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Abstract

The scarcity of water encourages scientists to develop new analytical tools to enhance water
resource management. Water accounting and distributed hydrological models are examples of
such tools. Water accounting needs accurate input data for adequate descriptions of water
distribution and water depletion in river basins. Ground-based observatories are decreasing, and
remote sensing data is a suitable alternative to measure the required input variables. This paper
reviews the reliability of remote sensing algorithms to accurately determine the spatial
distribution of actual evapotranspiration, rainfall and land use. For our validation we used only
those papers that covered study periods of one season to annual cycles because the accumulated
water balance is the primary concern. Review papers covering shorter periods only (days, weeks)
were not included in our review. Our review shows that by using remote sensing,
evapotranspiration can be estimated with an overall accuracy of 95% (STD 5%) and rainfall
with an overall accuracy of 82% (STD 15%). Land use can be identified with an overall accuracy
of 85% (STD 7%). Hence, more scientific work is needed to improve spatial mapping of rainfall
using multiple space-borne sensors. Actual evapotranspiration maps can be used with confidence
in water accounting and hydrological modeling.

1. Introduction

The demand for fresh water is increasing worldwide due to economic and population growth
(Molden et al., 2007; Vorosmarty et al., 2010). Proper planning of such scarce water resources in
terms of storage, allocation, return flow and environmental services is vital for optimizing the
resource (Chartres and Varma, 2010). There is, however, a lack of fundamental data on vertical
and lateral water flows, water stocks, water demand, and water depletion. At the same time, there
is a decline in the network density of operational hydro-meteorological field stations. The
absence of adequate field data sets is an important obstacle for sound, evidence-based water
resource management decisions. The consequence of data scarcity is more severe in trans-



boundary river basins where, apart from collection, the accessibility of data is hindered by
political issues (Awulachew et al., 2013).

Remotely sensed hydrological data are an attractive alternative to conventional ground data
collection methods (Bastiaanssen et al., 2000; Engman and Gurney, 1991; Wagner et al., 2009).
Satellites measure the spatial distribution of hydrological variables indirectly with a high
temporal frequency across vast river basins. There are many public data archives where every
user can download pre-processed satellite data. Quality flags are often provided, as well as
manuals with explanations on how the satellite data have been pre-processed. These recurrent
data sets are highly transparent, politically neutral and consistent across entire river basins, even
for large basins such as the Nile and the Ganges. While certain satellite data sets have been
processed to a first level of reflectance, emittance and backscatter coefficients, others will even
provide second level products that can be directly explored for water resource planning purposes
(e.g. land cover, soil moisture, and rainfall). Evapotranspiration (ET) is one of the parameters
that often requires additional processing of the spectral data; only a very few public domain data
archives provide pre-processed ET data, and in fact, spatial ET modeling is still under developed.
Examples of several remotely sensed ET algorithms that could be applied to interpret raw
satellite data into spatial layers of ET are well summarized in a recent book edited by Irmak
(2012).

Time series of various hydrological variables such as precipitation, evapotranspiration, snow
cover, soil moisture, water levels, and aquifer storage can be downloaded from public domain
satellite-based data archives. With the right analytical tools and skills, these abundant datasets of
hydrological processes can be used to produce information on water resource condition in river
basins. Tools such as Water Accounting Plus (WA+) (Bastiaanssen, 2009; Karimi et al., 2013a,
2013b) are expressly designed to exploit remote sensing estimates of hydrological variables.
Water accounting is the process of communicating water related information about a
geographical domain, such as a river basin or a country, to users such as policy makers, water
authorities, basin managers, and public users. Water accounting information can be key to river
basin management policy, especially when administrations are reluctant to share their —
sometimes imperfect - in situ data with neighboring states and countries. WA+ facilitates conflict
management in internationally shared river basins. Hydrological variables derived from remote
sensing can also be used for spatially distributed hydrological modeling. Studies by Houser et al.
(1998), Schuurmans et al. (2003), and Immerzeel and Droogers (2008) have demonstrated that
such inputs have improved hydrological model performance for river basins in Australia, The
Netherlands and India.

There are also inaccuracies in satellite measurement, caused by for example radiometer
performance onboard satellites, the atmospheric corrections applied, and the conversion of the
surface radiation signal into hydrological variables. Remote sensing data thus do have sampling
errors and may also be biased in some cases (Lillesand et al., 2004). The bias is typically caused
by an instrument error or an erroneous default coefficient in the algorithms used to convert raw
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radiation data to a hydrological variable. The sampling error is mostly attributed to the timing of
the satellite overpass, the nominal revisit time, and the cloud cover. A major point of criticism of
remote sensing data is the lack of accuracy. Accuracy has however improved significantly over
the last 30 years; yet it is necessary to remain critical. Conventional methods of measuring
hydrological processes (e.g. rainfall and discharge) are not flawless either, and the accuracy of
both types of measurements needs to be verified. Actual evapotranspiration (ET) of river basins
can hardly be measured operationally, and therefore the depletion of water is often ignored in
water accounting frameworks such as the SEEAW system proposed by the United Nations
Statistics Division (UN, 2007) and the Australian water accounting system ( ABS, 2004).
Remote sensing techniques on the other hand can provide daily estimates of actual ET and this
opens new pathways in the accounting of water depletion (Karimi et al., 2013a).

This paper investigates the errors and reliability of remotely sensed ET, rainfall, and land use
based on a comprehensive literature review. The choice of the variables that have been
investigated for their accuracy in this paper (ET, Rainfall, LULC) is based on the parameters that
are more commonly used in hydrological studies and, also, are input parameters for WA+. Only
recent publications on accumulated ET and rainfall for a minimum time period of one growing
cycle have been consulted, which implies that some of the well-known reference papers are
excluded because they relate to shorter flux observation periods. Our aim is to understand the
accuracy of seasonal and annual total values of ET and rainfall because they are of more
practical value in water resource management and the errors at this time scale are different from
daily and weekly time scales. The companion paper (Karimi et al., 2013c¢) investigates impacts
of the errors associated with the satellite measurement for ET, rainfall and land use on the
accuracy of WA+ outputs, using a case study from the Awash basin in Ethiopia.

2. Remote Sensing Data for Water Accounting (WA+)
2.1 Evapotranspiration

Over the past decades several methods and algorithms to estimate actual evapotranspiration (ET)
through satellite measurements have been developed. Most of these estimates are based on the
surface energy balance equation. The surface energy balance describes the partitioning of natural
radiation absorbed at the earth surface into physical land surface processes. Evapotranspiration is
one of these key processes of the energy balance, because latent heat (energy) is required for
evaporation to take place. The energy balance at the earth surface reads as:

LE=R.-G- H (W m?2) (1)

Where Ru is the net radiation, G is the soil heat flux, H is the sensible heat flux, and LE is the
latent heat flux. The sensible heat flux H is a function of the temperature difference between the
canopy surface and the lower part of the atmosphere, and the soil heat flux G is a similar
function related to the temperature difference between the land surface and the top soil. A rise of
surface temperature will thus usually increase H and G fluxes. Evaporative cooling will reduce H
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and G, and always result in a lower surface temperature. The latent heat flux LE is the equivalent
energy amount (W m) of the ET flux (kg m™ s' or mm d™!). The net radiation absorbed at the
land surface is computed from shortwave and longwave radiation exchanges. Solar radiation is
shortwave and is the most important supplier of energy. More information on the energy balance
is provide in background material such as Campbell and Norman (1998) or Allen et al. (1998).
Surface temperature is measured routinely by space borne radiometers such as the Advanced

Very High Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spectrometer
(MODIS), Visible Infrared Imager Radiometer Suite (VIIRS), Landsat, Advanced Space borne
Thermal Emission and Reflection Radiometer (ASTER), China Brasil Earth Resources Satellite
(CBERS), and the Chinese HJ and Feng Yung satellites. Remotely sensed surface temperature is
the major input variable in ET algorithms. Examples of thermal infrared ET algorithms are
provided by EARS (Rosema, 1990), SEBAL (Bastiaanssen et al., 1998), TSEB (Norman et al.,
1995), SEBS (Su, 2002), METRIC (Allen et al., 2007), ALEXI (Anderson et al., 1997), and
ETWatch (Wu et al., 2012). The differences among these algorithms are related to the
parameterization of H, general model assumptions, and the amount of input data required to
operate these models.

Other groups of ET algorithms are based on the vegetation index and its derivatives such as
published by Nemani and Running (1989), Guerschman et al. (2009), Zhang et al. (2010a), Mu et
al. (2011), and Miralles et al. (2011). ETLook (Bastiaanssen et al., 2012) is a new ET model that
directly computes the surface energy balance using surface soil moisture estimations for the top
soil (to feed soil evaporation) and sub-soil moisture for the root zone (to feed vegetation
transpiration). Soil moisture data can be inferred from thermal measurements (e.g. Scott et al.,
2003) or from microwaves measurements (e.g. Dunne et al., 2007). Microwave measurements
provide a solution for all weather conditions and can be applied at any spatial scale for which
moisture data is available.

A different school of remote sensing based ET algorithms is built around the derivation of a
relative value of ET wusing trapezoid/triangle methods. Trapezoid/triangle diagrams are
constructed from a population of pixel values of surface temperature and vegetation index and
used to infer the relative value of ET (e.g. Choudhury, 1995; Moran et al., 1994; Roerink et al.,
2000; Wang et al., 2007). In these diagram, the range of surface temperature values at a given
class of vegetation index is the basis for determining relative ET, assuming that the lowest
temperature in a certain range of vegetation index represents potential ET. The highest
temperature coincides with zero evaporation. The main assumption in triangle/trapezoidal
method is that the variation in vegetation index relation to surface temperature is driven
primarily by the variation in soil water content rather than differences in atmospheric conditions.

Merging different global ET products such as MOD16 (Mu et al., 2011) and ERA-Interim (Dee
et al., 2011) at global and regional scales into one ET product is another approach that has been
used by a group of scientists. This approach mainly uses statistical methods to combine ET



products that are based on different methods, algorithms, and origins (e.g. Global: Mueller et al.,
2013; Afrcia: Trambauer et al., 2013).

Review papers on advanced algorithms for estimating spatial layers of ET in general are
published by Moran and Jackson (1991), Kustas and Norman (1996), Bastiaanssen (1998),
Courault et al. (2005), Glenn et al. (2007), Gowda et al. (2007), Kalma et al. (2008), Verstracten
et al. (2008), and Allen et al. (2011). While these review papers provide a good understanding of
the evolution of ET algorithm development, they rarely report the accuracies attainable,
especially at a seasonal or longer time frame.

2.2 Rainfall

There are different algorithms to infer rainfall from satellite data. The four essentially different
technologies are (i) indexing the number and duration of clouds (Barrett, 1988), (ii) accumulated
cold cloud temperatures (Dugdale and Milford, 1986), (iii) microwave emissivity (Kummerow et
al., 1996), and (iv) radar reflectivity (Austin, 1987). Techniques using microwave wavelength
information are promising alternatives for measuring rainfall because of the potential for sensing
the raindrops itself and not a surrogate of rain, such as the cloud type. Microwave radiation with
wavelengths in the order of 1 mm to 5 cm has a strong interaction with raindrops, since the drop
size of rain is comparable to this wavelength. This feature makes them suitable to detect rainfall
intensity. Active microwave (radar) measurements of rainfall are based on the Rayleigh
scattering caused by the interaction of rain and the radar signal (Cracknell and Hayes, 1991).
Space borne radar measurements of rain intensity are possible with the Precipitation Radar
aboard the NASA Tropical Rainfall Measuring Mission (TRMM) satellite, which assesses the
attenuation of the radar signal caused by the rain. The precipitation radar (PR) has a pixel size of
5 km and can oversee a swath of 220 km. Unfortunately, it is usually necessary to evaluate the
rainfall radar reflectivity factor empirically on a region-by-region basis over lengthy periods of
time. In other words, rain radar systems — both ground-based and satellite-based — need
calibration for proper rainfall estimates. We will conclude later that most papers investigated in
our review process do apply a certain level of calibration.

Review papers on the determination of rainfall from satellite measurements have been prepared,
by for instance Barrett (1988), Barrett and Beaumont (1994), Petty (1995), Petty and Krajewski
(1996), Kummerow et al. (1996), Smith et al. (1998), Kidd (2001), Stephens and Kummerow
(2007) and Huffman et al. (2007). A selection of available rainfall products based on remote

sensing techniques — sometimes used in combination with other methodologies - is presented in
Table 1.

Table 1.

2.3 Land use
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Whereas land cover describes the physical properties of vegetation (e.g. grass, savannah, forest),
land use denotes the usage of that land cover (e.g. pasture, crop farming, soccer field). Maps of
land use are fundamental to WA+ because it determines the services and processes from water
consumption. Different types of land use provide benefits and services such as food production
(agricultural land), economic production (industrial areas), power generation (reservoirs),
environmental ecosystems (wetlands) etc., for the amount of water they consume. Land use
classification based on the use of water, differs from classical land use — land cover maps that
focus mainly on the description of woody vegetation such as forests and shrubs for ecological
and woodland management purposes. WA+ needs land use maps focused on crop types (rainfed
potatoes, irrigated maize) and the source of water consumed (e.g. surface water and
groundwater). Some of the first maps dedicated for agricultural water management were
prepared by Thenkabail et al. (2005), Cheema and Bastiaanssen (2010) and Yalew et al. (2012).
Furthermore, land use classifications for WA+ at river basin scale require a pixel size of 30 to
100 meter that can be delivered by Proba-V and Landsat-8 satellite data. It is expected that the
arrival of Sentinel-2 data during the course of 2014 with pixel sizes ranging between 10 to 30 m
and a short revisit time of 5 days will greatly enhance development of new land use
classifications that are tailored for water use and water accounting.

Land use changes affect the water balance of river basins and thus also the amount of water
flowing to downstream areas. Bosch and Hewlett (1982) and Van der Walt et al. (2004) discuss
for instance how replacing natural vegetation by exotic forest plantations reduced the stream
flow in South Africa. Maes et al. (2009) evaluated the effect of land use changes on ecosystem
services and water quantity on basins in Belgium and Australia. The role of land use is thus a
crucial component of sound water accounting and water resource management (Molden, 2007).

Land use is usually identified on the basis of spectral reflectance and its change with vegetation
phenology. The reflectance in the near and middle infrared part of the electromagnetic spectrum
especially, is often related to certain land use classes. The relationship between reflectance and
land use is however not unique, and field inspections are usually needed for interpretation. Soil
type, soil moisture and soil roughness all have an influence on reflectance. The health of the
vegetation and factors such as the angle and size of leaves also affect the photosynthetic activity
of the plants. There is another land use mapping technology that is entirely based on the
difference in time profiles of spectral vegetation indices. Fourier analysis of vegetation index can
be used to quantify land use classes and crop types (e.g. Roerink et al., 2003), especially when
time profiles can be linked to existing cropping calendars.

All the land use classification papers we reviewed report on a confusion matrix that describes the
overall classification accuracy by showing how often certain land use classes are confused in the
remote sensing analysis with other land use classes. Congalton (1991) and Foody (2002) give a
full explanation on errors in land use data.



Review papers on the use of remote sensing for land use land cover classification are provided in
Bastiaanssen (1998), Smits et al. (1999), Mucher et al. (2000), Cihlar (2000), Franklin and
Wulder (2002), Thenkabail et al. (2009b), and Garcia-Mora et al. (2012).

3. Results

3.1 Accuracy of spatial evapotranspiration data

The lack of validation of spatial layers of ET is one of the drawbacks in defining the reliability of
remotely sensed ET products. There are no reliable and low cost ground-based ET flux
measurement techniques, although new inventions are always underway (Euser et al., 2013). It is
simply too costly to install instruments that have the capacity to measure ET operationally at
various locations dispersed across a river basin. The main methods to measure ET at the field
scale include lysimeters, Bowen ratio, eddy covariance systems, surface renewal systems,
scintillometers and classical soil water balancing. Lysimeters can be very accurate for in-situ
measurements of ET at small scale if they are properly maintained. Bowen ratio and Eddy
covariance flux towers and surface renewal systems are fairly accurate methods for estimating
ET at scales of up tol km (Rana and Katerji, 2000), although not free of errors (e.g. Teixeira and
Bastiaanssen, 2010; Twine et al., 2000). Scintillometers have the capability to measure fluxes
across path lengths of 5 to 10 km (Hartogensis et al., 2010; Meijninger and de Bruin, 2000).

To deal with the problem of measuring ET fluxes in composite terrain, large-scale field
experiments in the African continent (e.g. Sahel: Goutorbe et al., 1997; Southern Africa: Otter et
al., 2002), the European continent (e.g. France: Andre et al., 1986; Spain: Bolle et al., 2006), the
American continent (e.g. Kansas: Smith et al., 1992; Arizona & Oklahoma: Jackson et al., 1993)
and the Asian continent (e.g. China: Wang et al., 1992: Korea: Moon et al., 2003) were set up to
measure fluxes simultaneously within a certain geographic region at a number of sites with
different land use classes. Several remotely sensed ET algorithms were developed and validated
using these datasets. The limitation is however that the duration of these special field campaigns
was for budgetary reasons restricted to several weeks only.

Validation studies with different ET algorithms using the same spatial ground truth data sets are
very interesting. The International Water Management Institute (IWMI) undertook for instance a
validation study to determine the accuracy of various ET methods for irrigated cotton and grapes
in Turkey (Kite and Droogers, 2000). Also here, the period was not sufficiently long to
encompass one growing season. The Commonwealth Science and Industrial Research
Organisation (CSIRO) in Australia studied the predictions of eight different ET products, at a
minimum monthly frequency and at a spatial resolution of at least 5 km, using flux tower
observations and watershed data across the entire continent as part of the Water Information
Research and Development Alliance (WIRADA) project (Glenn et al., 2011). The studied ET
products were based on different methods including large scale water balance modeling, thermal
imagery (Mcvicar and Jupp, 1999, 2002), spectral imagery (Guerschman et al., 2009), inferred
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LAI (Zhang et al., 2010b), passive microwave (Bastiaanssen et al., 2012), and global MODIS
reflectance based algorithm (Mu et al., 2007). The results showed that at annual scale remote
sensing based ET estimates, barring the global MODIS product that was at the time an unrefined
method that needed improvements (Mu et al., 2011), had an acceptable mean absolute percentage
error (MAPE) ranging from 0.6% to 18% with an average MAPE of 6% (King et al., 2011).
Along similar lines, the Council for Scientific and Industrial Research (CSIR) in South Africa
conducted a remote sensing study on a smaller scale to investigate the performance of three ET
algorithms (Jarmain et al., 2009).

To assess the overall error in accumulated ET products, a comprehensive literature review was
conducted and reported errors by various authors were synthesized. All the papers included in
the review were published within the past 13 years and they cover a range of in-situ
measurements and remote sensing ET algorithms. The reviewed papers cover a range of remote
sensing methods for ET measurements including SEBAL, METRIC, SEBS, TSEB, ALEXI, ET
Watch, and SatDAET. In essence, the spatial ET layers reported in these papers were not a priori
calibrated and the authors reported on the validation aspect. Since the primary purpose of this
study was to quantify errors in accumulated ET, only papers that report errors on ET estimates
over a minimum period of one growing cycle were consulted. Papers dealing with ET over
shorter periods were thus excluded in our review (e.g. Anderson et al., 2011; Chavez et al., 2008;
Gonzalez-Dugo et al., 2009; Mu et al., 2011). This, also, implies that GEWEX related field
experiments could not be used because intensive campaigns with multiple flux covered periods
of weeks only. The manifold flux campaigns organized by the US Department of Agriculture (
Kustas et al., 2006; JORNEX: Rango et al., 1998; SALSA: Chehbouni et al., 1999) also did not
meet our criterion. To be able to compare error levels from different studies only papers that
report errors in terms of mean error were included in the review. Thus, some of the valuable
papers on this topic that use RMSE to describe errors without including mean error could not be
included in the review (e.g. Batra et al., 2006; Cleugh et al., 2007; Guerschman et al., 2009;
Venturini et al., 2008). The data sources consulted are summarized in Appendix A. It reflects the
accumulated ET conditions encountered in 11 countries. The time of accumulation should be
minimally one growing cycle, otherwise they were rejected from the review process. Thirty one
publications met the criteria specified and were analyzed. One publication often contains more
data points due to multiple models, multiple years, and multiple areas. Hence, the total number
of points was n=46. Considering this number, the probability density function is unlikely to
change if other papers — or more papers — were to be considered in the review.

The probability distribution of mean absolute percentage error in remote sensing ET estimates is
presented in Figure 1. The results demonstrate the absolute error of annual or seasonal ET, ET
during growing season which on average is about 5-6 months, to vary between 1 to 20%. The
average MAPE is 5.4%, with a standard deviation of 5.0%. It is evident from Figure 1 that the
distribution is positively skew. These results are closely in line with findings by King et al.
(2011) in Australia, both in terms of average and the range of error in ET estimates.



Many of the publications reported an error of less than 5%, a remarkable good and unexpected
result. Many authors of the papers are both the developer and the tester of the algorithms, and
parameter tuning was possible. The left hand bar of in Figure 1 is — we believe — a biased view of
the reality. For this reason, the data points were fitted by means of a skewed normal distribution
so that less weight is given to the class with exceptionally low errors.



Figure 1.

Figure 1: Probability density function of the reported absolute deviations between ET estimates
from remote sensing, and field measurement of ET. A season or longer period was considered.

There are seven papers that report a mean absolute percentage error of 1 % for the ET of
cropland. Without exception, all these papers are based on the Surface Energy Balance
Algorithm for Land (SEBAL) and its related algorithm Mapping ET at High Resolution with
Internalized Calibration (METRIC). Apparently these algorithms work well for crops, which was
recognized earlier by Bastiaanssen et al. (2009) and (Allen et al., 2011). Another interesting
observation is that at river basin scale — i.e. the scale where water accounting is done - all papers
report MAPE of less than 5%. These case studies include: 3% difference between the measured
ET and remotely sensed ET of selected river basins in Sri Lanka (Bastiaanssen and Chandrapala,
2003), 1.7% difference observed by Singh et al. (2011) for the Midwest USA using the METRIC
algorithm, 1.8% and 3% differences observed by Wu et al. (2012) using ET Watch in the Hai
Basin of the North China plain, and 5% difference observed by Bastiaanssen et al. (2002) for the
Indus Basin, 1% difference observed by Evans et al. (2009) for Murray darling, and 0.6%, 2.1%,
3.9%, and 18% difference for different algorithm observed by King et al. (2011) for Australian
continent.

At the other end of the spectrum, the largest ET deviations were found by Jiang et al. (2009) for
alkali scrubs in south Florida. They used the SatDAET algorithm which is an ET estimation
method that uses the contextual relationship between remotely sensed surface temperature and
vegetation index to calculate evaporative fraction (EF). They compared the estimated ET using
SatDAET for both clear and cloudy days with ET from lysimeter and observed a 19% difference
for 1999.

Considering this positive evaluation, spatial layers of ET should be encouraged for applications
in water accounting and hydrological modeling. Except for Jhorar et al. (2011), Winsemius et al.
(2009) and Muthuwatte et al. (2013), this is rarely done because water managers and
hydrologists do not accept ET layers as being sufficiently accurate. This new analysis proofs that
the scientific research from the last 13 years has advanced and that mapping of ET became more
confident.

3.2 Accuracy of spatial rainfall data

A comprehensive literature review - similar to ET — was conducted for remote sensing rainfall
products. Twenty four peer reviewed papers that describe the accuracy of annual and seasonal
rainfall from satellites, published over the last five years have been reviewed (see Appendix B).
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Sixty eight data points were reconstructed from these publications. The selected papers used
various remote sensing rainfall products including TRMM, PERSIANN, RFE, ERA40,
CMORPH, and CMAP.

Several of these papers compared different rainfall algorithms. Some also used the same field
data to verify several rainfall algorithms. For example, Asadullah et al. (2008) compared five
satellite-based rainfall estimates (SRFE) with historical average rainfall data from gauges over
the period 1960-1990 in Uganada. The difference between gauged data and SRFEs was found to
vary between 2% to 19%. Products such as CMORPH, TRMM 3B42, TAMSAT, and RFE
underestimated rainfall by 2%, 8%, 12%, and 19% respectively, while PERSTANN
overestimated by 8%. Stisen and Sanholt (2010) compared three global SRFE products, i.e.
CMORPH, TRMM 3B42 and PERSIANN, and two SRFEs made for Africa, i.e. CPC-FEWS v2
and a locally calibrated product based on TAMSAT data, with the average gauge rainfall in
Senegal River basin. They concluded that rainfall estimation methods that are designed for
Africa significantly outperform global products. This superior performance is attributed both to
the inclusion of local rain gauge data and to the fact that they are made specifically for the
African continent. Of the global products, SRFEs TRMM was found more accurate, presumably
because monthly calibration of the 3B43 product is a default process of the algorithm. The global
SRFEs showed an improved performance after bias correction and recalibration. The positive
effects of the inclusion of rain gauge data in SRFEs is also reported by Dinku et al. (2011) in
their study which compared five SRFEs with rain gauge data in the Blue Nile basin. Several
studies show that local calibration significantly improves accuracy of satellite based rainfall
estimates: Almazroui et al. (2012) in Saudi Arabia, Cheema and Bastiaanssen (2012) in the Indus
basin, Duan and Bastiaanssen (2013) in the Lake Tana and Caspian Sea regions, and Hunink et
al. (2014) in the high elevation Tungurahua province in the Andes mountain range of Ecuador.

The error probability distribution function curve reconstructed from the a priori calibrated
rainfall dataset is shown in Figure 2. The mean absolute percentage error varies between 0 to
65%, and the average MAPE for calibrated satellite rainfall estimates is 18.5%. The standard
deviation is 15.4%, with a positive skewness of 0.9. As with the density function for ET, the
curve fitting of the distribution was forced with a skewed normal distribution to ensure that less
weight is assigned to the class of 0 to 10% deviation. This indicates that for the majority of case
studies, the error in calibrated rainfall maps is 18.5%. Large errors bands were found for all
rainfall algorithms, and it is not obvious that one particular algorithm performs better in terms of
variance. The average MAPE is 14, 17, 21, 23, 28, and 29% for TRMM, ERA40, GPCP 1DD,
CMORPH, RFE, and PERSIANN respectively. These average values represent the average
MAPE of each SRFE regardless of the product version.

The interim conclusion is therefore that (i) the processes to derive rainfall from satellite data are
more complex than the derivation of ET and (ii) that the performance of existing rainfall
products is less satisfactory and requires caution when applied for water accounting and
hydrological modeling, despite the fact that most SRFE’s have an a priori calibration procedure.
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More research and development of operational rainfall algorithms using various types of sensors
is deemed necessary.

Figure 2.

Figure 2: Probability density function of the reported absolute deviations between rainfall
estimates from remote sensing, and field measurement of rainfall. A season or longer period is
considered.

3.3 Accuracy of land use land cover maps

The publications listed in Appendix C were reviewed for land use estimations. Sixty five papers
were reviewed. Seventy eight data points were reconstructed from these papers. Rather diverging
land use classes and data from 35 different countries were included in this comparative dataset.
The results are presented in Figure 3. The shape of the probability density function of error
differs from the ones obtained for ET and rainfall: it is tending towards a standardized normal
distribution, which implies that the number of very good results and very poor results are similar.
Table 2 provides a summary of the statistical results. The mean absolute percentage error defined
as 1 minus overall accuracy, for land use classification is 14.6%, with a standard deviation of
7.4% and a skewness of 0.35.

The overall performance is rather good, and this can be partially explained by the fact that high
resolution satellites were often used for the land use land cover classification. The spectral
measurements of Landsat and Aster were especially often applied, because they have suitable
bands in the near and middle infrared part of the spectrum. To investigate the impact of the
spatial resolution of the used imagery on the accuracy of the land use product, we divided the
data points into two groups based on the reported resolution. The MAPE for land use
classification that are based on high resolution images, 30 m and less, is 12.9%, whereas for
those that use moderate and low resolution images, more than 200 m, the MAPEis 19.8%. The
number of land use classes shows no significant impact on the overall accuracy of the map. The
results reveal that the global scale land cover maps have lower overall accuracy. The overall
accuracies of global maps varies between 69 to 87% with an average of 76.4%, which is
equivalent to a deviation of 13 to 31% and average of 23.4%. This observation shows that global
land cover maps should be used with caution in water accounting applications.

The overall accuracy in the reviewed papers varies between 68% to 98%. This is in good
agreement with the suggested range of 70% to 90% by Bach et al. (2006) in their review paper.
The review also revealed that Landsat products, with 42 case studies out of the total 78, are the
most commonly used imagery for land use land cover classification purposes. The arrival of free
access Landsat-8 data may thus set the directions for near future development of land use
classifications, especially when being complemented with Sentinel data.
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Many land use studies are based on ground truth data sets that are used for controlling or
supervising the classification process. The data in Appendix C thus have an element of a priori
calibration which increases the overall accuracy. Without ground-truthing the overall calibration
can be expected to be lower. Also, it must be noted that only the overall accuracy of the
confusion matrix is used. While the overall accuracy might be acceptable, it is likely that the
error in certain individual land use classes is significantly different.

Figure 3.

Figure 3: Probability density function of the reported absolute deviations between land use
estimates from remote sensing, and field inventories of land use.

Table 2.

4. Summary and conclusions

Increasing numbers of satellite-based measurements of land and water use data are provided by
generally accessible data archives, although evapotranspiration data sets are under development.
Satellites provide spatial information with a high temporal frequency over wide areas, which
make remotely sensed land use maps and hydrological variables an attractive alternative to
conventionally collected data sets. However, the uncertainty about the possible errors in remote
sensing estimates has been an ongoing concern among the users of these products. The goal of
this study was to investigate the errors and reliability of some of these remotely sensed
hydrological variables created by advanced algorithms developed during the last 10 years.

The main interest of this review was to understand the measure of error in remote sensing data
for water accounting. The review focused on ET, precipitation, and land use classifications. A
comprehensive literature review was conducted and for each variable several numbers of peer-
reviewed publications post 2000 were consulted for reported difference of satellite-based
estimates from conventional ground measurement. It is important to note that conventional
ground measurements come with their own errors and uncertainty that should ideally be taken in
consideration when used for verifying the accuracy of satellite-based estimates. However, in
most documented studies these ground measurements are treated as “the best available
estimates* in the absence of reliable information on their accuracy. As such they are widely used
to validate the data that are based on non-conventional methods, e.g. satellite based data. The
probability distribution functions of the mean absolute percentage errors for all three variables
were created.

The results show that the average MAPE for satellite-based estimates of annual or seasonal ET,
rainfall, and land use classification are 5.4%, 18.5 %, 14.6% respectively. The largest error is
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thus associated with rainfall. Bias correction and local calibration of global and regional rainfall
products seem to improve the quality of the data layers. However, more research is needed to
improve remotely sensed rainfall estimation algorithms, with a focus on downscaling procedures
as the standard pixel size is often too large. Radar based regional precipitation estimates that
offer higher spatio-temporal resolutions are a promising option that need to be utilized further.
Also the attenuation of microwave signals between cellular communication networks can be used
for assessing areal averaged rainfall. In addition, given the differences among reported
precipitation by different global and regional products for the same pixels, there is a need for a
data base that offers an ensemble based on a rigorous and statistically sound method.

In contrast to rainfall, the error in satellite-based ET is relatively small. ET is a vital component
of hydrological cycle and reliable estimates of ET are essential for modeling river basin
hydrology accurately. Remotely sensed ET can be used both as input to distributed hydrological
models, and as a means to calibrate the simulations. Nonetheless, despite its existing potential
and accuracy, satellite-based ET is under-utilized in hydrological studies. Contributing factors
are presumably the difficulty to access and acquire reliable ET data through the public domain,
and the difficulty to compare it with reliable field data. Thus, future focus should be on
development of open access ET data bases. Such efforts are already being done by some
organizations such as USGS, USDA, and CSIRO. However, these product are not yet made
available to the public. There is also a need for higher resolution ET data both spatial and
temporal. This is key factor if satellite based ET data are to be used extensively in water
management and hydrological studies.

Land use mapping is one of the earliest ways in which satellite imagery was used to produce
environmental information and it is the most widely studied subject in employing remote
sensing. The quality of the classifications has improved over time by the availability of high
resolution images and the use of remote sensing in land classification mapping is currently used
as a standard method. The land use classifications come with an overall MAPE of 14.6%, and
accuracy of 85%. This level of accuracy, although acceptable, calls for improvements given the
wide use of these maps. Another important issue is the need for a new type of land use mapping
dedicated to agricultural and river basin water management issues. This is of essential value
when land use maps are used in hydrological and water management related studies such as
water accounting.

As revealed by the results of this review study, there is a great deal of heterogeneity regarding
the accuracy and reliability of remotely sensing data and methods. Often times reliability of RS-
based products is rather case and location specific. Future research could, therefore, aim at cross-
comparing remote sensing data and methods on ET, rainfall and land use for different regions,
e.g. continental scale or small region, and for different research tasks such as those with focus on
hydrological processes or on human-land-atmosphere interactions.
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Table 1: Overview of main existing regional and global scale satellite-based data sources of
rainfall. The column “gauge” indicates whether a calibration against ground data is included

Product Main principle data Resolution | Spatial Gauge | Minimum | Producer
coverage time steps
interval
MPE Meteosat 7, 8,9 10 3 km Indian ocean N 15 min EUMETSAT
CMORPH Microwave estimates (DMSP F- 13, 14 & 8 km 50°N-S N 30 min NOAA/CPC
15 (SSM/I), NOAA-15, 16, 17 & 18
(AMSU-B), AMSR-E, and TRMM
(TMI)), IR motion vectors
PERSIANN Microwave estimates (DMSP F-13, 14, & 0.25° 60°N-S N 1-hour UC Irvine
15, NOAA-15, 16, 17, and TRMM
(T™MD))
GSMap Microwave estimates (DMSP F-13, 14 & 0.1° 60°N-S N 1-hour JAXA
15 (SSM/T), AMSR, AMSR-E, and
TRMM (TMI))
NRL- Microwave estimates (DMSP F-13, 14, & 0.25° 60°N-S N 3-hour NRL
Blended 15 (SSM/I), F-16 (SSMIS))
TCI(3G68) Microwave estimates (TRMM (TMI)), 0.5° 37°N-S N 1-hour NASA
and PR
TOVS HIRS, MSU sounding retrievals 1° Global N daily NASA
Hydro GOES IR 4 km Global N 15 min NOAA
Estimator
TRMM 3B42 Microwave estimates (TRMM, SSM/I, 0.25° 50°N-S Y 3-hour NASA
AMSR and AMSU), IR estimates from
geostationary satellites
CPC-RFE2.0 | Microwave estimates (SSM/I, AMSU-B), 0.1° 20°W-55°E, Y daily FEWS
IR estimates from METEOSAT 40°S-40°N
GPCP 1DD IR estimates from geostationary satellites, 1° 50°N-S Y daily NASA/GSFC
TOVS
CMAP Microwave estimates (SSM/I), GOES IR 2.5° Global Y 5 days NOAA
TAMSAT Meteosat thermal-IR 3km Africa Y 10 days Reading
University
TRMM 3B43 Microwave estimates (TRMM, SSM/I, 0.25° 40°N-S Y monthly NASA
AMSR and AMSU), IR estimates from
geostationary satellites
GPCP_V2 Microwave estimates (SSM/I), IR, TOVS 2.5° Global Y monthly NASA/GSFC
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Table 2: Mean deviation of the input variables and the distribution of the error

Remote Calibration Mean absolute Standard Skewness No. of data
sensing percentage deviation error points
parameter error

(%) (%) ()
ET No 5.4 4.9 1.18 41
Rainfall Yes 18.5 15.4 0.90 69
Land use Yes 14.6 7.4 0.37 78
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A5

Density

15 20

Figure 1: Probability density function of the reported absolute deviations between ET estimates
from remote sensing, and field measurement of ET. A season or longer period was considered.
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Density
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Error %

Figure 2: Probability density function of the reported absolute deviations between rainfall
estimates from remote sensing, and field measurement of rainfall.
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Error %

Figure 3: Probability density function of the reported absolute deviations between land use
estimates from remote sensing, and field inventories of land use.
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Appendix A: Literature review on evapotranspiration

Table Al: Selected ET validation papers that describe experimental data sets covering a season or longer

Fiel No. of
Method . feld Location and year Land use . °-©0 Source MAPE (%)
instrument images
. Native sedge
METRIC Lysimeter Idhao, US, 1985 4 Allen et al. (2005) 4
forage
METRIC Lysimeter Idaho, US, 1989 Sugar beet 12 Allen et al. (2007) 1
ALEXI Eddy. New Mexico, U Agricultural 6 Anderson et al. (2012) 6.7
covariance 2008 areas
SEBAL Water balance  Sri Lanka River basin - Bastiaanssen and 1
Chandrapala (2003)
SEBAL Water balance Indus, Pakistan River basin 20 Bastiaanssen et al. (2002) 5
Cassel and Robertson
SEBAL Lysimeter California, US, 2002  Alfalfa 7 (personal 2
communication, 2006)
Cassel and Robertson
SEBAL Lysimeter California, US, 2002  Peaches 7 (personal 7
communication, 2006))
Murray Darling river basin i
SEBAL Water balance  Basin, Australia Evans et al. (2009) 1
E
NDVI based model ddy . New Mexico, US Cottonwood, 10 Groeneveld et al. (2007) 2.2
covariance saltcedar
G d
NDVI based model  Bowen ratio Colorado, US, 2006 reasewood, 5 Groeneveld et al. (2007) 12.2
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NDVI based model

SEBAL

SEBAL

METRIC

METRIC

SEBAL

ETWatch

SatDAET

SatDAET

CMRS1
CMRS2
NDTI

ETLooK

SEBAL

SEBAL
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Eddy
covariance

Water balance

Scintillometer

Bowen ratio

Bowen ratio

Water balance

Water balance

Lysimeter

Lysimeter

Water balance
Water balance
Water balance
Water balance

Scintillometer

Surface
renewal

California, US, 2000-
2002

Central Luzon, 2001

Horana, 1999

Nebraska,US, 2005

Nebraska, US, 2006

Western Cape,
South Africa 2004-
2006

Hai basin, China —
2002 - 2009

Florida, US, 1998

Florida, US, 1999

Australia
Australia
Australia
Australia

Gediz basin, Turkey,
1998

Sacramento Valley,
us, 2001

Salt grass, alkali
sacaton

Rice

Palm trees and
rice

Corn

Corn

Grapes

Basin

alkali scrub

alkali scrub

river basin
river basin
river basin
river basin

Grapes, cotton

Rice

12

135

NA
NA
NA
NA

Groeneveld et al. (2007)

Hafeez et al. (2002)

Hemakumara and
Chandrapala (2003)

Irmak et al. (2011)

Irmak et al. (2011)

Jarmain et al. (2007)

Jiaetal. (2012)

Jiang et al. (2009)

Jiang et al. (2009)

King et al (2011)
King et al (2011)
King et al (2011)
King et al (2011)

Kite and Droogers (2000)

Lal et al. (2012)

12.5

10.5

0.9

4.3

4.2

12

8.3

14

19

2.1
0.6
18
3.9

16



TSEB

SEBS

METRIC/SEBAL

SEBAL

SEBAL

SEBAL

SEBAL

METRIC

SEBAL

SEBAL

SEBAL

SEBAL

SEBAL
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Measurements

Measurements

Water balance

Water balance

Water balance

Water balance

Bowen ratio

Eddy
covariance

Water balance

Lysimeter

Eddy
covariance

Eddy
covariance

Water balance

Yellow river, China,
2004

Australia, 2009

India, 2003

Sudd, Sudan, 2000

Sobat, Sudan, 2000

California, US, 2002

Nebraska, US

Nebraska, US

California, US

Idaho, US,
1989-91

Petrolina, 2001-
2007

Brazil

Imperial Valley,
1997-1998

Wetlands

Irrigated
agriculture

Irrigated
agriculture

Wetland

Wetland

Almonds

Corn

River basin

Irrigated
agriculture

Irrigated
agriculture

Mango, grapes

Natural
vegetation and
irrigated crops

Several

16

40

11

18

12

Li et al. (2011)

Ma et al. (2012)

Mallick et al. (2007)

Mohamed et al. (2004)

Mohamed et al. (2004)

Sanden (personal
communication, 2005)

Singh et al. (2008)

Singh et al. (2011)

Soppe et al. (2006)

Tasumi et al. (2003)

Teixeira et al. (2008)

Teixeira et al. (2009)

Thoreson et al, (2009)

7.9

7.5

11.6

1.7

4.3



SEBAL

ETWatch

ETWatch

ETWatch
SEBAL

WUE* based model

WUE based model

WUE based model

Eddy
covariance

Lysimeter

Eddy
covariance

Water balance

Water balance
Eddy
covariance
Eddy
covariance
Eddy
covariance

Middle Rio Grande,
us, 2002-2003

Hai basin, China,
2002 - 2005

Hai basin, China,
2002 - 2005

Hai basin, China,
2002 - 2005

North district, China
Jilin province, China
2003

Jilin province, China
2004

Jilin province, China
2005

Pecan, alfalfa

wheat-maize
rotation

River basin

River basin
Regional scale

Mixed forest
Mixed forest

Mixed forest

20

26
45

45

45

Wang and Sun (2005)

Wau et al. (2012)

Wau et al. (2012)

Wu et al. (2012)
Yang et al. (2012)
Zhang et al. (2009)

Zhang et al. (2009)

Zhang et al. (2009)

1.8
5.6

0.4

* Water Use Efficiency
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Appendix B: Literature review on rainfall

Table B2: Selected validation papers that describe experimental data sets covering a season or longer.

Source Area Year RS Data source  Deviation
Almazroui et al. (2011) Saudi Arabia 1998-2008 TRMM 0
Almazroui et al. (2012) Saudi Arabia 1998-2008 TRMM 12.05
Asadullah et al. (2010) Uganda 2003-2007 CMORPH 2
Asadullah et al. (2010) Uganda 2003-2007 PERSIANN 8
Asadullah et al. (2010) Uganda 2003-2007 RFE 2.0 19
Asadullah et al. (2010) Uganda 2003-2007 TRMM 3B42 8
Asadullah et al. (2010) Uganda 2003-2007 TAMSAT 12
Bitew and Gebremichael (2011)  Gilgel, Ethiopia 2006-2007 CMORPH 29
Bitew and Gebremichael (2011)  Gilgel, Ethiopia 2006-2007 TRMM 3B42RT 29
Bitew and Gebremichael (2011)  Gilgel, Ethiopia 2006-2007 PERSIANN 58
Bitew and Gebremichael (2011)  Gilgel, Ethiopia 2006-2007 TRMM 3B42 64
Cheema and Bastiaanssen (2012) Indus 2007 TRMM 3B43 V6 6.1
Cheema and Bastiaanssen (2012) Indus 2007 TRMM 3B43 V6 10.9
Chen et al. (2011) Dongjing basin, China 2002-2010 TRMM 3B42RT 22.1
Collischonn et al. (2008) Tapajo ’s basin, Brazil 1997-2006 TRMM 3B42 12
Dinku et al. (2007) Ethipian Highlands 1998-2004 TRMM 3B43 8
Dinku et al. (2011) Blue Nile, Ethiopia 1981-2004 CMAP 3
Dinku et al. (2011) Blue Nile, Ethiopia 1981-2004 GPCP 5
Dinku et al. (2011) Blue Nile, Ethiopia 2003-2004 CMORPH 1
Dinku et al. (2011) Blue Nile, Ethiopia 2003-2004 TRMM 3B42 5
Dinku et al. (2011) Blue Nile, Ethiopia 2003-2004 RFE 48
Duan and Bastiaanssen (2013) Lake Tana 1999, 2000, 2004 TRMM 3B43 V7 1
Duan and Bastiaanssen (2013) Caspian sea, Iran 2000-2003 TRMM 3B43 V7 20
Feidas (2009) Greece 1998-2006 TRMM 3B42 4.2
Feidas (2009) Greece 1998-2007 TRMM 3B43 7.6
Feidas (2009) Greece 1998-2008 GPCP-1DD 28.7
Fernandes et al. (2008) Amazon basin, South America 1980-2002 ERA-40 10
Fernandes et al. (2008) Amazon basin, South America 1980-2002 GPCP 7
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Fuetal. (2011)
Getirana et al. (2011)
Getirana et al. (2011)
Getirana et al. (2011)
Jiang et al. (2012)
Jiang et al. (2012)
Jiang et al. (2012)
Kizza et al. (2012)
Kizza et al. (2012)

Milewski et al. (2009)

Moffitt et al. (2011)
Pierre et al. (2011)
Pierre et al. (2011)
Pierre et al., (2011)
Semire et al. (2012)

Stisen and Sandholt (2010)
Stisen and Sanholt (2010)
Stisen and Sanholt (2010)
Stisen and Sanholt (2010)
Stisen and Sanholt (2010)

Su et al. (2008)
Villarini et al. (2009)
Voisin et al. (2008)
Voisin et al. (2008)
Voisin et al. (2008)
Voisin et al. (2008)
Voisin et al. (2008)
Voisin et al. (2008)
Voisin et al. (2008)
Voisin et al. (2008)
Voisin et al. (2008)
Voisin et al. (2008)
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Poyang basin, China

Negro basin, South America
Negro basin, South America
Negro basin, South America

Mishui Basin, China
Mishui Basin, China
Mishui Basin, China
Lake Victoria

Lake Victoria

Egypt

Bangladesh
Sahelian belt
Sahelian belt
Sahelian belt
Malaysia

Senegal river basin
Senegal river basin
Senegal river basin
Senegal river basin
Senegal river basin
La Plata Basin
Oklahoma, USA
Amazon

Amazon
Mississippi, USA
Mississippi, USA
Mackenzie, Canada
Mackenzie, Canada
Congo, Africa
Congo, Africa
Danube, Europe
Danube, Europe

2003-2006
1998-2002
1998-2002
1998-2002
2003-2008
2003-2008
2003-2008
2001-2004
2001-2004

2000-2005
2004-2007
2004-2007
2004-2007
2001-2010
2003-2005
2003-2005
2003-2005
2003-2005
2003-2005
1998-2006
1998-2003
1997-1999
1997-1999
1997-1999
1997-1999
1997-1999
1997-1999
1997-1999
1997-1999
1997-1999
1997-1999

GSMaP
TMPA
NCEP-2
ERA-40
CMORPH
3B42RT
3B42V6

TRMM 3B43

PERSIANN
TRMM

TRMM 3B42V6

RFE 2.0

TRMM 3B42

CMORPH

TRMM 3B43 V6

CMORPH
PERSIANN
TRMM
CCD
CPC-FEWs
TRMM
TRMM
ERA-40
GPCP 1DD
ERA-40
GPCP 1DD
ERA-40
GPCP 1DD
ERA-40
GPCP 1DD
ERA-40
GPCP 1DD

54
18
13
18
41
43
4.54

15
11.6
23

34
15
34
47
23

21

10
26.5
24.7
32.3
25.3
1.1
28.8
13.4
31
29.1
17.1



Voisin et al. (2008)
Voisin et al. (2008)
Voisin et al. (2008)
Voisin et al. (2008)
Voisin et al. (2008)
Voisin et al. (2008)
Voisin et al. (2008)
Voisin et al. (2008)
Wilk et al. (2006)

Meckong, SEA
Meckong, SEA
Senegal

Senegal

Yellow river, China
Yellow river, China
Yenisei, Russia
Yenisei, Russia
Okavango basin

1997-1999
1997-1999
1997-1999
1997-1999
1997-1999
1997-1999
1997-1999
1997-1999
1991-1996

ERA-40
GPCP 1DD
ERA-40
GPCP 1DD
ERA-40
GPCP 1DD
ERA-40
GPCP 1DD
TRMM

0.4
4.1
51.6
23.3
1.3
304
0.7
26.2
20
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Appendix C: Literature review on land use & land cover

Table C1: Selected validation papers that report on confusion matrices

Overall
Source Area Image Year Image source accuracy (%)
Abd El-Kawy et al. (2011) Nile Delta, Egypt 2005 Landsat ETM+ 96
Aguirre-Gutiérrez et al. (2012) Sierra Madre, Mexico 2006 Landsat ETM+ 87
Bach et al. (2006) Erda, Germany 1989-1992 CORINE 75
(Landsat TM)
Bach et al. (2006) Erda, Germany 1994 Landsat-5 TM 79
Bach et al. (2006) Stein., Germany 1989-1992 CORINE 69
(Landsat TM)
Bach et al. (2006) Stein., Germany 1994 Landsat-5 TM 74
Bicheron et al. (2008) Global 2004-2006 MERIS/Envisat 73
Blanco et al. (2013)) Latin America 2008 Modis-Terra 84
Biittner et al. (2006) Global 1999-2000 Landsat 87
ETM+/SPOT
Cassidy et al. (2013) Lower Meckong 2005 Landsat TM 85
Cheema and Bastiaanssen (2010)  Inuds basin 2007 SPOT/vegetation 77
Cingolani (2004) Cordoba, Argentina 1997 Landsat 5 TM 86
Clark et al. (2010) Dry Chaco, South 2000-2008 MODIS 80
America
Colditz et al., (2012) Mexico 2005 MODIS 83
Cotonnec and Du (2001) Baie de lannion, 1996-97 Landsat 5TM 89
France
Estes et al. (2012) Serengeti National 2002-2003 Landsat ETM+ 83
Park
Friedl et al. (2010) Global 2000-2001 Modis 5 75
Gamanya et al. (2007) Central Zimbabwe 2001 ASTER 92
Gamanya et al. 2007) Central Zimbabwe 2001 Landsat TM 89
Kandrika and Roy (2008) Orissa, India 2004-2005 AWiFS IRS-P6 87
Kavzoglu and Colkesen (2009) Kocaeil, Turkey 1997 Landsat ETM+ 91
Kavzoglu and Colkesen (2009) Kocaeil, Turkey 1997 Landsat ETM+ 90
Kavzoglu and Colkesen (2009) Kocaeil, Turkey 2002 Aster 88
Kavzoglu and Colkesen (2009) Kocaeil, Turkey 2002 Aster 93
Kavzoglu and Colkesen (2009) Kocaeil, Turkey 2002 Aster 91
Kavzoglu and Colkesen, 2009) Kocaeil, Turkey 1997 Landsat ETM+ 87
Kaya et al. (2002) Kenya 2001 RADARSAT-1 85
Keuchel et al. (2003) Tenerife, Spain 1988 Landsat 5TM 90
Keuchel et al. (2003) Tenerife, Spain 1988 Landsat 5TM 88
Keuchel et al. (2003) Tenerife, Spain 1988 Landsat 5TM 93
Klein et al., (2012) Central Asia 2009 MODIS 91
Kolios and Stylios (2013) Greece 2009 Landsat 7 ETM+ 97
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Liu and Yang (2013)
Liu et al. (2002)
Mayaux et al. (2006)

Munthali and Murayama (2011)
Munthali and Murayama (2011)

Oldeland et al. (2010)

Otukei and Blaschke ( 2010)

Pan et al. (2010)
Pefia-Barragan et al. (2011)
Pérez-Hoyos et al. (2012)

Petropoulos et al. (2012)
Qietal. (2012)

Ren et al. (2009)
Reno et al. (2011)
Reno et al., 2011)

Rodriguez-Galiano and Chica-

Olmo (2012)

Rozenstein and Karnieli (2011)

Setiawan et al. (2006)
Shao and Lunetta (2012)

Shimoni et al. (2009)

Shrestha and Zinck (2001)
Song et al. (2005)
Stavrakoudis et al. (2011)
Stefanov et al, (2001)
Sulla-Menashe et al. (2011)

Szuster et al. (2011)
Szuster et al. (2011)
Szuster et al. (2011)
Tasdemir et al. (2012)
Thenkabail et al. (2009a)
Tovar et al. (2013)
Tseng et al. (2008)
Wang et al. (2010)
Waske and Braun (2009)

Weiers et al (2002)

Weiers et al. (2002)
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Jilin, China
Rondonia, Brazil
Global

Dzalanyama, Malawi
Dzalanyama, Malawi
Rehoboth, Namibia
Pallisa, Uganda

Honghe Reserve,
China

Yolo County,
California
Regional/Europe

Greece
Panyu, China

NW-Yunnan, China
Amazon, Brazil
Amazon, Brazil
Granada, Spain

Israel
Yogyakarta, Indonesia

North Carolina &
Virginia, USA
Glinska Poljana,
Croatia

Likhu basin, Nepal

Connecticut, USA
Lake Kronia, Greece
Arizona, USA

Regional/Northern
Eurasia
Thai island, Thailand

Thai island, Thailand
Thai island, Thailand
Bulgaria

Global

Cajamarca, Peru
Connecticut, USA
Hengshan, China
Jena, Germany

Schleswig-Holstein,
Germany
Denmark

2009
1995/1997
1999-2000
2008
2000
2005
2001
2006

2006

2009
2009

2000
2008
1970
2004

2009
1994
2000-2009

2001

1988
2001
2005
1998
2001-2005

2004
2004
2004
2009
1997-1999
2007
1987
2003
2005

1992-1997

1992-1997

Landsat TM

Landsat TM/Spot
SPOT-Vegetation

ALOS
Landsat ETM+
HyMap

Landsat 7 ETM+

Landsat-5 TM
ASTER

Merged-global
maps
Hyperion

RADARSAT-2
PolSAR
Landsat ETM+

Landsat 5
Landsat 2
Landsat 5STM

Landsat 5 TM
Landsat TM
MODIS

E-SAR

Landsat TM
Landsat ETM
IKONOS
Landsat TM
MODIS

ASTER
ASTER
ASTER
Rapideye
AVHHR
Landsat 5 T™M
Landsat TM
Hyprion

ENVISAT/ ERS-

2
Landsat TM

Landsat TM

79

87

&9
87

97
83
86
86

81
80
91

84

94
85
93
85
73

95
94
94
94
79
80
98
80
83



Whiteside et al. (2011)

Wickham et al. (2013)
Wickham et al. (2013)
Wickham et al. (2013)
Wickham et al. (2013)
Wu et al. (2010)
Zhang et al. (2008)

Zhu et al. (2012)
Zhu et al. (2012)
Zhu et al. (2012)

Florence creek,
Australia
USA

USA
USA
USA
Dan-Shuei, China

Northern China plain,
China
Massachusetts, USA

Massachusetts, USA
Massachusetts, USA

2000

2001
2006
2001
2006
1995
2003

2007
2000-2007
2000-2002

ASTER

Landsat TM
Landsat TM
Landsat TM
Landsat TM
Landsat 5 TM
MODIS EVI

ALOS
Landsat/ALOS
Landsat

79

79
78
85
84
88
75

72
94
93
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Appendix D. Glossary

Table D1. Glossary

Term Description

1DD One Degree Daily

3B42RT 3B42 real time

ALEXI Atmosphere-Land Exchange Inverse

ALOS Advanced Land Observing Satellite

AMSR-E Advanced Microwave Sounding Radiometer-Earth

AMSU Advanced Microwave Sounding Unit

ASTER Advanced Spaceborne Thermal Emission and Reflection
Radiometer

AVHRR Advanced Very High Resolution Radiometer

CBERS China Brazil Earth Resources Satellite

CMAP CPC Merged Analysis of Precipitation

CMORPH CPC Morphing technique

CMRSET CSIRO MODIS Reflectance-based Scaling ET

CORINE CO-ordination of INformation on the Environment

CPC Climate Prediction Center

CSIRO Commonwealth Science and Industrial Research Organisation

DMSP Defense Meteorological Satellite Program

EARS Environmental Analysis and Remote Sensing

EUMETSAT European Organisation for the Exploitation
of Meteorological Satellites

FEWS Famine Early Warning Systems (FEWS)

GOES Geostationary Operational Environmental Satellites

GPCC Global Precipitation Climatology Centre

GPCP Global Precipitation Climatology Project

GPI GOES precipitation index

GSFC Goddard Space Flight Center’s (GSFC)

GSMaP Global Satellite Mapping of Precipitation

HIRS High-Resolution Infrared Sounder

IR Infrared

IWMI International Water Management Institute

METRIC Mapping EvapoTranspiration at high Resolution with Internalized
Calibration

MODIS Moderate Resolution Imaging Spectrometer

MPE Multi-Sensor Precipitation Estimate

NASA National Aeronautics and Space Administration

NDTI Normalised Difference Temperature Index

NOAA National Oceanic and Atmospheric Administratio

PERSIANN Precipitation Estimation From Remotely Sensed Information using

Artificial Neural Networks
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PR

RFE
SatDAET
SEBAL
SEBS
SEEAW
SPOT
SSM/1
TAMSAT
TCI

T™MI
TOVS
TRMM
TSEB
VIIRS
WIRADA

Precipitation radar

Rainfall Estimation Algorithm

Satellite daily ET

Surface Energy Balance Algorithm for Land

Surface Energy Balance System

System of Environmental-Economic Accounts for Water
Satellite Pour I’Observation de la Terre

Special Sensor Microwave/Imager

Tropical Applications of Meteorology using Satellite data
TRMM Combined Instrument

TRMM Microwave Imager

TIROS Operational Vertical Sounder

Tropical rainfall measuring mission

Two source energy balance

Visible Infrared Imager Radiometer Suite

Water Information Research and Development Alliance
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