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Abstract  15 
Understanding the role of plants for soil water relations, and thus for ecosystem functioning, 16 
requires information about root water uptake. We evaluated four different complex water balance 17 
methods to estimate sink term patterns and evapotranspiration directly from soil moisture 18 
measurements. We tested four methods: The first two take the difference between two measurement 19 
intervals as evapotranspiration, thus neglecting vertical flow. The third uses regression on the soil 20 
water content time series and differences between day and night to account for vertical flow. The 21 
fourth accounts for vertical flow using a numerical model and iteratively solves for the sink term. 22 
Neither of those methods requires any a priori information of root distribution parameters or 23 
evapotranspiration, which is the advantage, compared to common root water uptake models. To test 24 
the methods, a synthetic experiment with numerical simulations for a grassland ecosystem was 25 
conducted. Additionally, the time series were perturbed to simulate common sensor errors, like 26 
those due to measurement precision and inaccurate sensor calibration. We tested each method for a 27 
range of measurement frequencies and applied performance criteria to evaluate the suitability of 28 
each method. In general, we show that methods accounting for vertical flow predict 29 
evapotranspiration and the sink term distribution more accurately than the simpler approaches. 30 
Under consideration of possible measurement uncertainties, the method based on regression and 31 
differentiating between day and night cycles leads to the best and most robust estimation of sink 32 
term patterns. It is thus an alternative to more complex inverse numerical methods. This study 33 
demonstrates that highly resolved (temporal and spatial) soil water content measurements may be 34 
used to estimate the sink term profiles when the appropriate approach is used.  35 
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Nomenclature 

b relative bias (%) 

dT length of active transpiration period over a day (h) 

dz,i thickness of soil layer i (m) 

DOY day of year 

e difference in observed and estimated soil water content in the inverse model 

E evapotranspiration (mm h-1 or cm d-1) 

Es bare soil evaporation (mm h-1) 

Et transpiration (mm h-1) 

෨ܧ  estimated evapotranspiration (mm h-1) 

h soil matric potential (m) 

i soil layer index 

j time step index 

K(h) hydraulic conductivity (m s-1) 

Ksat saturated hydraulic conductivity (m s-1) 

mtot slope of fitted linear function on θ(t) 

mextr slope of fitted linear function on θ(t) due to sink term 

mflow slopes of fitted linear function on θ(t) due to vertical soil water flow 

nvG van Genuchten parameter (-) 

NSE Nash-Sutcliffe efficiency criterion 

P precipitation (mm h-1) 

q percolation (mm h-1) 

RV relative variability  

S sink term in Richards equation (s-1) 

Si discretized sink term in the soil layer i (m s-1) 

S
~

 estimated sink term (m s-1) 

s standard deviation  

t time (s) 

Δt time step (h) 

v iteration step number (-) 

 mean value ݔ̅

x observed (synthetic) value 

 ෤ estimated valuesݔ

z vertical coordinate (m) 
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zr active rooting depth (cm) 

z25% depth up to which 25 % of root water uptake occur (cm) 

z50% depth up to which 50 % of root water uptake occur (cm) 

z90% depth up to which 90 % of root water uptake occur (cm) 

  

α van Genuchten parameter (m-1) 

θ Volumetric soil water content (m3 m-3) 

θr residual volumetric soil water content (m3 m-3) 

θs saturated volumetric soil water content (m3 m-3) 

~  estimated volumetric soil water content (m3 m-3) 

Δθ deviation in volumetric soil water content over time (m3 m-3) 

εZZ decision criterion for termination of the iteration process (Inverse Model from Zuo 

& Zhang (2002)) 

εGH, i decision criterion for termination of the iteration process in the Inverse Model 

proposed here 

 36 
37 
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1 Introduction 38 
 39 
Plants play a key role in the earth system by linking the water and the carbon cycle between soil and 40 
atmosphere (Feddes et al., 2001; Chapin et al., 2002; Feddes & Raats, 2004; Teuling et al., 2006b; 41 
Schneider et al., 2009; Seniveratne et al., 2010; Asbjornsen et al., 2011). Knowledge of 42 
evapotranspiration and especially root water uptake profiles is key to understanding plant-soil water 43 
relations and thus ecosystem functioning, in particular efficient plant water use, storage keeping and 44 
competition in ecosystems (Davis & Mooney, 1986; Le Roux et al., 1995; Jackson et al., 1996; 45 
Hildebrandt & Eltahir, 2007;Arnold et al., 2009; Schwendenmann et al., 2014). 46 
For estimation of root water uptake, models are prevalent in many disciplines. Most commonly, root 47 
water uptake is applied as a sink term S, incorporated in the 1D soil water flow equation (Richards’ 48 
equation) (Eq. 1), 49 
 50 
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 51 
where θ is the volumetric soil water content, t is the time, z is the vertical coordinate, h is the soil 52 
matric potential, K(h) is the unsaturated soil hydraulic conductivity and S(z,t) is the sink term (water 53 
extraction by roots, evaporation etc.). The sink term profile S(z,t) depends on root activity, which 54 
has to be known previously. Often root activity is assumed to be related to rooting profiles, 55 
represented by power laws (Gale and Grigal, 1987; Jackson et al., 1996; Schenk, 2008; Kuhlmann 56 
et al., 2012). The parameters of those rooting profile functions are cumbersome to measure in the 57 
field and also the relevance for root water uptake distribution is uncertain (Hamblin & Tennant, 58 
1987; Lai & Katul, 2000; Li et al., 2002; Doussan et al., 2006; Garrigues et al., 2006; Schneider et 59 
al., 2009). Therefore, assumptions have to be made in order to determine the sink term for root 60 
water uptake in soil water flow models. The lack of an adequate description of root water uptake 61 
parameters was already mentioned by Gardner (1983) and is still up-to-date (Lai & Katul, 2000; 62 
Hupet et al., 2002; Teuling et al., 2006a; Teuling et al., 2006b). For those reasons, methods for 63 
estimating root water uptake are a paramount requirement.  64 
Standard measurements, for instance of soil water content profiles, recommend themselves to be 65 
used for estimation of evapotranspiration and root water uptake at low cost, since the evolution of 66 
soil moisture in space and time is expected to contain information on root water uptake (Musters 67 
and Bouten, 2000; Hupet et al., 2002; Zuo & Zhang, 2002; Teuling et al., 2006a). Methods using 68 
these measurements are for instance simple water balance approaches, which estimate 69 
evapotranspiration (Wilson et al., 2001; Schume et al., 2005; Kosugi & Katsuyama, 2007; Naranjo 70 
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et al., 2011) and root water uptake (Green & Clothier, 1995; Coelho & Or, 1996; Hupet et al., 2002) 71 
by calculating the difference in soil water storage between two different observation times. 72 
Advantages of these simple water balance methods are the small amount of required information 73 
and the simple methodology. However, a disadvantage is that the depletion of soil water is assumed 74 
to occur only by root water uptake and soil evaporation, and soil water fluxes are negligible (Hupet 75 
et al., 2002). This is only the case during long dry periods with high atmospheric demand (Hupet et 76 
al., 2002).  77 
A possible alternative which allows the consideration of vertical soil water fluxes is the inverse use 78 
of numerical soil water flow models (Musters & Bouten, 1999; Musters et al, 2000; Vrugt et al., 79 
2001; Hupet et al., 2002; Zuo & Zhang, 2002). There, root water uptake or parameters on the root 80 
water uptake function are estimated by minimizing the differences between measured soil water 81 
contents and the corresponding model results by an objective function (Hupet et al., 2002). 82 
However, the quality of the estimation depends on the one hand strongly on system boundary 83 
conditions (e.g. incoming flux, drainage flux or location of the groundwater table) and soil 84 
parameters (e.g. hydraulic conductivity), which are however on the other hand notoriously uncertain 85 
under natural conditions (Musters & Bouten, 2000; Kollet 2009). Another problem is that the 86 
applied models for soil water flow potentially ignore biotic processes. For example Musters et al. 87 
(2000) and Hupet et al. (2002) tried to fit parameters for root distributions in a model determining 88 
uptake profiles from water availability whereas empirical and modelling studies suggest that 89 
adjustment of root water uptake distribution may also be from physiological adaptations (Jackson et 90 
al., 2000; Zwieniecki et al., 2003; Bechmann et al., 2014). In order to avoid the latter problem, Zuo 91 
& Zhang (2002) coupled a water balance approach to a soil water model, which enabled them to 92 
estimate root water uptake without the a priori estimation of root water uptake parameters.  93 
A second option for accounting for vertical soil water flow in a water balance approach is to analyse 94 
the soil moisture fluctuation between day and night (Li et al., 2002). In comparatively dry soil, Li et 95 
al. (2002) fitted third order polynomials to the day and night-time measured soil water content time 96 
series and calculated vertical soil water flow using the first derivative of the fitted polynomials 97 
during the night-time.  98 
Up to now, little effort has been made to compare those different data-driven methods for estimating 99 
evapotranspiration and root water uptake profiles in temperate climates. In this paper, we compare 100 
those water balance methods we are aware of, which do not require any a priori information of root 101 
distribution parameters. We used artificial data of soil moisture and sink term profiles to compare 102 
the quality of the estimates of the different methods. Furthermore, we investigated the influence of 103 
sensor errors on the outcomes, as these uncertainties can have a significant impact on both data-104 
driven approaches and soil hydrological models (Spank et al., 2013). For this, we artificially 105 
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introduced measurement errors to the synthetic soil moisture time series, which are typical for soil 106 
water content measurements: Sensor calibration error and limited precision.  107 
Our results indicate that highly resolved soil water content measurements can provide reliable 108 
predictions of the sink term or root water uptake profile when the appropriate approach is used.  109 
 110 

2 Material and Methods  111 
 112 
2.1 Target variable and general procedure 113 
The evapotranspiration E consists of soil evaporation Es and the plant transpiration Et (Eq. 2) 114 
 

ܧ ൌ ሺܧ௦ ൅  ௧ሻܧ
                   (2)

 115 
The distinction between soil evaporation and combined transpiration is not possible for any of the 116 
applied water balance methods. Therefore, the water extraction from soil by plant roots and soil 117 
evaporation is called sink term profile in the rest of the paper. The integrated sink term over the 118 
entire soil profile results in the total evapotranspiration (Eq. 3), 119 
 120 
ሻݐሺܧ ൌ ׬ ܵሺݐ, 	ݖሻ݀ݖ → ୨ܧ ൌ ∑ ୧ܵ,୨

௡
୧ୀଵ

଴
௭ୀ௭ೝ

∙ ݀௭,୧ ,                      (3)

 121 
where z is the soil depth, dz,i is the thickness of the soil layer i, t is the time and j is the time step. 122 
For matters of simplicity we will drop the index j when introducing the estimation methods in the 123 
following. 124 
In this study, synthetic time series of volumetric soil water content generated by a soil water flow 125 
model coupled with a root water uptake model (section 2.3), were treated as measured data and are 126 

used as the basis for all methods (section 2.2) estimating the sink term ܵ	෩ሺݖሻ	and total 127 

evapotranspiration ܧ	෩ . In order to investigate the influence of sensor errors, the generated time 128 
series were systematically disturbed, as shown in section 2.4. Based on these estimations we 129 

evaluate the data-driven methods on predicting evapotranspiration	ܧ	෩ and sink term profiles using 130 
the quality criteria given in section 2.5. As in eco-hydrological studies it is often interesting up to 131 
which depth a given fraction of root water uptake occurred (e.g. Green & Clothier, 1999; 132 
Plamboeck et al., 1999; Ogle et al., 2004), estimated sink term profiles were compared accordingly. 133 
Specifically, we determined up to which depths 25 %, 50 % and 90 % (z25%, z50% and z90%) of water 134 
extraction takes place.  135 
 136 
2.2 Investigated data-driven methods for estimation of the sink term profile 137 
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 138 
In the following we introduce the four investigated methods. They are summarized in Table 1.  139 
 140 
Single Step Single Layer Water Balance (sssl) 141 
 142 
Naranjo et al. (2011) derived the sink term using time series of rainfall and changes of soil water 143 
content between two observation times (single step), based on measurements in one single soil 144 
depth (single layer). The complete water balance equation for this single layer method is 145 
 146 

෩	ܧ ௦௦௦௟ ൌ ܲ െ ݍ െ ௥ݖ
∆ఏ

∆௧
   ,                                                                                                               (4) 

 
 

where zr is the active rooting depth, which is also the depth of the single soil layer, and is taken 147 
equal to the measurement depth of volumetric soil water content, θ. Δt indicates the length of the 148 
considered single time step. P is the rainfall and q the percolation out of the soil layer during the 149 
same time step. When rainfall occur infiltration as well as soil water flow takes place. It is assumed 150 
that percolation occurs only during this time and persists only up to several hours after the rainfall 151 
event (Naranjo et al., 2011). Since the percolation flux is unknown, the methods cannot be applied 152 
during these wet times. During dry periods q is set to zero and Eq. (4) simplifies to Eq. (5) (Naranjo 153 
et al., 2011) 154 
 155 

෩	ܧ ௦௦௦௟ ൌ ௥ݖ
∆ఏ

∆௧
	.                                                                                                                                (5) 

 
 

We applied Eq. (5) to estimate evaporation (in the single layer method equal to the sink term) from 156 
artificial soil water contents in 30 cm. Required input information are thus only time series of soil 157 
water content and active rooting depth zr. Additionally, rainfall measurements are required to select 158 
dry periods, where no percolation occurs. These could start several hours up to several days after a 159 
rainfall event (Breña Naranjo et al., 2011), and the exact timing depends on the amount of rainfall 160 
and the site-location parameters like soil type and vegetation. In this study we waited 24 hours after 161 
the end of the precipitation event, before applying the model. 162 
 163 
Single Step Multi Layer Water Balance (ssml) 164 
This method is similar to the sssl introduced above. It calculates the sink term based on two 165 
observation times (single step), but is extended to several measurement depths (multi layer). The 166 
water balance during dry periods of each layer is the same as in Eq. (5), and uptake in individual 167 



 9

layers is calculated by neglecting vertical soil water fluxes and therefore assuming that the change 168 
in soil water content is only caused by root water uptake (Hupet et al., 2002)  169 

tdS
i

izssml
=




,i,

~  ,                    (6)

where ሚܵssml,i is the estimated sink term in soil layer i, Δθi  is the change of soil water content in the 170 
soil layer i over the single time step (Δt) and dz,i is the thickness of the soil layer i. Actual 171 

evpotranspiration (Essml) is calculated by summing up ܵ	෩ ssml,i over all depths in accordance with (Eq. 172 
3). The application of the ssml-method is restricted to dry periods. It requires time series of 173 
volumetric soil water content and rainfall measurements as input to select dry periods. 174 
 175 
Multi Step Multi Layer Regression (msml) 176 
The third method derives actual evapotranspiration and sink term profiles from diurnal fluctuation 177 
of soil water contents (Li et al., 2002). It uses a regression over multiple time steps (multi step) and 178 
can be applied at several measurement depths (multi layer).  179 
During daytime, evapotranspiration leads to a decrease of volumetric soil water content. This 180 
extraction of soil water extends over the entire active rooting depth. Additionally, soil water flow 181 
occurs both, at night as well as at daytime (Khalil et al., 2003; Verhoef et al., 2006; Chanzy et al., 182 
2012), following potential gradients in the soil profile. Thus, during dry weather conditions, the 183 
time series of soil water content shows a clear day–night signal (Fig. 2). We split up the time series 184 
by fitting a linear function to each day and night branch of the time series. The onset of 185 
transpiration is mainly defined by opening and closure of plant stomata, which is according to the 186 
supply of solar energy (Loheide, 2008; Maruyama & Kuwagata, 2008; Sánchez et al., 2013), 187 
usually one or two hours after sunrise or before sunset (Lee, 2009).  188 
Here, the basic assumption is that the soil water flow does not change significantly between day and 189 
night (Fig. S1). The slope of the fitted linear functions gives the rate of root water extraction and 190 
vertical flow. This can also be shown mathematically by disassembling the Richards’ equation (Eq. 191 
1) in vertical flow (subscript flow) and sink term (subscript extr) (Eq. 7), whereas the change of soil 192 
water content over time (∂θ /∂t) integrates both fluxes:  193 
 194 
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,                     (7)

where mtot corresponds to the slope of the fitted linear function for the day or night branch. 195 
Assuming that evapotranspiration during the night is negligible, the slope for the night branch is 196 
entirely due to soil water flow. During the day, uptake processes and soil water flow act in parallel: 197 



 10

mmmtot extrflow


     day
                  (8a) 

mmtot flow
                                  night                  (8b)

 198 
The sink term can be calculated from Eq. (8a), assuming that mflow can be estimated from Eq. (8b) 199 
and using the average of the antecedent and the preceding night. A similar procedure has been 200 
applied in diurnal groundwater table fluctuations (Loheide, 2008). Also there, the extraction will be 201 
overestimated if day and night fluxes are not separately considered. Taking into account the soil 202 

layer thickness of the respective layer i (dz,i), the mean daily sink term of soil layer i ( ሚܵmsml,i) is 203 
obtained:  204 
 205 

S෨୫ୱ୫,௜ ൌ ሺm୲୭୲,௜ െ ഥ݉୤୪୭୵,௜ሻ ∙ d୸,௜                    (9)

 206 
Since a diurnal cycle of soil moisture is only identifiable up to a time interval of 12 hours, the 207 
regression methods is limited to minimum measurement frequency of 12 hours. Furthermore, as 208 
rainfall causes changes of soil water content and blurs the diurnal signal, the msml is only 209 
applicable during dry periods. As input, time series of soil water content and rainfall measurements 210 
to select dry periods are required.  211 
 212 
Inverse Model (im) 213 
 214 
The fourth approach is the most complex. The inverse model (im) estimates the average root water 215 
uptake by solving the Richards' equation (Eq. 1) and iteratively searching the sink term profile 216 
which produces the best fit between the numerical solution and measured values of soil moisture 217 
content (Zuo & Zhang, 2002). The advantage of this method is the estimation of root water uptake 218 
without the a priori estimation of rooting profile function parameters since they are highly uncertain 219 
as elucidated in the introduction. We implemented the inverse water balance approach after Zuo and 220 
Zhang (2002) with the Fast Richard's solver (Ross, 2003), which is available as FORTRAN 90 221 
code. We modified the original method by changing the convergence criterion. In the following 222 
section, we first introduce the iterative procedure as proposed by Zuo and Zhang (2002) and then 223 
explain the modification, which we conducted. 224 
The iterative procedure by Zuo and Zhang (2002) runs the numerical model over a given time step 225 

(Δt) in order to estimate the soil water content profile ߠ෨୧
ሺ୴ୀ଴ሻ at the end of the time step, and 226 

assuming that the sink term ( ሚܵ௜௠,௜
ሺ௩ୀ଴ሻ) is zero over the entire profile. Here ~ depicts the estimated 227 

values at the respective soil layer i, and v indicates the iteration step. Next, the sink term profile 228 
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ሚܵ
௜௠,௜
ሺ௩ୀଵሻ is set equal to the difference between previous approximation ߠ෨୧

ሺ୴ୀ଴ሻand measurements ߠ୧ 229 

while accounting for soil layer thickness and length of the time step for units.  230 

In the following iterations, ሚܵ௜௠,௜
ሺ௩ሻ  is used with Richards' equation to calculate the new soil water 231 

contents	ߠ෨୧
ሺ୴ሻ. The new average sink term ሚܵ௜௠,௜

ሺ௩ାଵሻ is then determined with Eq. (10).  232 
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 235 
This iteration process continues until a specified decision criterion εZZ is reached:  236 
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where n is the number of soil layers in the soil column. 238 
Since ߝ௭௭ is a normalized root mean square error over depth, good and poor estimations cancel 239 
between layers. This leads to termination of the iterative procedure even if the estimation of the sink 240 
term is very poor in several layers. We therefore propose a slightly adapted termination process, 241 
which applies to separate soil layers, as follows. The estimation of the sink term in general is 242 
applied as proposed by Zuo and Zhang (2002). 243 
 244 

(1) Calculate the difference between the estimated and measured soil water content (Eq. 12) and 245 
compare the change of this difference to the difference of the previous iteration (Eq. 13). 246 
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 247 

(2) In soil layers where εீு
ሺ௩ሻ < 0: Set the root water uptake rate back to the value of the previous 248 

iteration (S෨௜௠,୧
ሺ௩ାଵሻ ൌ 	 S෨௜௠,୧

ሺ௩ିଵሻ), since the current iteration was no improvement. Only if εீு,୧
ሺ௩ሻ  ≥ 249 

0: go to step (3). This prevents acceptance of the estimated sink term  S෨௜௠,୧
ሺ௩ሻ  even if it leads to 250 

a worse fit than the previous iteration.  251 

(3) If ݁୧
ሺ௩ሻ

 > 1.0e-4: Calculate S෨௜௠,୧
ሺ௩ାଵሻ according Eq. (10); else the current iteration sink term 252 

(S෨௜௠,୧
ሺ௩ାଵሻ ൌ 	 S෨௜௠,୧

ሺ௩ሻ ) is retained as it results in a good fit between estimated and measured soil 253 

water contents. 254 
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 255 

The iteration process continues until the convergence criterion εீு
ሺ௩ሻ   (Eq. 13) does not change 256 

anymore between iterations (i.e. all layers have reached a satisfactory fit), or after a specified 257 
number of iterations (we chose 3000).  258 
The required input information are besides the soil water content measurements and the rainfall, the 259 
soil hydraulic parameters.  260 

 261 
2.3 Generation of synthetic reference data 262 
 263 
We used synthetic time series of volumetric soil water content with a measurement frequency of 1h, 264 
3h, 6h, 12h and 24h. The time series of soil water content and also the sink term profiles were 265 
generated with a soil water flow model (Fast Richards Solver, Ross, 2003, same as used in section 266 
2.2 for the Inverse Model). They were treated as measured data and are used as the basis for all 267 
methods. The synthetic data are based on meteorological and soil data from the Jena Biodiversity 268 
Experiment (Roscher et al., 2011). Root water uptake was calculated using a simple macroscopic 269 
root water uptake model, which uses an exponential root distribution with water stress-270 
compensation (Li et al.,  2001). Soil evaporation is taken as 20% of total evapotranspiration.  271 
The soil profile is based on the Jena Experiment, both in terms of measurement design and soil 272 
properties. The model was set up for a one dimensional homogeneous soil profile, 220 cm deep. 273 
Measurement points were set in depths of 15 cm, 30 cm, 60 cm, 100 cm, 140 cm, 180 cm and 220 274 
cm. The spatial resolution of the soil model is according to the measurement points 15-15-30-40-275 
40-40-40 cm. The advantage of the applied soil water flow model is that the water fluxes are 276 
calculated with the matrix flux potential (Kirchhoff transformation), which allows a spatial 277 
discretization with large nodal spacing (Ross, 2006). We used a maximum rooting depth of 140 cm, 278 
with 60% of root length density located in the top 15 cm of the root zone, which corresponds to 279 
mean values measured on the field site (Ravenek et al., 2014). We used van Genuchten soil 280 
hydraulic parameters (van Genuchten, 1980) derived from the program ROSETTA (Schaap et al., 281 
2001) based on the texture of a silty loam: θs = 0.409 (cm3 cm-3), θr = 0.069 (cm3 cm-3), Ksat = 1.43e-282 
6 (m s-1), α = 0.6 (m-1) and nvG = 1.619 (-). 283 
Upper boundary conditions are derived from measured precipitation and potential 284 
evapotranspiration calculated after Penman-Monteith (Allen et al., 1998) from measurements of the 285 
climate station at the experimental site (Weather Station Saaleaue, Max Planck Institute for 286 
Biogeochemistry - http://www.bgc-jena.mpg.de/wetter/). The used weather data have a 287 
measurement resolution of 10 minutes. Before applying evapotranspiration and rainfall as input data 288 
to generate the synthetic reference soil moisture and root water uptake data, both data sets were 289 
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aggregated to the temporal resolutions applied for the reference run (1 hour). Soil moisture and root 290 
water uptake were generated with the same temporal resolution. When translating the 291 
evapotranspiration to sink term profiles (precision 4 digits), rounding errors introduce a small in-292 
accuracy. Thus, the sum of the sink term in the reference run deviates by 0.02% compared to the 293 
original evapotranspiration. 294 
The lower boundary is given by the ground water table, which fluctuates around -200 cm at the field 295 
site, but was set to constant head for simplification. Initial conditions are taken as the equilibrium 296 
(no flow) hydraulic potential profile in the soil.  297 
We run the model with precipitation data from the field site for the year 2009, starting on 1 January 298 
to calculate time series of soil water content and the root water uptake up to September 2009. The 299 
atmospheric boundary conditions during the growing season are shown in Fig. 1(a) as daily values. 300 
For testing the methods, we used the period from 26 July to 28 August 2009, which covers a dry 301 
period with little rainfall (Fig. 1, black frame). The times were chosen to cover a representative but 302 
dry period during the growing season and to guarantee a warm-up phase for the soil model. 303 
The described forward simulation produces time series of soil water contents and root water uptake. 304 
Soil water content time series were used instead of measured data (synthetic measurements) as input 305 
for the investigated methods, while evapotranspiration and sink term profiles were used to evaluate 306 
them, based on the quality criteria described in section 2.5.  307 
 308 
2.4 Influence of soil moisture sensor uncertainty 309 
 310 
Data-driven methods are as good as their input data. Therefore, we investigate and quantify the 311 
influence of common uncertainties of soil moisture sensor measurements on the estimation of sink 312 
term profiles. Sensor performance is usually characterised by three criteria, namely: the accuracy, 313 
the precision and the resolution. The correctness of a measurement is described by the accuracy and 314 
for water content sensors depends greatly on the soil specific calibration. Repeatability of many 315 
single measurements is referred to as precision, while the resolution describes the fineness of a 316 
measurement.  317 
In this paper, we investigated the uncertainty of the applied methods stemming from calibration 318 
error (accuracy) and precision. For this we superimposed the original synthetic soil water content 319 
measurements generated in section 2.3 with artificial errors. Three types of errors were 320 
implemented, as follows (i) precision error: The time series for each soil layer were perturbed with 321 
Gaussian noise of zero mean and standard deviation of 0.067 Vol.% corresponding to a precision of 322 
0.2 Vol.%; (ii) Calibration error: The perturbed time series were realigned along a new slope, which 323 
pivoted around a random point within the measurement range and a random intercept between ± 1.0 324 
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Vol.%, (iii) Calibration and precision: Perturbed series were created as a random combination of (i) 325 
and (ii), which is a common case in field studies (Spank et al., 2013). Errors were applied 326 
independently to all soil depths and 100 new time series were created for each of the error types. We 327 
determined the quality of the estimation methods using the median of 100 ensemble simulations 328 
with the 100 perturbed input time series, respectively. The values for the applied calibration 329 
uncertainty and precision are taken from the technical manual of the IMKO TRIME©-PICO32 soil 330 
moisture sensor 331 
(http://www.imko.de/en/products/soilmoisture/soil-moisture-sensors /trimepico32). 332 
A common procedure with environmental measurements for dealing with precision errors is 333 
smoothing of the measured time series (Li et al., 2002; Peters et al., 2013), which we also re-334 
produced by additionally applying a moving average filter on the disturbed soil moisture time 335 
series. 336 
 337 
2.5  Evaluation criteria 338 
 339 
A successful model should be able to reproduce the first and second moment of the distribution of 340 
the observed values (Gupta et al., 2009), and we used a similar approach to assess the quality of the 341 
methods for estimating the total evapotranspiration and the sink term profiles. The first and the 342 
second moment refer to the mean and the standard deviation. Additionally the correlation 343 
coefficient evaluates whether the model is able to reproduce the timing and the shape of observed 344 
time series. To compare the applicability and the quality of the four methods we use three 345 
performance criteria suggested by Gupta et al. (2009): (i) correlation coefficient (R), (ii) relative 346 
variability measure (RV) and (iii) the bias (b), which are described in this section. The comparison 347 
is based on daily values.  348 
First, we use the correlation coefficient (R) to estimate the strength of the linear correlation between 349 
estimated (~) and synthetic values: 350 
 351 

ܴ ൌ ஼௢௩ሺ௫෤,௫ሻ

௦ೣ∙௦෥ೣ
 (15)

 352 
 where Cov is the covariance of estimated and observed (synthetic) values, ݏ௫	and ݏ௫෤	are the 353 
standard deviations of synthetic and estimated values, respectively. The variable x stands for any of 354 
the variables of interest, such as total evapotranspiration or z25% etc. R ranges between -1 and +1. 355 
The closer R is to 1 the better is the estimate. 356 
Second, we use the relative variability in estimated and synthetic data (RV) to determine the ability 357 
of the particular method to reproduce the observed variance (Gupta et al., 2009): 358 
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 359 

ܴܸ ൌ ௦෥ೣ
௦ೣ

 (16)

 360 
RV values around one indicate a good estimation procedure. 361 
Third, we use the relative bias (b) to describe the mean systematic deviation between estimated (~) 362 
and observed (synthetic) values, which is not captured by R:  363 
 364 

ܾ ൌ 	 ௫	
෥ഥି௫̅

௫̅
∙ 100 (%) , (17)

 365 

where ݔ෤̅ and ̅ݔ		are the means of the estimated and synthetic data, respectively. The best model 366 
performance is reached if the bias is close to zero. 367 
 368 
3 Results  369 
 370 
In total, we compared synthetic evapotranspiration rates from 33 consecutive days in July/August 371 
2009. Evapotranspiration could not be estimated at days with rainfall for the Single Step Single 372 
Layer Water Balance (sssl) and the Single Step Multi Layer Water Balance (ssml) as well as for the 373 
Multi Step Multi Layer Regression (msml). Therefore, we excluded all days with rainfall from the 374 
analysis for all considered methods. We first consider in sections 3.1 and 3.2 the performance of the 375 
estimation methods on undisturbed synthetic time series, this is we ignore measurement errors or 376 
assume they do not exist. The influence of measurement errors is investigated in section 3.3. 377 
 378 
3.1  Evapotranspiration derived by soil water content measurements  379 

 380 
The performance of the data-driven methods depends strongly on the complexity of the respective 381 
method, which increases substantially with higher degree of complexity. However, the influence of 382 
the measurement frequency differs considerably among the four methods.  383 
The Inverse Model (im) predicted the daily evapotranspiration for a measurement frequency of 12h 384 
with a very small relative bias of 0.89 %, which is the best for all investigated methods. 385 
Additionally, the im reaches the best R value (R=0.99) for all measurement frequencies (Tab. 2), and 386 
follows closely the 1:1 line between synthetic and estimated evapotranspiration (Fig. 3a and 3b). 387 
However, the relative variability (RV) and the relative bias indicate a better prediction with 388 
decreasing measurement frequency.   389 
The second best method is the Multi Step Multi Layer Regression (msml), in particular when 390 
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applied for high temporal resolution measurements (1 and 3 hours). There, the bias is comparatively 391 
small (± 20%) and the correlation between synthetic (observed) and estimated values relatively high 392 
(R=0.58 and R=0.71 for 1h and 3h resolution respectively). Also, the msml results match well the 393 
1:1 line between synthetic and estimated evapotranspiration (Fig. 3a and 3b). 394 
The Single Step Single Layer Water Balance (sssl) and the Single Step Multi Layer Water Balance 395 
(ssml) show a weaker performance compared to the more complex methods im and msml. Neither of 396 
them follows well the 1:1 line between synthetic and estimated evapotranspiration (Fig. 3a and 3b). 397 
Regardless, they could reproduce the synthetic evapotranspiration with a relatively high linear 398 
correlation (Tab. 2), and comparable bias to the regression method, in particular for the range of 399 
intermediate measurement frequencies. However, values for the relative variability (RV) are 400 
comparatively large, in particular for the Single Step Multi Layer Water Balance (ssml). 401 
Interestingly, the model performance criteria of the simpler sssl show only minor differences 402 
between the particular temporal resolutions and performs overall better than ssml. Note that both 403 
water balance methods (sssl & ssml) overestimate the evapotranspiration at the beginning of the 404 
study period (Fig. 3c & 3d), which was marked by greater vertical flow between top soil and deeper 405 
soil due to preceding rainfall events.  406 
Our results also show that lesser complex data-driven methods, also perform better at higher 407 
temporal resolution (1 and 3 h), except for the ssml. In contrast, the Inverse Model is better in 408 
predicting evapotranspiration when a coarse measurement frequency is used. Further, the results 409 
indicate that the estimated actual evapotranspiration becomes more accurate with increasing model 410 
intricacy and that is with accounting for vertical flow.  411 
 412 
3.2  Root water uptake profiles estimated with three different data-driven methods 413 

 414 
The Single Step Multi Layer Water Balance (ssml), the Multi Step Multi Layer Regression (msml) 415 
and the Inverse Model (im) are appropriate for determining root water uptake profiles by inclusion 416 
of all available measurements over depth. Table 3 summarizes the model applicability to estimate 417 
the depths at which 25 %, 50 % and 90 % of water extraction occurs (later stated as z25%, z50% and 418 
z90%). Here, we used the standard deviation	ݏ௫෤ instead of the relative variability to evaluate the 419 
observed variance. This criterion was chosen because the standard deviation of the synthetic 420 
reference values is approx. zero and thus, the relative variability (RV) is getting very large, which is 421 
not practical for the method evaluation. The criteria are shown for the respective best achieved 422 
model performance (1h – ssml and msml; 24h – im).  423 
Again, the quality of predicting the sink term distribution depends on the method complexity and 424 
increases with increasing complexity. The most complex im delivers the best prediction of sink term 425 
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distribution for a temporal resolution of 24 hours. The depths up to which 50 % of water extraction 426 
occur (z50%) could be predicted with a bias of less than 2 % (Tab. 3) and for z90%, the relative bias 427 
increased only slightly to approx. 3 %. Indeed, these comparatively accurate results are to be 428 
expected due to the two intrinsic assumptions: (1) the required soil hydraulic parameters for the 429 
implemented soil water flow model are exactly known and (2) the measurement uncertainty of the 430 
soil sensors is zero. 431 
The regression method (msml) also delivers good estimations of sink term profiles over the entire 432 
soil column (Tab. 3 and Fig. 4), although it gets along without any intrinsic assumptions. Fig. 4 433 
shows that the msml overestimates the sink term in the intermediate depths. The maximum relative 434 
bias is about -21% at z50%. Overall, the msml is applicable for determining the mean sink term 435 
distribution with an acceptable accuracy. 436 
The ssml estimated sink terms correspond only weakly to the synthetic ones, and the relative bias is 437 
lowest for z25% with 33% but increases strongly for z50% and z90% (Tab. 3). Moreover, the standard 438 
deviations of the predictions are substantial in most measurement depths (Tab.3, Fig. 4). Because of 439 
these large variations in sink term distribution, the prediction of sink term profiles becomes 440 
imprecise. Thus for the chosen simulation experiment, the ssml is not applicable for deriving the 441 
sink term from soil water content measurements. 442 
 443 
3.3  Influence of soil moisture sensor uncertainty on root water uptake estimation 444 

 445 
We only evaluated the influence of measurement errors for two methods (msml and im). The single 446 
layer approach was omitted, since it does not allow the estimation of the sink term profile and ssml 447 
was omitted, since the estimation of the sink term profile was already inappropriate when ignoring 448 
measurement errors (see section 3.2).  449 
The influences of soil moisture sensor uncertainties differ considerably among the investigated 450 
methods. The Multi Step Multi Layer Regression (msml) predicted the median daily 451 
evapotranspiration with precision uncertainty, calibration uncertainty and a combination of both 452 
reasonably well (Fig. 5). For all three types of uncertainty the correlation between synthetic 453 
(observed) and estimated values is relatively high (around R=0.9, Table 4). Also with respect to the 454 
median relative bias (%) the three cases differ only marginally (|b| = 7%, Tab. 4). Interestingly, the 455 
calibration uncertainty showed the lowest impact on the predicted evapotranspiration with a median 456 
bias of about -5% for the respective 100 ensemble calculations (Fig. 5).  457 
Additionally, the bias is also used to compare the predicted relative water extraction depths (z25%, 458 
z50% and z90%) (Fig. 6). The uncertainty caused by the calibration of the sensor shows the least 459 
differences to the observed values below 10%. These results are similar to these from simulations 460 
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with soil moisture without any introduced measurement uncertainty. Further, the uncertainties 461 
caused by the precision of the sensors have the highest impact on predicted root water uptake 462 
patterns. It turns out that the relative uncertainty increases with increasing depth (decreasing sink 463 
term or rather water extraction) (Fig. 6 (a)). 464 
Interestingly, the Inverse Model (im) shows worse model performances than the msml for all three 465 
types of uncertainty. Although, the predicted evapotranspiration from soil moisture with precision 466 
uncertainty is close to the observed values (Fig. 5), it differs around days where rainfall occurs 467 
(DOY 225, DOY 230 and DOY 234). This results in underestimation of evapotranspiration during 468 
these times, a weak correlation (Tab. 4), but an acceptable relative bias of about -10%. In contrast, 469 
for the calibration uncertainty it is the other way around. Here, the correlation is relatively high 470 
(R=0.85), but evapotranspiration is greatly overestimated (b=498%). A combination of both 471 
uncertainty sources does not further increase the overall error; but it combines both weaknesses to 472 
an overall poor estimation (Tab. 4). 473 
The sensitivity to the type of uncertainty concerning prediction of sink term patterns is shown in 474 
Fig. 6b and Table 4. Similar to the msml the im is able to handle uncertainties in sensor precision to 475 
predict root water uptake depths whereas uncalibrated sensors lead to considerable increases in 476 
relative bias. Overall, the simpler msml shows a higher robustness against measurement 477 
uncertainties than the more complex im. 478 

 479 
4 Discussion 480 

 481 
We tested the application of several methods deriving based on the soil water balance how much 482 
water was extracted from the soil by evapotranspiration and how the extraction profile (sink term 483 
profile) changed with soil depth. The basis for all methods are time series of volumetric soil water 484 
content derived from measurements, although some methods require more information on soil 485 
properties, in particular the Inverse Model (im). None of the methods relies on a priori information 486 
on the shape of the sink term profile, or makes any assumptions on it being constant with time. This 487 
is the great advantage of these methods to others (Dardanelli et al., 2004; McIntyre et al., 1995; 488 
Hopmans & Bristow, 2002; Zuo et al., 2002). Since only changes in soil water content are 489 
considered, none of the investigated methods distinguish between soil evaporation and root water 490 
uptake. For the same reason, none of the water balance methods can be applied during times of fast 491 
soil water flow, for example during or after a rainfall event. 492 
We used synthetic soil water content “observations” to validate the model results. This procedure 493 
has the great advantage that the “true” water flow and sink term profiles are perfectly known, 494 
including the nature of data uncertainty with regard to calibration error and sensor precision. 495 
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However, our model only accounts for vertical matrix flow, notably neglecting horizontal 496 
heterogeneity, which may be an additional challenge for deriving evapotranspiration in real world 497 
situations. Thus, additional tests of the methods in controlled field conditions, like in large 498 
lysimeters, and comparison with additional data, like isotope profiles, are necessary to confirm our 499 
results. 500 
In the first part of the paper, we investigated how well all methods reproduced the sink term profile 501 
and total evapotranspiration, when assuming that the measurements of soil water content were free 502 
of measurement errors, that is they were well calibrated and measured precisely. Even in this 503 
idealistic setting, the investigated methods performed very differently, most prominently depending 504 
on whether or not vertical flow could be accounted for by the method. The methods showing the 505 
greatest deviation between the “observed” (synthetic) evapotranspiration and sink term profiles 506 
were those not accounting for vertical flow within the soil (methods sssl and ssml). In those simpler 507 
soil water balance methods any change in soil moisture is assigned only to root water uptake 508 
(Rasiah et al., 1992; Musters et al., 2000; Hupet et al., 2002). However, even several days after a 509 
rainfall event the vertical matrix flow within the soil can be similar in magnitude to the root water 510 
uptake (Schwärzel et al., 2009) and this leads to considerable overestimation of the sink term, when 511 
soil water flow is not accounted for. This error sums up, when the sink term is integrated over depth 512 
and leads to a great bias in the evapotranspiration estimate, which is the case for the ssml method. 513 
This distinction between vertical soil water flow and water extraction is the major challenge when 514 
applying water balance methods, because these fluxes occur concurrently during daytime (Gardner, 515 
1983; Feddes and Raats, 2004). The regression method (msml) avoids this problem by considering 516 
vertical soil water fluxes, estimated from change in soil water content during nighttime. Li et al. 517 
(2002) used a similar approach to derive transpiration and root water uptake patterns from soil 518 
moisture changes between different times of the day. This direct attribution of nighttime change in 519 
soil water content to soil water flow inherently assumes that both nighttime evapotranspiration and 520 
hydraulic redistribution are negligible. Li et al. (2002) measured nocturnal sap flow, in order to 521 
ensure that nighttime transpiration was insignificant. Also in lysimeters, the weight changes can be 522 
used to validate the assumption. This assumption is the main drawback of this method, which 523 
however compares to the great advantage that it requires very limited input data, especially no a 524 
priori information about the soil properties. In contrast, the inverse modeling (im) approach inferred 525 
evapotranspiration and sink term patterns with greater quality, when soil water content 526 
measurements were free of error. However, because our analysis uses model generated time series 527 
of soil water content in order to mimic measurements, the soil properties of the original 528 
“experiment” are completely known, which is not usually the case in natural conditions. Usually, 529 
soil hydraulic parameters have to be estimated by a calibration procedure. This process is non-530 
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trivial and limited by the non-uniqueness of the calibrated parameters (Hupet et al., 2003), which 531 
results in uncertainties in simulated soil water fluxes and root water uptake rates (Duan et al., 1992; 532 
Musters and Bouten, 2000; Musters et al., 2000; Hupet et al., 2002; Hupet et al., 2003). This 533 
reliance of the inverse model approach on precise knowledge of the soil environment is the main 534 
drawback of that approach. 535 
Several studies on estimation of root water uptake profiles focused on uncertainties related to 536 
calibrated parameters of soil and the root water uptake models (Musters and Bouten, 2000; Musters 537 
et al., 2000; Hupet et al., 2002; Hupet et al., 2003). While using data and models, uncertainties arise 538 
not from soil parameter uncertainty, but already evolve during the measurement process of the 539 
environmental data (Spank et al., 2013). Thus, in the second part of this paper, we investigated how 540 
measurement noise (precision), wrong sensor calibration (accuracy) and their combination reflect 541 
on the derivation of evapotranspiration and sink term patterns from soil water content 542 
measurements. We only performed this analysis for the two methods which performed satisfactory 543 
without sensor errors: The regression method (msml) and Inverse Model (im). In this more realistic 544 
setting, the simpler regression method (msml) performed much better than the Inverse Model (im). 545 
The latter was strongly affected by inaccurate or lack of site-specific calibration. This “calibration 546 
error” renders the evolution of the vertical potential gradients and soil moisture profile inconsistent 547 
with the evolution of the vertical sink term distribution, and thus introduces forbidding 548 
overestimation of root water uptake and evapotranspiration for the considered time steps (Fig. S2). 549 
Generally, the prediction of the inverse model improves when longer evaluation periods are 550 
considered (also compare Zuo & Zhang (2002)) and therefore the calibration error may become less 551 
prominent when considering time steps of several days as done in Zuo & Zhang (2002). Compared 552 
to the effect of calibration, the sensor precision had a much smaller effect. Thus, the Inverse Model 553 
may be applicable and should be tested in situations where all sensors in the profile are well 554 
calibrated. A further improvement of the Inverse Model could be achieved by smoothing the 555 
measured soil water content profiles via a polynomial function to get an accurate and continuous 556 
distribution of soil water contents as done in Li et al. (2002) and Zuo and Zhang (2002). 557 
The regression model (msml) was overall more robust towards the investigated measurement errors. 558 
It was barely affected by calibration error but was somewhat affected by sensor precision. This is 559 
expected, since the sensor calibration only improves the absolute values of the measurements, but 560 
does not affect the course of the soil moisture desiccation. The case is different for uncertainty due 561 
to sensor precision, which result in higher deviations between observed and predicted sink term 562 
uptake patterns (Fig. 6). As this method uses linear regression on the temporal evolution of soil 563 
water contents, the quantity of root water uptake depends on the gradient of the slopes. Those slopes 564 
are strongly influenced by the random scatter of data points, which is characteristic for sensor noise. 565 
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Using the smallest time step of 1h, we could estimate the relative depth where 50% of water 566 
extraction occurs with a bias less than 30%. Using higher time resolution with several 567 
measurements per hour or several minutes and noise reducing filters (Li et al., 2002; Peters et al., 568 
2013) would likely further improve this result. This method should be further evaluated in 569 
lysimeters, to test its application in controlled but more realistic environments. 570 
Furthermore, our study demonstrates that measured soil moisture time series already include 571 
information on evapotranspiration and root water uptake patterns. This was already stated by 572 
Musters & Bouten (2002) as well as Zuo & Zhang (2002). Contrary to these studies, where they 573 
only investigated temporal resolutions of one day or more, we additionally looked at measurement 574 
time intervals in the range of hours. Our results confirm that different methods require 575 
measurements with different temporal resolutions. The more simple regression model (msml) 576 
showed better applicability for measurements taken with an interval less than 6 hours. These results 577 
are similar to Naranjo et al. (2011) for a water balance method. The higher time resolution better 578 
reflects the temporal change of evapotranspiration, which may be considerable over the course of a 579 
day (Jackson et al., 1973). Contrary, the Inverse Model works better for coarser temporal resolution 580 
for the case that soil water content measurements are error free. If a possible measurement error is 581 
considered, coarser temporal resolutions are also better suitable to estimate evapotranspiration and 582 
root water uptake. With a higher temporal resolution (here one day instead of several hours) the 583 
total evapotranspiration and sink term also increases (integrated over the entire time). Therefore, the 584 
iteration of the inverse model procedure could determine the sink term with a higher accuracy. 585 
Another important pre-requisite besides temporal resolution of the soil moisture time series is the 586 
adequate number of soil moisture measurements over the entire soil column to capture well the very 587 
non-linear depth profile of water removal from the soil. This becomes most obvious when 588 
comparing the results from the simple one layer water balance method (sssl) with the multi layer 589 
(ssml) one. The prediction of the single layer model is dominated by the specific depth, where the 590 
single sensor is located, and how much it is affected by root water uptake. In the presented case it 591 
strongly underestimated overall evapotranspiration, because it observe only one part of the sink 592 
term profile, and omits both the much more elevated uptake in the top soil and deep uptake below 593 
the measurement depth. In contrast to that, the multi layer method reproduces better the time series 594 
of evapotranspiration, because it samples the uptake profiles more holistically. Similarly, Schwärzel 595 
et al. (2009) and Clausnitzer et al. (2011) also found that high spatial resolution of water content 596 
sensors allow a more reliable determination of evapotranspiration. An important consideration 597 
should be given to the very shallow soil depths, representative for the pure soil evaporation process 598 
(z < 5 cm), which are notoriously under sampled due to technical limitations. This may lead to 599 
underestimation of evaporation and therefore evapotranspiration in all investigated water balance 600 
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applications. 601 
Our results show that water balance methods have potential to be applied for derivation of water 602 
extraction profiles, but they also suggest that their application may be challenging in realistic 603 
conditions. In particular, the Inverse Model (im) has great potential, in theory, but obtaining 604 
information of the soil environment with sufficient accuracy may be unrealistic. The regression 605 
method (msml) is particularly promising, as it requires little input and is comparably robust towards 606 
measurement errors. Further tests in controlled environments and ideally in concert with isotope 607 
studies should be conducted to further test the application of these methods in real world conditions.  608 
The great advantage of all considered methods is that they do not require a priori information about 609 
total evapotranspiration or the shape of the root water uptake profiles. Root water uptake moves up 610 
and down depending on soil water status (Lai & Katul, 1998; Li et al., 2002, Doussan et al., 2006; 611 
Garrigues et al., 2006), and many existing approaches are unable to account for this dynamic of root 612 
water uptake. Root water extraction profiles are central topics in ecological and eco-hydrological 613 
research on resource partitioning (e.g. Ogle et al., 2004; Leimer et al, 2014; Schwendenmann et al., 614 
2014) and drivers for ecosystem structure (Arnold et al., 2010). Water balance methods are potential 615 
tools for comparing those extraction profiles between sites and thus contributing to ecohydrological 616 
process understanding.  617 
 618 
 619 
5. Conclusions 620 
 621 
The aim of this study was to evaluate four water balance methods of differing complexity to 622 
estimate sink term profiles and evapotranspiration from volumetric soil water content 623 
measurements. These methods do not require any a priori information of root distribution 624 
parameters, which is the advantage compared to common root water uptake models. We used 625 
artificial data of soil moisture and sink term profiles to compare the quality of the estimates of those 626 
four methods. Our overall comparison implied the examination of the impact of measurement 627 
frequency, model intricacy as well as the uncertainties of soil moisture sensors on predicting sink 628 
term profiles. For the selected dry period of 33 days and under consideration of possible 629 
measurement uncertainties the Multi Step Multi Layer Regression (msml) obtained the best 630 
estimation of sink term patterns. In general, the predictions with the four data-driven methods show 631 
that these methods have different requirements on the measurement frequency of soil moisture time 632 
series and on additional input data like precipitation and soil hydraulic parameters. Further, we 633 
could show that the more complex methods like the msml and the Inverse Model (im), predict 634 
evapotranspiration and the sink term distribution more accurate than the simpler Single Step Single 635 
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Layer Water Balance (sssl) and the Single Step Multi Layer Water Balance (ssml).  636 
Unfortunately, the estimations of the im are strongly influenced by the uncertainty of 637 
measurements. Moreover, numerical soil water flow models like the im require a large amount of 638 
prior information (e.g. boundary conditions, soil hydraulic parameters) which are usually not 639 
available in sufficient quality. For example, the soil hydraulic parameters have to be calibrated 640 
before use, which introduces additional uncertainties in the parameter sets. It is important to keep 641 
this in mind while comparing the im with the msml, especially in light of the influence of 642 
measurement uncertainties.  643 
Our results show that highly resolved (temporal and spatial) soil water content measurements 644 
contain a great deal of information, which can be used to estimate the sink term when the 645 
appropriate approach is used. However, we acknowledge that this study using numerical 646 
simulations is only a first step towards the application on real field measurements. The msml has to 647 
be tested with real field data, especially with lysimeter experiments. Lysimeters allow closing the 648 
water balance and validation with measured evapotranspiration, while soil water content 649 
measurements can be conducted similar to field experiments. With such experiments, the proposed 650 
method can be evaluated in an enhanced manner. 651 
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Figure captions 870 
 871 
Figure 1: Actual evapotranspiration (ETa) and precipitation (P) (cm/d) in the growing season (from 872 
March 2009 to September 2009) (a) and synthetic time series of soil water content (b) with daily 873 
resolution. 874 
 875 
Figure 2: Short term fluctuations of soil moisture in 15 cm depth during August 2009, showing the 876 
rewetting of soil at night times (blue line) and the water extraction at the day (red line); dashed lines 877 
depict the change between times with soil water extraction (grey) and rewetting of soil (white). 878 
 879 
Figure 3: Top: Comparison of synthetic (ETobs) and estimated (ETsim) values of daily 880 
evapotranspiration for hourly (a) and 3-hourly (b) observation intervals of soil water content 881 
measurements. Bottom: Comparison of synthetic and estimated time series of daily 882 
evapotranspiration (ET) for hourly (c) and 3-hourly (d) observation intervals of soil water content 883 
measurements (25 July to 26 August 2009). Missing values are times where rainfall and percolation 884 
appeared. An estimation of evapotranspiration was not possible with the Single Step Single Layer 885 
Water Balance (sssl), the Single Step Multi Layer Water Balance (ssml) and the Multi Step Multi 886 
Layer Regression (msml) at these days. 887 
 888 
Figure 4: Box plots of the estimated daily percentage of integrated sink term. Colors are assigned as 889 
follows: synthetic values are black, the Inverse Model (im) is red, the Multi Step Multi Layer 890 
Regression (msml) is blue and Single Step Multi Layer Water Balance (ssml) is green. The 891 
percentage of integrated sink term is shown for all measurement locations over the soil column. The 892 
dots describe the mean values; the vertical line depicts the median and the 25% and 75% percentile. 893 
Values are given for the respective underlying time resolution, which achieved the best results, 894 
according table 3 (ssml - 1h; msml - 1h; im - 24h). 895 
 896 
Figure 5: Influence of soil moisture uncertainty on evapotranspiration estimated with the Multi Step 897 
Multi Layer Regression (Regression Model - msml) (a) and the Inverse Model (im) (b). The red line 898 
is the evapotransiration from the synthetic data (Reference). The colored bands indicate the 95% 899 
confidence intervals. 900 
 901 
Figure 6: Comparison of the mean relative bias between synthetic and predicted values of 902 
evapotranspiration and the mean depths where 25%, 50%, 90% of water extraction occurs for soil 903 
moisture time series: without uncertainty (no error), precision uncertainty (precision error), 904 
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calibration uncertainty (calibration error) and precision & calibration uncertainty (combined error) 905 
for the Multi Step Multi Layer Regression (Regression Model – msml) (a) and the Inverse Model 906 
(im) (b). 907 
 908 
Figure S1: Correlation between simulated mean fluxes of the respective day and the mean fluxes in 909 
the nights before and after one particular day. The analysis was conducted with the LinearModel.fit 910 
function of the Statistics toolbox in Matlab R2012.b. 911 
 912 
Figure S2: Evaluation of the inversion process with disturbed soil water content data (calibration 913 
uncertainty) of the im method (daily resolution). Subplot a) shows the difference of simulated and 914 
observed soil water content ei (from Eq. 12) for each conducted iteration step in each depth. Suplot 915 
b) shows the evolution of the decision criteria εZZ at each iteration step and c) depicts the 916 
convergence criteria Δ εZZ and εGH for each iteration step until the reach their value for termination. 917 
Subplot d) shows the reference soil water content profile (θref), the perturbed soil moisture profile 918 
(θcalierror) and the respective iterations. Subplot e) shows the reference sink term and the evaluation 919 
of the estimated sink term over depth for each conducted iteration. 920 
 921 

922 
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List of tables 923 
 924 
Table 1: Overview of the four applied data-driven methods, the acronym of the methods for further 925 
use and the required input data. 926 

Acronym Method Method short description Input data 

sssl Single Step Single Layer 

Water Balance 

Water balance (Naranjo et al., 

2011) 

Volumetric soil water content at 

a single depth 

Precipitation 

ssml Single Step Multi Layer 

Water Balance 

Water balance over entire soil 

profile (Green & Clothier, 1995; 

Coelho & Or, 1996; Hupet et al., 

2002) 

Volumetric soil water content at 

several depths 

  
Precipitation 

msml Multi Step Multi Layer 

Regression 

Approach to use the short term 

fluctuations of soil moisture (Li et 

al., 2002) 

Volumetric soil water content at 

several depths 

  
Precipitation 

im Inverse Model Water balance solved iteratively 

with a numerical soil water flow 

model (Zuo & Zhang, 2002; Ross, 

2003) 

  

Soil hydraulic parameters 

  
Volumetric soil water content at 

several depths 

  
Precipitation 

 927 
 928 
  929 

 930 
931 
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Table 2: Comparison of the model performance of the four data-driven methods for reproducing 932 
daily evapotranspiration for the particular time resolution of soil moisture measurements. The 933 
model performance is expressed as correlation coefficient R, relative variability in simulated and 934 
reference values RV and relative bias (b) for the period 25 July to 26 August 2009. Days at which 935 
rainfall occurs were excluded for the data analysis. 936 
 937 

 
Single Step Single Layer 

Water Balance 

Single Step Multi Layer 

Water Balance 

Multi Step Multi Layer 

Regression  
Inverse Model 

Δt (h) R RV b (%) R RV b (%) R RV b (%) R RV b (%) 

1 0.77 1.51 -38.6 0.64 3.32 54.2 0.58 1.54 -22.9 0.99 0.78 -41.5 

3 0.75 1.54 -38.6 0.66 3.37 46.8 0.71 1.03 20.3 0.99 0.97 -18.2 

6 0.75 1.69 -35.9 0.67 3.52 36.4 0.78 1.87 86.5 0.99 1.03 -7.6 

12 0.75 1.44 -38.6 0.70 3.49 37.1 0.85 4.22 202.4 0.99 1.04 0.89 

24 0.58 1.76 -37.3 0.53 3.72 26.4 - - - 0.99 1.11 3.5 

             

             

 938 
 939 

940 
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Table 3: Comparison of model performance for reproducing the sink term profile (Single Step Multi 941 
Layer Water Balance, Multi Step Multi Layer Regression and Inverse Model). Depths where 25 %, 942 
50 % and 90 % water extraction occurs were regarded. Mean synthetic (syn.) depth and mean 943 
estimated (est.) depth describe the mean depth over 33 days, where water extraction occurs. b is the 944 
relative bias and ̃ݏ is the standard deviation of the estimated values. Larger width of the black arrow 945 
denotes higher accuracy of the model results.  946 

 

Time resolution of 

measurements 

Single Step Multi Layer Water 

Balance 

 1h 

Multi Step Multi Layer Regression 

1h 

Inverse Model  

24h 

Criterion z25% z50% z90% z25% z50% z90% z25% z50% z90% 

Mean syn. Depth 

(cm)  
8.1 17.1 55.6 8.1 17.1 55.6 8.1 17.1 55.6 

Mean est. Depth 

(cm) 
10.8 28.5 101.9 9.7 13.9 63.8 8.2 17.3 57.3 

b (%) 33 74 83 -14 -21 15 0.75 1.05 2.97 

 68.26 4.08 1.81 25.83 4.01 1.69 57.89 12.31 4.07 ݏ̃

          

 947 
948 
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Table 4: Comparison of the model performance with considering soil moisture measurement 949 
uncertainties for the Multi Step Multi Layer Regression and the Inverse Model for reproducing 950 
daily evapotranspiration and the mean depths where 25 %, 50 % and 90 % water extraction occurs. 951 
The model performance is expressed as correlation coefficient R, relative variability in simulated 952 
and reference values RV and relative bias (b) for the period 25 July to 26 August 2009. The 953 
precision uncertainty is abbreviated by prec err, the calibration uncertainty by cali err and the 954 
combined uncertainty by com err. The relative bias for reproducing evapotranspiration is 955 
abbreviated with bET and for reproducing mean depths where 25 %, 50 % and 90 % water 956 
extraction occurs is abbreviated with b25%, b50% and b90%, respectively. 957 

 

Time resolution of 

measurements 

Multi Step Multi Layer Regression 

 

1h 

Inverse Model 

 

24h 

Criterion prec err cali err com err prec err cali err com err 

R 0.90 0.89 0.91 -0.027 0.847 -0.054 

RV 1.35 1.50 1.35 1.51 1.25 1.85 

Median bias bET (%) -6.2 -4.9 -6.1 -10.3 498.1 483.3 

Median bias b25% (%) 19.6 3.6 19.5 25.2 531.1 405.1 

Median bias b50% (%) 28.0 5.4 27.7 42.0 622.4 659.1 

Median bias b90% (%) 80.8 27.7 84.7 128.5 757.6 569.0 

       

958 
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List of figures  959 

 960 
Figure 1: Actual evapotranspiration (ETa) and precipitation (P) (cm/d) in the growing season (from 961 
March 2009 to September 2009) (a) and synthetic time series of soil water content (b) with daily 962 
resolution. 963 

 964 
  965 
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 966 
Figure 2: Short term fluctuations of soil moisture in 15 cm depth during August 2009, showing the 967 
rewetting of soil at night times (blue line) and the water extraction at the day (red line); dashed lines 968 
depict the change between times with soil water extraction (grey) and rewetting of soil (white). 969 

 970 

  971 
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 972 

Figure 3: Top: Comparison of synthetic (ETobs) and estimated (ETsim) values of daily 973 
evapotranspiration for hourly (a) and 3-hourly (b) observation intervals of soil water content 974 
measurements. Bottom: Comparison of synthetic and estimated time series of daily 975 
evapotranspiration (ET) for hourly (c) and 3-hourly (d) observation intervals of soil water content 976 
measurements (25 July to 26 August 2009). Missing values are times where rainfall and percolation 977 
appeared. An estimation of evapotranspiration was not possible with the Single Step Single Layer 978 
Water Balance (sssl), the Single Step Multi Layer Water Balance (ssml) and the Multi Step Multi 979 
Layer Regression (msml) at these days. 980 

 981 

 982 

 983 
  984 
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 985 
Figure 4: Box plots of the estimated daily percentage of integrated sink term. Colors are assigned as 986 
follows: synthetic values are black, the Inverse Model (im) is red, the Multi Step Multi Layer 987 
Regression (msml) is blue and Single Step Multi Layer Water Balance (ssml) is green. The 988 
percentage of integrated sink term is shown for all measurement locations over the soil column. The 989 
dots describe the mean values; the vertical line depicts the median and the 25% and 75% percentile. 990 
Values are given for the respective underlying time resolution, which achieved the best results, 991 
according table 3 (ssml - 1h; msml - 1h; im - 24h). 992 
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 995 
Figure 5: Influence of soil moisture uncertainty on evapotranspiration estimated with the Multi Step 996 
Multi Layer Regression (Regression Model - msml) (a) and the Inverse Model (im) (b). The red line 997 
is the evapotransiration from the synthetic data (Reference). The colored bands indicate the 95% 998 
confidence intervals. 999 

 1000 
  1001 
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 1002 
Figure 6: Comparison of the mean relative bias between synthetic and predicted values of 1003 
evapotranspiration and the mean depths where 25%, 50%, 90% of water extraction occurs for soil 1004 
moisture time series: without uncertainty (no error), precision uncertainty (precision error), 1005 
calibration uncertainty (calibration error) and precision & calibration uncertainty (combined error) 1006 
for the Multi Step Multi Layer Regression (Regression method - msmsl) (a) and the Inverse Model 1007 
(im) (b). 1008 
  1009 
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Supplementary figures: 1010 
 1011 

 1012 
Figure S1: Correlation between simulated mean fluxes of the respective day and the mean fluxes in 1013 
the nights before and after one particular day. The solid red line is the regression line and the solid 1014 
black line represents the 1:1 line. The analysis was conducted with the LinearModel.fit function of 1015 
the Statistics toolbox in Matlab R2012.b. 1016 
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 1017 
 1018 

Figure S2: Evaluation of the inversion process with disturbed soil water content data (calibration uncertainty) of the im method (daily resolution). 1019 
Subplot a) shows the difference of simulated and observed soil water content ei (from Eq. 12) for each conducted iteration step in each depth. Suplot b) 1020 
shows the evolution of the decision criteria εZZ at each iteration step and c) depicts the convergence criteria Δ εZZ and εGH for each iteration step until 1021 
the reach their value for termination. Subplot d) shows the reference soil water content profile (θref), the perturbed soil moisture profile (θcalierror) and the 1022 
respective iterations. Subplot e) shows the reference sink term and the evaluation of the estimated sink term over depth for each conducted iteration. 1023 


