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Abstract 10 

Operational probabilistic forecasts of river discharge are essential for effective water resources 11 

management. Many studies have addressed this topic using different approaches ranging from 12 

purely statistical black-box approaches to physically-based and distributed modelling schemes 13 

employing data assimilation techniques. However, few studies have attempted to develop 14 

operational probabilistic forecasting approaches for large and poorly gauged river basins. The 15 

objective of this study is to develop open-source software tools to support hydrologic forecasting 16 

and integrated water resources management in Africa. We present an operational probabilistic 17 

forecasting approach which uses public-domain climate forcing data and a hydrologic-18 

hydrodynamic model which is entirely based on open-source software. Data assimilation techniques 19 

are used to inform the forecasts with the latest available observations. Forecasts are produced in real 20 

time for lead times of 0 to 7 days. The operational probabilistic forecasts are evaluated using a 21 
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selection of performance statistics and indicators and the performance is compared to persistence 22 

and climatology benchmarks. The forecasting system delivers useful forecasts for the Kavango 23 

River, which are reliable and sharp. Results indicate that the value of the forecasts is greatest for 24 

intermediate lead times between 4 and 7 days. 25 

Introduction 26 

Operational probabilistic hydrological modelling and river discharge forecasting is an active 27 

research topic in water resources engineering and applied hydrology (Pagano et al., 2014). Sharp 28 

and reliable forecasts of river discharge are required over a range of forecasting horizons for flood 29 

and drought management. A state of the art river discharge forecasting system consists of a weather 30 

forecast or an ensemble of weather forecasts (Cloke and Pappenberger, 2009), a hydrologic-31 

hydrodynamic modelling system and a data assimilation approach to inform the forecasts with all 32 

available in situ and remote sensing observations. Alternatively, in the absence of resources, data 33 

and computing power, simpler solutions can be implemented which disregard more and more of the 34 

physics and rely on past observations to parameterize black-box type models such as, for instance, 35 

artificial neural networks (Maier et al., 2010). 36 

Many studies have shown that operational hydrological models can benefit from the assimilation of 37 

in-situ or satellite remote sensing observations. Different techniques and approaches have been 38 

presented (Liu et al., 2012). They differ both in terms of the type of data that are assimilated to the 39 

models, the assimilation algorithms used and in terms of the assimilation strategy, i.e. which model 40 

components, states and/or parameters are updated. Some hydrological data assimilation studies 41 

update the internal states of rainfall-runoff models (e.g. Clark et al., 2008; Pauwels and De Lannoy, 42 

2009) while other approaches focus on updating the hydrodynamic parts of the model (Biancamaria 43 

et al., 2011; Neal et al., 2009) or combinations of rainfall-runoff and routing state variables (e.g. 44 
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Rakovec et al., 2012). One of the most popular algorithms used in hydrologic data assimilation is 45 

the ensemble Kalman filter (e.g. Clark et al., 2008). Alternatively, the particle filter (Moradkhani et 46 

al., 2005) can be used, which does not require the assumption of Gaussian model errors. Variational 47 

data assimilation has also been used in a number of hydrologic studies (e.g. Seo et al., 2009, 2003).  48 

Some studies use filtering approaches where the gain is determined heuristically from offline 49 

simulations and then used operationally in forecasting mode (Madsen and Skotner, 2005). As 50 

pointed out by Liu et al., 2012, despite the large body of literature on hydrologic data assimilation, 51 

few studies evaluate the benefit of data assimilation for actual forecasting and practical application 52 

of data assimilation by operational agencies is rare. 53 

In many river basins the performance of operational hydrological modelling and forecasting is 54 

limited because in-situ observations of precipitation and river discharge are scarce or unavailable. 55 

This is also the case for many of Africa’s large river basins which are poorly gauged (e.g. Zambezi, 56 

Volta, Congo). Consistent, long-term and spatially resolved in-situ observations of precipitation and 57 

river discharge are unavailable for large portions of Africa. Moreover, the number of operational 58 

meteorological stations and river discharge stations has been decreasing consistently around the 59 

world since the 1970s (Fekete and Voeroesmarty, 2007; Peterson and Vose, 1997). Remote sensing 60 

techniques have the potential to fill critical data gaps in the observation of the global hydrological 61 

cycle. All major components of the water balance, except river discharge, can now be estimated 62 

based on various types of remote sensing data. However, the available techniques are still limited 63 

by coarse spatial and temporal resolution as well large and/or poorly understood error 64 

characteristics (Tang et al., 2009). From a management perspective one of the most important 65 

components of the hydrological cycle is river discharge. Extremely high flows in rivers cause 66 

flooding which can have severe consequences in terms of fatalities and economic damage. Low 67 

flows cause conflicts in the allocation of scarce water resources between economic sectors and/or 68 
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the environment. Therefore, in many river basins there is a need for hydrological models to provide 69 

operational estimates of river discharge based on remotely sensed observations and limited 70 

available in-situ measurements. 71 

The TIGER-NET project addresses the demand for free, up-to-date and spatially resolved water 72 

information for the African continent. The project is funded by the European Space Agency (ESA) 73 

and aims to support integrated water resources management in Africa by (i) providing access to 74 

ESA Earth observation (EO) data, (ii) developing an open-source Water Observation and 75 

Information System (WOIS) and (iii) implementing capacity building actions in collaboration with 76 

African partner institutions (Guzinski et al., 2014). 77 

The WOIS includes a hydrological modelling component, which supports long-term scenario 78 

analysis (e.g. impact of climate change, deforestation etc.) as well as operational probabilistic 79 

forecasting. The specific objective for the operational modelling capability is to provide reliable and 80 

sharp probabilistic forecasts of river discharge over time horizons of up to one week. In addition to 81 

hydrological modelling, WOIS includes functionality for operational flood monitoring, basin 82 

characterization at high (~30 m) and medium (~1 km) spatial resolutions and derivation of other 83 

products requiring EO data processing and analysis (Guzinski et al., 2014). It was designed for use 84 

in African organizations, where budgetary and technical constraints often limit the use of EO data 85 

for integrated water resources management. Therefore, WOIS is based purely on free, open-source 86 

software components and was created as an easy to use tool for both capacity building and 87 

operational use. Among the partner institutions engaged in the TIGER-NET project is the Namibian 88 

Ministry of Agriculture, Water and Forestry. The Ministry has an interest in forecasting the 89 

discharge of the Kavango River. 90 

Based on these requirements, this study has four specific objectives: 91 
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1. Development of a robust and simple probabilistic river discharge forecasting system for 92 

poorly gauged river basins, based solely on open source software and public-domain data. 93 

2. Informing the forecasting system with in-situ discharge observations in real time. 94 

3. Operational demonstration of the system for the Kavango River case study. 95 

4. Comprehensive evaluation of the operational probabilistic forecasts using a selection of 96 

performance statistics and indicators as well as comparison with persistence and climatology 97 

benchmarks. 98 

 The entire system has been implemented in an open-source GIS environment (QGIS, GDAL, 99 

Python). Installation and source code are available for download from the TIGER-NET webpage 100 

(www.tiger-net.org). 101 

Materials and Methods 102 

Study Area 103 

The Kavango River originates in the highlands of central Angola and flows south to the border 104 

between Angola and Namibia. The Cuito River joins the Kavango River just before the river enters 105 

into Namibia’s Caprivi Strip. It terminates in the Okavango Delta, a large wetland system in 106 

Northern Botswana (Milzow et al., 2009). An overview of the basin is provided in Figure 1. The 107 

basin is located on the Southern fringes of the inter-tropical convergence zone. A strong south-to-108 

north precipitation gradient is observed. The climate is highly seasonal and large inter-annual 109 

variations are typical, which are controlled by a number of climate time scales (McCarthy et al., 110 

2000; Wolski et al., 2014). The Kavango River is an important resource for all riparian countries 111 

and forms the basis of many people’s livelihoods (Kgathi et al., 2006). While water scarcity and 112 

water allocation between economic sectors and the environment have been in focus for some time, 113 
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flood risk has recently become a major concern because the northern part of Namibia has 114 

experienced increased magnitude and frequency of flooding events since 2008 (Wolski et al., 2014). 115 

Water managers need accurate and reliable forecasting tools to deal with both floods and droughts. 116 

Three hydrological modelling efforts have been reported in the literature for the Kavango River 117 

basin. Folwell and Farqhuarson, 2006 used the Global Water Availability Assessment (GWAVA) 118 

model to assess climate change impacts in the basin. Hughes et al., 2011, 2006 calibrated a Pitman 119 

model for the basin and were able to reproduce in-situ observations satisfactorily. Milzow et al., 120 

2011 developed a SWAT (Soil and Water Assessment Tool) model of the Kavango basin and 121 

calibrated the model with water levels from radar altimetry, soil moisture from Envisat-ASAR and 122 

total water storage change from GRACE. 123 

Long-term in-situ observations of river discharge are available from two hydrometric stations in the 124 

basin, Rundu and Mohembo (Figure 1). Table 1 summarizes the main characteristics of the 125 

Kavango river basins and the two sub-basins contributing to the stations Rundu and Mohembo.  126 

Hydrologic and hydrodynamic modelling 127 

The modelling approach implemented in this study consists of a hydrologic (rainfall-runoff) model 128 

which is coupled to a simple routing model for channel flow. A one-way coupling between the two 129 

model compartments is implemented, i.e. once runoff has entered the river channel, the water 130 

cannot move back into the land phase of the hydrological cycle. 131 

We use the well-known SWAT hydrological model, version 2009 (Gassman et al., 2005; Neitsch et 132 

al., 2011) for rainfall-runoff modelling. SWAT is a semi-distributed, physically based hydrological 133 

model which operates at a daily time step. The river basin is divided into a number of sub-basins. 134 

Each sub-basin is in turn divided into hydrological response units (HRU), which are defined as 135 

portions of the sub-basin with similar terrain slope, land use and soil type. The Kavango SWAT 136 
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model consists of 12 subbasins with outlets located at the confluences of major tributaries as well as 137 

at in-situ discharge station locations (Figure 1). 138 

The hydrodynamic model used in this study is a simple Muskingum routing scheme, which is 139 

implemented outside of the SWAT simulator to allow efficient updating in the data assimilation 140 

scheme. Muskingum parameters are computed from river widths, assumed cross section geometry 141 

and channel Manning numbers (which are calibration parameters). The river is divided into 12 142 

primary individual river reaches. The primary reaches are further sub-divided if required to meet the 143 

numerical stability criteria of the Muskingum routing scheme (Chow et al., 1988). The 144 

hydrodynamic model state vector consists of the simulated discharges in each individual reach. In 145 

the Muskingum routing scheme, the model operator propagating the discharge forward in time is 146 

linear, i.e. the simulated discharges at time step t+1 are a linear function of the simulated discharges 147 

at time step t and the runoff forcings at time steps t and t+1: 148 

1 1t t t t+ += + +q Aq Br Cr  (1) 149 

In this equation, q is the vector of simulated discharges and r is the vector of runoff forcings, A, B 150 

and C are linear operators which depend on the configuration of the river channels and network 151 

connectivity and the superscripts indicate time steps. For details on the implementation of the 152 

Muskingum routing scheme the reader is referred to Chow et al., 1988 and Michailovsky et al., 153 

2013. 154 

Input data 155 

SWAT requires the following input datasets: elevation, land cover, soil type and climate forcings. 156 

The elevation dataset is used for automatic watershed and river network delineation as well as for 157 

the determination of terrain slope. We use the ACE2 (Altimeter Corrected Elevation, version 2, 158 

Berry et al., 2010) global elevation dataset at a resolution of 30 arc-seconds. The parameterization 159 
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of vegetation processes in the SWAT model is based on the land cover input dataset. We use the 160 

USGS Global Land Cover Characterization (GLCC) dataset, version 2.0 with a spatial resolution of 161 

1 km (USGS, 2008). The soil dataset forms the basis for parameterizing soil hydraulic processes in 162 

SWAT. We use the FAO/UNESCO digital soil map of the world and derived soil properties, 163 

revision 1, with a spatial resolution of 5 arc-minutes (FAO-Unesco, 1974). Look-up tables 164 

translating GLCC land cover classes and FAO/UNESCO soil types into SWAT parameters have 165 

been developed by the WaterBase project (George and Leon, 2007). 166 

The model is forced with daily precipitation and daily minimum and maximum temperature from 167 

the National Oceanic and Atmospheric Administration’s Global Forecast System (NOAA-GFS) 168 

which provides up to seven days of forecast at a six hourly temporal resolution and 0.5 degree 169 

spatial resolution (NOAA, 2014). Real-time and recent historical forecasts can be downloaded from 170 

the NOMADS server (http://nomads.ncdc.noaa.gov/data.php#hires_weather_datasets, last accessed: 171 

14.01.2015). Historical forecasts older than a few months have to be ordered for FTP download.  172 

NOAA-GFS data was aggregated to daily precipitation prior to its use in the hydrological model. 173 

For historical simulation periods and model calibration, forcing time series consisting of the 1-day 174 

ahead forecasts are used. In operational mode, long-term forecasts are successively replaced with 175 

short-term forecasts as time proceeds. In order to assess the performance of the NOAA-GFS 176 

precipitation forecast for the Kavango region, the 1-day ahead forecasts were compared to FEWS-177 

RFE rainfall estimates (Herman et al., 1997). FEWS-RFE was previously found to be one of the 178 

most accurate remote sensing precipitation products for Africa (Milzow et al., 2011; Stisen and 179 

Sandholt, 2010). 180 

Calibration and validation of the hydrologic-hydrodynamic model 181 

Calibration and validation of the hydrologic-hydrodynamic model were performed against observed 182 

in situ river discharge using a split-sample approach. The years 2005-2011 were used for 183 

http://nomads.ncdc.noaa.gov/data.php#hires_weather_datasets
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calibration, while the years 2012-2014 served as validation period. Mean observed flows in the 184 

validation period are higher than in the calibration period (Table 2). After a series of dry years in 185 

the beginning of the century, the region has experienced much higher amounts of precipitation and 186 

river flow since 2008 (Wolski et al., 2014). In order to ensure a balanced representation of both wet 187 

and dry years in the calibration period, we had to use a major portion of the entire data record for 188 

calibration and could only reserve three years for validation. Particularly for the station Mohembo, 189 

only very few observations are available in the validation period (Table 2). The objective function 190 

which was minimized in the calibration was formulated as 191 

2 2

,
1

(1 )

1 1
( )

n

i obs i
obs i

NSE RME

RME Q Q
nQ

j

=

= - ,

= -å
 (2) 192 

where NSE is the Nash-Sutcliffe model efficiency (Nash and Sutcliffe, 1970) and RME is the 193 

relative water balance error (relative mean error). The symbols Q and Qobs denote simulated and 194 

observed river discharge, respectively, n is the number of available discharge observations and the 195 

overbar indicates temporal averaging. This formulation ensured a reasonable trade-off between 196 

fitting the observed hydrographs and matching the observed water balance of the catchment. A 197 

sequential calibration strategy was implemented: First, the subcatchments upstream of Rundu were 198 

calibrated using Rundu observations and subsequently the subcatchments between Rundu and 199 

Mohembo were calibrated using Mohembo observations. 200 

Calibration was performed using the model-independent parameter estimation programme PEST 201 

(Doherty et al., 2014). Because of the strongly non-linear response of the SWAT rainfall-runoff 202 

model, global derivative-free search strategies are the preferred option for calibration of SWAT 203 

models (Arnold et al., 2012). We use the shuffled complex evolution (SCE) algorithm (Duan et al., 204 

1992) which performs a global search over the entire allowed parameter space. The SCE algorithm 205 

is included in the PEST package (SCEUA_P). 206 
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The selection of calibration parameters was the result of an iterative procedure including extensive 207 

sensitivity analysis and repeated trial model runs. The final selection was based on the following 208 

principles: (i) spatial variation of vegetation and soil parameters is determined by the input datasets 209 

and should be left unchanged during calibration. The corresponding SWAT parameters were either 210 

not changed at all or multiplied with a global factor. (ii) The water balance of the rainfall-runoff 211 

model should be maintained. Therefore the fraction of the recharge entering the deep aquifer was 212 

set to zero. (iii) SWAT groundwater parameters are highly uncertain a priori but at the same time 213 

very sensitive. Enough spatial variation in groundwater parameters must be allowed in order to 214 

reproduce the various recession time scales in the observed hydrographs. (iv) SWAT has two 215 

threshold values of the shallow groundwater storage, one controlling the onset of baseflow and one 216 

controlling the onset of phreatic evapotranspiration. The absolute magnitudes of the two threshold 217 

values are less important because they mainly control the length of the required model warm-up 218 

period. However, the difference between these two threshold values has significant control over the 219 

water balance of the catchment: If the baseflow threshold is below the phreatic ET threshold, more 220 

water will leave the catchment as baseflow and less as actual ET and vice versa. In order to reduce 221 

parameter correlation and non-uniqueness, the baseflow threshold was generally fixed at 100 mm in 222 

the Kavango SWAT model. 223 

Table 3 provides an overview of the calibration parameters and their allowed ranges. For the 224 

groundwater parameters, spatial variation was allowed between the Rundu and Mohembo regions, 225 

the upstream and downstream catchments within each region and the high slope and low slope 226 

portions of the land surface. This resulted in a total number of 19 calibration parameters for the 227 

Rundu region and 20 calibration parameters for the Mohembo region. We chose 8 complexes in the 228 

SCE calibration run and the number of complexes remained the same throughout the run. Both the 229 

number of parameter sets in each complex and the number of evolution steps before complex 230 
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shuffling were set to 39 and 41 for the Rundu and Mohembo regions respectively. The convergence 231 

criterion was set to a relative improvement of the best objective function of 1% over 10 shuffling 232 

loops. A total of 50000 model runs were allowed, however the calibration converged after 14711 233 

and 18373 model runs for the Rundu and Mohembo regions respectively. After completion of the 234 

SCE run, the evolution of the parameter values over the course of the shuffling loops was evaluated. 235 

All parameter values converged to a stable solution away from the a priori parameter bounds. 236 

Assimilation strategy 237 

The objective of data assimilation is to combine, at each point in time, the model-based estimate of 238 

the state of the system as well as the most recent observations of the state, in order to produce the 239 

best possible estimate of the current and future states, taking into account the respective 240 

uncertainties of simulated states and observations. The assimilation strategy chosen in this study 241 

consists of updating the simulated discharge in the Muskingum routing model only, because the 242 

objective was to generate probabilistic river discharge forecasts with lead times of up to 7 days. 243 

Updates of the rainfall-runoff model states would probably improve long-term forecasts 244 

significantly but may have limited effect on forecasts with short lead times in large basins such as 245 

the Kavango basin. Moreover, updating the rainfall-runoff model would require ensemble-based 246 

assimilation approaches. For the intended user group of the TIGER-NET products, simplicity and 247 

efficiency are key criteria. 248 

Observed in-situ discharge at the station Rundu was assimilated to the model in the operational 249 

runs. Because the Muskingum routing operator is linear and the measurement operator is linear too, 250 

we could use the standard Kalman filter for state updating, since it is the optimal sequential 251 

assimilation method for linear dynamics (Kalman, 1960). The Kalman filter simultaneously updates 252 

discharge at all basin outlets. If instead of river discharge, water level measurements from space-253 

borne or ground-based instruments are assimilated, the measurement operator becomes non-linear 254 



12 
 

and the extended Kalman filter can be used (Michailovsky et al., 2013). The reader is referred to the 255 

literature (e.g. Jazwinski, 1970) for a detailed discussion of the Kalman filter equations and to 256 

Michailovsky et al., 2013 for a detailed description of the assimilation approach. 257 

Description of the model error 258 

Runoff is assumed to be the dominant source of error in the routing model. While the routing model 259 

parameters, which depend on reach geometries and Manning’s friction factors, are uncertain, runoff 260 

uncertainty can be expected to be much more significant due to the error in the NOAA-GFS rainfall 261 

forcing as well as structural deficiencies and/or parameterization errors in the SWAT model. In 262 

order to find a reasonable representation of the model error, the magnitude, auto-correlation and 263 

spatial cross-correlation of the runoff error had to be assessed. No direct measurements of runoff are 264 

available within the river basin. To derive an operational error model, we assume, in the baseline 265 

experiment, that magnitude and autocorrelation of the relative runoff error are the same as 266 

magnitude and autocorrelation of the relative model residuals at the available in-situ discharge 267 

stations: 268 

𝐰𝐭 = �𝐐𝐬𝐬𝐬,𝐭−𝐐𝐨𝐨𝐨,𝐭�
𝐐𝐨𝐨𝐨,𝐭

 (3) 269 

where wt is the relative model residual (-), Qsim,t is the modelled discharge at the in-situ discharge 270 

station at time step t and Qobs,t is the in-situ discharge as time step t. The autocorrelation of the 271 

residuals was assumed to be represented by a first order autoregressive (AR1) model: 272 

𝑤𝑡 = 𝛿𝑤𝑡−1 + 𝜀𝑡 (4) 273 

where δ is the AR1 parameter and ε is a sequence of white Gaussian noise with a spatial covariance 274 

Q’. Due to the correlated meteorological inputs the runoff forcing error was assumed to be spatially 275 

correlated between the various subcatchments of the model. In the baseline experiment, we assume 276 
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that the spatial correlation of the runoff forcing error is equivalent to the spatial correlation of the 277 

runoff forcing itself. The correlation matrix of the runoff inputs was computed and Q’ was set to: 278 

𝐐′ = 𝐂 𝜎(𝜖)2 (5) 279 

where C is the runoff correlation matrix and σ(ϵ)2 is the variance of the white noise component of 280 

the AR1 model. The auto-correlated runoff error state was integrated in the Kalman filter updating 281 

scheme by augmenting the model state vector with the correlated noise term (Jazwinski, 1970; 282 

Michailovsky et al., 2013). This ensures persistence of assimilation benefits in time.  283 

The major source of error in in-situ discharge observations is the rating curve, which is used to 284 

transform readings of river stage into river discharge. Rating curves are particularly unreliable for 285 

extreme flow rates and, depending on the channel characteristics, the rating curve changes over time 286 

and requires frequent updating. In the absence of detailed information on the in-situ measurement 287 

procedure, we assumed the measurement error to be uncorrelated in time and proportional to the 288 

discharge. In the baseline experiment, the relative error was assumed to be 10 %, which is a typical 289 

value for in-situ discharge derived from rating curves (Di Baldassarre, 2009) and comparable to 290 

other hydrologic data assimilation studies (e.g. Clark et al. 2008). 291 

In order to evaluate the impact of model error and observation error specifications on the 292 

performance of the probabilistic discharge forecasts, four additional forecasting experiments were 293 

conducted. Table 4 presents an overview of the experiments. In the baseline experiment, the 294 

autocorrelation of the relative runoff error was set equal to the autocorrelation of the relative model 295 

error at Rundu (0.9942), as described above. The magnitude of the relative runoff error was set to 296 

4.38%, which is the same as the relative model error at Rundu. The spatial correlation of relative 297 

runoff error was set equal to the spatial correlation of runoff and the relative observation error was 298 

set to 10%. In experiment 1, the autocorrelation of the runoff error was set equal to the 299 
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autocorrelation of the spatially aggregated runoff (0.9934) while the other specifications are the 300 

same as in the baseline run. In experiment 2, the spatial correlation of the runoff error was set to 301 

zero and all other specifications are as in the baseline run. In experiment 3, the runoff error 302 

specifications are the same as in the baseline and the relative observation error was set to 20%. 303 

Finally, in experiment 4, the white noise component of the relative runoff error was increased from 304 

4.38% to 6% and all other specifications are as in the baseline run. 305 

Operational forecasting and performance evaluation 306 

Operational forecasts have been issued at the daily basis for the validation period and supplied to 307 

Namibia’s Ministry of Agriculture Water and Forestry for web-based dissemination. A set of 308 

criteria were used to assess the performance of the probabilistic river discharge forecasts. 309 

Performance assessment was done separately for the open loop model and the 0 to 7-day forecasting 310 

horizons. The criteria assess the performance of the central model forecast, as well as the reliability 311 

and sharpness of the probabilistic forecasts. The following criteria were used to assess the 312 

performance of the central model forecast: Nash-Sutcliffe model efficiency (NSE), root-mean 313 

square error (RMSE), mean error (ME) and persistence index. The persistence index (PI, Bennett et 314 

al., 2013) is defined analogous to the NSE: 315 
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 (6) 316 

where n is the number of forecasted observations, Q are the forecasts, Qobs are the observations and 317 

Qlast is the latest available observation before the forecasted observation. While the NSE uses the 318 

average of the observations as the benchmark (i.e. a forecast that performs as good as the long-term 319 

average of the available observations scores an NSE of 0), the PI uses the last available observation 320 
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as the benchmark (i.e. a forecast that performs as good as the latest available observation scores a PI 321 

of 0). 322 

Reliability and sharpness of the probabilistic forecasts were assessed with the coverage of the 95% 323 

confidence interval (i.e. percentage of observations that fall within the predicted nominal 95% 324 

confidence interval), the sharpness of the 95% confidence interval (width of predicted 95% 325 

confidence interval), the Interval Skill Score (ISS) of the 95% confidence interval as well as the 326 

continuous ranked probability score (CRPS). The ISS is defined according to Gneiting and Raftery, 327 

2007 as: 328 

𝐼𝐼𝑆𝛼 = �𝑖𝑖𝑠𝛼�𝑙𝑖,𝑢𝑖 ,𝑄𝑜𝑜𝑜,𝑖�
𝑛

𝑖=1

 

𝑖𝑖𝑠𝛼(𝑙, 𝑢,𝑄𝑜𝑜𝑜) = �
(𝑢 − 𝑙) if 𝑙 < 𝑄𝑜𝑜𝑜 < 𝑢

(𝑢 − 𝑙) + 2 𝛼⁄ (𝑙 − 𝑥) if 𝑄𝑜𝑜𝑜 < 𝑙
(𝑢 − 𝑙) + 2 𝛼⁄ (𝑥 − 𝑢) if 𝑄𝑜𝑜𝑜 < 𝑢

 (7) 329 

where α is the level of the confidence interval (0.05 in our case), l is the lower and u the upper 330 

bound of the confidence interval. 331 

The CRPS is a verification tool for probabilistic forecasts and can be interpreted as the area between 332 

the cumulative distribution function of the forecast and the cumulative distribution function of the 333 

observation, which is a Heaviside step function. The CRPS thus compares the full distribution 334 

function of the forecast with the observation and not only selected confidence intervals. For 335 

normally distributed forecasts, a closed-form expression for the CRPS exists (Gneiting et al., 2004): 336 
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where σ is the standard deviation of the probabilistic forecast, Ф is the cumulative distribution 338 

function and ϕ the probability density function of the standard normal distribution. For a 339 

deterministic forecast, the CRPS is equivalent to the mean absolute error (Boucher et al., 2011; 340 

Schellekens et al., 2011). This allows for a systematic and objective comparison between 341 

deterministic and probabilistic forecasts. 342 

The performance of operational forecasts was compared to two benchmark forecasts which can be 343 

produced with minimal effort: persistence and climatology. Persistence forecasts the flow as equal 344 

to the last available observation, while climatology forecasts the flow as equal to the historical 345 

average flow for this day of the year. 346 

Results 347 

Comparison of precipitation products 348 

Comparison of the FEWS-RFE and NOAA-GFS precipitation products showed large deviations 349 

between the two products. Figure 2 shows a double mass plot for the average precipitation over the 350 

entire Kavango River catchment for the period 2005-2012. Obviously, there is a significant bias and 351 

the timing of precipitation events is inconsistent too, as evidenced by the wiggles in the double 352 

mass curve. The FEWS-RFE product is based on both satellite observations and in-situ gauging 353 

stations, while NOAA-GFS is derived from a global weather model. Moreover, FEWS-RFE has 354 

been shown to perform well in previous studies on the African continent (Milzow et al., 2011; 355 

Stisen and Sandholt, 2010). We therefore assume that the FEWS-RFE product is closer to the 356 

unknown true precipitation than NOAA-GFS and bias correct the NOAA-GFS data to match the 357 

long-term average precipitation for both products. A spatially and temporally constant precipitation 358 

correction factor of 0.67 was therefore used throughout the study. Figure 2 also presents a 359 
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quantitative comparison of the NOAA-GFS precipitation forecasts for various forecasting horizons. 360 

As a general trend, the longer the forecasting horizon, the lower the predicted precipitation 361 

compared to the 1-day ahead forecasts. These effects are particularly pronounced for the rainy 362 

seasons 2008/2009 and 2011/2012. However, for the most recent years, the double mass plots show 363 

slopes close to unity. We therefore did not implement variable bias correction for the different 364 

forecasting horizons. Because the NOAA-GFS system is continuously updated and modified 365 

(process parameterization, spatial resolution etc.), performance of precipitation forecasts should be 366 

regularly checked during operational application of the hydrologic forecasting system. Changes in 367 

the quantitative precipitation forecasts may require adjustments in the bias correction and/or 368 

recalibration of the hydrological model. 369 

Clearly, the quality of the precipitation forcing is a critical issue, which has significant control over 370 

the performance of the forecasting system. Within the TIGER-NET framework, we are dependent 371 

on public domain datasets and NOAA-GFS was the only free source of operational weather 372 

forecasts for the African continent available to the project. Potentially, model performance could be 373 

improved if NOAA-GFS data was corrected dynamically, for instance by continuously 374 

benchmarking it against real-time or near real-time precipitation products such as FEWS-RFE or 375 

TRMM-3B42 (Huffman et al., 2007) for the recent past and estimating a time-variable bias 376 

correction. An even better solution would be to merge NOAA-GFS data with in-situ precipitation 377 

data. However, no operational dataset of in-situ precipitation observations is available for this part 378 

of Africa. 379 

Performance of the calibrated model 380 

Table 3 provides an overview of the calibrated parameter values. All parameter values are 381 

physically reasonable and calibrated parameter values do not stick to the bounds of a-priori 382 

parameter intervals. 383 



18 
 

Model residuals were analysed and tested for normality and autocorrelation. Figure 5 summarizes 384 

the results of the model error analysis for the station Rundu. Figure 5a plots the relative error of the 385 

hydrologic-hydrodynamic model versus the observed discharge. Obviously, the relative error is not 386 

independent of discharge; it is higher for low discharge than for high discharge. The Q-Q plot in 387 

Figure 5b shows that the empirical distribution of model errors significantly deviates from a normal 388 

distribution. The empirical distribution of the model errors is narrower than the normal distribution 389 

and a larger portion of the data is clustered around the mean. The correlogram in Figure 5c shows 390 

highly significant auto-correlation of the model errors. Figure 5d shows the residual model errors 391 

(ε) after application of the AR1 model (equation 4), plotted against the observed discharge. This 392 

distribution looks more even than the distribution of the primary model residuals in Figure 5a. A 393 

test for normality using the Q-Q plot shows significant deviations and again a narrower distribution 394 

than the normal distribution (Figure 5e). Temporal correlations have been effectively removed from 395 

the model errors and no significant correlations remain as shown in Figure 5f. We conclude from 396 

this analysis that the relative error of the hydrologic-hydrodynamic model can be reasonably 397 

represented with an AR1 model. The time correlation of the AR1 model is δ=0.9942 on the daily 398 

time step. The random error contribution is ε=0.0438. As explained in the methods section, we 399 

assume, in the baseline experiment, that the same AR1 model parameters can represent the relative 400 

error of the runoff forcing and we use this result to parameterize the model error in the Kalman 401 

filter assimilation scheme. 402 

Discharge forecasting and data assimilation 403 

 404 

Table 5 reports the performance statistics for the probabilistic model runs. We report results for the 405 

open-loop run without assimilation, the assimilation run (“now-casting”) as well as the 1-7 day 406 

ahead forecasts. The various forecasting horizons use different precipitation forcings (forecasts 407 
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available at the simulated issue date) and in-situ data are assimilated up to simulated issue date. We 408 

only assimilate data from the station Rundu, because (i) no real-time observations are available for 409 

Mohembo and (ii) this enables us to assess the effect of upstream assimilation on a downstream 410 

station. The indicators are reported for both in-situ stations and for the calibration and the validation 411 

period. We are well aware that the observations in the calibration period have been used already for 412 

model calibration and are now used again for assimilation. Still, we feel that it is useful to present 413 

the statistics for information. Figure 6 shows the open-loop and assimilation run for the station 414 

Rundu during calibration and validation periods. We first assess the performance of the 415 

probabilistic open-loop run. Generally, the chosen error model seems to be appropriate. The 416 

forecasts produced by the open-loop run are reliable; the coverage of the nominal 95% confidence 417 

interval does not fall below 84% at any of the stations during any of the periods. However, the 418 

open-loop forecasts are not very sharp, as evidenced by the wide confidence intervals in Figure 6. 419 

This results in a relatively high ISS score. 420 

The assimilation run is much sharper for all stations and periods but we observe a significant loss of 421 

reliability in the validation period. This can again be explained by the relatively low number of 422 

observations, particularly at the station Mohembo during the validation period as well as relative 423 

over-sampling of the high-flow period. ISS scores of the forecasting runs are much lower than for 424 

the open-loop run, which indicates massive improvement. The 1-7 day ahead forecast runs show 425 

degrading performance for increasing lead times. However, even the 7-day ahead forecast generally 426 

has a lower ISS than the open-loop run, except for Rundu during the validation period. Clearly, the 427 

central forecast is better for all lead times than the central run in the open-loop simulation. All three 428 

indicators (NSE, RMSE and ME) show significant improvement. Coverage decreases rapidly with 429 

increasing lead time for the station Rundu but is more or less independent of lead time for the 430 

station Mohembo. This can be explained by the routing time lag between the two stations. 431 
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Improvements due to assimilation of Rundu data travel down to Mohembo and are still visible at 432 

this station after many days. For the station Rundu, increased sharpness is over-compensated by 433 

loss of reliability, which leads to increasing ISS scores with increasing lead time. For the validation 434 

period, only the 0-3 ahead forecasts are better than the open-loop run, if evaluated with the ISS 435 

score. 436 

Table 6 summarizes the performance of the operational forecasts produced in the different 437 

forecasting experiments for the validation period and the station Rundu. Results are reported for the 438 

baseline and experiments 1, 3 and 4. Experiment 2 produced results that are very similar to the 439 

baseline results and those are therefore not separately reported. Table 6 also includes the 440 

performance indicators for the persistence and climatology benchmarks. 441 

Experiment 4 generally shows the best performance.  According to the CRPS score, the forecasts 442 

are superior to the open-loop run for all forecasting horizons. Forecasts are also better than the 443 

persistence benchmarks for forecasting horizons between 4 and 7 days. For forecasting horizons 444 

between 1 and 6 days, the model outperforms the climatology benchmark. The persistence index 445 

indicates that the forecasting system performs worse than the persistence benchmark. However, it is 446 

important to note that the PI does not assess the quality of probabilistic forecasts in terms of 447 

sharpness and reliability but only takes the central forecast into account and compares two 448 

deterministic predictions. 449 

Figure 7 graphically presents the forecasts produced in experiment 4 for the station Rundu during 450 

the validation period and Figure 8 shows predictive quantile-quantile plots for these forecasts. 451 
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Discussion 452 

The presented approach for the generation of probabilistic river discharge forecasts is simple and 453 

robust and designed to work in data-sparse and poorly gauged basins. A key factor for the 454 

performance of the system is the rainfall forcing. While the NOAA-GFS rainfall can produce 455 

reasonably reliable and sharp forecasts for the Kavango River, the product should be further 456 

compared against other operational precipitation products. A promising avenue for future research 457 

may be dynamic bias correction using other precipitation or soil moisture products. From Table 6, 458 

we conclude that extending the forecast lead time beyond 7 days could add value to the system, 459 

because CRPS scores are still well below the open-loop score at 7 day lead time and comparison 460 

with CRPS of persistence indicates break-even at around 4 days. NOAA-GFS does actually provide 461 

forecasts up to 16 days into the future. However, the spatial resolution is reduced by a factor of 2 462 

for forecasting horizons beyond one week. It may nevertheless be valuable to explore the use of 463 

more long-term weather forecasts. To further improve the reliability and sharpness of the forecasts, 464 

an ensemble of weather forecasts should be used to drive the forecasting system (Cloke and 465 

Pappenberger, 2009). One potential source of free ensemble weather forecasts for the African 466 

continent is the Global Ensemble Forecasting System (GEFS, 467 

http://www.emc.ncep.noaa.gov/?branch=GEFS). 468 

As in other hydrologic data assimilation studies (e.g. Clark et al., 2008), parameterization of the 469 

model error is a fundamental issue for the performance of the assimilation scheme. Generally, 470 

model error terms can be added to the forcings, the states, and the parameters of a model. Here, we 471 

assign all model error to the runoff forcing and quantify magnitude and auto-correlation of the error 472 

based on the comparison of simulated and observed river discharge. Unlike other authors, we do not 473 

apply error terms to the states and parameters of the routing model, because we assume that these 474 

error contributions are minor compared to the runoff error. While this approach is robust and 475 
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efficient, it clearly represents a strong simplification of reality. It is clear that the simple 476 

Muskingum routing model has significant structural error, for instance due to the fact that 477 

floodplains and surface water / groundwater interactions are not simulated. 478 

Comparison of the various forecasting experiments shows that assumptions about the model and 479 

observation errors have a large impact on the performance of the forecasting system. The magnitude 480 

of the relative runoff error is particularly sensitive, as evidenced by the improved performance of 481 

experiment 4 compared to the baseline. It is reasonable to assume a higher relative error for the 482 

runoff than the relative error computed from the model residuals at Rundu, because the routing 483 

model has a smoothing effect on the runoff response. Experiment 3 and the baseline show a 484 

comparable performance in terms of CRPS. Basically the higher assumed observation error in 485 

experiment 3 results in predictions that are less sharp but more reliable. Comparison of experiment 486 

1 and baseline results shows that even small differences in the assumed autocorrelation of the runoff 487 

error result in significant differences in the forecast performance. Higher error autocorrelation leads 488 

to increased sharpness, but lower reliability. CRPS indicates that experiment 1 forecasts marginally 489 

outperform the baseline forecasts. Experiment 2 results are very close to the baseline, because the 490 

spatial correlation of runoff between the different subcatchments is low, due to the variable 491 

hydrologic characteristics of the subcatchments. Predictive Q-Q plots for experiment 4 (Figure 8) 492 

indicate significant deviations of the empirical distribution of normalized forecast errors from the 493 

normal distribution.  494 

As is common for studies dealing with probabilistic river discharge forecasting, we find that our 495 

probabilistic forecasts are over-reliable during low flow periods and under-reliable during high-flow 496 

periods. This issue can be addressed by separating the total runoff forcing generated by the SWAT 497 

model into its components, i.e. overland flow, interflow and baseflow, and developing separate 498 

error representations for the various runoff components. However, given the sparse availability of 499 
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in-situ observations in the basins, it may be difficult to find robust parameters for these error 500 

representations. 501 

We generally observe weaker performance of the forecasting system in the beginning of the rainy 502 

season, i.e. after the long dry season during the onset of the annual high-flow season. This may be 503 

due to deficiencies in the precipitation forecasts and/or due to weaknesses in the representation of 504 

hydrological processes in the SWAT model. It appears that in reality, the first rains in the early 505 

rainy season already lead to increased river flow, while in the model, these precipitation events are 506 

completely absorbed in the various simulated hydrological storage compartments. 507 

In this study, focus has been on the final output of the modelling chain, i.e. river discharge. 508 

However, SWAT simulates a multitude of intermediate states and fluxes in the land phase of the 509 

hydrological cycle, which could be analysed and compared to observations, if such observations 510 

were available. There is an obvious opportunity to inform the modelling system with other types of 511 

in-situ and remote sensing observations such as radar altimetry, soil moisture and total water 512 

storage from time-variable gravity (Milzow et al., 2011). However, if such data were to be formally 513 

assimilated to the modelling system, an ensemble approach would have to be chosen because of the 514 

highly non-linear responses inherent in the SWAT model. Many studies have addressed ensemble-515 

based streamflow forecasting with lumped-conceptual or distributed hydrological models. Rakovec 516 

et al., 2012 found that rainfall-runoff model states were less sensitive compared to routing states in 517 

their hydrologic data assimilation study with the Ensemble Kalman Filter and suggested time lags 518 

between the rainfall-runoff model states and streamflow response as the likely reason. Alternative 519 

updating strategies that use several previous time steps instead of the last time step only (e.g. 520 

Ensemble Kalman Smoother) can potentially solve these problems. Other recurring issues in such 521 

studies are high computational demand, and model error parameterization (e.g. Clark et al., 2008). 522 
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Conclusions 523 

We have presented an operational probabilistic river discharge forecasting system for poorly gauged 524 

basins which relies exclusively on public-domain, open-source software and data. The forecasting 525 

system is specifically adapted to the conditions prevailing in many African basins, such as weak in-526 

situ monitoring infrastructure, budget constraints for operational monitoring and management as 527 

well as weak institutional capacity. We demonstrated the performance of the forecasting system for 528 

the Kavango River and obtained encouraging results. Zero to 7-day ahead probabilistic forecasts 529 

produced by the system are sharp and reliable. The results indicate that forecasting horizons could 530 

be extended to more than seven days, if suitable weather forecasting products can be made 531 

available. The system may also benefit from ingestion of other types of in-situ or remotely sensed 532 

observations such as radar altimetry and soil moisture. The TIGER-NET project and its Water 533 

Observation and Information System (WOIS) provide an ideal platform to combine remote sensing 534 

observations and hydrological models to generate accurate estimates of hydrological states as well 535 

as sharp and reliable forecasts for operational water resources management. 536 
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Tables 680 

Table 1: Characteristics of the Kavango River basin and the Rundu and Mohembo sub-basins 681 

Sub-basin Catchment area 

(km2) 

Mean elevation 

(mamsl) 

Mean annual precipitation 

(bias-corrected 1-day ahead 

NOAA-GFS, mm) 

Kavango 162050 1320 847 

Rundu 101520 1341 843 

Mohembo 60530 1286 853 
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Table 2: Model performance for calibration and validation periods. Numbers in brackets are percent of mean observed flow. 683 

In-situ station NSE (-) RMSE (m3/s) ME (m3/s) 
Mean of 
observations 
 (m3/s) 

No. of 
simulated 
observations 

Calibration Period (2005-2011) 
Rundu 0.73 105.6 (42.5%) -5.4 (-2.2%) 248.4 2440 
Mohembo 0.69 97.1 (32.8%) 6.8 (2.3%) 295.9 1935 
Validation Period (2012-2014) 
Rundu 0.74 94.6 (35.0%) -55.0 (-20.6%) 249.0 572 
Mohembo 0.33 144.0 (30.7%) -119.0 (-25.4%) 469.1 46 

 684 
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Table 3: Model calibration parameters. Subcatchment IDs for the various regions: r = 2+3+5+6+7+9+10; m = 1+4+8+11+12; 686 
ru = 2+3; rd = 5+6+7+9+10;  mu = 1; md = 4+8+11+12; ruh = HRUs in region ru with terrain slope above 2%; rul = HRUs in 687 
region ru with terrain slope below 2%; rdh = HRUs in region rd with terrain slope above 2%; rdl = HRUs in region rd with 688 
terrain slope below 2%; muh = HRUs in region mu with terrain slope above 2%; mul = HRUs in region mu with terrain 689 
slope below 2%; mdh = HRUs in region md with terrain slope above 2%; mdl= HRUs in region md with terrain slope below 690 
2%. 691 

Parameter Description and unit Lower bound Calibrated value Upper 
bound 

CN2_m Multiplier on the SCS curve number for moisture 
condition II (dimensionless) 

0.6 r 0.63 1.2 
m 0.65 

ESCO Soil evaporative compensation factor 
(dimensionless) 

0.5 r 0.95 1 
m 0.80 

EPCO Plant uptake compensation factor (dimensionless) 0.5 r 0.89 1 
m 0.92 

CH_N1 Manning’s n for tributary channels (sm-1/3) 0.02 r 0.185 0.2 
m 0.023 

CH_N2 Manning’s n for main reaches (sm-1/3) 0.02 r 0.023 0.2 
m 0.104 

GW_DELAY Groundwater delay (days) 30 ru 81.3 120 
rd 43.4 
mu 101.6 
md 112.8 

ALPHA_BF Base flow recession constant (dimensionless) 0.05 ruh 0.676 1 
rul 0.177 
rdh 0.221 
rdl 0.730 
muh 0.846 
mul 0.264 
mdh 0.161 
mdl 0.080 

GW_REVAP Groundwater re-evaporation coefficient 
(dimensionless) 

0 ruh 0.81 1 
rul 0.90 
rdh 0.68 
rdl 0.53 
muh 0.75 
mul 0.86 
mdh 0.90 
mdl 0.26 

REVAPMN Threshold depth of water in shallow aquifer for re-
evaporation to occur (mm) 

0 ruh 103 200 
rul 29 
rdh 75 
rdl 31 
muh 15 
mul 100 
mdh 97 
mdl 26 

LOSS_11 Fractional loss from the Kavango River between 
Rundu and Mohembo, due to evaporation, 
infiltration and abstraction (dimensionless) 

0 0.011 0.2 

 692 
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Table 4: Overview of the different forecasting experiments 694 

Experiment Autocorrelation of 
relative runoff error 

Relative runoff 
error 

Spatial correlation 
of relative runoff 
error 

Relative observation 
error 

Baseline 
Same as 
autocorrelation of 
model error at Rundu 
(0.9942) 

4.38% Same as spatial 
correlation of runoff 10% 

Experiment 1 
Same as 
autocorrelation of total 
runoff (0.9934) 

4.38% Same as spatial 
correlation of runoff 10% 

Experiment 2 
Same as 
autocorrelation of 
model error at Rundu 
(0.9942) 

4.38% Zero 10% 

Experiment 3 
Same as 
autocorrelation of 
model error at Rundu 
(0.9942) 

4.38% Same as spatial 
correlation of runoff 20% 

Experiment 4 
Same as 
autocorrelation of 
model error at Rundu 
(0.9942) 

6% Same as spatial 
correlation of runoff 10% 
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Table 5: Performance of the operational model in the calibration and validation periods 696 

Period In-situ 
station Run NSE 

(-) 
RMSE 
(m3/s) 

ME 
(m3/s) 

Cove-
rage 
(%) 

Sharp-
ness 
(m3/s) 

Interval 
Skill 
Score 
(m3/s) 

Mean of 
predicted 
observations 
 (m3/s) 

No. of 
predicted 
obser-
vations 

C
al

ib
ra

tio
n 

Pe
rio

d 
(2

00
5-

20
11

) 

R
un

du
 

Open-Loop 0.73 105.6 -5.4 90.0 423.5 654.9 248.4 2440 
Assimilation 0.99 22.9 -0.9 88.6 54.1 147.1 248.4 2440 
1-day ahead 0.98 29.2 -0.3 86.7 64.4 196.3 248.5 2440 
2-day ahead 0.97 36.5 0.5 85.8 75.6 250.8 248.7 2439 
3-day ahead 0.95 44.0 1.3 84.5 86.7 307.5 248.9 2438 
4-day ahead 0.94 51.2 2.2 83.6 97.2 362.0 249.1 2437 
5-day ahead 0.92 57.9 3.1 83.3 106.9 415.2 249.3 2436 
6-day ahead 0.90 64.1 4.0 82.6 115.8 465.5 249.4 2435 
7-day ahead 0.88 69.9 4.9 81.9 124.0 511.5 249.6 2434 

M
oh

em
bo

 

Open-Loop 0.69 97.1 6.8 93.3 478.2 638.1 295.9 1935 
Assimilation 0.93 45.1 -11.3 93.3 154.5 251.2 295.9 1935 
1-day ahead 0.93 45.2 -11.2 93.3 154.5 251.7 295.9 1935 
2-day ahead 0.93 45.1 -11.1 93.4 154.6 249.3 296.0 1934 
3-day ahead 0.93 45.0 -11.0 93.4 154.7 246.9 296.0 1933 
4-day ahead 0.93 44.9 -10.9 93.5 154.8 244.7 296.1 1932 
5-day ahead 0.93 44.8 -10.8 93.5 154.9 242.4 296.2 1931 
6-day ahead 0.93 44.8 -10.6 93.4 155.2 240.2 296.3 1930 
7-day ahead 0.93 45.0 -10.4 93.3 155.5 238.4 296.4 1929 

Va
lid

at
io

n 
Pe

rio
d 

(2
01

2-
20

14
) 

R
un

du
 

Open-Loop 0.74 94.6 -55.0 83.9 224.6 515.9 249.0 572 
Assimilation 0.97 31.7 -0.5 81.8 43.6 265.7 249.0 572 
1-day ahead 0.96 39.3 0.5 78.8 49.3 351.4 252.5 556 
2-day ahead 0.94 47.3 1.5 75.9 54.9 442.4 254.1 547 
3-day ahead 0.92 54.8 2.3 74.6 60.1 527.4 254.0 544 
4-day ahead 0.89 61.6 3.1 72.4 65.1 609.9 254.2 540 
5-day ahead 0.87 67.5 3.7 70.8 69.9 687.6 254.9 534 
6-day ahead 0.86 72.3 4.2 69.5 74.2 750.4 254.8 531 
7-day ahead 0.84 76.0 4.4 69.0 78.2 799.6 254.4 529 

M
oh

em
bo

 

Open-Loop 0.33 144.0 -119 93.5 498.4 686.7 469.1 46 
Assimilation 0.92 48.4 -9.0 80.4 176.3 206.5 469.1 46 
1-day ahead 0.92 48.7 -7.6 81.8 178.3 209.5 478.9 44 
2-day ahead 0.92 49.0 -8.0 82.2 177.3 208.2 473.4 45 
3-day ahead 0.92 49.9 -7.4 81.8 178.5 210.6 480.4 44 
4-day ahead 0.91 51.2 -7.5 79.5 178.6 213.6 481.4 44 
5-day ahead 0.91 52.3 -6.9 79.5 178.9 218.0 481.1 44 
6-day ahead 0.91 52.7 -7.8 76.6 176.4 233.0 464.2 47 
7-day ahead 0.92 52.1 -8.4 79.2 175.2 255.7 449.0 48 

 697 
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Table 6: Performance indicators for the forecasts issued for the station Rundu in the validation period, excluding model 699 
“warm-up” periods 700 

Run NSE 
(-) 

RMSE 
(m3/s) 

Cove-
rage 
(%) 

Sharp-
ness 
(m3/s) 

Interval 
Skill 
Score 
(m3/s) 

Persistence 
index (-) 

CRPS 
(m3/s) 

No. of 
predicted 
obser-
vations 

Benchmarks 
Persistence, 1-day ahead 1.00 10.3     6.3 556 
Persistence, 2-day ahead 0.99 18.4     12.1 547 
Persistence, 3-day ahead 0.98 26.7     17.6 544 
Persistence, 4-day ahead 0.97 34.7     23.2 540 
Persistence, 5-day ahead 0.95 42.6     28.5 534 
Persistence, 6-day ahead 0.93 50.2     33.6 531 
Persistence, 7-day ahead 0.91 57.4     38.5 529 
Climatology 0.82 78.5 100 346.1 346.1  28.2 580 
Baseline 
Open-Loop 0.74 94.6 83.9 224.6 515.9  40.0 572 
Assimilation 0.97 31.7 81.8 43.6 265.7  13.1 572 
1-day ahead 0.96 39.3 78.8 49.3 351.4 -13.7 16.7 556 
2-day ahead 0.94 47.3 75.9 54.9 442.4 -5.6 20.3 547 
3-day ahead 0.92 54.8 74.6 60.1 527.4 -3.2 23.8 544 
4-day ahead 0.89 61.6 72.4 65.1 609.9 -2.1 27.1 540 
5-day ahead 0.87 67.5 70.8 69.9 687.6 -1.5 30.1 534 
6-day ahead 0.86 72.3 69.5 74.2 750.4 -1.1 32.7 531 
7-day ahead 0.84 76.0 69.0 78.2 799.6 -0.8 34.9 529 
Experiment 1 
Open-Loop 0.74 94.6 89.9 295.6 473.0  38.4 572 
Assimilation 0.98 25.8 87.6 49.5 189.4  10.0 572 
1-day ahead 0.97 33.9 84.5 57.7 261.2 -9.9 13.4 556 
2-day ahead 0.95 42.6 83.4 66.2 339.7 -4.4 16.9 547 
3-day ahead 0.93 50.9 82.2 74.2 416.1 -2.7 20.4 544 
4-day ahead 0.90 58.5 81.5 81.8 485.6 -1.8 23.7 540 
5-day ahead 0.88 65.2 80.9 89.1 549.1 -1.3 26.8 534 
6-day ahead 0.86 70.5 79.5 95.6 599.5 -1.0 29.4 531 
7-day ahead 0.85 74.7 78.8 101.5 635.6 -0.7 31.6 529 
Experiment 3 
Open-Loop 0.74 94.6 91.3 315.5 464.8  38.1 572 
Assimilation 0.96 39.2 85.8 74.9 261.1  15.6 572 
1-day ahead 0.94 46.1 83.8 82.2 323.1 -19.2 18.7 556 
2-day ahead 0.92 53.2 82.8 89.2 385.9 -7.3 21.8 547 
3-day ahead 0.90 59.7 81.6 95.7 441.1 -4.0 24.6 544 
4-day ahead 0.88 65.7 81.1 101.9 493.5 -2.6 27.2 540 
5-day ahead 0.86 70.9 80.9 108.0 539.4 -1.8 29.7 534 
6-day ahead 0.84 75.1 80.0 113.4 571.2 -1.2 31.7 531 
7-day ahead 0.83 78.5 79.6 118.5 595.9 -0.9 33.3 529 
Experiment 4 
Open-Loop 0.74 94.6 95.3 432.2 525.3  38.6 572 
Assimilation 0.99 20.5 91.1 55.6 141.6  7.7 572 
1-day ahead 0.98 29.0 89.4 67.5 202.4 -7.0 10.8 556 
2-day ahead 0.96 38.4 88.5 80.1 269.0 -3.4 14.3 547 
3-day ahead 0.94 47.7 88.6 92.1 335.2 -2.2 17.8 544 
4-day ahead 0.91 56.2 87.8 103.6 397.8 -1.6 21.1 540 
5-day ahead 0.89 63.8 86.5 114.4 454.0 -1.2 24.2 534 
6-day ahead 0.87 69.8 85.7 123.9 497.8 -0.9 26.8 531 
7-day ahead 0.85 74.6 85.6 132.7 531.6 -0.7 29.0 529 
  701 
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 702 

Figures 703 

 704 

Figure 1: Basemap for the Kavango River Basin with location of in-situ discharge stations. The coordinate system is UTM 705 
33S, WGS84 datum. Inset map shows the location of the basin in Southern Africa. 706 

  707 
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 708 
Figure 2: Left: Double mass plot of the FEWS-RFE and NOAA-GFS precipitation products averaged over the entire 709 
Kavango River basin. Right: Double mass plots of the 1-day ahead forecasted NOAA-GFS precipitation and the 2-7 day 710 
ahead forecasted NOAA-GFS precipitation averaged over the entire Kavango River basin. 711 
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 713 

 714 
Figure 3: Observed (red dots) and simulated (black lines) hydrographs for the calibration period for Rundu (top) and 715 
Mohembo (bottom).  716 
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  718 
Figure 4: Observed (red dots) and simulated (black lines) hydrographs for the validation period for Rundu (top) and 719 
Mohembo (bottom).  720 
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 722 
Figure 5: a) Relative error of the hydrologic-hydrodynamic model vs observed discharge. b) Q-Q plot of the relative errors 723 
shown in a). c) Correlogram of the relative errors shown in a). d) Relative errors of hydrologic-hydrodynamic model after 724 
removal of the time-correlated part plotted vs observed discharge. e) Q-Q plot of the relative errors shown in d). f) 725 
Correlogram of the relative errors shown in d). 726 

  727 

0 200 400 600 800 1000
-1

-0.5

0

0.5

1

1.5

2

observed flow (m3s-1)

re
la

tiv
e 

pr
im

ar
y 

re
si

du
al

s

a

-1 -0.5 0 0.5 1
-1.5

-1

-0.5

0

0.5

1

1.5

normal theoretical quantilesqu
an

til
es

 o
f r

el
at

iv
e 

pr
im

ar
y 

re
si

du
al

s b

 

 

normal distribution
95% confidence interval

0 500 1000 1500 2000
-1

-0.5

0

0.5

1

lag(days)au
to

co
rr

el
at

io
n 

re
la

tiv
e 

pr
im

ar
y 

re
si

du
al

s

c

 

 

correlogram
95% confidence interval

0 200 400 600 800 1000
-1

-0.5

0

0.5

1

observed flow (m3s-1)

A
R

1 
m

od
el

 re
si

du
al

s

d

-0.1 -0.05 0 0.05 0.1
-0.2

-0.1

0

0.1

0.2

normal theoretical quantiles

qu
an

til
es

 o
f A

R
-1

 m
od

el
 re

si
du

al
s e

 

 
normal distribution
95% confidence interval

0 500 1000 1500 2000
-0.2

0

0.2

0.4

0.6

lag(days)au
to

co
rr

el
at

io
n 

A
R

1 
m

od
el

 re
si

du
al

s f

 

 
correlogram
95% confidence interval



40 
 

 728 
Figure 6: Probabilistic simulation of river discharge in the open-loop and assimilated run for the calibration and the 729 
validation periods for the station Rundu. 730 
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 732 

 733 
Figure 7: Performance of the 0-7 day ahead probabilistic forecasts in the validation period at Rundu station for experiment 4. 734 
The black solid line is the central forecast. Grey shading indicates the 95% confidence interval of the forecast and red dots 735 
are observations. Blue bars indicate daily forecasted precipitation from NOAA-GFS. 736 
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 738 
Figure 8: Predictive Q-Q plots for the station Rundu and the validation period for experiment 4. 739 
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