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Abstract 

The scarcity of water encourages scientists to develop new analytical tools to enhance water 
resource management. Water accounting and distributed hydrological models are examples of 
such tools. Water accounting needs accurate input data for adequate descriptions of water 
distribution and water depletion in river basins. Ground-based observatories are decreasing, and 
not generally accessible. Remote sensing data is a suitable alternative to measure the required 
input variables. This paper reviews the reliability of remote sensing algorithms to accurately 
determine the spatial distribution of actual evapotranspiration, rainfall and land use. For our 
validation we used only those papers that covered study periods of one season to annual cycles 
because the accumulated water balance is the primary concern. Review papers covering shorter 
periods only (days, weeks) were not included in our review. Our review shows that by using 
remote sensing, the absolute values of evapotranspiration can be estimated with an overall 
accuracy of  95% (STD 5%) and rainfall with an overall absolute accuracy of 82% (STD 15%). 
Land use can be identified with an overall accuracy of 85% (STD 7%). Hence, more scientific 
work is needed to improve the spatial mapping of rainfall and land use using multiple space-
borne sensors. While not always perfect at all spatial and temporal scales, seasonally 
accumulated actual evapotranspiration maps can be used with confidence in water accounting 
and hydrological modeling.  
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1. Introduction 

The demand for fresh water is increasing worldwide due to economic and population growth 
(Molden et al., 2007; Vörösmarty et al., 2010). Proper planning of such scarce water resources in 
terms of storage, allocation, return flow and environmental services is vital for optimizing the 
resource (Chartres and Varma, 2010). There is, however, a lack of fundamental data on vertical 
and lateral water flows, water stocks, water demand, and water depletion. At the same time, there 
is a decline in the network density of operational hydro-meteorological field stations. The 
absence of adequate field data sets is an important obstacle for sound, evidence-based water 
resource management decisions. The consequence of data scarcity is more severe in trans-
boundary river basins where, apart from collection, the accessibility of data is hindered by 
political issues (Awulachew et al., 2013).  

Remotely sensed hydrological data are an attractive alternative to conventional ground data 
collection methods (Bastiaanssen et al., 2000; Engman and Gurney, 1991; Wagner et al., 2009, 
Neale and Cosh, 2012). Satellites measure the spatial distribution of hydrological variables 
indirectly with a high temporal frequency across vast river basins. There are many public data 
archives where every user can download pre-processed satellite data. Quality flags are often 
provided, as well as manuals with explanations on how the satellite data have been pre-processed 
and can be reproduced. These recurrent data sets are highly transparent, politically neutral and 
consistent across entire river basins, even for large basins such as the Nile and the Ganges. While 
certain satellite data sets have been processed to a first level of reflectance, emittance, and 
backscatter coefficients, others will even provide second level products that can be directly 
explored for water resource planning purposes (e.g. land cover, soil moisture, and rainfall). 
Evapotranspiration (ET) is one of the parameters that often requires additional processing of the 
spectral data; only a very few public domain data archives provide pre-processed ET data, and in 
fact, spatial ET modeling is still under developed. Examples of several remotely sensed ET 
algorithms that could be applied to interpret raw satellite data into spatial layers of ET are well 
summarized in a recent book edited by Irmak (2012).  

Time series of various hydrological variables such as precipitation, evapotranspiration, snow 
cover, soil moisture, water levels, and aquifer storage can be downloaded from public domain 
satellite-based data archives. With the right analytical tools and skills, these abundant datasets of 
hydrological processes can be used to produce information on water resource condition in river 
basins. Tools such as Water Accounting Plus (WA+) (Bastiaanssen, 2009; Karimi et al., 2013a, 
2013b) are expressly designed to exploit remote sensing estimates of hydrological variables. 
Water accounting is the process of communicating water related information about a 
geographical domain, such as a river basin or a country, to users such as policy makers, water 
authorities, basin managers, and public users. Water accounting information can be key to river 
basin management policy, especially when administrations are reluctant to share their – 
sometimes imperfect - in situ data with neighboring states and countries. WA+ can facilitate 
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conflict management in internationally shared river basins. In addition to that, hydrological 
variables derived from remote sensing can also be used for spatially distributed hydrological 
modeling. Studies by Houser et al. (1998), Schuurmans et al. (2003), and Immerzeel and 
Droogers (2008) have, for instance, demonstrated that such inputs have improved hydrological 
model performance for river basins in Australia, The Netherlands and India respectively. 

A major point of criticism that is commonly laid down on remote sensing data has been the lack 
of accuracy. With the improvement of technology the accuracy has however improved 
significantly over the last 30 years; yet it is necessary to remain critical. It is important to note 
that the conventional methods of measuring hydrological processes (e.g. rainfall and discharge) 
are not flawless either, and thus the accuracy of both types of measurements needs to be verified. 
There are also limitations with what conventional measurements methods can offer especially 
when spatially distributed data is concerned. For instance the actual evapotranspiration (ET) of 
river basins can hardly be measured operationally through ground measurements, and therefore 
the depletion of water remains difficult to estimate and quantify. Thus, ET is often ignored in 
water accounting frameworks such as the SEEA-Water system proposed by the United Nations 
Statistics Division (UN, 2007) and the Australian water accounting system ( ABS, 2004). 
Remote sensing techniques on the other hand can provide spatially distributed daily estimates of 
actual ET and this opens new pathways in the accounting of water depletion (Karimi et al., 
2013a). 

This paper investigates the errors and reliability of remotely sensed ET, rainfall, and land use 
based on a comprehensive literature review. The choice of the variables that have been 
investigated in this paper (ET, Rainfall, LULC) is based on the common use in hydrological and 
water resources management studies.  Only recent publications on accumulated ET and rainfall 
for a minimum time period of one growing cycle have been consulted, which implies that some 
of the well-known reference papers are excluded because they relate to shorter flux observation 
periods. Elder remote sensing algorithms were also excluded. . The companion paper (Karimi et 
al., 2014) investigates impacts of the errors associated with the satellite measurement for ET, 
rainfall and land use on the accuracy of WA+ outputs, using a case study from the Awash basin 
in Ethiopia. 
 

2. Remote Sensing Data for Water Accounting (WA+) 

2.1 Evapotranspiration 

Over the past decades several methods and algorithms to estimate actual evapotranspiration (ET) 
through satellite measurements have been developed. Most of these estimates are based on the 
surface energy balance equation. The surface energy balance describes the partitioning of natural 
radiation absorbed at the earth surface into physical land surface processes. Evapotranspiration is 
one of these key processes of the energy balance, because latent heat (energy) is required for 
evaporation to take place. The energy balance at the earth surface reads as: 
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LE = Rn - G -  H     (W m-2)    (1) 

Where Rn is the net radiation, G is the soil heat flux, H is the sensible heat flux, and LE is the latent 
heat flux. The sensible heat flux H is a function of the temperature difference between the canopy 
surface and the lower part of the atmosphere, and the soil heat flux G is a similar function related 
to the temperature difference between the land surface and the top soil. A rise of surface 
temperature will thus usually increase H and G fluxes. Evaporative cooling will reduce H and G, 
and result in a lower surface temperature. The latent heat flux LE is the equivalent energy amount 
(W m-2) of the ET flux (kg m-2 s-1 or mm d-1). The net radiation absorbed at the land surface is 
computed from shortwave and long wave radiation exchanges. Solar radiation is shortwave and is 
the most important supplier of energy. More information on the energy balance is provide in 
general background material such as Brutsaert (1982), Campbell and Norman (1998) or Allen et 
al. (1998). 

Surface temperature is measured routinely by space borne radiometers such as the Advanced Very 
High Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spectrometer (MODIS), 
Visible Infrared Imager Radiometer Suite (VIIRS), Landsat, Advanced Space borne Thermal 
Emission and Reflection Radiometer (ASTER), China Brasil Earth Resources Satellite (CBERS), 
and the Chinese HJ and Feng Yung satellites. Remotely sensed surface temperature is the major 
input variable in ET algorithms. Examples of thermal infrared ET algorithms are provided by 
EARS (Rosema, 1990), SEBAL (Bastiaanssen et al., 1998), TSEB (Norman et al., 1995), SEBS 
(Su, 2002; Jia et al., 2003), METRIC (Allen et al., 2007), ALEXI (Anderson et al., 1997), and 
ETWatch (Wu et al., 2012). The differences among these algorithms are often related to the 
parameterization of H, general model assumptions, and the amount of input data required to 
operate these models.  

Other groups of ET algorithms are based on the vegetation index and its derivatives such as 
published by Nemani and Running (1989), Guerschman et al. (2009), Zhang et al. (2010a), Mu et 
al. (2011), and Miralles et al. (2011). ETLook (Bastiaanssen et al., 2012) is a new ET model that 
directly computes the surface energy balance using surface soil moisture estimations for the top 
soil (to feed soil evaporation) and sub-soil moisture for the root zone (to feed vegetation 
transpiration). Soil moisture data can be inferred from thermal measurements (e.g. Scott et al., 
2003) or from microwaves measurements (e.g. Dunne et al., 2007). Microwave measurements 
provide a solution for all weather conditions and can be applied at any spatial scale for which 
moisture data is available.  

A different school of remote sensing based ET algorithms is built around the derivation of a relative 
value of ET using trapezoid/triangle methods. Trapezoid/triangle diagrams are constructed from a 
population of pixel values of surface temperature and vegetation index and used to infer the relative 
value of ET (e.g. Choudhury, 1995; Moran et al., 1994; Roerink et al., 2000; Wang et al., 2007).  
In these diagrams, the range of surface temperature values at a given class of vegetation index is 
the basis for determining relative ET, assuming that the lowest temperature in a certain range of 
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vegetation index represents potential ET. The highest temperature coincides with zero evaporation.  
The main assumption in triangle/trapezoidal methods is that the variation in vegetation index 
relation to surface temperature is driven primarily by the variation in soil water content rather than 
differences in atmospheric conditions.  

Merging different global ET products such as MOD16 (Mu et al., 2011) and ERA-Interim (Dee et 
al., 2011) at global and regional scales into one ET product is another approach that has been used 
by a group of scientists.  This approach mainly uses statistical methods to combine ET products 
that are based on different methods, algorithms, and origins (e.g. Global: Mueller et al., 2013; 
Africa: Trambauer et al., 2013; US: Velpuri et al., 2013). New ensemble ET products on the basis 
of several open access and global scale operational ET products from earth observations are under 
development, but are not published yet. 

Review papers on advanced algorithms for estimating spatial layers of ET are published by Moran 
and Jackson (1991), Kustas and Norman (1996), Bastiaanssen (1998), Courault et al. (2005), Glenn 
et al. (2007), Gowda et al. (2007), Kalma et al. (2008), Verstraeten et al. (2008), and Allen et al. 
(2011). While these review papers provide a good understanding of the evolution of ET algorithm 
development, they rarely report the accuracies attainable, especially at a seasonal or longer time 
frame. 

 

2.2 Rainfall 
 

There are different algorithms to infer rainfall from satellite data. The four essentially different 
technologies are (i) indexing the number and duration of clouds (Barrett, 1988), (ii) accumulated 
cold cloud temperatures (Dugdale and Milford, 1986), (iii) microwave emissivity (Kummerow et 
al., 1996), and (iv) radar reflectivity (Austin, 1987). Techniques using microwave wavelength 
information are promising alternatives for measuring rainfall because of the potential for sensing 
the raindrops itself and not a surrogate of rain, such as the cloud type. Microwave radiation with 
wavelengths in the order of 1 mm to 5 cm has a strong interaction with raindrops, since the drop 
size of rain is comparable to this wavelength. This feature makes them suitable to detect rainfall 
intensity. Active microwave (radar) measurements of rainfall are based on the Rayleigh scattering 
caused by the interaction of rain and the radar signal (Cracknell and Hayes, 1991). Space borne 
radar measurements of rain intensity are possible with the Precipitation Radar aboard the NASA 
Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Mission (GPM) satellites, 
which assesses the attenuation of the radar signal caused by the rain. The precipitation radar (PR) 
has a pixel size of 5 km and can oversee a swath of 220 km. Unfortunately, it is usually necessary 
to evaluate the rainfall radar reflectivity factor empirically on a region-by-region basis over lengthy 
periods of time. In other words, rain radar systems – both ground-based and satellite-based – need 
calibration for proper rainfall estimates. We will conclude later that most papers investigated in 
our review process do apply a certain level of field calibration. Several operational rainfall 
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products based on satellite measurements have been created or improved more recently. Among 
the new ensemble rainfall products is the Climate Hazards Group IR Precipitation Station 
(CHIRPS) that provides promising results (Funk et al., 2013). 

Review papers on the determination of rainfall from satellite measurements have been prepared, 
by, for instance, Barrett (1988), Barrett and Beaumont (1994), Petty (1995), Petty and Krajewski 
(1996), Kummerow et al. (1996), Smith et al. (1998), Kidd (2001), Stephens and Kummerow 
(2007),  Huffman et al. (2007). A selection of available rainfall products based on remote sensing 
techniques – sometimes used in combination with other methodologies - is presented in Table 1. 

Table 1. 

2.3 Land use 

Whereas land cover describes the physical properties of vegetation (e.g. grass, savannah, forest), 
land use denotes the usage of that land cover (e.g. pasture, crop farming, soccer field). Maps of 
land use are fundamental to WA+ because it determines the services and processes in a spatial 
context.  Different types of land use provide benefits and services such as food production 
(agricultural land), economic production (industrial areas), power generation (reservoirs), 
environmental ecosystems (wetlands), livelihoods etc., and they have an associated water  
consumptive use. Land use classification based on the use of water, differs from classical land 
use land cover maps that focus mainly on the description of woody vegetation such as forests and 
shrubs for ecological and woodland management purposes. WA+ needs land use maps focused 
on crop types (e.g. rainfed potatoes, irrigated maize) and the source of water consumed (e.g. 
surface water and groundwater). Some of the first maps dedicated for agricultural water 
management were prepared by Thenkabail et al. (2005), Cheema and Bastiaanssen (2010),  
Yalew et al. (2012) and Kiptala et al. (2013). Furthermore, land use classifications for WA+ at 
river basin scale require a pixel size of 30 to 100 meter that can be delivered by Landsat-8 and 
Proba-V satellite data respectively. It is expected that the arrival of Sentinel-2 data during the 
course of 2014 with pixel sizes ranging between 10 to 30 m and a short revisit time of 5 days will 
greatly enhance development of new land use classifications that are tailored for water use and 
water accounting. 

Land use changes affect the water balance of river basins and thus also the amount of water 
flowing to downstream areas. Bosch and Hewlett (1982) and Van der Walt et al. (2004) discuss 
for instance how replacing natural vegetation by exotic forest plantations reduced the stream 
flow in South Africa. Maes et al. (2009) evaluated the effect of land use changes on ecosystem 
services and water quantity on basins in Belgium and Australia. The role of land use is thus a 
crucial component of sound water accounting and water resource management (Molden, 2007). 

Land use is usually identified on the basis of spectral reflectance and its change with vegetation 
phonology. The reflectance in the near and middle infrared part of the electromagnetic spectrum 
especially, is often related to certain land use classes. The relationship between reflectance and 
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land use is however not unique, and field inspections are usually needed for better interpretation. 
Soil type, soil moisture and surface roughness all have an influence on reflectance. The health of 
the vegetation and factors such as the angle and size of leaves also affect the photosynthetic 
activity of the plants. There is another land use mapping technology that is entirely based on the 
difference in time profiles of spectral vegetation indices. Fourier analysis of vegetation index can 
be used to quantify land use classes and crop types (e.g. Roerink et al., 2003), especially when 
time profiles are linked to existing cropping calendars.   

All the land use classification papers we reviewed report on a confusion matrix that describes the 
overall classification accuracy by showing how often certain land use classes are confused in the 
remote sensing analysis with other land use classes. Congalton (1991) and Foody (2002) give a 
full explanation on errors in land use data. 

Review papers on the use of remote sensing for land use land cover classification are provided in 
Bastiaanssen (1998), Smits et al. (1999), Mucher et al. (2000), Cihlar (2000), Franklin and 
Wulder (2002), Thenkabail et al. (2009b), and García-Mora et al. (2012). 

3. Results 

3.1 Accuracy of spatial evapotranspiration data 

The lack of validation of spatial layers of ET is one of the drawbacks in defining the reliability of 
remotely sensed ET products. There are no reliable and low cost ground-based ET flux 
measurement techniques, although new inventions are always underway (Euser et al., 2013). It is 
simply too costly to install instruments that have the capacity to measure ET operationally at 
various locations dispersed across a river basin. The main methods to measure ET at the field 
scale include lysimeters, Bowen ratio, Eddy covariance systems, surface renewal systems, 
scintillometers, and classical soil water balancing. Lysimeters can be very accurate for in-situ 
measurements of ET at small scale if they are properly maintained. Bowen ratio and Eddy 
covariance flux towers and surface renewal systems are fairly accurate methods for estimating 
ET at scales of up to1 km (Rana and Katerji, 2000), although not free of errors (e.g.  Teixeira and 
Bastiaanssen, 2010; Twine et al., 2000). Scintillometers have the capability to measure fluxes 
across path lengths of 5 to 10 km (Hartogensis et al., 2010; Meijninger and de Bruin, 2000). 

To deal with the problem of measuring ET fluxes in a composite terrain, large-scale field 
experiments in the African continent (e.g. Sahel: Goutorbe et al., 1997; Southern Africa: Otter et 
al., 2002), the European continent (e.g. France: Andre et al., 1986; Spain: Bolle et al., 2006), the 
American continent (e.g. Kansas: Smith et al., 1992; Arizona & Oklahoma: Jackson et al., 1993) 
and the Asian continent (e.g. China: Wang et al., 1992: Korea: Moon et al., 2003) were set up to 
measure fluxes simultaneously within a certain geographic region at a number of sites with 
different land use classes. Several remotely sensed ET algorithms were developed and validated 
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using these datasets. The limitation is however that the duration of these field campaigns was for 
budgetary reasons restricted to several weeks only. 

Validation studies with different ET algorithms using the same spatial ground truth data sets are 
very interesting. The International Water Management Institute (IWMI) undertook for instance a 
validation study to determine the accuracy of various ET methods for irrigated cotton and grapes 
in Turkey (Kite and Droogers, 2000). Although here, the period was not sufficiently long to 
encompass one growing season. The Commonwealth Science and Industrial Research 
Organisation (CSIRO) in Australia studied the predictions of eight different ET products, at a 
minimum monthly frequency and at a spatial resolution of at least 5 km, using flux tower 
observations and watershed data across the entire continent as part of the Water Information 
Research and Development Alliance (WIRADA) project (Glenn et al., 2011). The studied ET 
products were based on different methods including large scale water balance modeling, thermal 
imagery (Mcvicar and Jupp, 1999, 2002), spectral imagery (Guerschman et al., 2009), inferred 
LAI (Zhang et al., 2010b), passive microwave (Bastiaanssen et al., 2012), and global MODIS 
reflectance based algorithm (Mu et al., 2007).  The results showed that at annual scale remote 
sensing based ET estimates, barring the global MODIS product that was at the time an unrefined 
method that needed improvements (Mu et al., 2011), had an acceptable mean absolute percentage 
error (MAPE) ranging from 0.6% to 18% with an average MAPE of 6% (King et al., 2011). 
Along similar lines, the Council for Scientific and Industrial Research (CSIR) in South Africa 
conducted a remote sensing study on a smaller scale to investigate the performance of three ET 
algorithms (Jarmain et al., 2009).  

To assess the overall error in accumulated ET products, a comprehensive literature review was 
conducted and reported errors by various authors were synthesized. All the papers included in 
the review were published within the past 13 years (hence from the year 2000 onwards) and they 
cover a range of in-situ measurements and remote sensing ET algorithms. The reviewed papers 
cover a range of remote sensing methods for ET measurements including SEBAL, METRIC, 
SEBS, TSEB, ALEXI, ET Watch, and SatDAET.  In essence, the spatial ET layers reported in 
these papers were not a priori calibrated and the authors reported on the validation aspect. Since 
the primary purpose of this study was to quantify errors in accumulated ET, only papers that 
report errors on ET estimates over a minimum period of one growing cycle which on average is 
about 5-6 months, hereafter called seasonal ET, were consulted. Papers dealing with ET over 
shorter periods were thus excluded in our review (e.g. Anderson et al., 2011; Chávez et al., 2008; 
Gonzalez-Dugo et al., 2009; Mu et al., 2011). This, also, implies that GEWEX related field 
experiments could not be used because intensive campaigns with multiple flux covered periods 
of weeks only. The manifold flux campaigns organized by the US Department of Agriculture ( 
Kustas et al., 2006; JORNEX: Rango et al., 1998; SALSA: Chehbouni et al., 1999) also did not 
meet our criterion. To be able to compare error levels from different studies only papers that 
report errors in terms of mean error were included in the review. Thus, some of the valuable 
papers on this topic that use RMSE to describe errors without including mean error could not be 
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included in the review (e.g. Batra et al., 2006; Cleugh et al., 2007; Guerschman et al., 2009; 
Venturini et al., 2008). The data sources consulted are summarized in Appendix A. It reflects the 
accumulated ET conditions encountered in 11 countries. Thirty one publications met the criteria 
specified and were analyzed. One publication often contains more data points due to multiple 
models, multiple years, and multiple areas. Hence, the total number of points was n=46. 
Considering this number, the probability density function is unlikely to change if other papers – 
or more papers – were to be considered in the review. 

The probability distribution of mean absolute percentage error in remote sensing ET estimates is 
presented in Figure 1. The results demonstrate the absolute error of annual or seasonal ET to 
vary between 1 to 20%. The average MAPE is 5.4%, with a standard deviation of 5.0%. It is 
evident from Figure 1 that the distribution is positively skewed. These results are closely in line 
with findings by King et al. (2011) in Australia, both in terms of average and the range of error 
in ET estimates. 

Many of the publications reported an error of less than 5%, a remarkable good and unexpected 
result. Many authors of the papers are both the developer and the tester of the algorithms, and 
parameter tuning was possible. The left hand bar of in Figure 1 is, we believe, a biased view of 
the reality. For this reason, the data points were fitted by means of a skewed normal distribution 
so that less weight is given to the class with exceptionally low errors.
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Figure 1. 

 

Figure 1: Probability density function of the reported mean absolute percentage error in remotely 
sensed ET estimates. A season or longer period was considered.  

There are seven papers that report a mean absolute percentage error of 1 % for the ET of 
cropland. Without exception, all these papers are based on the Surface Energy Balance 
Algorithm for Land (SEBAL) and its related algorithm Mapping ET at High Resolution with 
Internalized Calibration (METRIC). Apparently these algorithms work well for crops, which was 
recognized earlier by Bastiaanssen et al. (2009) and (Allen et al., 2011). Another interesting 
observation is that at river basin scale – i.e. the scale where water accounting is done - all papers 
report MAPE of less than 5%. These case studies include: 3% difference between the measured 
ET and remotely sensed ET of selected river basins in Sri Lanka (Bastiaanssen and Chandrapala, 
2003), 1.7% difference observed by Singh et al. (2011) for the Midwest USA using the METRIC 
algorithm, 1.8% and 3% differences observed by Wu et al. (2012) using ET Watch in the Hai 
Basin of the North China plain, and 5% difference observed by Bastiaanssen et al. (2002) for the 
Indus Basin,  1% difference observed by Evans et al. (2009) for Murray darling, and 0.6%, 2.1%, 
3.9%, and 18% difference for different algorithm observed by King et al. (2011) for Australian 
continent. 

At the other end of the spectrum, the largest ET deviations were found by Jiang et al. (2009) for 
alkali scrubs in south Florida. They used the SatDAET algorithm which is an ET estimation 
method that uses the contextual relationship between remotely sensed surface temperature and 
vegetation index to calculate evaporative fraction (EF). They compared the estimated ET using 
SatDAET for both clear and cloudy days with ET from lysimeter and observed a 19% difference 
for 1999. 

There is no single preferred ET model. The selection of the algorithm depends on the 
application, the required spatial resolution, the period for which the ET fluxes should be 
estimated for, the size of the study area, the land use classes present etc. A useful distinction is to 
discern global scale models (few) and local scale models (many). Also the level of validation and 
application of these models widely differ.  Whereas certain models are tested with a single 
experimental flux site, other models have been applied in more than 30 countries.  

Considering this positive evaluation, spatial layers of ET should be encouraged for applications 
in water accounting and hydrological modeling. Except for Jhorar et al. (2011), Winsemius et al. 
(2009) and Muthuwatte et al. (2013), this is rarely done because water managers and 
hydrologists do not accept ET layers as being sufficiently accurate. This new analysis proves that 
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the science of remote sensing  in the last 13 years has advanced and that mapping of ET has 
become more reliable. 

3.2 Accuracy of spatial rainfall data 

A comprehensive literature review - similar to ET – was conducted for remote sensing rainfall 
products. Twenty four peer reviewed papers that describe the accuracy of annual and seasonal 
rainfall from satellites, published over the last five years was reviewed (see Appendix B). Sixty 
eight data points were reconstructed from these publications. The selected papers used various 
remote sensing rainfall products including TRMM, PERSIANN, RFE, ERA40, CMORPH, and 
CMAP.  A common problem is the scale mismatch between rain gauges and the area integrated 
rainfall of one single microwave-based pixel of the satellite image.  

Several of these papers compared different rainfall algorithms. Some also used the same field 
data to verify several rainfall algorithms. For example, Asadullah et al. (2008) compared five 
satellite-based rainfall estimates (SRFE) with historical average rainfall data from gauges over 
the period 1960-1990 in Uganada. The difference between gauged data and SRFEs was found to 
vary between 2% to 19%. Products such as CMORPH, TRMM 3B42, TAMSAT, and RFE 
underestimated rainfall by 2%, 8%, 12%, and 19% respectively, while PERSIANN 
overestimated by 8%. Stisen and Sanholt (2010) compared three global SRFE products, i.e. 
CMORPH, TRMM 3B42 and PERSIANN, and two SRFEs made for Africa, i.e. CPC-FEWS v2 
and a locally calibrated product based on TAMSAT data, with the average gauge rainfall in 
Senegal River basin. They concluded that rainfall estimation methods that are designed for 
Africa significantly outperform global products. This superior performance is attributed both to 
the inclusion of local rain gauge data and to the fact that they are made specifically for the 
atmospheric conditions encountered on the African continent. Of the global products, SRFEs 
TRMM was found more accurate, presumably because monthly calibration of the 3B43 product 
is a default process of the algorithm. The global SRFEs showed an improved performance after 
bias correction and recalibration. The positive effects of the inclusion of rain gauge data in 
SRFEs is also reported by Dinku et al. (2011) in their study which compared five SRFEs with 
rain gauge data in the Blue Nile basin. Several studies show that local calibration significantly 
improves accuracy of satellite based rainfall estimates: Almazroui et al. (2012) in Saudi Arabia, 
Cheema and Bastiaanssen (2012) in the Indus basin, Duan and Bastiaanssen (2013) in the Lake 
Tana and Caspian Sea regions, and Hunink et al. (2014) in the high elevation Tungurahua 
province in the Andes mountain range of Ecuador. 

The error probability distribution function curve reconstructed from the a priori calibrated 
rainfall dataset is shown in Figure 2. The mean absolute percentage error varies between 0 to 
65%, and the average MAPE for calibrated satellite rainfall estimates is 18.5%. The standard 
deviation is 15.4%, with a positive skewness of 0.9. As with the density function for ET, the 
curve fitting of the distribution was forced with a skewed normal distribution to ensure that less 
weight is assigned to the class of 0 to 10% deviation. This indicates that for the majority of case 



   

12 
 

studies, the error in calibrated rainfall maps is less than 18.5%. Large errors bands were found 
for all rainfall algorithms, and no particular algorithm performs better in terms of variance. The 
unresolved problem of the pixel - gauge scale mismatch is one major source of this problem. The 
average MAPE is 14, 17, 21, 23, 28, and 29% for TRMM, ERA40, GPCP 1DD, CMORPH, 
RFE, and PERSIANN respectively. These average values represent the average MAPE of each 
SRFE regardless of the product version.  

The interim conclusions are therefore that (i) the processes to derive rainfall from satellite data 
are more complex than the derivation of ET and (ii) that the performance of existing rainfall 
products is not satisfactory and requires caution when applied for water accounting and 
hydrological modeling, despite the fact that most SRFE’s have an a priori calibration procedure. 
More research and development of operational rainfall algorithms using various types of sensors 
is deemed necessary.   

Figure 2. 

Figure 2: Probability density function of the reported mean absolute percentage error in rainfall 
estimates from remote sensing. A season or longer period is considered.   

3.3  Accuracy of land use land cover maps 

The publications listed in Appendix C were reviewed for land use estimations. Sixty five papers 
were reviewed. Seventy eight data points were reconstructed from these papers. Rather diverging 
land use classes and data from 35 different countries were included in this comparative dataset. 
The results are presented in Figure 3. The shape of the probability density function of error 
differs from the ones obtained for ET and rainfall: it is tending towards a standardized normal 
distribution, which implies that the number of very good results and very poor results are similar. 
Table 2 provides a summary of the statistical results. The mean absolute percentage error defined 
as 1 minus overall accuracy, for land use classification is 14.6%, with a standard deviation of 
7.4% and a skewness of 0.35.  

The overall performance is rather good, and this can be partially explained by the fact that high 
resolution satellites were often used for the land use and land cover classification. The spectral 
measurements of Landsat and Aster satellites were especially often applied, because they have 
bands suitable for the detection of a range of land use classes in the near and middle infrared part 
of the spectrum. To investigate the impact of the spatial resolution of the used imagery on the 
accuracy of the land use product, we divided the data points into two groups based on the 
reported resolution. The MAPE for land use classification that are based on high resolution 
images, 30 m and less, is 12.9%, whereas for those that use moderate and low resolution images, 
more than 200 m, the MAPE is 19.8%. The number of land use classes shows no significant 
impact on the overall accuracy of the map. The results reveal that the global scale land cover 
maps have lower overall accuracy due to their large pixel size. The overall accuracies of global 
maps varies between 69 to 87% with an average of 76.4%, which is equivalent to MAPEof 13 to 
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31% and average of 23.4%. This observation shows that global land cover maps should be used 
with caution in water accounting applications. 

The overall accuracy in the reviewed papers varies between 68% to 98%. This is in good 
agreement with the suggested range of 70% to 90% by Bach et al. (2006) in their review paper. 
The review also revealed that Landsat products, with 42 case studies out of the total 78, are the 
most commonly used imagery for land use land cover classification purposes. The free access 
Landsat-8 data may thus set the directions for near future development of land use 
classifications, especially when being complemented with Sentinel data. The Finer Resolution 
Observation and Monitoring Global Land Cover (Gong et al., 2013) is an example of that. 

Many land use studies are based on ground truth data sets that are used for controlling or 
supervising the classification process. The data in Appendix C thus have an element of a priori 
calibration which increases the overall accuracy. Without ground-truthing the overall calibration 
can be expected to be lower. Also, it must be noted that only the overall accuracy of the 
confusion matrix is used. While the overall accuracy might be acceptable, it is likely that the 
error in certain individual land use classes is significantly different.   

Figure 3. 

Figure 3: Probability density function of the reported mean absolute percentage error in land use 
classification using remote sensing.  

Table 2. 

 

 
4. Conclusions and way forward 

Increasing number of satellite-based measurements of land and water use data are provided by 
generally accessible data archives, although evapotranspiration data sets are under development. 
Satellites provide spatial information with a high temporal frequency over wide areas, which 
make remotely sensed maps of land use and hydrological variables an attractive alternative to 
conventionally collected data sets. However, the uncertainty about the possible errors in remote 
sensing estimates has been an ongoing concern among the users of these products.  The goal of 
this study was to investigate the errors and reliability of some of these remotely sensed 
hydrological variables created by advanced algorithms through an international literature review. 
Only recent data sets, not older than 13 years, were reviewed. 

The main interest of this review was to understand the measure of error in remote sensing data 
for water accounting. The review focused on ET, precipitation, and land use classifications. A 
comprehensive literature review was conducted and for each variable several numbers of peer-
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reviewed publications post 2000 were consulted for reported differences between satellite-based 
estimates from conventional ground measurements. It is important to note that conventional 
ground measurements come with their own errors and uncertainty that should ideally be taken in 
consideration when used for verifying the accuracy of satellite-based estimates. This holds true 
for ET where the number of operational flux towers is limited, but also for rainfall that has 
distinct micro-scale variability, that cannot be measured by a single gauge. However, in most 
documented studies these ground measurements are treated as “the best available estimates“ in 
the absence of reliable information on their accuracy. As such they are widely used to validate 
satellite based data. The probability distribution functions of the mean absolute percentage errors 
for all three variables were created, and these functions have more value than a single research 
paper, with a single algorithm applied to a particular location.  

The results show that the average MAPE for satellite-based estimates of annual or seasonal ET, 
rainfall, and land use classification are 5.4%, 18.5 %, 14.6% respectively. The largest error is 
thus associated with rainfall. Bias correction and local calibration of global and regional rainfall 
products seem to improve the quality of the data layers. However, more research is needed to 
improve remotely sensed rainfall estimation algorithms (e.g. CHIRPS), with a focus on 
downscaling procedures as the standard pixel size is often too large. Radar based regional 
precipitation estimates that offer higher spatio-temporal resolutions are  promising and need to 
be utilized further. Also the attenuation of microwave signals between cellular communication 
networks can be used for assessing areal averaged rainfall. In addition, given the differences 
among reported precipitation by different global and regional products for the same pixels, there 
is a need for a data base that offers an ensemble based on a rigorous and statistically sound 
method. 

In contrast to rainfall, the error in satellite-based ET is relatively small, especially at the 
aggregation level of a river basin. ET is a vital component of hydrological cycle and reliable 
estimates of local ET are essential for modeling river basin hydrology accurately. Remotely 
sensed ET can be used both as input to distributed hydrological models, and as a means to 
calibrate the simulations, although locally large errors can occur. Nonetheless, despite its 
existing potential and accuracy, satellite-based ET is under-utilized in hydrological studies. 
Contributing factors are presumably the difficulty to access and acquire reliable ET data through 
the public domain, and the difficulty to compare it with reliable field data. Thus, future focus 
should be on development of open access ET data bases. Such efforts are now underway by 
various organizations such as US Geological Survey, US Department of Agriculture, the 
Commonwealth Science and Industrial Research Organization of Australia and the Chinese 
Academy of Sciences. However, these products are not yet made all available to the public, 
albeit first estimates of an ensemble ET product are under development. There is also a need for 
higher resolution ET data in terms of both spatial and temporal resolutions. This is key factor if 
satellite based ET data are to be used extensively in water management and hydrological studies.  
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Land use mapping is one of the earliest ways in which satellite imagery was used to produce 
environmental information and it is the most widely studied subject in employing remote 
sensing. The quality of the classifications has improved over time by the availability of high 
resolution images and local research projects. The low resolution and operational land 
classification mapping produce is, however, still the standard method. Global high resolution 
Land Use and Land Cover databases are conceived as the next generation of information systems 
for WA+ and other applications, and the product created by Tsinghua University is a first 
example. The land use classifications come with an overall MAPE of 14.6%, and accuracy of 
85%.  This level of accuracy, although acceptable, calls for improvements given the wide use of 
these maps. Another important issue is the need for a new type of land use mapping dedicated to 
agricultural and river basin water management issues. This is of essential value when land use 
maps are used in hydrological and water management related studies such as water accounting.  

As revealed by the results of this review study, there is a great deal of heterogeneity regarding 
the accuracy and reliability of remotely sensing data and methods. Oftentimes reliability of RS-
based products is rather case and location specific. Future research could, therefore, aim at cross-
comparing remote sensing data and methods on ET, rainfall and land use for different regions. 
Ensemble mean ET products are currently under development.    
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 Table 1: Overview of main existing regional and global scale satellite-based data sources of 
rainfall. The column “gauge” indicates whether a calibration against ground data is included 

Product Main principle data Resolution Spatial 
coverage 

Gauge Minimum 
time steps 
interval 

Producer 

MPE Meteosat 7, 8, 9 10  3 km Indian ocean N 15 min EUMETSAT 

CMORPH Microwave estimates (DMSP F- 13, 14 & 
15 (SSM/I), NOAA-15, 16, 17 & 18 
(AMSU-B), AMSR-E, and TRMM 

(TMI)), IR motion vectors  

8 km 50˚N-S N 30 min NOAA/CPC 

PERSIANN Microwave estimates (DMSP F-13, 14, & 
15, NOAA-15, 16, 17, and TRMM 

(TMI)) 

0.25˚ 60˚N-S N 1-hour UC Irvine 

GSMap Microwave estimates (DMSP F-13, 14 & 
15 (SSM/I), AMSR, AMSR-E, and 

TRMM (TMI)) 

0.1˚ 60˚N-S N 1-hour JAXA 

NRL- 
Blended 

Microwave estimates (DMSP F-13, 14, & 
15 (SSM/I), F-16 (SSMIS)) 

0.25˚ 60˚N-S N 3-hour NRL 

TCI(3G68) Microwave estimates (TRMM (TMI)), 
and PR 

0.5˚ 37˚N-S N 1-hour NASA 

TOVS HIRS, MSU sounding retrievals 1˚ Global N daily NASA 

Hydro 
Estimator 

GOES IR  4 km Global N 15 min NOAA 

TRMM 3B42 Microwave estimates (TRMM, SSM/I, 
AMSR and AMSU), IR estimates from 

geostationary satellites 

0.25˚ 50˚N-S Y 3-hour NASA 

CPC-RFE2.0 Microwave estimates (SSM/I, AMSU‐B), 
IR estimates from METEOSAT  

0.1˚ 20˚W-55˚E, 
40˚S-40˚N 

Y daily FEWS 

GPCP 1DD IR estimates from geostationary satellites, 
TOVS 

1˚ 50˚N-S Y daily NASA/GSFC 

CMAP Microwave estimates (SSM/I), GOES IR 2.5˚ Global Y 5 days NOAA 

TAMSAT Meteosat thermal-IR 3 km Africa Y 10 days Reading 
University 

TRMM 3B43 Microwave estimates (TRMM, SSM/I, 
AMSR and AMSU), IR estimates from 

geostationary satellites 

0.25˚ 40˚N-S Y monthly NASA 

GPCP_V2 Microwave estimates (SSM/I), IR, TOVS 2.5˚ Global Y monthly NASA/GSFC 
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Table 2: Mean deviation of the input variables and the distribution of the error 

Remote 
sensing 
parameter 

Calibration Mean 
absolute 
percentage 
error  

Standard 
deviation 
error 

Skewness No. of data 
points 

  (%) (%) (-)  
ET No 5.4 4.9 1.18 41 
Rainfall Yes 18.5 15.4 0.90 69 
Land use  Yes 14.6 7.4 0.37 78 
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Figure 1: Probability density function of the reported absolute deviations between ET estimates 
from remote sensing, and field measurement of ET. A season or longer period was considered.  
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Figure 2: Probability density function of the reported absolute deviations between rainfall 
estimates from remote sensing, and field measurement of rainfall.  
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Figure 3: Probability density function of the reported absolute deviations between land use 
estimates from remote sensing, and field inventories of land use.   
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Appendix A: Literature review on evapotranspiration 

Table A1: Selected ET validation papers that describe experimental data sets covering a season or longer  

Method  Field 
instrument  Location and year  Land use  No. of 

images  Source  MAPE (%) 

METRIC  Lysimeter  Idhao, US, 1985 
Native sedge 
forage 

4  Allen et al. (2005)  4 

METRIC  Lysimeter  Idaho, US, 1989  Sugar beet  12  Allen et al. (2007)  1 

ALEXI 
Eddy 
covariance 

New Mexico, US. 
2008 

Agricultural 
areas 

6  Anderson et al. (2012)  6.7 

SEBAL  Water balance  Sri Lanka  River basin  ‐ 
Bastiaanssen and 
Chandrapala (2003) 

1 

SEBAL  Water balance  Indus, Pakistan  River basin  20  Bastiaanssen et al. (2002)  5 

SEBAL  Lysimeter  California, US, 2002  Alfalfa  7 
Cassel and Robertson 
(personal 
communication, 2006) 

2 

SEBAL  Lysimeter  California, US, 2002  Peaches  7 
Cassel and Robertson 
(personal 
communication, 2006)) 

7 

SEBAL  Water balance 
Murray Darling 
Basin, Australia 

river basin  ‐ 
Evans et al. (2009)  1 

NDVI based model 
Eddy 
covariance 

New Mexico, US 
Cottonwood, 
saltcedar 

10  Groeneveld et al. (2007)  2.2 

NDVI based model  Bowen ratio  Colorado, US, 2006 
Greasewood, 
salt rabbitbrush 

5  Groeneveld et al. (2007)  12.2 
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NDVI based model 
Eddy 
covariance 

California, US, 2000‐
2002 

Salt grass, alkali 
sacaton 

9  Groeneveld et al. (2007)  12.5 

SEBAL  Water balance  Central Luzon, 2001  Rice  3  Hafeez et al. (2002)  10.5 

SEBAL  Scintillometer  Horana, 1999 
Palm trees and 
rice 

5 
Hemakumara and 
Chandrapala (2003) 

0.9 

METRIC  Bowen ratio  Nebraska,US, 2005  Corn  4  Irmak et al. (2011)  4.3 

METRIC  Bowen ratio  Nebraska, US, 2006  Corn  4  Irmak et al. (2011)  4.2 

SEBAL  Water balance 
Western Cape, 
South Africa 2004‐
2006 

Grapes  12  Jarmain et al. (2007)  12 

ETWatch  Water balance 
Hai basin, China – 
2002 ‐ 2009 

Basin  135  Jia et al. (2012)  8.3 

SatDAET  Lysimeter  Florida, US, 1998  alkali scrub  8  Jiang et al. (2009)  14 

SatDAET  Lysimeter  Florida, US, 1999  alkali scrub  3  Jiang et al. (2009)  19 

CMRS1  Water balance  Australia  river basin  NA  King et al (2011)  2.1 

CMRS2  Water balance  Australia  river basin  NA  King et al (2011)  0.6 

NDTI  Water balance  Australia  river basin  NA  King et al (2011)  18 

ETLooK  Water balance  Australia  river basin  NA  King et al (2011)  3.9 

SEBAL  Scintillometer 
Gediz basin, Turkey, 
1998 

Grapes, cotton  4  Kite and Droogers (2000)  16 

SEBAL 
Surface 
renewal 

Sacramento Valley, 
US, 2001 

Rice  8  Lal et al. (2012)  1 



   

44 
 

TSEB  Measurements 
Yellow river, China, 
2004 

Wetlands  ‐  Li et al. (2011)  7.9 

SEBS  Measurements  Australia, 2009 
Irrigated 
agriculture 

16  Ma et al. (2012)  7.5 

METRIC/SEBAL  Water balance  India, 2003 
Irrigated 
agriculture 

40  Mallick et al. (2007)  11.6 

SEBAL  Water balance  Sudd, Sudan, 2000  Wetland  ‐  Mohamed et al. (2004)  1.8 

SEBAL  Water balance  Sobat, Sudan, 2000  Wetland  ‐  Mohamed et al. (2004)  5.7 

SEBAL  Water balance  California, US, 2002  Almonds  7 
Sanden (personal 
communication, 2005) 

1 

SEBAL  Bowen ratio  Nebraska, US  Corn  7  Singh et al. (2008)  5 

METRIC 
Eddy 
covariance 

Nebraska, US  River basin  8  Singh et al. (2011)  1.7 

SEBAL  Water balance  California, US 
Irrigated 
agriculture 

5  Soppe et al. (2006)  1 

SEBAL  Lysimeter 
Idaho, US, 
1989‐91 

Irrigated 
agriculture 

11  Tasumi et al. (2003)  4.3 

SEBAL 
Eddy 
covariance 

Petrolina, 2001‐
2007 

Mango, grapes  9  Teixeira et al. (2008)  1 

SEBAL 
Eddy 
covariance 

Brazil 
Natural 
vegetation and 
irrigated crops 

18  Teixeira et al. (2009)  1 

SEBAL  Water balance 
Imperial Valley, 
1997‐1998 

Several  12  Thoreson et al, (2009)  1 
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SEBAL 
Eddy 
covariance 

Middle Rio Grande, 
US, 2002‐2003 

Pecan, alfalfa  7  Wang and Sun (2005)  3 

ETWatch  Lysimeter 
Hai basin, China, 
2002 ‐ 2005 

wheat‐maize 
rotation 

‐  Wu et al. (2012)  9 

ETWatch 
Eddy 
covariance 

Hai basin, China, 
2002 ‐ 2005 

River basin  20  Wu et al. (2012)  3 

ETWatch  Water balance 
Hai basin, China, 
2002 ‐ 2005 

River basin  ‐  Wu et al. (2012)  1.8 

SEBAL  Water balance  North district, China  Regional scale  26  Yang et al. (2012)  5.6 

WUE* based model 
Eddy 
covariance 

Jilin province, China 
2003 

Mixed forest  45  Zhang et al. (2009)  4 

WUE based model 
Eddy 
covariance 

Jilin province, China 
2004 

Mixed forest  45  Zhang et al. (2009)  2 

WUE based model 
Eddy 
covariance 

Jilin province, China 
2005 

Mixed forest  45  Zhang et al. (2009)  0.4 

* Water Use Efficiency         
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Appendix B: Literature review on rainfall 

Table B2: Selected validation papers that describe experimental data sets covering a season or longer.  

Source Area Year RS Data source Deviation
Almazroui et al. (2011) Saudi Arabia 1998-2008 TRMM 0
Almazroui et al. (2012) Saudi Arabia 1998-2008 TRMM 12.05 
Asadullah et al. (2010) Uganda 2003-2007 CMORPH 2 
Asadullah et al. (2010) Uganda 2003-2007 PERSIANN 8 
Asadullah et al. (2010) Uganda 2003-2007 RFE 2.0 19 
Asadullah et al. (2010) Uganda 2003-2007 TRMM 3B42 8 
Asadullah et al. (2010) Uganda 2003-2007 TAMSAT 12 
Bitew and Gebremichael (2011) Gilgel, Ethiopia 2006-2007 CMORPH 29 
Bitew and Gebremichael (2011) Gilgel, Ethiopia 2006-2007 TRMM 3B42RT 29 
Bitew and Gebremichael (2011) Gilgel, Ethiopia 2006-2007 PERSIANN 58 
Bitew and Gebremichael (2011) Gilgel, Ethiopia 2006-2007 TRMM 3B42 64 
Cheema and Bastiaanssen (2012) Indus 2007 TRMM 3B43 V6 6.1 
Cheema and Bastiaanssen (2012) Indus 2007 TRMM 3B43 V6 10.9 
Chen et al. (2011) Dongjing basin, China 2002-2010 TRMM 3B42RT 22.1 
Collischonn et al. (2008) Tapajo ´s basin, Brazil 1997-2006 TRMM 3B42 12 
Dinku et al. (2007) Ethipian Highlands 1998-2004 TRMM 3B43 8 
Dinku et al. (2011) Blue Nile, Ethiopia 1981-2004 CMAP 3 
Dinku et al. (2011) Blue Nile, Ethiopia 1981-2004 GPCP 5 
Dinku et al. (2011) Blue Nile, Ethiopia 2003-2004 CMORPH 1 
Dinku et al. (2011) Blue Nile, Ethiopia 2003-2004 TRMM 3B42 5 
Dinku et al. (2011) Blue Nile, Ethiopia 2003-2004 RFE 48 
Duan and Bastiaanssen (2013) Lake Tana 1999, 2000, 2004 TRMM 3B43 V7 1 
Duan and Bastiaanssen (2013) Caspian sea, Iran 2000-2003 TRMM 3B43 V7 20 
Feidas (2009) Greece 1998-2006 TRMM 3B42 4.2 
Feidas (2009) Greece 1998-2007 TRMM 3B43 7.6 
Feidas (2009) Greece 1998-2008 GPCP-1DD 28.7 
Fernandes et al. (2008) Amazon basin, South America 1980-2002 ERA-40 10 
Fernandes et al. (2008) Amazon basin, South America 1980-2002 GPCP 7 
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Fu et al. (2011) Poyang basin, China 2003-2006 GSMaP 54 
Getirana et al. (2011) Negro basin, South America 1998-2002 TMPA 18 
Getirana et al. (2011) Negro basin, South America 1998-2002 NCEP-2 13 
Getirana et al. (2011) Negro basin, South America 1998-2002 ERA-40 18 
Jiang et al. (2012) Mishui Basin, China 2003-2008 CMORPH 41 
Jiang et al. (2012) Mishui Basin, China 2003-2008 3B42RT 43 
Jiang et al. (2012) Mishui Basin, China 2003-2008 3B42V6 4.54 
Kizza et al. (2012) Lake Victoria 2001-2004 TRMM 3B43 5 
Kizza et al. (2012) Lake Victoria 2001-2004 PERSIANN 1 
Milewski et al. (2009) Egypt  TRMM 15 
Moffitt et al. (2011) Bangladesh 2000-2005 TRMM 3B42V6 11.6 
Pierre et al. (2011) Sahelian belt 2004-2007 RFE 2.0 23 
Pierre et al. (2011) Sahelian belt 2004-2007 TRMM 3B42 6 
Pierre et al., (2011) Sahelian belt 2004-2007 CMORPH 34 
Semire et al. (2012) Malaysia 2001-2010 TRMM 3B43 V6 15 
Stisen and Sandholt (2010) Senegal river basin 2003-2005 CMORPH 34 
Stisen and Sanholt (2010) Senegal river basin 2003-2005 PERSIANN 47 
Stisen and Sanholt (2010) Senegal river basin 2003-2005 TRMM 23 
Stisen and Sanholt (2010) Senegal river basin 2003-2005 CCD 6 
Stisen and Sanholt (2010) Senegal river basin 2003-2005 CPC-FEWs 21 
Su et al. (2008) La Plata Basin 1998-2006 TRMM 6 
Villarini et al. (2009) Oklahoma, USA 1998-2003 TRMM 10 
Voisin et al. (2008) Amazon 1997-1999 ERA-40 26.5 
Voisin et al. (2008) Amazon 1997-1999 GPCP 1DD 24.7 
Voisin et al. (2008) Mississippi, USA 1997-1999 ERA-40 32.3 
Voisin et al. (2008) Mississippi, USA 1997-1999 GPCP 1DD 25.3 
Voisin et al. (2008) Mackenzie, Canada 1997-1999 ERA-40 1.1 
Voisin et al. (2008) Mackenzie, Canada 1997-1999 GPCP 1DD 28.8 
Voisin et al. (2008) Congo, Africa 1997-1999 ERA-40 13.4 
Voisin et al. (2008) Congo, Africa 1997-1999 GPCP 1DD 31 
Voisin et al. (2008) Danube, Europe 1997-1999 ERA-40 29.1 
Voisin et al. (2008) Danube, Europe 1997-1999 GPCP 1DD 17.1 
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Voisin et al. (2008) Meckong, SEA 1997-1999 ERA-40 0.4 
Voisin et al. (2008) Meckong, SEA 1997-1999 GPCP 1DD 4.1 
Voisin et al. (2008) Senegal 1997-1999 ERA-40 51.6 
Voisin et al. (2008) Senegal 1997-1999 GPCP 1DD 23.3 
Voisin et al. (2008) Yellow river, China 1997-1999 ERA-40 1.3 
Voisin et al. (2008) Yellow river, China 1997-1999 GPCP 1DD 30.4 
Voisin et al. (2008) Yenisei, Russia 1997-1999 ERA-40 0.7 
Voisin et al. (2008) Yenisei, Russia 1997-1999 GPCP 1DD 26.2 
Wilk et al. (2006) Okavango basin 1991-1996 TRMM 20 
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Appendix C: Literature review on land use & land cover 

Table C1: Selected validation papers that report on confusion matrices   

 

Source Area Image Year  Image source 
Overall 
accuracy (%) 

Abd El-Kawy et al. (2011) Nile Delta, Egypt 2005 Landsat ETM+ 96 
Aguirre-Gutiérrez et al. (2012) Sierra Madre, Mexico 2006 Landsat ETM+ 87 
Bach et al. (2006) Erda, Germany 1989-1992 CORINE 

(Landsat TM) 
75 

Bach et al. (2006) Erda, Germany 1994 Landsat-5 TM 79 
Bach et al. (2006) Stein., Germany 1989-1992 CORINE 

(Landsat TM) 
69 

Bach et al. (2006) Stein., Germany 1994 Landsat-5 TM 74 
Bicheron et al. (2008) Global 2004-2006 MERIS/Envisat 73 
Blanco et al. (2013)) Latin America 2008 Modis-Terra 84 
Büttner et al. (2006) Global 1999-2000 Landsat 

ETM+/SPOT 
87 

Cassidy et al. (2013) Lower Meckong 2005 Landsat TM 85 
Cheema and Bastiaanssen (2010) Inuds basin 2007 SPOT/vegetation 77 
Cingolani (2004) Cordoba, Argentina 1997 Landsat 5 TM 86 
Clark et al. (2010) Dry Chaco, South 

America 
2000-2008 MODIS 80 

Colditz et al., (2012) Mexico 2005 MODIS 83 
Cotonnec and Du (2001) Baie de lannion, 

France 
1996-97 Landsat 5TM 89 

Estes et al. (2012) Serengeti National 
Park 

2002-2003 Landsat ETM+ 83 

Friedl et al. (2010) Global 2000-2001 Modis 5 75 
Gamanya et al. (2007) Central Zimbabwe 2001 ASTER 92 
Gamanya et al. 2007) Central Zimbabwe 2001 Landsat TM 89 
Kandrika and Roy (2008) Orissa, India 2004-2005 AWiFS IRS-P6 87 
Kavzoglu and Colkesen (2009) Kocaeil, Turkey 1997 Landsat ETM+ 91 
Kavzoglu and Colkesen (2009) Kocaeil, Turkey 1997 Landsat ETM+ 90 
Kavzoglu and Colkesen (2009) Kocaeil, Turkey 2002 Aster 88 
Kavzoglu and Colkesen (2009) Kocaeil, Turkey 2002 Aster 93 
Kavzoglu and Colkesen (2009) Kocaeil, Turkey 2002 Aster 91 
Kavzoglu and Colkesen, 2009) Kocaeil, Turkey 1997 Landsat ETM+ 87 
Kaya et al. (2002) Kenya 2001 RADARSAT-1 85 
Keuchel et al. (2003) Tenerife, Spain 1988 Landsat 5TM 90 
Keuchel et al. (2003) Tenerife, Spain 1988 Landsat 5TM 88 
Keuchel et al. (2003) Tenerife, Spain 1988 Landsat 5TM 93 
Klein et al., (2012) Central Asia 2009 MODIS 91 
Kolios and Stylios (2013) Greece 2009 Landsat 7 ETM+ 97 
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Liu and Yang (2013) Jilin, China 2009 Landsat TM 95 
Liu et al. (2002) Rondonia, Brazil 1995/1997 Landsat TM/Spot 80 
Mayaux et al. (2006) Global 1999-2000 SPOT-Vegetation 68 
Munthali and Murayama (2011) Dzalanyama, Malawi 2008 ALOS 79 
Munthali and Murayama (2011) Dzalanyama, Malawi 2000 Landsat ETM+ 78 
Oldeland et al. (2010) Rehoboth, Namibia 2005 HyMap 98 
Otukei and Blaschke ( 2010) Pallisa, Uganda 2001 Landsat 7 ETM+ 94 
Pan et al. (2010) Honghe Reserve, 

China 
2006 Landsat-5 TM 88 

Peña-Barragán et al. (2011) Yolo County, 
California 

2006 ASTER 79 

Pérez-Hoyos et al. (2012) Regional/Europe - Merged-global 
maps 

87 

Petropoulos et al. (2012) Greece 2009 Hyperion 89 
Qi et al. (2012) Panyu, China 2009 RADARSAT-2 

PolSAR 
87 

Ren et al. (2009) NW-Yunnan, China 2000 Landsat ETM+ 97 
Reno et al. (2011) Amazon, Brazil 2008 Landsat 5 83 
Renó et al., 2011) Amazon, Brazil 1970 Landsat 2 86 
Rodriguez-Galiano and Chica-
Olmo (2012) 

Granada, Spain 2004 Landsat 5TM 86 

Rozenstein and Karnieli (2011) Israel 2009 Landsat 5 TM 81 
Setiawan et al. (2006) Yogyakarta, Indonesia 1994 Landsat TM 80 
Shao and Lunetta (2012) North Carolina & 

Virginia, USA 
2000-2009 MODIS 91 

Shimoni et al. (2009) Glinska Poljana, 
Croatia 

2001 E-SAR 84 

Shrestha and Zinck (2001) Likhu basin, Nepal 1988 Landsat TM 94 
Song et al. (2005) Connecticut, USA 2001 Landsat ETM 85 
Stavrakoudis et al. (2011) Lake Kronia, Greece 2005 IKONOS 93 
Stefanov et al, (2001) Arizona, USA 1998 Landsat TM 85 
Sulla-Menashe et al. (2011) Regional/Northern 

Eurasia 
2001-2005 MODIS 73 

Szuster et al. (2011) Thai island, Thailand 2004 ASTER 95 
Szuster et al. (2011) Thai island, Thailand 2004 ASTER 94 
Szuster et al. (2011) Thai island, Thailand 2004 ASTER 94 
Taşdemir et al. (2012) Bulgaria 2009 Rapideye 94 
Thenkabail et al. (2009a) Global 1997-1999 AVHHR 79 
Tovar et al. (2013) Cajamarca, Peru 2007 Landsat 5 TM 80 
Tseng et al. (2008) Connecticut, USA 1987 Landsat TM 98 
Wang et al. (2010) Hengshan, China 2003 Hyprion 80 
Waske and Braun (2009) Jena, Germany 2005 ENVISAT/ ERS-

2  
83 

Weiers et al (2002) Schleswig-Holstein, 
Germany 

1992-1997 Landsat TM 85 

Weiers et al. (2002) Denmark 1992-1997 Landsat TM 70 
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Whiteside et al. (2011) Florence creek, 
Australia 

2000 ASTER 79 

Wickham et al. (2013) USA 2001 Landsat TM 79 
Wickham et al. (2013) USA 2006 Landsat TM 78 
Wickham et al. (2013) USA 2001 Landsat TM 85 
Wickham et al. (2013) USA 2006 Landsat TM 84 
Wu et al. (2010) Dan-Shuei, China 1995 Landsat 5 TM 88 
Zhang et al. (2008) Northern China plain, 

China 
2003 MODIS_EVI 75 

Zhu et al. (2012) Massachusetts, USA 2007 ALOS 72 
Zhu et al. (2012) Massachusetts, USA 2000-2007 Landsat/ALOS 94 
Zhu et al. (2012) Massachusetts, USA 2000-2002 Landsat 93 
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Appendix D. Glossary 

Table D1. Glossary 

Term Description 
 

1DD One Degree Daily 
3B42RT  3B42 real time 
ALEXI Atmosphere-Land Exchange Inverse 
ALOS  Advanced Land Observing Satellite 
AMSR-E Advanced Microwave Sounding Radiometer-Earth 
AMSU Advanced Microwave Sounding Unit 
ASTER Advanced Spaceborne Thermal Emission and Reflection 

Radiometer 
AVHRR Advanced Very High Resolution Radiometer 
CBERS China Brazil Earth Resources Satellite 
CMAP CPC Merged Analysis of Precipitation 
CMORPH CPC Morphing technique 
CMRSET CSIRO MODIS Reflectance-based Scaling ET 
CORINE CO-ordination of INformation on the Environment 
CPC Climate Prediction Center 
CSIRO Commonwealth Science and Industrial Research Organisation 
DMSP Defense Meteorological Satellite Program 
EARS Environmental Analysis and Remote Sensing 
EUMETSAT European Organisation for the Exploitation 

of Meteorological Satellites 
FEWS Famine Early Warning Systems (FEWS) 
GOES Geostationary Operational Environmental Satellites 
GPCC Global Precipitation Climatology Centre 
GPCP Global Precipitation Climatology Project 
GPI GOES precipitation index  
GSFC Goddard Space Flight Center’s (GSFC) 
GSMaP Global Satellite Mapping of Precipitation 
HIRS High-Resolution Infrared Sounder  
IR Infrared 
IWMI International Water Management Institute 
METRIC Mapping EvapoTranspiration at high Resolution with Internalized 

Calibration 
MODIS Moderate Resolution Imaging Spectrometer 
MPE Multi-Sensor Precipitation Estimate 
NASA National Aeronautics and Space Administration 
NDTI Normalised Difference Temperature Index 
NOAA National Oceanic and Atmospheric Administratio 
PERSIANN Precipitation Estimation From Remotely Sensed Information using 

Artificial Neural Networks 
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PR Precipitation radar 
RFE Rainfall Estimation Algorithm 
SatDAET Satellite daily ET 
SEBAL Surface Energy Balance Algorithm for Land 
SEBS Surface Energy Balance System 
SEEAW System of Environmental-Economic Accounts for Water 
SPOT Satellite Pour l’Observation de la Terre 
SSM/I Special Sensor Microwave/Imager 
TAMSAT Tropical Applications of Meteorology using Satellite data 
TCI TRMM Combined Instrument 
TMI TRMM Microwave Imager 
TOVS TIROS Operational Vertical Sounder 
TRMM Tropical rainfall measuring mission 
TSEB Two source energy balance 
VIIRS Visible Infrared Imager Radiometer Suite 
WIRADA Water Information Research and Development Alliance 

 


