
Response to reviewers – details and changes to the manuscript 

In the following tables, we provide a detailed response to the four reviewers’ comments. When 

responses have numbered items we have kept the same numbers. Lines and section numbers refer to 

the revised manuscript (with tracked changes) attached to this response. 

 

Reviewer 1: 

Main points Response 

1.Sensitivity analyses 
performed on a case 
study in Cape Fear 
 

We thank the reviewer for this comment and agree that the work on the 
Budyko framework is appealing. Because of the focus on ecosystem service 
decisions, we think that the uncertainties associated with the use of the 
Budyko theory at the pixel level need to be put in context of other model 
uncertainties so as to appropriately inform decisions.  
 
Change: We have clarified the scope of the paper both in the introduction 
and with an overview of the Methods section [l.97 on, and l. 180 on]. 

2.No assessment of 
ecosystem services 
 

The reviewer suggests to emphasize the ecosystem service application. And, 
it is true that the focus of this paper is on the water yield component, as 
stated on p11003 (“The biophysical module, the focus of this paper, is based 
on the Budyko theory”…). At the same time, the emphasis on uncertainty 
quantification and assessment fits directly with the decision-making context 
of ecosystem services. 
 
Change: we clarified in the introduction the typical applications of the model 
for ecosystem service assessment [l90-96] 

3.Broader implications 
of the paper (eco- 
hydrological relevance 
of the Cape Fear 
region and the 
relevance of the 
results in the Budyko 
framework) 

We thank the reviewer for these comments and have expanded the 
methods and discussion sections so as to make the results more broadly 
interpretable and applicable. 
(e.g. in the introduction: l. 98 on; in the Methods: l.180 on; in the Discussion: 
l. 465 on; l. 583 on) 

 

 

Reviewer 2: 

Main points Response 

1. Main focus of the 
paper (including 
abstract). 

As indicated above, we agree that the emphasis on the Budyko theory is 
appealing. At the same time, our study aims to present an uncertainty 
analysis of the model and thus has a broader focus.  This includes insights 
into the model empirical parameters and the input parameter uncertainties.  



We understand the reviewer’s particular interest in the spatial vs. lumped 
application, but this is only one aspect of the uncertainties associated with 
the model, which are of interest to both hydrologists and model users. 
We note that the structure of the paper is consistent with current 
approaches to uncertainty assessment: it includes sensitivity analyses, model 
comparison (lumped vs. pixel-based), and comparison with observations and 
calibration (cf. Refsgaard 2007 for review of uncertainty analyses). 

2.Description of the 
Budyko theory 
inconsistent with Eq.1 

We agree with the reviewer that the general description of the Budyko 
theory should be consistent with the expression used in the manuscript. 
 
Change: we have revised the text of the description (Section 2.1) 

3.Description of the w 
parameter. 
 

We agree that the explicit relationship between w and vegetation is found in 
the work by Zhang et al. (2001). In the 2004 paper, the same authors derive 
the equation (Eq.1 in our paper) from an analytical approach, with a 
parameter w called “catchment parameter”. This parameter is related to 
vegetation, but also captures local geology or topography. 
 
Change: we have clarified the nature of the empirical parameter w (l. 132) 
(“ω characterizes the partitioning of precipitation between 
evapotranspiration and runoff, and is a function of climate and physical 
factors.”) 

4.Model formulation 
for distributed 
predictions 

We agree that the presentation of the outputs may have been confusing for 
the readers. The model uses spatially-explicit inputs, but results are tested 
on aggregated values, at the catchment scale.  
 
Change: We have clarified this point. While the proposed model is capable of 
providing spatially explicit output, this paper focuses on aggregated yields, 
consistent with available measurements.  

5.Presentation of the 
distributed 
predictions in one or 
more of your study 
catchments 

We thank the reviewer for this suggestion, which will help readers that are 
unfamiliar with InVEST to picture outputs given by the model. 
  
Change: We propose to add a map of the distributed water yields (Figure 4).  

6.Test the validity of 
the spatial patterns 
without the benefit of 
data 

Indeed, we are unable to test the pixel-based outputs from the model.  We 
do, however, test the aggregated water yields against observed data from 
ten subcatchments.  We think this is now clearer. 
 
Changes: See changes in Point 4 above. We renamed the section (section 
3.4): “Testing the spatially-explicit outputs against observed data”.  

 

Reviewer 3: 

Main points Response 

1.Recent studies 
testing InVEST 

Unfortunately there are not many other studies that have tested the model in 
a systematic way. The two studies highlighted are the only ones to our 
knowledge that have gone further in the model testing than comparing a 



single model output (average annual water yield) to observed data, for a single 
point. 
 
Changes: We clarified the introduction (l. 95-96: “In particular, they assess the 
effects of climate variables uncertainty, but do not examine the ability of the 
model to represent land use change.”) 

2.Main focus in 
abstract/paper 

We agree that the original structure of the paper was confusing. We have now 
clarified the structure to highlight the different uncertainty analyses that are 
performed, using standard terms in the field: “sensitivity analyses, model 
comparison, testing against observed data”. This helps emphasizing the scope 
of the paper. 
 
Changes: In addition to the changes in the paper structure, we have also 
clarified the scope of the paper in the introduction and in the overview of the 
methods section (see Reviewer 1 – Comment 1) 

3.Paragraph 
explaining the 
increased demand 
for spatially explicit 
ES tools 

We agree that this point could be made clearer. In addition to citing recent 
work by Guswa et al. (2014), where the demand for ecosystem services tools is 
analyzed in more details, we provide examples of typical applications of these 
tools. 
 
Change: In the second paragraph of the introduction (l.51), we added: “Typical 
applications of the model include the development of land planning policies, 
such as the delineation of priority areas for conservation or for agricultural 
development.”  

4.Consistency in 
terminology 

We agree that the lack of consistency in terms is confusing to readers and 
apologize for overlooking this point.  
 
Changes: We have revised the text with a consistent terminology. We now use 
exclusively “water yield”, “groundwater withdrawal”, “crop factor”, “spatially-
explicit”, and “lumped model”. We also use the term “subcatchment” only, 
except when referring to the Cape Fear basin. 

5.Paper structure We thank the reviewer for his concrete suggestions on the paper structure. 
We agree that the parallel structure for methods, results and discussion will 
help readers understand the key points of the analyses. In particular, we 
clarify that some analyses do not require observed data (i.e. sensitivity 
analyses, and comparison between spatially-explicit and lumped models) , 
whereas the last part of the analyses rely on observed data . 
 
Changes: We propose the following structure, which may entail minor text 
revisions to keep the logical flow: 
 

1. Introdution 
2. Spatially-explicit InVEST annual water yield model 
3. Methods 

1.1 Cape Fear study area 
1.2 Sensitivity analyses 

- K and Z 
- Climate inputs 



1.3 Comparison of spatially-explicit and lumped models 
1.4 Testing the spatially-explicit model against observed data 

4. Results  
4.1 Sensitivity analyses  
4.2 Comparison of spatially-explicit and lumped models  
4.3 Testing the spatially-explicit model against observed data  

5. Discussion 
4.4 Sensitivity analyses 
4.5 Comparison of spatially-explicit and lumped models 
4.6 Model performance in calibrated and uncalibrated  
4.7 Practical implications 

6. Conclusion 
 
For memory, below is the previous structure: 
 
1 Introduction  
2 Methods  

2.1 InVEST annual water yield model  
2.2 Cape Fear study area  
2.3 Sensitivity to Z and Kc  
2.4 Comparison of distributed and lumped application of the water-balance 
model  
2.5 Performance of the InVEST model  

3 Results  
3.1 Sensitivity of Water Yield to climate, Z, and Kc  
3.2 Comparison of spatially explicit and lumped models  
3.3 Performance of the InVEST model 

4 Discussion 
4.1 Sensitivity to Z and Kc 
4.2 Comparison of spatially explicit and lumped models 
4.3 Model performance in gauged and ungauged basins 
4.4 Practical implications 

5 Conclusion 
Minor comments The typo and the reference to climate input uncertainty were rectified. 

 

Reviewer 4: 

Main points Response 

1.Absolute 
discharges 

We agree that the sensitivity to precipitation could be better illustrated with a 
graphical form. We believe that Table 2 provides sufficient information about 
the water balance for each subcatchment, with the predicted and observed 
discharge values being reported.  
 
Change: We have added the baseline run values to Table 2, and we revised 
Figure 3 to include sensitivity to precipitation 

2.Sensitivity to 
precipitation (for 
Cape Fear and more 
generally) 

The sensitivity to precipitation error is a very important factor when assessing 
model performance, and this point motivated our work on precipitation error 
assessment in the manuscript. 
We agree that the discussion would benefit from the extrapolation of this idea 
to other catchments  
 



Change: [l.583] we have elaborated on the expected sensitivity to 
precipitation, based on the example of arid climates. 

3.Value of omega 
for lumped models 

We thank the reviewer for this suggestion, reporting the values of omega will 
improve the clarity of the discussion. 
 
Change: we have added these values in the Results (Section 4.2) and discuss 
them in Section 5.2 

Minor comments Minor comments have been addressed or discussed above, in other reviewers’ 
response. 
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Abstract 11 

There is an increasing demand for assessment of water provisioning ecosystem services. While 12 

simple models with low data and expertise requirements are attractive, their use as decision-aid 13 

tools should be supported by uncertainty characterization. We assessed the performance of the 14 

InVEST annual water yield model, a popular tool for ecosystem service assessment based on 15 

the Budyko hydrological framework. Our study involved the comparison of ten subcatchments 16 

ranging in size and land use configuration, in the Cape Fear basin, North Carolina, ranging in 17 

size and land use configuration. We analyzed the model sensitivity to the eco-hydrological 18 

parametersclimate variables and input parameters, and the effect ofstructural error associated 19 

with the extrapolating use of the Budyko framework, a a lumped (catchment-scale) model 20 

lumped theory, to in a fully distributedspatially-explicit modelway.  Comparison of the model 21 

predictions with observations and with a the lumped water balance model predictions confirmed 22 

that the InVEST model is able to represent differences in land uses, and therefore in the spatial 23 

distribution of water provisioning services. Our results also emphasize the effect of climate input 24 

errors, especially annual precipitation, and errors in the eco-hydrological parameter Z, which are 25 

both comparable to the model structure uncertainties.  In practice, oOur case study supports the 26 

use of the model for predicting land use change effect on water provisioning, although its use for 27 

identifying areas of high water yield will be influenced by precipitation errors. While the results 28 

are inherently local, analysis of the model structure suggests that many insights from this study 29 

will hold globally. While some results are context-specific, our study provides general insights 30 

and methods to  Further work toward characterization of uncertainties in such simple models will 31 

help identify the regions and decision contexts where the model predictions may be used with 32 

confidence.   33 
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1 Introduction 34 

The interactions between hydrology and land-use and land-management decisions have 35 

received increased attention in recent years.  The International Association of Hydrological 36 

Sciences (IAHS) recently declared this decade Panta Rhei – everything flows – to focus on the 37 

changing dynamics of the water cycle in connection with changing human systems (Montanari 38 

et al., 2013).  Socio-hydrology has recently been proposed as a “use-inspired” discipline to 39 

focus on understanding the human-modified water cycle (Sivapalan et al., 2014).  The 40 

quantification of water services, or the value that humans derive from natural processes, is also 41 

increasingly seen a means of elucidating the interactions between people and water.  Examples 42 

of this approach abound globally: through its Grain-to-Green program, China incentivizes land-43 

owners to convert annual crops to perennial species or natural forests (Liu et al., 2008).  In 44 

South America, there now exist dozens of Water Funds, which invest in upstream conservation 45 

measures to ensure the downstream provision of clean water (Martin-Ortega et al., 2013).  In 46 

the United States, Federal investments in water resources projects now require an assessment 47 

of impacts to ecosystem services (Council on Environmental Quality, 2013). 48 

To quantify the impact of land-use and land-management decisions on ecosystem services, a 49 

number of tools have been developed by researchers and practitioners (Bagstad et al., 2013).  50 

Typical applications of these tools include the development of spatial planning policies, such as 51 

the delineation of priority areas for conservation or for agricultural development (Guswa et al., 52 

2014). Typical These applications often of these tools i) occur in data-scarce environments, ii) 53 

require spatially-explicit information, at the scale of individual land holdings and parcels, and iii) 54 

focus on the estimation ofintegrate a range of ecosystem services rather than focus on the 55 

precise quantification of a particular service.  Accordingly, state-of-the-art models requiring 56 

extensive data and expertise are generally not appropriate for such applications. Instead, 57 

models for ecosystem-service valuation often focus on ease of use, using globally available 58 

data, accepting spatially spatially-explicit input and producing spatially spatially-explicit output, 59 

and limiting the model structure to key biophysical processes involved in land-use change 60 

(Guswa et al., 2014).  61 

The InVEST annual water yield model was developed in line with this philosophy (Tallis et al., 62 

2013). It includes a biophysical component, computing the provision of freshwater, or water 63 

yield, by different parts of the landscape, and a valuation component, representing the benefits 64 

of water provisioning to people.  The biophysical module, the focus of this paper, is based on 65 

the Budyko theory, which has a long history and continues to receive interest in the hydrological 66 
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literature (Budyko, 1979; Zhou et al. 2012; Zhang et al. 2004; Zhang et al. 2001; Donohue et al. 67 

2012; Xu et al. 2013; Wang and Tang, 2014).  The InVEST model applies a one-parameter 68 

formulation of the theory (Zhang et al., 2004) in a semi-distributedspatially-explicit way. This 69 

raises two issues.  First, application of the model to ungauged basins or to future land-use 70 

scenarios requires a methodology for determining the value of the model parameter from known 71 

characteristics of the climate and basin, since it cannot be determined via calibration.  Second, 72 

the Budyko approaches have been developed for long-term water balances at the catchment 73 

scale, rather than at the scale of individual land parcels, which is required for ecosystem-service 74 

decisions.  the application of the water balance at the scale of individual patches of land, rather 75 

than the catchment scale for which the Budyko theory was developed, is uncommon in the 76 

literature. The effect of this change in spatial scale is unclear, and calls for a rigorous analysis of 77 

the model and its uncertainties and their impact on ecosystem services assessments.  78 

Uncertainty analyses remain rare or incomplete in ecosystem services assessments, where the 79 

focus is on analyzing trade-offs and valuation of multiple services, often at the expense of 80 

characterizing uncertainty of individual modeling components. For example, in reviewing the 81 

literature using the InVEST annual water yield model,  we found the following common 82 

limitations:  absence of or inadequate comparison with observed data, calibration of the model 83 

without prior identification of sensitive parameters, and lack of validation of the predictive 84 

capabilities in the context of land-use and land-cover (LULC) change (Bai et al., 2012; Nelson et 85 

al., 2010; Su and Fu, 2013; Terrado et al., 2014). To varying degrees, these limitations 86 

jeopardize the production of credible assessments of ecosystem services. 87 

Recent work paved the way for understanding the uncertainties in the InVEST model 88 

predictions. Sánchez-Canales et al. (2012) analyzed the sensitivity of the model in their case 89 

study of the Llobregat catchment, in Spain. They found that the model was sensitive to climate 90 

variables, but less so to the Z parameter (see model description). Similarly, Boithias et al. 91 

(2014) and Terrado et al. (2014) reflect on the sensitivity of the model to climate inputs, and 92 

calibrate the model based on the climate parameters and return flows. However, tTheir  93 

conclusions of these studies are often context-specific and lack a quantitative estimate of the 94 

model structural uncertainties. In particular, they assess the effect of climate variables 95 

uncertainty, but do not examine the ability of the model to represent land use change. 96 

This paper aims to extend this work by characterizing the uncertainty in the InVEST annual 97 

water-yield model, and assess its utility to inform ecosystem-service decisions.  As indicated 98 
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above, the focus on water services implies a focus on decisions related to land-use and land-99 

management, thus requiring spatially explicit descriptions of the landscape and associated 100 

hydrologic parameters (Guswa et al., 2014).  Ecosystem-service decisions may be based on 101 

spatially aggregated output (e.g., which landscape scenario provides the greatest water yield at 102 

the base of the catchment), or may require spatially explicit output (e.g., which parcels in this 103 

catchment are of highest priority for conservation).  While the proposed model is capable of 104 

providing output to inform the latter, this paper focuses on the former, since typical 105 

measurements of water yield (streamflow) are inherently aggregated. applied to watersheds in 106 

the Cape Fear region of North Carolina.  Using a case study in the Cape Fear region of North 107 

Carolina, ourThis study i) quantifies the effect of parameter uncertainty on model outputs 108 

through sensitivity analyses; ii) compares the distributed application of the water balance to the 109 

catchment-scale application; and iii) quantifies the accuracy of calibrated and uncalibrated 110 

versions of the model by comparing model predictions to observations. From a practical 111 

standpoint, this work helps InVEST model users identify modeling uncertainties and proposes 112 

simple and replicable methods that can be used to quantify the reliability of water-service 113 

decisionstheir effect on water services. 114 

2 InVEST annual water yield model 115 

2.1 Background theory 116 

The Budyko curve is a unique empirical function that relates the ratio of actual to potential actual 117 

evapotranspiration to precipitation (averaged over a catchment and over many years) to the 118 

ratio of precipitation to potential potential evapotranspiration to precipitation (Budyko, 119 

1961)(Budyko, 1979).  The function is bounded by two limits – an energy limit in which actual 120 

evapotranspiration is equal to potential, and a water limit for which actual evapotranspiration is 121 

equal to precipitation.  Due to spatial and temporal variability in climate forcing, the 122 

asynchronicity of water supply (P) and demand (PET), the imperfect capacity of the root zone to 123 

buffer that asynchronicity, and lateral redistribution of water within the catchment, the Budyko 124 

curve lies below those two limits (Figure 1). 125 

To describe the degree to which long-term catchment water-balances deviate from the 126 

parameter-less Budyko curvetheoretical limits, a number of scholars have proposed one-127 

parameter functions that are similar can replicate the Budyko curve (e.g., Fu, 1981; Choudhury, 128 

1999; Zhang et al., 2004; Wang and Tang, 2014).  The InVEST water yield model employs the 129 

formulation by Zhang et al. (2004), which incorporates a catchment parameter, ω: 130 



5 
 

𝐴𝐸𝑇

𝑃
= 1 +

𝑃𝐸𝑇

𝑃
− [1 + (

𝑃𝐸𝑇

𝑃
)
𝜔

]

1/𝜔

 (1) 

AET is the actual evapotranspiration (mm), P is precipitation (mm), PET is the potential 131 

evapotranspiration (mm). ω affects the partitioning of precipitation between evapotranspiration 132 

and runoff, and is a function of climate and physical factors. Larger values of ω indicate those 133 

basins that are more “efficient” in converting precipitation to transpiration, e.g., those with 134 

precipitation synchronous with PET and/or with deeper root zones.  Gentine et al. (2011) and 135 

Troch et al. (2013) have shown that the natural co-evolution of vegetation, climate, and 136 

topography may lead to basins for which the effects implicitly captured by  counter-balance 137 

each other, offering an explanation for the observed convergence of data close to along the 138 

original Budyko curve. The intent of the InVEST model, however, is to predict the effects of 139 

human-induced changes, i.e., to examine catchments for which natural co-evolution is 140 

disrupted.   141 

2.2 Spatially-explicit application to land-use change 142 

Model overview 143 

To represent parcel-level changes to the landscape, InVEST represents explicitly the spatial 144 

variability in precipitation and PET, soil depth, and vegetation.  The model is GIS-based, using 145 

rasters of climate and soil properties as inputs (see Tallis et al. 2013 for full details).  146 

For vegetated land uses, InVEST applies the Zhang formulation in a spatially spatially-explicit 147 

way at the pixel scale (10 m to 100 m on a side): 148 

𝐴𝐸𝑇𝑖
𝑃𝑖

= 1 +
𝑃𝐸𝑇𝑖
𝑃𝑖

− [1 + (
𝑃𝐸𝑇𝑖
𝑃𝑖

)
𝜔𝑖

]

1/𝜔𝑖

 (2) 

In contrast to Equation 1, P, PET, w, and AET are all functions of the local position, indicated by 149 

the subscript i. 150 

The parameter ω is further deconstructed to separate the effects of soil depth, rainfall 151 

frequency, and other factors, following an approach proposed by Donohue et al. (2012): 152 

𝜔𝑖 = 𝑍
𝐴𝑊𝐶𝑖
𝑃𝑖

+ 1.25 (3) 

where AWCi is the plant-available water content (depth), and Z is an empirical parameter.  The 153 

constant, 1.25, in Equation 2 reflects the minimum value of ω corresponding to bare soil, 154 
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following Donohue et al. (2012).  In this representation, differences in land-use and land-cover 155 

affect both PET, through changes to the crop coefficientfactor, Kc, and Z, through changes to 156 

the root depth and plant-available water content. 157 

For open water, wetlands, and urban land-uses, InVEST computes AETi directly as a user-158 

defined proportion of PETi, with classical approaches such as the FAO 56 guidelines (Allen et 159 

al., 1998) or local knowledge used to determine the appropriate proportion (Tallis et al. 2014). 160 

The simple representation of these LULCs, compared to the vegetated land uses modeled with 161 

Equations 2 and 3, reflects the focus of the model on vegetation-dominated landscapes. 162 

Total evapotranspiration from a catchment is computed as the sum of AETi attributed to each 163 

cell, and water yield is obtained by subtracting this value from the total precipitation. 164 

Selection of the Z parameter 165 

The empirical constant Z captures catchment-wide characteristics of climate seasonality, rainfall 166 

intensity, and topography that are not described by the plant-available water content (AWC) and 167 

annual precipitation P.  Given the empirical nature of the model, the value of the Z parameter 168 

remains uncertain. In this work, we examine the three methods for the determination of Z that 169 

are proposed in the InVEST user’s guide (Sharp et al., 2014).  The first draws upon recent work 170 

that suggests that Z is positively correlated with the average annual number of rain events per 171 

year, N, and that Z may be approximated by N/5 (Donohue et al., 2012). This implies that Z 172 

captures rainfall patterns, distinguishing between catchments with similar annual precipitation 173 

but different intensity. The second method relies on globally available estimates of ω (e.g. Liang 174 

and Liu, 2014; Xu et al., 2013).  Z is inferred from these published values of ω by inverting 175 

Equation 2 with values of AWC and P averaged over the catchment. In the third method, Z is 176 

determined via calibration to streamflow data (see Section 2.5). 177 

 178 

3 Methods 179 

The goal of the InVEST model is not to reproduce observations with a high degree of accuracy 180 

and precision, but to provide reliable information to inform decisions.  Therefore, utility or 181 

acceptability of the model should be couched in terms of relative uncertainty.  That is, the 182 

uncertainty associated with the model (due to its simple structure or challenge of parameter 183 

identification) should be on par with or less than the irreducible predictive uncertainty that arises 184 

due to uncertainty in the forcing variables – in this case, precipitation and potential 185 
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evapotranspiration. Errors in hydrologic model predictions can be separated into three sources: 186 

the structural error associated with model formulation and scale, error in parameter selection, 187 

and error in the model inputs.  To assess these the relative importance of the three sources of 188 

error (structural error, parameter selection, climate variables), we applied the InVEST annual 189 

model to ten subcatchments in the Cape Fear basin, NC.  Their co-location implies a similarity 190 

in climate and seasonality and facilitates a focus on variations in land-use, size and topography 191 

(Hrachowitz et al., 2013). The In the following sections, we provide the description ofdescribe 192 

the case studystudy area, the methods for the sensitivity analyses, the and uncertainty 193 

assessment of input parameters and forcing variablesof input data errors, and the evaluation of 194 

model performance, and our approach to assess the structural error of the model: comparison 195 

with observations, and with the (classical) lumped model predictions.. 196 

3.1 Cape Fear study area 197 

The Cape Fear catchment is a 23,600 km2 area in North Carolina. Its major land uses are forest 198 

(40%), wetland (15%), grassland (14%), and agriculture (12%), mainly in the lower parts of the 199 

catchment and including intensive swine and poultry farms. Urban and agricultural development 200 

has generated significant groundwater extraction throughout the catchment.  201 

The climate is humid subtropical, with a precipitation average of ~1200 mm over the 2002-2012 202 

study period (Table A1 in Appendix). This period was used for the analyses based on the 203 

longest period available for climate data, observed streamflow, and matching LULC map. The 204 

available precipitation data comprise the PRISM dataset (Gilliland, 2003) and a network of eight 205 

rain gauges maintained by the USGS (USGS, 2014).  For our analyses, we use the PRISM data 206 

and two additional rasters interpolated from the USGS point data (rain gauges) via spline and 207 

inverse-distance weighting (IDW).  The three input rasters (hereafter referred to as PRISM, 208 

IDW, and Spline) were used separately to compute the average precipitation over each of the 209 

ten subcatchments and assess the error introduced by the input data selection. The variability in 210 

average annual precipitation among the PRISM, IDW, and spline rasters (averaging 1118 mm, 211 

975 mm, and 966 mm, respectively, Table 1) represents the uncertainty that may arise when 212 

precipitation data are limited, a situation that is common in many places around the world 213 

(McGlynn et al., 2012).   214 

Potential evapotranspiration is represented by reference evapotranspiration ET0 times a crop 215 

factor Kc (Tallis et al., 2013).  Reference evapotranspiration (ET0) was obtained from three 216 

sources: FAO data, representing a long-term average from 1961 to 1990 (FAO, 2000), MODIS 217 
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data (Mu et al., 2012), and interpolation (IDW) from a network of thirteen weather stations 218 

maintained by the Climate Office of North Carolina (NCSU, 2014).  These three sources indicate 219 

average annual PET for the Cape Fear region to be 1240 mm (FAO), 1160 mm (MODIS), and 220 

1310 mm (NCSU).  These climate data indicate an aridity index (P/PET) of approximately 0.9 for 221 

the Cape Fear watershedscatchment.  A summary of InVEST inputs is given in appendix (Table 222 

A1 and A2).   223 

Streamflow observations were obtained from the USGS monitoring network (USGS, 2014). A 224 

total of ten stations with a minimum of ten years of data were used for the analyses (Figure 2 225 

and Table 2). Subcatchments draining to each of these points were delineated based on the 30 226 

m DEM. 227 

GroundwWater withdrawal data were obtained from governmental agencies (NC Department of 228 

Environment and Natural Resources, 2014).  Due to the lack of spatially explicit information for 229 

water withdrawals (reported by county, which do not follow the subcatchment boundaries), and 230 

on the magnitude of return flow, we represented their effect as homogeneous over the entire 231 

catchment.  We think this decision has a limited effect on model testing since the value of water 232 

withdrawals is small compared to water yields (see Results).  In addition, we explicitly 233 

accounted for this uncertainty by examining the effect of a 50% error on the water withdrawal – 234 

a magnitude consistent with the variance among the county withdrawals.  The average 235 

withdrawal rate, 39 mm/year, was subtracted from the predicted water yields for comparison 236 

with observations. 237 

3.2 Sensitivity analyses 238 

Sensitivity to Z and Kc 239 

Step one in our assessment of the InVEST model was a local sensitivity analysis of water yield 240 

to the Z parameter and the crop coefficientfactor, Kc, for forest – the dominant LU class. The 241 

sensitivity of the model to Z can also be interpreted as the sensitivity to AWC, when the raster 242 

values are varied homogeneously over the catchment, since these parameters play a similar 243 

role in the model structure (Equation 3).   244 

As noted above, large uncertainties surround the selection of the Z parameter (Sharp et al., 245 

2014). For what we term the “baseline” case, we set Z equal to one-fifth the number of rain days 246 

per year (Z = N/5).  Based on historic precipitation data (SERCC, 2014), the average number of 247 

rain days per year is approximately 110, giving a value of Z of 22. We used this value as a 248 
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baseline for all subcatchments, and allowed the parameter to vary between 1 and 30 for the 249 

sensitivity analyses. This range was estimated from Equation 3 used with extreme values of P 250 

and AWC found in our catchments, and extreme values of ω (2.1 and 3.75) found in the study 251 

by Zhang et al. (2004). 252 

Forest was the dominant LULC in all basins, with its cover ranging from 43 to 72% of 253 

subcatchments. We therefore decided to use the crop factor Kc-forest for the sensitivity 254 

analyses, and a baseline value of 1 for Kc-forest was obtained from the FAO 56 guidelines 255 

(Allen et al., 1998).  Uncertainties on this value are large since it remains difficult to provide 256 

accurate estimates of the actual evapotranspiration of forest (McMahon et al., 2013).  We set 257 

the upper bound to 1.1, because values greater than this are unlikely (McMahon et al., 2013), 258 

and set the lower bound to 0.7. 259 

For the two parameters, we performed sensitivity analyses with the ranges defined above. The 260 

results are presented as a change in predicted water yield compared to the baseline run, thus 261 

assessing absolute sensitivity.  Precipitation and reference evapotranspiration used for these 262 

runs were from the PRISM (1118 mm) and the FAO (1240 mm) datasets, respectively (see 263 

Section 2.5 and Discussion for insights into the error introduced by climate data). 264 

Sensitivity to climate inputs 265 

To provide context for the uncertainty in the predictions of water yield from the InVEST model, 266 

we compared the prediction error to the uncertainty in water yield that arises from uncertainty in 267 

climate (i.e., variability in the rasters of P and ET0).  Uncertainties in climatic data and their 268 

impact on rainfall-runoff models are commonly cited in the literature (McGlynn et al., 2012; 269 

McMahon et al., 2013).  To be an effective decision-support tool, errors attributed to model 270 

structure and parameter selection should be on par with or less than the irreducible error 271 

associated with uncertainty in the inputsclimate. 272 

As illustrated in Table 1, the mean average precipitation differed significantly across 273 

subcatchments depending on the data source: the mean differences between the PRISM and 274 

USGS datasets, with the spline or IDW interpolation methods, respectively, were -14% and -275 

13%.  Catchment-by-catchment The differences was were more spatially heterogeneous with 276 

the spline method, with some subcatchments receiving less precipitation relative to the baseline 277 

(PRISM dataset) and others receiving more. The reference evapotranspiration data also 278 

showed significant differences across sources, although the FAO and Climate Office sources 279 
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showed good agreement. The MODIS values were on average 22% higher on average than 280 

those from the other two sources (Table 1). Differences between the Climate Office and FAO 281 

data were also spatially variable, being positive for some subcatchments and negative for 282 

othersranging from -8% to 5% across catchments. 283 

To assess the uncertainty in water yield due to variability in climate inputs (precipitation and 284 

reference evapotranspiration), we examined the sensitivity of the baseline model results to 285 

spatially homogeneous increases and decreases in climate forcing.  We considered climate 286 

inputs that are 10% greater and 10% less than the baseline, applied uniformly across the 287 

landscape. 288 

3.3 Comparison of spatially-explicit and lumped models 289 

Although the InVEST annual water yield model is based on the well-studied Budyko framework, 290 

it departs from its classical application by applying the partitioning model at the pixel scale. To 291 

our knowledge, the effect of the pixel-by-pixel calculation performed by InVEST has not been 292 

previously studied. In such an application, three issues arise related to lateral flows of water, the 293 

spatial variability in climate variables, and the co-variance of climate and soil in the prediction of 294 

the parameter omega. 295 

In the catchment-scale application of Budyko-type models, lateral inflows and outflows across 296 

the catchment boundary are presumed negligible, resulting in a simple water budget based on 297 

catchment precipitation, evapotranspiration, and water yield.  This assumption will not hold for a 298 

parcel-based application of equation 2.  Thus, error in the catchment-scale water balance will 299 

arise by ignoring the excess water generated at one spot that is later evaporated at a 300 

downgradient location.  Such explicit routing is not included in the InVEST model. 301 

Additionally, even if lateral flows are negligible, applying the non-linear Budyko curve locally and 302 

aggregating the yield will lead to different results than applying equation 2 to average values of 303 

P and PET.  The concave nature of function indicates that application over a range of climates 304 

will produce an average water yield that is higher than what would be predicted if applied at the 305 

catchment scale (Figure 1). 306 

Finally, since local values of both available water content and precipitation combine to affect the 307 

local values of omega (equation 3), average values of omega from the spatially explicit model 308 

will be different from what one would obtain if average values of AWC and P were used to 309 

compute an average value of omega. 310 
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ThereforeTo investigate these effects, we compared the model predictions to those obtained by 311 

applying the Zhang lumped model (Zhang et al., 2004) at the catchment scale, therefore 312 

applying the Budyko framework in a more classical way.  Application of such athe lumped model 313 

requires a value of ω, which we derived from Equation 3 with average values of P, PET, and 314 

AWC, and with Z set to the baseline value of 22, as would be done in a typical ungauged 315 

application.  We thus obtained, for each subcatchment, an estimate of areal AET and water 316 

yields for the vegetated areas.  AET for urban areas and wetlands was calculated separately, 317 

following the same method as InVEST, and total water yield was calculated as the area-318 

weighted average of water yield from the vegetated and urban areas.   319 

3.4 Testing the spatially-explicit model with observed data 320 

To quantify the accuracy and precision associated with the InVEST water -yield model, we 321 

assessed model performance by comparison with observed data for each of the ten 322 

subcatchments in the Cape Fear area.  Our method aims to measure the aggregated value of 323 

water yields at the subcatchment scale, not to test whether the water yield predicted by each 324 

pixel is accurate. We measured performance with the model bias, i.e. the relative difference 325 

between predicted and observed water yields, and also with the subcatchment ranking by water 326 

yields. The ability of the model to predict ranking is important for applications where prioritization 327 

of areas of low and high water yields is needed (Guswa et al., 2014). 328 

Uncalibrated model 329 

We first examined the performance of the model when Z was determined without calibration.  330 

We considered calculatingcalculated Z both from the number of rain days and from a global 331 

value of ω, to evaluate the appropriateness of these recommended methods.  In addition to 332 

assessing overall model performance, we also assessed the correlation between model 333 

performance and the proportion of forest in the catchment.  These analyses aimed to identify a 334 

potential bias that may be corrected by modifying the LULC-specific crop factor Kc. 335 

Calibrated model 336 

To separate the effects of error associated with model structure from error attributed to 337 

parameter estimation, we also determined the value of Z via calibration.  We calibrated to 338 

individual subcatchments, identifying for each the Z value that resulted in a zero error in the 339 

water yield.  We examined the similarity of Z values across the ten basins, allowing us to assess 340 

the robustness of the model structure since we expect Z to depend on larger-scale climate and 341 
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geology and not on local-scale land-use.  We also considered the performance of the model 342 

with a single value of Z applied to all subcatchments, determined by minimizing the average 343 

bias for all basins.  This allowed us to assess the uncertainty in prediction of water yield due to 344 

model structure, i.e., the inherent uncertainty to applying equations 2 and 3 to different basins 345 

even when the parameter, Z, is chosen by best fit for the entire region. 346 

 347 

4 Results 348 

In the baseline case, we applied equation 2 and 3 in a spatially explicit way with a precipitation 349 

field from the PRISM data and potential evapotranspiration data from the FAO.  The value of Z 350 

in equation 3 was set to 22, as mentioned above.  In this baseline case, predicted water yields 351 

ranged from 163 mm to 322 mm across the ten subcatchments.  Results are presented in Table 352 

2. 353 

4.1 Sensitivity analyses 354 

Water yield predictions are very sensitive to climate inputs. The sensitivity is higher for 355 

precipitation than ET0.  Relative to the baseline case, Aa 10% increase in precipitation resulted 356 

in a 30% increase in water yield (Figure 3), while the same increase in ET0 resulted in a 15% 357 

decrease in water yield. 358 

In contrast to the climate variables, water yield is less sensitive to values of Z: for example, a 359 

change in Z from the baseline value of 22 to a value of 10 results in an increase in water yield of 360 

approximately 27% (Figure 3).  However, given the large uncertainties in the Z parameter, 361 

potential errors in water yield can be large: for example, the water yield is 155% higher when Z 362 

is at its minimum valueset to 1, relative to the baseline case with Z=22.  The sensitivity to Z is 363 

catchment-specific, as expected, since its effect on yield is modulated by AWC and P, both of 364 

which are spatially variable.  In addition, the relative sensitivity of water yield to Z decreased 365 

with increasing values of Z and increased with increasing values of the aridity index (PET/P, 366 

results not shown).  367 

The model was found to be more sensitive to Kc (Figure 3) with a 30% change in Kc resulting in 368 

a 41% change in the water yield. However, given the expected small range of Kc values, the 369 

effect of parameter uncertainty on the water yield prediction is lower than for Z. 370 
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4.2 Comparison of spatially-explicit and lumped models 371 

Across the ten subcatchments, the water yields predicted by the spatially-explicit InVEST model 372 

were on average 10% lower than the outputs from the lumped Zhang model (Table 2).  For eight 373 

of the ten catchments, the spatially explicit model predicted lower water yields than the lumped 374 

model, and differences ranged from from -24% to 14%.  The two catchments for which the 375 

lumped model predicted lower water yield than the InVEST model were the Morgan Creek and 376 

Cane Creek catchments, which have the highest proportions of forest and the lowest 377 

proportions of urbanized area across the ten catchments (Table 2).  378 

The ω values computed for the lumped model ranged from 4.29 to 6.25 across the ten 379 

catchments. These values are in the higher range of the values obtained by Zhang et al. (2004), 380 

as discussed in section 5.2. 381 

4.3 Testing the spatially-explicit model with observed data 382 

Uncalibrated model 383 

Figure 4 shows the spatially-explicit output from the InVEST model. That figure is for illustrative 384 

purposes only; as indicated above, we aggregate the pixel values of water yield to the 385 

subcatchment scale to compare with observations. Figure 4a presentsSuch comparison is 386 

presented in Figure 5a, where the Z-parameter for the InVEST model  predictions of water yield 387 

from the invest model when the Z-parameter is determined from the number of rain days (Z = 388 

22).  Open triangles represent results from the InVEST model.  To contextualize the error, gray 389 

bars represent the uncertainty in predicted water yield due to a 10% uncertainty in precipitation 390 

and black bars represent the uncertainty in water yield due to a 50% uncertainty in water 391 

withdrawals. 392 

The performance of the model for the this baseline run was is fair. Across all basins, predicted 393 

water yields range from 163-322 mm/yr versus an observed range of 177-368 mm/yr. , with the 394 

The bias between predicted and observed values averaginges -16% for allacross the ten 395 

subcatchments, . This bias rangeingd from -53% to -1%,. This indicates that the model structure 396 

combined with implying tthat this choice of Z leads to a systematic underestimation of water 397 

yield.  With the exception of one catchment, the biases ranged from -25% to -1%.  The outlier 398 

with an error of -53%, Rockfish catchment, is relatively small (237 km2), and the observed water 399 

yield is also an outlier, being the highest in the dataset (367 mm).  This area is also 400 

characterized by sandy soils; the plant available water content averages 0.11, compared to 401 
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values between 0.17 and 0.20 for the other subcatchments. This suggests that the catchment 402 

may exhibit a unique behavior, which we will highlight in the following analyses. Across all 403 

basins, predicted yields range from 163-322 mm/yr versus an observed range of 177-368 404 

mm/yr. 405 

Figure 54b presents the ranking of catchments in terms of their observed and predicted water 406 

yields. Discarding the outlier catchment, the figure indicates that the model accurately predicts 407 

the high and low ranking catchments, while there is some dispersion in ranks for the five mid-408 

range water yields, which vary from 236 mm/yr to 289 mm/yr. 409 

For the second case, wWhen Z is iwas determined from published values of ω, the average 410 

value across the ten catchments was 6 (compared to 22 for the baseline case). the mModel 411 

performance was not satisfying for this case, and model bias averaged 68%. The Z value found 412 

for all subcatchments averaged 6, which results in a large model bias (averaging 68%).    413 

Calibrated model 414 

In the first approach to the calibration of Z, we determined the value for which the predicted 415 

water yield exactly matched the observations.  In this case, values of Z range from 6 to 20 416 

across the ten catchments. Not including the Rockfish catchment, the range is narrower (10-20) 417 

and the average across the nine remaining catchments is 14.5.  When Z is determined through 418 

calibration for each subcatchment, values of the parameter range from 6 to 20. The calibrated 419 

value of 6 was obtained for the Rockfish catchment; discarding that outlier catchment, values 420 

range from 10 to 20, averaging 14.5. The narrow range ofis variability translates into relatively 421 

small changes in water yield – the average difference among the basins is 27%.   422 

In a second approach, we determined a singe value of Z for all ten catchments The single Z-423 

value obtained by minimizing the average subcatchment bias. This gives a value of (Z=14, and ) 424 

is similar to these individual Z values.  With this calibrated value, the error in yield for all 425 

subcatchments ranges from -38% to 14% with a median value of -3%.  Predicted water yields 426 

range from 183 mm/yr to 336 mm/yr versus an observed range from 177 mm/yr to 368 mm/yr.  427 

The open circles in Figure 4a 5a presents model predictions from the calibrated model of water 428 

yield versus the observed values across the ten catchments.  Open circles represent results 429 

from the calibrated InVEST model, while black bars represent the uncertainty in yield due to a 430 

50% uncertainty in water withdrawals.  Gray bars represent the uncertainty in predicted yield 431 

due to a 10% uncertainty in precipitation. 432 
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Model bias is not correlated with forest cover (R2=0.01), nor with any other LULC (Table 1).  The 433 

absence of systematic bias suggests that Kc values are in a realistic range, with no significant 434 

error due to LULC parameter selection.  No significant bias was detected with regard to 435 

catchment size, suggesting that this characteristic did not systematically influence the model 436 

predictions either.  437 

 438 

5 Discussion 439 

5.1 Sensitivity to Z and Kcanalyses 440 

Variability in the Z parameter, which is linearly related to ω, results in a shift of the Zhang 441 

Budyko curve, which affects water yield predictions (Figure 1).  Our results in Cape Fear 442 

suggest that the sensitivity of water yield to Z is low compared to the climate inputs, and 443 

decreases for larger values of Z (Figure 3).  This is consistent with the Zhang lumped model for 444 

which the sensitivity to ω, decreases with increasing values of ω (Figure 1).  Due to this low 445 

sensitivity, small errors in estimating Z are likely to have limited impact on the reliability of water 446 

yield predictions. In particular, we note that the range investigated in the study (from 1 to 30) is 447 

greater than the typical uncertainty associated with Z: irrespective of the selection method, 448 

values less than 5 are unlikely. 449 

The sensitivity to Z also provides a sense of the sensitivity to AWC, which is a function of the 450 

local ecohydrological properties: plant available water content, root depth and soil depth (cf. 451 

Sharp et al., 2014 for details). Examination of Equation 3 suggests that a relative change in Z 452 

has the same effect as a relative change in these ecohydrological parameters: a 50% error in 453 

these parameters, if assumed homogeneous over the catchment, will have the same response 454 

as a 50% error in Z. Given t. The typical confidence interval for these measurable physical 455 

parameters may be large but is reducible by measurements, the uncertainty on these 456 

parameters will have a smaller effect on model outputs than the uncertainty in Z.   457 

When analyzing the model sensitivity to Kc, two things are to be considered. First, the Kc value 458 

affects only the portion of the landscape covered with forest, and this reduces its effect.  459 

Because total water yield is the sum of the yields from the different parts of the landscape, 460 

parameters affecting only a portion of the landscape will have a smaller effect. Second, it is 461 

worth noting that the Kc coefficient directly affects PET for a given LULC, since the latter is the 462 
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product of Kc by ET0.  Examining the sensitivity of the model to Kc is therefore equivalent to a 463 

displacement along the Zhang Budyko curve, rather than a shift of this curve (Figure 1). 464 

The results of tIn summary, the sensitivity analyses showed that, for expected and reasonable 465 

ranges of parameter variability, precipitation and potential evapotranspiration have the greatest 466 

influence on water yield. These are followed by the parameter, Z, and then the crop coefficient, 467 

Kc. indicate that embedded in the Zhang model is the concept that the dominant effects of land-468 

use and land-cover change on water yield will be via the effects on Kc and PET rather than 469 

through changes to root depth and plant-available water content. 470 

5.2 Comparison of spatially-explicit and lumped models 471 

Comparison of the model predictions with the classical lumped model application suggests three 472 

insights.  First, it provides a sense of the effect of the pixel-by-pixel application of the Budyko 473 

theory, which has not received much attention in the literature.  Because of its non-linear nature, 474 

the average response of Equation 2 applied across the landscape in a spatially explicit way is 475 

not equivalent to the response of the function applied to the entire catchment, characterized by 476 

average parameters.  Our results suggest that this discretization effect is not large for the Cape 477 

Fear subcatchments, with the difference between the lumped and explicit models ranging from -478 

24% to +14%.  This range is consistent with the typical errors expected from the application of 479 

simple empirical models.  This point can be illustrated by the performance of the lumped model 480 

when compared with the observations: bias ranges from -36% to 29%.  It is worth noting that the 481 

larger, positive biases (>22%), i.e. when the lumped model largely overestimated observed 482 

water yields, were obtained for the two subcatchments that had >25% urban cover, and the 483 

three basins with the least urban cover (Cane Creek, Rockfish, and Morgan Creek) had the 484 

largest underestimates of water yield.  These results suggest that the contribution from urban 485 

areas was overestimated by the simple model. 486 

The second point is related to the first one, focusing on the observation that water yields 487 

predicted by the spatially explicit model were consistently less than those predicted by the 488 

lumped model.  As stated in the methods (Section 3.3), this difference can be expected from the 489 

differences in average climate values or average  values, due to the non-linearity in Equation 490 

2. In our case, the average  values were high for the lumped model (ranging from 4.29 to 491 

6.25). This indicates that the empirical expression for Z, developed for a lumped application 492 

(e.g., Donohue et al., 2012), may give values of Z (and, therefore,  that are too large for our 493 

case study, and this effect is emphasized when used in a spatially explicit model.  Calibration of 494 
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the model based on Z allows for correcting this error in the empirical expression, although 495 

further studies would be necessary to gain insights into the extrapolation of the Z parameter to 496 

spatially explicit models like InVEST.    497 

SecondFinally, the good agreement between the InVEST model and the lumped model allows 498 

to draw on the large body of work investigating the performance of the latter model.  For 499 

example, Zhou et al. (2012) report a bias of less than 20% in a long-term study of 150 large 500 

basins worldwide; similarly, Zhang et al. (2004) report a mean absolute error of <60mm in their 501 

study of over 470 catchments worldwide, corresponding to a bias <10% for the majority of the 502 

catchments. Other local examples may be drawn by users to understand how the Budyko theory 503 

may apply locally (e.g. Yang et al., 2007 in China). Overall, there is a large ongoing effort to 504 

improve the parameterization and predictive use of the Budyko framework (Donohue et al., 505 

2012; Liang and Liu, 2014; Xu et al., 2013). Future progress may therefore be used to refine the 506 

InVEST model interpretation in different geographic contexts. We note, however, that the 507 

agreement between the lumped model and the catchment model is context specific. As 508 

illustrated in Table 2, the differences between the lumped model and the InVEST model will vary 509 

between among catchments, such that extrapolation of the results from such studies will need to 510 

be done cautiously. 511 

The final point is based on the observation that yields predicted by the spatially explicit model 512 

were consistently less than those predicted by the lumped model.  This difference could be due 513 

to differences in mean parameter values or due to the non-linearity in Equation 2.  Looking at 514 

Figure 1, the concave nature of the Zhang curve indicates that the average response over a 515 

range of climates will lead to lower evapotranspiration and higher yields than if the equation 516 

were applied to the mean climate.  Similarly, application over a range of values of  would also 517 

lead to higher yield than what is predicted using the mean yield (Figure 1).  In this case, the 518 

lower yields predicted by the explicit model are due to differences in the mean values of  519 

between the lumped and explicit models.  This indicates that the empirical expression for Z, 520 

developed for a lumped application (e.g., Donohue et al., 2012), may give values of Z (and, 521 

therefore,  that are too large when used in a spatially explicit model.  Use of a smaller value of 522 

Z in the spatially explicit model would increase yield, although further studies would be 523 

necessary to gain insights into the extrapolation of the Z parameter to spatially explicit models 524 

like InVEST.    525 

 526 
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5.3 Model performance with and without calibration 527 

Calibrated model 528 

Our results indicate a fair performance of the calibrated model for multiple catchments ranging 529 

in size and LULC. The bias ranged from -38% to 14% for all subcatchments, and from -14% to 530 

14% when discarding the Rockfish catchment.  This narrow range suggests that the calibrated 531 

model was able to explain the variability in observed water yields. While it is possible that such 532 

variability is explained by climate more than LULC, this is not the casehypothesis is unlikely in 533 

Cape Fear  since the average values of P and PET on average they varied by less than 3% 534 

between subcatchments (raster average for both P and ET0, Table 2).  535 

Further consideration of the Z values obtained by calibrating it for each subcatchment individual 536 

calibrations provides insights into the interpretation of this parameter. With the exception of the 537 

Rockfish catchment, a single value between 10 and 20 was is able characterize the nine other 538 

subcatchments.  This suggests that the parameter captures the topography and climate of the 539 

area, as intended by the model.  The calibrated value of Z for the Rockfish catchment was much 540 

lower (Z=6), producing a higher water yield.  This difference could be due to the inadequacy of 541 

Equation 3 to relate ω to soil characteristics (since the soils in the Rockfish catchment are 542 

particularly sandy).  It could also be attributed to errors in the treatment of water withdrawals 543 

and return flows, especially since the entire subcatchment lies within Hoke County, which has 544 

minimal water withdrawals. 545 

Despite the uncertainties around the outlier, the multi-catchment analyses allowesd us to 546 

assess the model performance in representing LULC change. Use of the model for evaluation of 547 

LULC change is crucial in ecosystem service assessments, where scenarios analyses of LULC 548 

development are common (Guswa et al., 2014). Validating the use of models in such contexts is 549 

extremely challenging since it is rare for modelers to have sufficient pre- and post-LULC change 550 

data (Hrachowitz et al., 2013).  In our study, the length of the precipitation and streamflow data 551 

did not allow conducting such temporal analyses. Regional analyses where space is substituted 552 

for time thus represent a powerful way to assess the ability of the model to capture differences 553 

in LULC configuration. 554 

Uncalibrated model 555 

Another important lesson from the analyses is that the calibrated Z value is relatively close to 556 

the baseline value, which was derived independently from the average annual number of rain 557 
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events. Based on Figure 3, using one value or the other would result in a difference in water 558 

yield of approximately 10%. This error is small compared to other model uncertainties, 559 

suggesting that this method for determining Z is robust. The underprediction of water yield for 560 

ungauged catchments could be explained by errors in the precipitation raster, the Z parameter, 561 

and the treatment of water withdrawals. Based on Equation 2, the negative bias implies the 562 

underestimation of the precipitation data or overestimation of the Z coefficient. As already noted, 563 

errors in precipitation data are difficult to characterize. However, precipitation was more likely 564 

underestimated in this study since it did not include snowfall.  565 

Conversely, the method relying on a constant ω value was not found satisfying for this case 566 

study, since it resulted in large overestimation of the water yields. Using ω=4, the Z value found 567 

for individual subcatchments ranged from 4 to 8, averaging 6, a value that results in a large 568 

model bias (averaging 68%). 569 

With regard to relative water yield values, the model was able to predict subcatchment ranks 570 

fairly accurately (Figure 4b), which means that priority areas would be correctly identified. The 571 

uncertainties in ranking for medium water yield catchments (ranking from 3 to 6) could be partly 572 

explained by their similarity (observed water yields range from 236 mm to 278 mm) and the 573 

uncertainty in the water abstraction, as suggested by the overlapping error bars in Figure 4a. 574 

Interestingly, although these results were obtained with the calibrated value of Z, they are only 575 

slightly sensitive to the value of Z, since the ranking of subcatchments is largely maintained 576 

when the value of Z changes. The ranking of subcatchments based on the baseline run, for 577 

example, was identical to the one with Z=14. 578 

5.4 Practical implications 579 

In this final section, we discuss the results with a focus on practical implications for model users.  580 

Our analyses suggest that the uncertainty introduced by variability in the precipitation inputs is 581 

high, comparable or higher than the uncertainty introduced by the parameter Z and the use of 582 

the lumped model theory on a pixel-by-pixel basis. Importantly, the sensitivity observed in Cape 583 

Fear (e.g. that a 10% change in precipitation may result in a 30% change in water yield) is 584 

specific to the climate: for example, in arid climates where evapotranspiration is water limited, 585 

an error in precipitation may have a lower effect on water yield since the precipitation surplus or 586 

deficit will be mostly converted to evapotranspiration. This suggests that confidence intervals for 587 

climate data deserve particular attention (especially if interpolating local data from weather 588 

stations). The In Cape Fear, comparison of three climate input data sources suggested that 589 
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large errors may occur when using point data or datasets obtained with different modeling 590 

assumptions. These results confirm a wide body of research that highlight the importance of 591 

precipitation inputs for rainfall runoff models (McGlynn et al., 2012; Zhou et al., 2012) and in 592 

particular for the InVEST model (Boithias et al., 2014; Sánchez-Canales et al., 2012). Although 593 

it was outside the scope of this study to investigate which climate datasets are less prone to 594 

errors, our results also draw attention to spatially heterogeneous errors. If model users are 595 

interested in the relative ranking of subcatchments, the spatial distribution of errors should be 596 

specifically investigated (e.g. probability of a systematic bias in mountainous areas).  597 

The model is not very sensitive to uncertainty in Z over a modest range (e.g., 14-22). This is 598 

consistent with the conclusions from Sánchez-Canales et al. (2012), who report a low sensitivity 599 

to Z in a Mediterranean catchment, for which Z varied between 7 and 9.  Since the viable range 600 

of Z is quite wide, however, it is possible that large uncertainties in that parameter will translate 601 

to significant uncertainty in water yield (Figure 3).  Our analyses provided further insights into 602 

the methods for Z selection and highlighted that the sensitivity of the model to Z decreased with 603 

increasing values of Z.  Based on the examination of Equation 2, this property will apply 604 

generally. Therefore, in temperate climates where values of Z are high (based on the 605 

interpretation of Z as the number of annual rain events), the model outputs are likely to be less 606 

sensitive to this parameter. 607 

Our study also presented a method to detect a bias related to the LULC parameters, when 608 

multiple observations are available in a catchment. Because Kc values are LULC-specific, the 609 

correlation between model performance and Kc values can be used to identify a possible error in 610 

the parameter and rectify the values accordingly. No bias was found in this study, bringing 611 

confidence in the ability of the model to capture the differences in LULC. We note that these 612 

correlation analyses rely on nested subcatchments that are not independent from each other, 613 

which decreases the significance of the relationship: five subcatchments are independent, while 614 

the other five partially overlap. However, proportions of forest cover varied widely between all 615 

subcatchments (from 43 to 72%), which justifies our interpretation of the analyses.  616 

We conclude this section with a perspective on the model performance assessment, highlighting 617 

key limitations in the calibration/testing exercise.  First, we note that some water transfers are 618 

missing in the model, including irrigation and water abstraction. The model represents 619 

agriculture in the same way that it does natural vegetation, and irrigation is not included 620 

explicitly. Second, in the Cape Fear catchment, the magnitudes of the water withdrawals are 621 
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small but this aspect of the modeling may be improved in future applications. In particular, 622 

distinction between uses of groundwater (crop irrigation or drinking water) are necessary to 623 

account for the fate of water extraction: evapotranspiration in the case of irrigation water, or 624 

return flow to the river in the case of drinking water (e.g. Terrado et al., 2014).  Additionally, 625 

performance was evaluated at the catchment scale.  A potential benefit of a spatially explicit 626 

model, however, is the ability to predict patterns of water yield within a basin. To properly 627 

evaluate that capability, further work should focus on comparing the InVEST model to more 628 

sophisticated fully- distributed models. 629 

6 Conclusion 630 

Our study aimed to assess the performance of the InVEST annual water yield, a tool that is 631 

gaining interest in the ecosystem services community. While such simple models with low 632 

requirements for data and level of expertise are needed for practical applications, greater 633 

attention should be paid to characterizing the modeling uncertainties. Our assessment of the 634 

potential input errors, sensitivity analyses and comparison with observations in the Cape Fear 635 

catchment add to this body of work.  Key results of the analyses are as follow: 636 

- In the Cape Fear catchment, the InVEST model was most sensitive to uncertainty in the 637 

precipitation forcing; 638 

- Errors in climate input data may be significant and non-spatially homogeneous, resulting 639 

in uncertainties in the assessment of zones of high and low water yields; 640 

- The study supports the recommendations for setting the Z parameter based on the 641 

number of rain events, or via calibration with available observed data; 642 

- Based on the average bias and the explained variance in water yield among the 643 

subcatchments, the model performance was fair to high, suggesting that the effects of 644 

land-use and land-cover are adequately captured by the model;  645 

- The errors potentially introduced by a pixel-level application of the Budyko theory will 646 

depend on catchment configuration; in Cape Fear, they remained small, comparable to 647 

the climate and structural parameter errors of the empirical model; 648 

- Water abstractions and irrigation processes that are not represented in simple models 649 

may confuse the calibration exercise, especially in data scarce environments where the 650 

ecosystem services approach is gaining momentum. 651 

While the sensitivity analyses results are inherently local, the methods outlined in this study 652 

provide a template that can be used in most InVEST model applications. The analyses do not 653 
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require hydrologic expertise and are facilitated by the model batch-processing capabilities. 654 

Since rRigorous uncertainty analyses are have currently not been the norm in the ecosystem 655 

services community, but such simple guidancework is essential to help users interpret models 656 

correctly to inform land-management decisions appropriatelyand conduct more robust 657 

assessment of the water-related ecosystem services. 658 
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Table 1. Precipitation and evapotranspiration in Cape Fear according to different data sources. Mean and 
standard deviation values are obtained from the 10 subcatchments. The relative difference between 
baseline data (i.e. PRISM and FAO sources, respectively, for P and ET0), and the alternative data 
sources, is given as the mean and the range for the ten subcatchments. 

 Annual P (mm) Annual ET0 (mm) 

 PRISM Spline IDW FAO ClimOffice MODIS 

Mean (± st. deviation) 1118 ±11 966 ±81 975 ±38 1200 ±18 1189 ±56 1459 ±19 

Relative difference from 
baseline data (mean 

difference and range) 

 -14%  
[-23; 2]% 

-13% 
[-17; -4]% 

 

-1% 
[-8; 5]% 

+22% 
[14; 24]% 

 

 

 

Table 2: Summary of mean flow, precipitation, reference evapotranspiration, and land use characteristics 

of the ten study subcatchments. LULC classes shrubland, swine farm, open water and barren 

represetented ≤2% and are not reported here. Predicted mean flow values are results from the InVEST 

model with Z set to 1422 (the difference with the calibrated run, with Z=14, is shown in brackets). P and 

ET0 are precipitation and reference evapotranspiration, respectively.  

ID Name 
Area 
(km2) 

Observe
d flow 
(mm) 

Predicte
d flow1 
(mm) 

P 
(mm) 

ET0 
(mm) 

%
F

o
re

s
t 

%
G

ra
s
s

la
n

d
 

%
A

g
ri

c
u

lt
u

re
 

%
P

a
s
tu

re
 

%
W

e
tl

a
n

d
 

%
U

rb
a
n

 

2105
769 

CapeFear 
@Kelly 

13,567 278 
239208 

[-31] 
1112 1212 49 13 9 6 6 13 

2105
500 

CapeFear 
@Tarheel 

12,535 265 
249218 

[-32] 
1109 1207 51 13 9 6 3 14 

2102
500 

CapeFear 
@Lillington 

8973 236 
254225 

[-29] 
1110 1196 55 10 9 8 1 14 

2104
220 

RockfishCR 
@Raeford 

237 368 
226174 

[-53] 
1118 1240 62 18 1 0 7 8 

2102
000 

DeepRiver 
@Moncure 

3727 250 
248210 

[-39] 
1113 1203 58 9 7 11 0 11 

2097
314 

NewHopeCR 
@Blands 

197 357 
336322 

[-14] 
1143 1199 49 5 2 2 3 39 

2100
500 

DeepRiver 
@Ramseur 

913 289 
314287 

[-27] 
1112 1177 43 9 9 10 0 27 

2096
960 

HawRiver 
@Bynum 

3294 278 
287264 

[-23] 
1110 1181 48 10 14 9 0 17 

2097
464 

MorganCR 
@WhiteCross 

22 177 
201176 

[-26] 
1133 1198 72 7 10 5 0 5 

2096
846 

CaneCR 
@OrangeCR 

20 202 
183163 

[-20] 
1123 1192 71 6 11 6 0 4 



27 
 

1 In brackets, we report the difference in corrected water yield, in mm, between the baseline and 

calibrated runs (Z=22, and Z=14, respectively) 

 

 

Table 3. Bias between the water yields obtained from the InVEST model (baseline value Z=22), the 
lumped Zhang model, and observed data. The average, minimum, and maximum bias values for all the 
subcatchments are reported. Note that comparison with observations discards the Rockfish 
subcatchment which was identified as an outlier (see text for details). 

 Average Min Max 

InVEST/Lumped model -0.10 -0.24 0.14 

InVEST/Observations -0.16 -0.53 -0.01 

Lumped model/Observations 0.04 -0.36 0.29 
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Figures 

 

Figure 1. ZhangOriginal  Budyko curve (“B”) and its variations used in the lumped model (Equation 1), 

shown for ω values of 2, 4, and 6. Grey lines represent the energy and water limits. Arrows illustrate the 

effect of a change in the climate forcing (thick arrows) and a change in the ω parameter, a function of Z, 

precipitation, and soil properties (thin arrow, see Equation 3 for details). 
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Figure 2. Cape Fear catchment showing locations of the stream gauges and subcatchments used in the 
study. The Rockfish catchment, discussed in the text, is indicated by a R. 

 

Figure 3. Sensitivity of the water yield output to the Z coefficient and crop coefficient for forest LULC (Kc). 
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Changes are relative to the baseline run (where Z=22 and Kc=1). On the left hand side plot, absolute Z 
values are plotted on the x-axis to facilitate the discussion on the Z coefficient. Each curve represents a 
subcatchment. 

 

 

Figure 4. Spatially explicit output of the InVEST model, showing the water yield computed on a pixel 

scale. Model outputs are aggregated at the subcatchment scale, delineated by black lines, to be 

compared with observations at the gauging stations (green circles). 
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Figure 45. a) Comparison between modeled yields (corrected for water withdrawal) and observed yields, both for the 
baseline run (Z=22), and the calibrated run (Z=14). Black error bars represent the uncertainty on the value for water 
withdrawal, while grey bars represent a 10% error in the precipitation input. b) Comparison of subcatchment ranks. 
The outlier (Rockfish) subcatchment is noted with a R on each figure (see text for details). 
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Appendix:  

Table A1. Data sources and statistics for model inputs. Raster statistics are for the entire Cape Fear catchment 
delineated in Figure 2.  

Data Type Value  
(Mean and range) 

Source Range for 
sensitivity 
analyses 

Precipitation Raster 1180 mm 
[1030; 1450] mm 

PRISM* (Gilliland, 2003) 
(USGS, 2014) 

+/- 20% 

Reference 
evapotranspiration 

Raster 1240 mm 
[1160; 1310] mm 

FAO* 
MODIS (Mu et al., 2012) 
Climate Office (NCSU, 2014) 

+/- 10% 

DEM Raster 90 m 
[0; 250] m 

(USGS, 2013a) n.a. 

LULC Raster Cf. Appendix (NASS, 2013) n.a. 

Soil depth Raster 1710 mm 
[0; 2110] mm 

(USGS, 2013b) n.a. 

PAWC Raster 0.18 
[0.07; 0.52] 

(USGS, 2013b) n.a. 

Root depth Per LULC 
class 

See Table A1 (Allen et al., 1998) n.a. 

Kc Per LULC 
class 

See Table A1 (Allen et al., 1998) [- 30%; +10%] 

Z Constant 22* (Sharp et al., 2014) [1; 30] 

* Indicates the data source used for the baseline run (see Section 3.2) 

 

 

Table A2 – Biophysical table used for the baseline InVEST model run, giving the root depth and crop coefficient Kc 

for each Land use/Land cover (LULC) class (values from Allen et al, 1998) 

LULC Root depth (mm) Kc 

Ag-Corn 1500 0.75 

Ag-other 1100 0.7 

Grass 1100 0.9 

Forest 5000 1 

Wetland na 1.1 

Urban na 0.4 

 

 


