additionally depends on the river gage. The coefficients 636 

of the river gages, included as factors in the regression, have been excluded from Table 6 for the 637 

sake of brevity. Instead, Figure 20 maps the geographic position of the river gages with the color 638 

code indicating each gage’s regression coefficient. The coefficient indicates the method’s 639 

performance at the particular gage as compared to the average performance. The coefficients are 640 
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lower, and therefore the Brier Skill Scores are lower, for gages far upstream a river, off the main 641 

stream, and those close to confluences.  642 

Precipitation is one of the major sources of uncertainty in river forecasting. For example, 643 

if rainfall shifts by a few miles it might be raining down in a different river basin. This makes 644 

rises in water level difficult to anticipate, making rates of rise such a successful predictor of the 645 

distribution of forecast errors. However, upstream and close to confluences rates of rise and past 646 

forecast errors perform less well as predictors than elsewhere. This suggests that uncertain 647 

expected rainfall constitutes a smaller part of the overall uncertainty.   648 

Close to confluences the joining second river adds a major part of that additional 649 

uncertainty. The interaction between the rivers increases uncertainty, in addition to the 650 

uncertainty associated with the joining river itself, e.g., the uncertain expected rainfall along its 651 

course. At upstream gages, the rates of rise possibly provide less information, because due to 652 

smaller basin sizes concentration times are shorter, i.e., water levels rise quicker. In that case, the 653 

rise in water level of the past 24 and 48 hours may not sufficiently capture rises occurring with 654 

shorter notice. The argument holds for forecast errors as well. If concentration times are short, 655 

the forecast error of 48 hours ago is not representative of those in the near future.  656 

Figure 20: Geographical position of rivers. Colors indicate the regression coefficient of each station 657 

with the Brier Skill Score as dependent variable. 658 

5 Conclusion 659 

In this study, quantile regression (QR) has been applied to estimate the probability of the river 660 

water level exceeding various event thresholds (i.e., 10
th

, 25
th

, 75
th

, 90
th

 percentiles of observed 661 

water levels as well as the four flood stages of each river gage). It further develops the 662 

application of QR to estimating river forecast uncertainty (a) comparing different sets of 663 
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independent variables, (b) and testing the technique’s robustness across locations, lead times, 664 

event thresholds, forecast years and sizes of training dataset.  665 

 When compared to the configuration using only the forecast, it was found that including 666 

rates of rise in the past 24 and 48 hours and the forecast errors of 24 and 48 hours ago as 667 

independent variables improves the performance of the QR configuration, as measured by the 668 

Brier Skill Score. This confirms Wood et al.’s (2009) finding that rate of rise is a valuable 669 

predictor for QR error models. The configuration with the forecast as the only independent 670 

variable, as studied by Weerts et al. (2011), produced estimates with high reliability. Including 671 

the other four predictors mentioned above mainly increases the resolution. 672 

 For extremely high water levels, the combinations of independent variables that perform best 673 

vary across stations. On those days, combinations of fewer independent variables perform better 674 

than those that include more. The most likely explanation is that QR configurations based on 675 

large joint predictors result in overfitting the data. In contrast to these extremely high event 676 

thresholds, larger sets of predictors work better than smaller ones for non-extreme and low event 677 

thresholds. Additionally, customizing the set of predictors to the event thresholds does not 678 

improve the BSS much, except for extremely high event thresholds, i.e. major flood stage.  679 

When forming a joint predictor, the independent variables rates of rise and forecast errors do 680 

not combine well with the forecast itself, because the forecast has a skewed distribution, while 681 

the other predictors are approximately normally distributed. The forecast becomes an excellent 682 

predictor for linear quantile regression after NQT. However, the other four variables lose their 683 

value as predictors when subjected to NQT, because their original distribution is already 684 

approximately normal. Therefore, it is difficult to combine predictors with different distributions. 685 
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A possible solution could be to define QR configurations for subsets of the transformed data or 686 

to experiment with only subjecting some of the predictors to NQT.  687 

This study shows the importance of configuring QR models for individual event thresholds, 688 

rather than using one configuration to estimate the whole forecast distribution. The tails are too 689 

different to use the same joint predictors and parametrization.  690 

The studied QR configurations are relatively robust to the size of training dataset, which is 691 

convenient if stationarity cannot be assumed (Milly et al., 2008), a step-change in the river 692 

regime has occurred, or – as is the case for most river forecast centers – only recent forecast data 693 

have been archived. However, the performance of the technique depends heavily on the river 694 

gage, the lead time, event threshold and year that are being forecast. This results in a very wide 695 

range of Brier Skill Scores. This means that the danger remains that forecast users make good 696 

experiences with a forecast one year or at one location and assume it is equally reliable in other 697 

locations and every year. As is the case with most other forecasts, an indication of forecast 698 

uncertainty needs to be communicated alongside the exceedance probabilities generated by our 699 

approach.  700 

As is the case for many forecasting methods, the studied QR configurations perform less well 701 

for longer lead times, extreme event thresholds that are characterized by data scarcity, and for 702 

gages far upstream a river, off the main stream or close to confluences where different factors 703 

interact with each other. Additionally, QR configurations underperform for low event thresholds. 704 

Due to the skewed distribution of water levels, forecasts have to perform better in estimating low 705 

water levels to achieve the same BSSs as for high event thresholds, because in the lower tail each 706 

percentile spans a smaller range of water levels. Using higher resolution in the lower tail would 707 

probably improve forecast performance for low event thresholds.  708 
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Future Work 709 

This technique can be further developed in several ways to achieve higher Brier Skill Scores and 710 

more robustness. First, more independent variables can be added. Observed precipitation, the 711 

precipitation forecast (i.e., POP – probability of precipitation) and the upstream water levels are 712 

promising candidates, because the forecast used in this study includes the precipitation forecast 713 

for only the next 12 hours. However, currently, the precipitation data and forecasts can only be 714 

requested in chunks of a month, three chunks per day, from the NCDC’s HDSS Access System. 715 

For a period of 12 years, requesting such data for several weather stations is obviously time-716 

consuming; not least, because the geographical units of the weather forecasts bulletins do not 717 

correspond with those of the river forecast bulletins. Upstream water levels can easily be 718 

included after manually determining the upstream gage(s) for each of the 82 NCRFC gages. To 719 

improve performance at gages close to river confluences, off the main stream, and the upstream 720 

water level of the gages on the joining river should be included as well.  721 

Note though that many hydrological variables have a skewed distribution, so that they 722 

cannot readily be combined into a joint predictor with normally distributed variables such as 723 

rates of rise and past forecast errors as used in this study. Future work should focus on 724 

reconciling predictors with different distributions.  725 

Different approaches of sub-setting the data to improve performance also warrant 726 

consideration to boost performance of the QR method. Particularly, clustering the data by 727 

variability seems promising.  728 

Additionally, the studied technique would need to be verified for gages for which the 729 

NCRFC does not publish daily forecasts. Ignorance of the uncertainty inherent in river forecasts 730 

has had some of the most unfortunate impacts on decision-making in Grand Forks, ND and 731 
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Fargo, ND (Pielke, 1999; Morss, 2010). Both of those stages are discontinuously forecast 732 

NCRFC gages.  733 

Finally, this paper uses a brute force approach by simply calculating and comparing all 734 

possible combinations of independent variables. Mathematically more challenging stepwise 735 

quantile regression would not only be more elegant, but also provide better safeguards against 736 

overfitting the data.  737 
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Tables 

Table 1: Joint predictors 

Combi fcst err24 err48 rr24 rr48  Combi fcst err24 err48 rr24 rr48 

1       16      

2       17      

3       18      
4       19      

5       20      

6       21      
7       22      

8       23      
9       24      
10       25      

11       26      

12       27      
13       28      
14       29      
15       30      

       31      
fcst = forecast; rr24, rr48 = rise rate in the past 24 and 48 hours;  

err24, err 48 = forecast error 24 and 48 hours ago 
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Table 2: Results of regression analyses to determine the impact of including more variables and the 

forecast into the joint predictor 

(a) PERCENTILES of observed water levels 

Independent Variable:  

Rank (1 to 31) 

Q10 

Coef (St.Err.) 

Q25 

Coef (St.Err.) 

Q50 

Coef (St.Err.) 

Q75 

Coef (St.Err.) 

Intercept 26.49 (.21) *** 27.54 (.19) *** 24.47 (.19) *** 20.09 (.22) *** 

Number of variables -4.47 (.08) *** -5.59 (.08) *** -4.98 (.08) *** -3.02 (.09) *** 

Forecast included? (binary)  2.01 (.17) ***  5.15 (.16) *** 8.51 (.16) *** 7.18 (.18) *** 

R
2 0.23 0.34 0.33 0.17 

Adjusted R
2
 0.23 0.34 0.33 0.17 

P-Values: *** – <0.001; ** – 0.01; * – 0.05;  . – 0.1  

(b) FLOOD STAGES 

Independent Variable:  

Rank (1 to 31) 

Action FS 

Coef (St.Err.) 

Minor FS 

Coef (St.Err.) 

Moderate FS 

Coef (St.Err.) 

Major FS 

Coef (St.Err.) 

Intercept 20.92 (.22) *** 18.76 (.23) *** 15.49 (.27) *** 12.58 (.29) *** 

Number of variables -3.33 (.09) *** -2.40 (.09) ***  -0.22 (.11) *   1.59 (-12) *** 

Forecast included? (binary) 7.11 (.18) *** 6.68 (.19) *** 2.02 (.22) *** -1.30 (.24) *** 

R
2 0.18 0.13 0.01 0.03 

Adjusted R
2
 0.18 0.13 0.01 0.03 

P-Values: *** – <0.001; ** – 0.01; * – 0.05;  . – 0.1  
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Table 3: Results of paired t-tests comparing the QR method`s performance with only forecast as 

predictor and the best-performing combination of five predictors for each river gage 

  1 Day  2 Days  3 Days  4 Days 

  Diff. T-stat. Df p-val.  Diff. T-stat. Df p-val.  Diff. T-stat. Df p-val.  Diff. T-stat. Df p-val. 

Q10  0.20 8.68 80 .000  0.25 8.98 79 .000  0.28 8.53 79 .000  0.27 10.08 79 .000 

Q25  0.13 6.06 81 .000  0.15 7.10 81 .000  0.18 9.00 80 .000  0.20 11.35 80 .000 

Q75  0.03 10.19 81 .000  0.05 9.58 81 .000  0.08 11.00 81 .000  0.12 10.80 81 .000 

Q90  0.03 8.38 81 .000  0.06 9.33 81 .000  0.10 10.54 81 .000  0.15 11.95 81 .000 

Action  0.05 7.76 72 .000  0.14 2.37 73 .010  0.14 5.39 73 .000  0.18 7.30 73 .000 

Minor  0.40 2.98 60 .002  0.35 3.37 60 .001  0.37 3.70 60 .000  0.51 4.35 62 .000 

Mod.  0.44 2.93 41 .003  0.52 2.94 42 .003  0.81 3.97 45 .000  0.74 5.08 47 .000 

Major  1.36 3.00 19 .004  1.84 4.27 22 .000  2.14 4.85 26 .000  1.80 6.01 34 .000 
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Table 4: Results of paired t-tests comparing the QR method`s performance with only forecast as 

predictor and the best-performing combination of five predictors for each river gage for the Brier 

score. 

Event  

Thresh. 
Lead Time 

Brier  

Score 

Brier Skill 

Sc. 
Reliabil. Resol. CRPS 

Q10 

1 Day -.012*** .20*** -.002*** .008*** -.026** 

2 Days -.014*** .25*** -.002*** .010*** -.082** 
3 Days -.016*** .28*** -.002*** .012*** -.121*** 
4 Days -0.17*** .27*** -.001* .013*** -.054 

Q25 

1 Day -.018*** .13*** -.003*** .013*** -.028** 
2 Days -.023*** .16*** -.002*** .018*** -.088** 
3 Days -.027*** .18*** -.003*** .021*** -.097** 
4 Days -.031*** .20*** -.002*** .025*** -.475 . 

Q75 

1 Day -.005*** .03***  .000 .011***   .342 
2 Days -.011*** .05*** -.000 . .015***   .009 
3 Days -.016*** .08*** -.000 .021***   .188 
4 Days -.025*** .12*** -.000 .028*** -.064 

Q90 

1 Day -.003*** .03*** -.000** .013***   .159 
2 Days -.005*** .06*** -.000* .015*** -.086** 
3 Days -.010*** .10*** -.000 .019***   .163 
4 Days -.015*** .15*** -.000* .025*** -.075 

P-Values: *** – <0.001; ** – 0.01; * – 0.05; . – 0.1  
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Table 5: Results of paired t-test comparing best combinations of predictors with one-size-fits-all 

approach.   

  1 Day  2 Days  3 Days  4 Days 

  Diff. T-stat. Df p-val.  Diff. T-stat. Df p-val.  Diff. T-stat. Df p-val.  Diff. T-stat. Df p-val. 

Q10  .054 4.61 79 .000  .071 5.56 79 .000  .075 6.36 79 .000  .071 7.54 79 .000 

Q25  .010 5.73 80 .000  .016 4.17 80 .000  .016 5.11 80 .000  .019 3.76 80 .000 

Q75  .003 6.56 81 .000  .004 7.25 81 .000  .005 4.63 81 .000  .004 6.42 81 .000 

Q90  .008 7.10 81 .000  .015 4.37 81 .000  .012 5.16 81 .000  .021 1.84 81 .035 

Action  .024 1.94 72 .028  .031 1.97 73 .026  .039 1.96 73 .027  .022 2.20 73 .016 

Minor  .023 3.14 60 .001  .028 3.52 60 .000  .021 4.89 60 .000  .023 3.89 62 .000 

Mod.  .039 4.79 41 .000  .052 6.18 42 .000  .063 4.98 45 .000  .060 4.40 47 .000 

Major  .245 2.09 19 .025  .212 2.34 22 .014  .234 2.66 26 .007  .375 3.25 34 .001 
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Table 6: Regression results sensitivity analysis 
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Figures 

 

Figure 1: Deterministic short-term weather forecast in six hour intervals as published by the NWS 

for Hardin, IL on 24 April 2014. 

Source:http://water.weather.gov/ahps2/hydrograph.php?wfo=lsx&gage=hari2. 
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Figure 2: River gages for which the North Central River Forecast Centers publishes forecasts daily. 

Henry (HYNI2) and Hardin (HARI2) are indicated by the upper and lower red arrow respectively. 

For gages indicated by black dots the basin size is missing. The color scale for basin size in square 

miles is logarithmic.   
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Figure 3: Empirical cumulative density function (ecdf) of sizes of drainage area for the river gages 

that are being forecasted daily by the NCRFC.  
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Figure 4: Forecast error for 82 river gages that the NCRFC publishes daily forecasts for. In anti-

clockwise direction starting at the top left: (a) Average error; (b) error on days that the water level 

did not exceed the 10th percentile of observations; (c) error on days that the water level exceeded the 

90th percentile of observations; (d) error on days that the water level exceeded minor flood stage  
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Figure 5: Empirical cumulative distribution function (ecdf) of forecast error at 82 river gages for 

six lead times. Vertical lines show the median forecast error of the corresponding subset. 
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Figure 6: Theory behind Brier Skill Score illustrated for an imaginary forecast (red line): (a) 

reliability and resolution; (b) skill. In figure a, the area representing reliability should be as small, 

and for resolution as large as possible. The forecast has skill (BSS > 0), i.e., performs better than the 

reference forecast, if it is inside the shaded area in the figure b. Ideally, the forecast would follow 

the diagonal (BSS=1). (Adapted from Hsu and Murphy, 1986; Wilson, n.d.).  

 

Figure 7: Average rank for each joint predictor for one to four days of lead time and two 

percentiles of observed water levels. Vertical gray lines correspond to the configurations that 

include forecast as one of the predictors. The y-axis is reversed, so that an increasing trend 

indicates increasing performance. 
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Figure 8: Average rank for each joint predictor for one to four days of lead time and the two 

highest flood stages. Vertical gray lines correspond to the configurations that include forecast as 

one of the predictors. The y-axis is reversed, so that an increasing trend indicates increasing 

performance. 
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Figure 9: Comparing average rank across 82 gages based on Brier Skill Score and CRPS.  
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Figure 10: Comparing the performance of combination 30 [err24, err48, rr24, rr48] as measured 

Brier Skill Score and as measured by the Continuous Ranked Probability Score. Each data point 

corresponds with a gage at a certain lead time. Since the CRPS’ perfect score equals zero, the y-axis 

has been reversed.  
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Figure 11: Independent variables plotted against the forecast error for Hardin IL with 3 days of 

lead time. First row: Forecast; second row: past forecast errors; third row: rates of rise. 
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Figure 12: Independent variables after transforming into the Gaussian domain plotted against the 

forecast error for Hardin IL with 3 days of lead time. First row: Forecast; second row: past forecast 

errors; third row: rates of rise. 
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Figure 13: Brier Skill Scores (BSS) for forecast-only configuration for different lead times and 

event thresholds. The BSS’ perfect score equals one. A BSS of zero indicates a forecast without 

skill.  
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Figure 14: Brier Skill Scores (BSS) for best performing the joint predictor at each gage for 

different lead times and event thresholds. The BSS’ perfect score equals one. A BSS of zero 

indicates a forecast without skill.  
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Figure 15: Empirical cumulative density functions of three QR configurations predicting 

exceedance probabilities of the Action, Minor, Moderate, and Major Flood Stage: the configuration 

using the transformed forecast as the only independent variable [NQT fcst]; the best performing 

combination for each river gage (upper performance limit) [Best combis] 



58 

 

 

Figure 16: Continuous Ranked Probability Score (CRPS) for the forecast-only configuration and 

for the best performing the joint predictor at each gage for different lead times and event 

thresholds. The CRPS’ perfect score equals zero.  
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Figure 17: Comparison of the forecast-only QR configuration (i.e., only transformed forecast as 

independent variables) and using the best-performing joint predictor at each gage along various 

measures of forecast quality: Brier Score (BS), Brier Skill Score (BSS), Reliability (Rel), Resolution 

(Res), and continuous ranked probability score (CRPS). Lead time: 3 days; 75
th

 percentile of 

observation levels as threshold.  
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Figure 18: Brier Skill Score for various forecast years and 

various sizes of training dataset across different lead times 

(colors) and event thresholds (plots) for Hardin, IL (HARI2). 

The filled-in end point of each line indicates the BSS for the 

forecast year on the x-axis with one year in the training 

dataset. Each point further to the left stands for one 

additional training year for that same forecast year.  

Figure 19: Brier Skill Score for various forecast years and 

various sizes of training dataset across different lead times 

(colors) and event thresholds (plots) for Henry, IL (HNYI2). 

The filled-in end point of each line indicates the BSS for the 

forecast year on the x-axis with one year in the training 

dataset. Each point further to the left stands for one 

additional training year for that same forecast year.  
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Figure 20: Geographical position of rivers. Colors indicate the regression coefficient of each station 

with the Brier Skill Score as dependent variable. 

 

 


