Spatial Evapotranspiration, Rainfall and Land Use Data in Water Accounting. Part 1: Review of the accuracy of the remote sensing data P. Karimi^{1,2,3} and W.G.M. Bastiaanssen^{1,2,3,4} Correspondence to: P. Karimi (p.karimi@Unesco-ihe.org.org, p.karimi@tudelft.nl) # **Abstract** The scarcity of water encourages scientists to develop new analytical tools to enhance water resource management. Water accounting and distributed hydrological models are examples of such tools. Water accounting needs accurate input data for adequate descriptions of water distribution and water depletion in river basins. Ground-based observatories are decreasing, and remote sensing data is a suitable alternative to measure the required input variables. This paper reviews the reliability of remote sensing algorithms to accurately determine the spatial distribution of actual evapotranspiration, rainfall and land use. For our validation we used only those papers that covered study periods of one season to annual cycles because the accumulated water balance is the primary concern. Review papers covering shorter periods only (days, weeks) were not included in our review. Our review shows that by using remote sensing, evapotranspiration can be estimated with an overall accuracy of 95% (STD 5%) and rainfall with an overall accuracy of 82% (STD 15%). Land use can be identified with an overall accuracy of 85% (STD 7%). Hence, more scientific work is needed to improve spatial mapping of rainfall using multiple space-borne sensors. Actual evapotranspiration maps can be used with confidence in water accounting and hydrological modeling. ## 1. Introduction The demand for fresh water is increasing worldwide due to economic and population growth (Molden et al., 2007; Vörösmarty et al., 2010). Proper planning of such scarce water resources in terms of storage, allocation, return flow and environmental services is vital for optimizing the resource (Chartres and Varma, 2010). There is, however, a lack of fundamental data on vertical and lateral water flows, water stocks, water demand, and water depletion. At the same time, there is a decline in the network density of operational hydro-meteorological field stations. The absence of adequate field data sets is an important obstacle for sound, evidence-based water resource management decisions. The consequence of data scarcity is more severe in trans- ¹UNESCO-IHE Institute for Water Education, Delft, The Netherlands ²International Water Management Institute, Battaramulla, Sri Lanka ³Faculty of Civil Engineering and Geosciences, Water Management Department, Delft University of Technology, Delft, The Netherlands ³eLEAF Competence Centre, Wageningen, The Netherlands boundary river basins where, apart from collection, the accessibility of data is hindered by political issues (Awulachew et al., 2013). Remotely sensed hydrological data are an attractive alternative to conventional ground data collection methods (Bastiaanssen et al., 2000; Engman and Gurney, 1991; Wagner et al., 2009). Satellites measure the spatial distribution of hydrological variables indirectly with a high temporal frequency across vast river basins. There are many public data archives where every user can download pre-processed satellite data. Quality flags are often provided, as well as manuals with explanations on how the satellite data have been pre-processed. These recurrent data sets are highly transparent, politically neutral and consistent across entire river basins, even for large basins such as the Nile and the Ganges. While certain satellite data sets have been processed to a first level of reflectance, emittance and backscatter coefficients, others will even provide second level products that can be directly explored for water resource planning purposes (e.g. land cover, soil moisture, and rainfall). Evapotranspiration (ET) is one of the parameters that often requires additional processing of the spectral data; only a very few public domain data archives provide pre-processed ET data, and in fact, spatial ET modeling is still under developed. Examples of several remotely sensed ET algorithms that could be applied to interpret raw satellite data into spatial layers of ET are well summarized in a recent book edited by Irmak (2012). Time series of various hydrological variables such as precipitation, evapotranspiration, snow cover, soil moisture, water levels, and aquifer storage can be downloaded from public domain satellite-based data archives. With the right analytical tools and skills, these abundant datasets of hydrological processes can be used to produce information on water resource condition in river basins. Tools such as Water Accounting Plus (WA+) (Bastiaanssen, 2009; Karimi et al., 2013a, 2013b) are expressly designed to exploit remote sensing estimates of hydrological variables. Water accounting is the process of communicating water related information about a geographical domain, such as a river basin or a country, to users such as policy makers, water authorities, basin managers, and public users. Water accounting information can be key to river basin management policy, especially when administrations are reluctant to share their – sometimes imperfect - in situ data with neighboring states and countries. WA+ facilitates conflict management in internationally shared river basins. Hydrological variables derived from remote sensing can also be used for spatially distributed hydrological modeling. Studies by Houser et al. (1998), Schuurmans et al. (2003), and Immerzeel and Droogers (2008) have demonstrated that such inputs have improved hydrological model performance for river basins in Australia, The Netherlands and India. There are also inaccuracies in satellite measurement, caused by for example radiometer performance onboard satellites, the atmospheric corrections applied, and the conversion of the surface radiation signal into hydrological variables. Remote sensing data thus do have sampling errors and may also be biased in some cases (Lillesand et al., 2004). The bias is typically caused by an instrument error or an erroneous default coefficient in the algorithms used to convert raw radiation data to a hydrological variable. The sampling error is mostly attributed to the timing of the satellite overpass, the nominal revisit time, and the cloud cover. A major point of criticism of remote sensing data is the lack of accuracy. Accuracy has however improved significantly over the last 30 years; yet it is necessary to remain critical. Conventional methods of measuring hydrological processes (e.g. rainfall and discharge) are not flawless either, and the accuracy of both types of measurements needs to be verified. Actual evapotranspiration (ET) of river basins can hardly be measured operationally, and therefore the depletion of water is often ignored in water accounting frameworks such as the SEEAW system proposed by the United Nations Statistics Division (UN, 2007) and the Australian water accounting system (ABS, 2004). Remote sensing techniques on the other hand can provide daily estimates of actual ET and this opens new pathways in the accounting of water depletion (Karimi et al., 2013a). This paper investigates the errors and reliability of remotely sensed ET, rainfall, and land use based on a comprehensive literature review. The choice of the variables that have been investigated for their accuracy in this paper (ET, Rainfall, LULC) is based on the parameters that are more commonly used in hydrological studies and, also, are input parameters for WA+. Only recent publications on accumulated ET and rainfall for a minimum time period of one growing cycle have been consulted, which implies that some of the well-known reference papers are excluded because they relate to shorter flux observation periods. Our aim is to understand the accuracy of seasonal and annual total values of ET and rainfall because they are of more practical value in water resource management and the errors at this time scale are different from daily and weekly time scales. The companion paper (Karimi et al., 2013c) investigates impacts of the errors associated with the satellite measurement for ET, rainfall and land use on the accuracy of WA+ outputs, using a case study from the Awash basin in Ethiopia. # 2. Remote Sensing Data for Water Accounting (WA+) # 2.1 Evapotranspiration Over the past decades several methods and algorithms to estimate actual evapotranspiration (ET) through satellite measurements have been developed. Most of these estimates are based on the surface energy balance equation. The surface energy balance describes the partitioning of natural radiation absorbed at the earth surface into physical land surface processes. Evapotranspiration is one of these key processes of the energy balance, because latent heat (energy) is required for evaporation to take place. The energy balance at the earth surface reads as: $$LE = R_n - G - H$$ (W m⁻²) Where R_n is the net radiation, G is the soil heat flux, H is the sensible heat flux, and LE is the latent heat flux. The sensible heat flux H is a function of the temperature difference between the canopy surface and the lower part of the atmosphere, and the soil heat flux G is a similar function related to the temperature difference between the land surface and the top soil. A rise of surface temperature will thus usually increase H and G fluxes. Evaporative cooling will reduce H and G, and always result in a lower surface temperature. The latent heat flux LE is the equivalent energy amount (W m⁻²) of the ET flux (kg m⁻³ s⁻¹ or mm d⁻¹). The net radiation absorbed at the land surface is computed from shortwave and longwave radiation exchanges. Solar radiation is shortwave and is the most important supplier of energy. More information on the energy balance is provide in background material such as Campbell and Norman (1998) or Allen et al. (1998). Surface temperature is measured routinely by
space borne radiometers such as the Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spectrometer (MODIS), Visible Infrared Imager Radiometer Suite (VIIRS), Landsat, Advanced Space borne Thermal Emission and Reflection Radiometer (ASTER), China Brasil Earth Resources Satellite (CBERS), and the Chinese HJ and Feng Yung satellites. Remotely sensed surface temperature is the major input variable in ET algorithms. Examples of thermal infrared ET algorithms are provided by EARS (Rosema, 1990), SEBAL (Bastiaanssen et al., 1998), TSEB (Norman et al., 1995), SEBS (Su, 2002), METRIC (Allen et al., 2007), ALEXI (Anderson et al., 1997), and ETWatch (Wu et al., 2012). The differences among these algorithms are related to the parameterization of H, general model assumptions, and the amount of input data required to operate these models. Other groups of ET algorithms are based on the vegetation index and its derivatives such as published by Nemani and Running (1989), Guerschman et al. (2009), Zhang et al. (2010a), Mu et al. (2011), and Miralles et al. (2011). ETLook (Bastiaanssen et al., 2012) is a new ET model that directly computes the surface energy balance using surface soil moisture estimations for the top soil (to feed soil evaporation) and sub-soil moisture for the root zone (to feed vegetation transpiration). Soil moisture data can be inferred from thermal measurements (e.g. Scott et al., 2003) or from microwaves measurements (e.g. Dunne et al., 2007). Microwave measurements provide a solution for all weather conditions and can be applied at any spatial scale for which moisture data is available. A different school of remote sensing based ET algorithms is built around the derivation of a relative value of ET using trapezoid/triangle methods. Trapezoid/triangle diagrams are constructed from a population of pixel values of surface temperature and vegetation index and used to infer the relative value of ET (e.g. Choudhury, 1995; Moran et al., 1994; Roerink et al., 2000; Wang et al., 2007). In these diagram, the range of surface temperature values at a given class of vegetation index is the basis for determining relative ET, assuming that the lowest temperature in a certain range of vegetation index represents potential ET. The highest temperature coincides with zero evaporation. The main assumption in triangle/trapezoidal method is that the variation in vegetation index relation to surface temperature is driven primarily by the variation in soil water content rather than differences in atmospheric conditions. Merging different global ET products such as MOD16 (Mu et al., 2011) and ERA-Interim (Dee et al., 2011) at global and regional scales into one ET product is another approach that has been used by a group of scientists. This approach mainly uses statistical methods to combine ET products that are based on different methods, algorithms, and origins (e.g. Global: Mueller et al., 2013; Afrcia: Trambauer et al., 2013). Review papers on advanced algorithms for estimating spatial layers of ET in general are published by Moran and Jackson (1991), Kustas and Norman (1996), Bastiaanssen (1998), Courault et al. (2005), Glenn et al. (2007), Gowda et al. (2007), Kalma et al. (2008), Verstraeten et al. (2008), and Allen et al. (2011). While these review papers provide a good understanding of the evolution of ET algorithm development, they rarely report the accuracies attainable, especially at a seasonal or longer time frame. #### 2.2 Rainfall There are different algorithms to infer rainfall from satellite data. The four essentially different technologies are (i) indexing the number and duration of clouds (Barrett, 1988), (ii) accumulated cold cloud temperatures (Dugdale and Milford, 1986), (iii) microwave emissivity (Kummerow et al., 1996), and (iv) radar reflectivity (Austin, 1987). Techniques using microwave wavelength information are promising alternatives for measuring rainfall because of the potential for sensing the raindrops itself and not a surrogate of rain, such as the cloud type. Microwave radiation with wavelengths in the order of 1 mm to 5 cm has a strong interaction with raindrops, since the drop size of rain is comparable to this wavelength. This feature makes them suitable to detect rainfall intensity. Active microwave (radar) measurements of rainfall are based on the Rayleigh scattering caused by the interaction of rain and the radar signal (Cracknell and Hayes, 1991). Space borne radar measurements of rain intensity are possible with the Precipitation Radar aboard the NASA Tropical Rainfall Measuring Mission (TRMM) satellite, which assesses the attenuation of the radar signal caused by the rain. The precipitation radar (PR) has a pixel size of 5 km and can oversee a swath of 220 km. Unfortunately, it is usually necessary to evaluate the rainfall radar reflectivity factor empirically on a region-by-region basis over lengthy periods of time. In other words, rain radar systems - both ground-based and satellite-based - need calibration for proper rainfall estimates. We will conclude later that most papers investigated in our review process do apply a certain level of calibration. Review papers on the determination of rainfall from satellite measurements have been prepared, by for instance Barrett (1988), Barrett and Beaumont (1994), Petty (1995), Petty and Krajewski (1996), Kummerow et al. (1996), Smith et al. (1998), Kidd (2001), Stephens and Kummerow (2007) and Huffman et al. (2007). A selection of available rainfall products based on remote sensing techniques – sometimes used in combination with other methodologies - is presented in Table 1. # Table 1. #### 2.3 Land use Whereas land cover describes the physical properties of vegetation (e.g. grass, savannah, forest), land use denotes the usage of that land cover (e.g. pasture, crop farming, soccer field). Maps of land use are fundamental to WA+ because it determines the services and processes from water consumption. Different types of land use provide benefits and services such as food production (agricultural land), economic production (industrial areas), power generation (reservoirs), environmental ecosystems (wetlands) etc., for the amount of water they consume. Land use classification based on the use of water, differs from classical land use – land cover maps that focus mainly on the description of woody vegetation such as forests and shrubs for ecological and woodland management purposes. WA+ needs land use maps focused on crop types (rainfed potatoes, irrigated maize) and the source of water consumed (e.g. surface water and groundwater). Some of the first maps dedicated for agricultural water management were prepared by Thenkabail et al. (2005), Cheema and Bastiaanssen (2010) and Yalew et al. (2012). Furthermore, land use classifications for WA+ at river basin scale require a pixel size of 30 to 100 meter that can be delivered by Proba-V and Landsat-8 satellite data. It is expected that the arrival of Sentinel-2 data during the course of 2014 with pixel sizes ranging between 10 to 30 m and a short revisit time of 5 days will greatly enhance development of new land use classifications that are tailored for water use and water accounting. Land use changes affect the water balance of river basins and thus also the amount of water flowing to downstream areas. Bosch and Hewlett (1982) and Van der Walt et al. (2004) discuss for instance how replacing natural vegetation by exotic forest plantations reduced the stream flow in South Africa. Maes et al. (2009) evaluated the effect of land use changes on ecosystem services and water quantity on basins in Belgium and Australia. The role of land use is thus a crucial component of sound water accounting and water resource management (Molden, 2007). Land use is usually identified on the basis of spectral reflectance and its change with vegetation phenology. The reflectance in the near and middle infrared part of the electromagnetic spectrum especially, is often related to certain land use classes. The relationship between reflectance and land use is however not unique, and field inspections are usually needed for interpretation. Soil type, soil moisture and soil roughness all have an influence on reflectance. The health of the vegetation and factors such as the angle and size of leaves also affect the photosynthetic activity of the plants. There is another land use mapping technology that is entirely based on the difference in time profiles of spectral vegetation indices. Fourier analysis of vegetation index can be used to quantify land use classes and crop types (e.g. Roerink et al., 2003), especially when time profiles can be linked to existing cropping calendars. All the land use classification papers we reviewed report on a confusion matrix that describes the overall classification accuracy by showing how often certain land use classes are confused in the remote sensing analysis with other land use classes. Congalton (1991) and Foody (2002) give a full explanation on errors in land use data. Review papers on the use of remote sensing for land use land cover classification are provided in Bastiaanssen (1998), Smits et al. (1999), Mucher et al. (2000), Cihlar (2000), Franklin and Wulder (2002), Thenkabail et al. (2009b), and García-Mora et al. (2012). # 3. Results #### 3.1 Accuracy of spatial evapotranspiration data The lack of validation of spatial layers of ET is one of the drawbacks in defining the reliability of remotely sensed ET products. There are no reliable and low cost ground-based ET flux measurement techniques, although new inventions are always underway (Euser et al., 2013). It is simply too costly to install instruments that have the capacity to measure ET operationally at various locations dispersed across a river basin. The main methods to measure ET at the field scale include lysimeters, Bowen ratio, eddy covariance systems, surface renewal systems, scintillometers and
classical soil water balancing. Lysimeters can be very accurate for in-situ measurements of ET at small scale if they are properly maintained. Bowen ratio and Eddy covariance flux towers and surface renewal systems are fairly accurate methods for estimating ET at scales of up to 1 km (Rana and Katerji, 2000), although not free of errors (e.g. Teixeira and Bastiaanssen, 2010; Twine et al., 2000). Scintillometers have the capability to measure fluxes across path lengths of 5 to 10 km (Hartogensis et al., 2010; Meijninger and de Bruin, 2000). To deal with the problem of measuring ET fluxes in composite terrain, large-scale field experiments in the African continent (e.g. Sahel: Goutorbe et al., 1997; Southern Africa: Otter et al., 2002), the European continent (e.g. France: Andre et al., 1986; Spain: Bolle et al., 2006), the American continent (e.g. Kansas: Smith et al., 1992; Arizona & Oklahoma: Jackson et al., 1993) and the Asian continent (e.g. China: Wang et al., 1992: Korea: Moon et al., 2003) were set up to measure fluxes simultaneously within a certain geographic region at a number of sites with different land use classes. Several remotely sensed ET algorithms were developed and validated using these datasets. The limitation is however that the duration of these special field campaigns was for budgetary reasons restricted to several weeks only. Validation studies with different ET algorithms using the same spatial ground truth data sets are very interesting. The International Water Management Institute (IWMI) undertook for instance a validation study to determine the accuracy of various ET methods for irrigated cotton and grapes in Turkey (Kite and Droogers, 2000). Also here, the period was not sufficiently long to encompass one growing season. The Commonwealth Science and Industrial Research Organisation (CSIRO) in Australia studied the predictions of eight different ET products, at a minimum monthly frequency and at a spatial resolution of at least 5 km, using flux tower observations and watershed data across the entire continent as part of the Water Information Research and Development Alliance (WIRADA) project (Glenn et al., 2011). The studied ET products were based on different methods including large scale water balance modeling, thermal imagery (Mcvicar and Jupp, 1999, 2002), spectral imagery (Guerschman et al., 2009), inferred LAI (Zhang et al., 2010b), passive microwave (Bastiaanssen et al., 2012), and global MODIS reflectance based algorithm (Mu et al., 2007). The results showed that at annual scale remote sensing based ET estimates, barring the global MODIS product that was at the time an unrefined method that needed improvements (Mu et al., 2011), had an acceptable mean absolute percentage error (MAPE) ranging from 0.6% to 18% with an average MAPE of 6% (King et al., 2011). Along similar lines, the Council for Scientific and Industrial Research (CSIR) in South Africa conducted a remote sensing study on a smaller scale to investigate the performance of three ET algorithms (Jarmain et al., 2009). To assess the overall error in accumulated ET products, a comprehensive literature review was conducted and reported errors by various authors were synthesized. All the papers included in the review were published within the past 13 years and they cover a range of in-situ measurements and remote sensing ET algorithms. The reviewed papers cover a range of remote sensing methods for ET measurements including SEBAL, METRIC, SEBS, TSEB, ALEXI, ET Watch, and SatDAET. In essence, the spatial ET layers reported in these papers were not a priori calibrated and the authors reported on the validation aspect. Since the primary purpose of this study was to quantify errors in accumulated ET, only papers that report errors on ET estimates over a minimum period of one growing cycle were consulted. Papers dealing with ET over shorter periods were thus excluded in our review (e.g. Anderson et al., 2011; Chávez et al., 2008; Gonzalez-Dugo et al., 2009; Mu et al., 2011). This, also, implies that GEWEX related field experiments could not be used because intensive campaigns with multiple flux covered periods of weeks only. The manifold flux campaigns organized by the US Department of Agriculture (Kustas et al., 2006; JORNEX: Rango et al., 1998; SALSA: Chehbouni et al., 1999) also did not meet our criterion. To be able to compare error levels from different studies only papers that report errors in terms of mean error were included in the review. Thus, some of the valuable papers on this topic that use RMSE to describe errors without including mean error could not be included in the review (e.g. Batra et al., 2006; Cleugh et al., 2007; Guerschman et al., 2009; Venturini et al., 2008). The data sources consulted are summarized in Appendix A. It reflects the accumulated ET conditions encountered in 11 countries. The time of accumulation should be minimally one growing cycle, otherwise they were rejected from the review process. Thirty one publications met the criteria specified and were analyzed. One publication often contains more data points due to multiple models, multiple years, and multiple areas. Hence, the total number of points was n=46. Considering this number, the probability density function is unlikely to change if other papers – or more papers – were to be considered in the review. The probability distribution of mean absolute percentage error in remote sensing ET estimates is presented in Figure 1. The results demonstrate the absolute error of annual or seasonal ET, ET during growing season which on average is about 5-6 months, to vary between 1 to 20%. The average MAPE is 5.4%, with a standard deviation of 5.0%. It is evident from Figure 1 that the distribution is positively skew. These results are closely in line with findings by King et al. (2011) in Australia, both in terms of average and the range of error in ET estimates. Many of the publications reported an error of less than 5%, a remarkable good and unexpected result. Many authors of the papers are both the developer and the tester of the algorithms, and parameter tuning was possible. The left hand bar of in Figure 1 is – we believe – a biased view of the reality. For this reason, the data points were fitted by means of a skewed normal distribution so that less weight is given to the class with exceptionally low errors. #### Figure 1. Figure 1: Probability density function of the reported absolute deviations between ET estimates from remote sensing, and field measurement of ET. A season or longer period was considered. There are seven papers that report a mean absolute percentage error of 1 % for the ET of cropland. Without exception, all these papers are based on the Surface Energy Balance Algorithm for Land (SEBAL) and its related algorithm Mapping ET at High Resolution with Internalized Calibration (METRIC). Apparently these algorithms work well for crops, which was recognized earlier by Bastiaanssen et al. (2009) and (Allen et al., 2011). Another interesting observation is that at river basin scale – i.e. the scale where water accounting is done - all papers report MAPE of less than 5%. These case studies include: 3% difference between the measured ET and remotely sensed ET of selected river basins in Sri Lanka (Bastiaanssen and Chandrapala, 2003), 1.7% difference observed by Singh et al. (2011) for the Midwest USA using the METRIC algorithm, 1.8% and 3% differences observed by Wu et al. (2012) using ET Watch in the Hai Basin of the North China plain, and 5% difference observed by Bastiaanssen et al. (2002) for the Indus Basin, 1% difference observed by Evans et al. (2009) for Murray darling, and 0.6%, 2.1%, 3.9%, and 18% difference for different algorithm observed by King et al. (2011) for Australian continent. At the other end of the spectrum, the largest ET deviations were found by Jiang et al. (2009) for alkali scrubs in south Florida. They used the SatDAET algorithm which is an ET estimation method that uses the contextual relationship between remotely sensed surface temperature and vegetation index to calculate evaporative fraction (EF). They compared the estimated ET using SatDAET for both clear and cloudy days with ET from lysimeter and observed a 19% difference for 1999. Considering this positive evaluation, spatial layers of ET should be encouraged for applications in water accounting and hydrological modeling. Except for Jhorar et al. (2011), Winsemius et al. (2009) and Muthuwatte et al. (2013), this is rarely done because water managers and hydrologists do not accept ET layers as being sufficiently accurate. This new analysis proofs that the scientific research from the last 13 years has advanced and that mapping of ET became more confident. # 3.2 Accuracy of spatial rainfall data A comprehensive literature review - similar to ET – was conducted for remote sensing rainfall products. Twenty four peer reviewed papers that describe the accuracy of annual and seasonal rainfall from satellites, published over the last five years have been reviewed (see Appendix B). Sixty eight data points were reconstructed from these publications. The selected papers used various remote sensing rainfall products including TRMM, PERSIANN, RFE, ERA40, CMORPH, and CMAP. Several of these papers compared different rainfall algorithms. Some also used the same field data to verify several rainfall algorithms. For example, Asadullah et al. (2008) compared five satellite-based rainfall estimates (SRFE) with historical average rainfall data from gauges over the period 1960-1990 in Uganada. The difference between gauged data and SRFEs was found to vary between 2% to 19%. Products such as CMORPH, TRMM 3B42, TAMSAT, and RFE underestimated rainfall by 2%, 8%, 12%, and 19% respectively, while PERSIANN overestimated by 8%. Stisen and Sanholt (2010) compared three global SRFE products, i.e. CMORPH, TRMM 3B42 and PERSIANN, and two SRFEs made for Africa, i.e. CPC-FEWS v2 and
a locally calibrated product based on TAMSAT data, with the average gauge rainfall in Senegal River basin. They concluded that rainfall estimation methods that are designed for Africa significantly outperform global products. This superior performance is attributed both to the inclusion of local rain gauge data and to the fact that they are made specifically for the African continent. Of the global products, SRFEs TRMM was found more accurate, presumably because monthly calibration of the 3B43 product is a default process of the algorithm. The global SRFEs showed an improved performance after bias correction and recalibration. The positive effects of the inclusion of rain gauge data in SRFEs is also reported by Dinku et al. (2011) in their study which compared five SRFEs with rain gauge data in the Blue Nile basin. Several studies show that local calibration significantly improves accuracy of satellite based rainfall estimates: Almazroui et al. (2012) in Saudi Arabia, Cheema and Bastiaanssen (2012) in the Indus basin, Duan and Bastiaanssen (2013) in the Lake Tana and Caspian Sea regions, and Hunink et al. (2014) in the high elevation Tungurahua province in the Andes mountain range of Ecuador. The error probability distribution function curve reconstructed from the a priori calibrated rainfall dataset is shown in Figure 2. The mean absolute percentage error varies between 0 to 65%, and the average MAPE for calibrated satellite rainfall estimates is 18.5%. The standard deviation is 15.4%, with a positive skewness of 0.9. As with the density function for ET, the curve fitting of the distribution was forced with a skewed normal distribution to ensure that less weight is assigned to the class of 0 to 10% deviation. This indicates that for the majority of case studies, the error in calibrated rainfall maps is 18.5%. Large errors bands were found for all rainfall algorithms, and it is not obvious that one particular algorithm performs better in terms of variance. The average MAPE is 14, 17, 21, 23, 28, and 29% for TRMM, ERA40, GPCP 1DD, CMORPH, RFE, and PERSIANN respectively. These average values represent the average MAPE of each SRFE regardless of the product version. The interim conclusion is therefore that (i) the processes to derive rainfall from satellite data are more complex than the derivation of ET and (ii) that the performance of existing rainfall products is less satisfactory and requires caution when applied for water accounting and hydrological modeling, despite the fact that most SRFE's have an a priori calibration procedure. More research and development of operational rainfall algorithms using various types of sensors is deemed necessary. # Figure 2. Figure 2: Probability density function of the reported absolute deviations between rainfall estimates from remote sensing, and field measurement of rainfall. A season or longer period is considered # 3.3 Accuracy of land use land cover maps The publications listed in Appendix C were reviewed for land use estimations. Sixty five papers were reviewed. Seventy eight data points were reconstructed from these papers. Rather diverging land use classes and data from 35 different countries were included in this comparative dataset. The results are presented in Figure 3. The shape of the probability density function of error differs from the ones obtained for ET and rainfall: it is tending towards a standardized normal distribution, which implies that the number of very good results and very poor results are similar. Table 2 provides a summary of the statistical results. The mean absolute percentage error defined as 1 minus overall accuracy, for land use classification is 14.6%, with a standard deviation of 7.4% and a skewness of 0.35. The overall performance is rather good, and this can be partially explained by the fact that high resolution satellites were often used for the land use land cover classification. The spectral measurements of Landsat and Aster were especially often applied, because they have suitable bands in the near and middle infrared part of the spectrum. To investigate the impact of the spatial resolution of the used imagery on the accuracy of the land use product, we divided the data points into two groups based on the reported resolution. The MAPE for land use classification that are based on high resolution images, 30 m and less, is 12.9%, whereas for those that use moderate and low resolution images, more than 200 m, the MAPE is 19.8%. The number of land use classes shows no significant impact on the overall accuracy of the map. The results reveal that the global scale land cover maps have lower overall accuracy. The overall accuracies of global maps varies between 69 to 87% with an average of 76.4%, which is equivalent to a deviation of 13 to 31% and average of 23.4%. This observation shows that global land cover maps should be used with caution in water accounting applications. The overall accuracy in the reviewed papers varies between 68% to 98%. This is in good agreement with the suggested range of 70% to 90% by Bach et al. (2006) in their review paper. The review also revealed that Landsat products, with 42 case studies out of the total 78, are the most commonly used imagery for land use land cover classification purposes. The arrival of free access Landsat-8 data may thus set the directions for near future development of land use classifications, especially when being complemented with Sentinel data. Many land use studies are based on ground truth data sets that are used for controlling or supervising the classification process. The data in Appendix C thus have an element of a priori calibration which increases the overall accuracy. Without ground-truthing the overall calibration can be expected to be lower. Also, it must be noted that only the overall accuracy of the confusion matrix is used. While the overall accuracy might be acceptable, it is likely that the error in certain individual land use classes is significantly different. #### Figure 3. Figure 3: Probability density function of the reported absolute deviations between land use estimates from remote sensing, and field inventories of land use. #### Table 2. # 4. Summary and conclusions Increasing numbers of satellite-based measurements of land and water use data are provided by generally accessible data archives, although evapotranspiration data sets are under development. Satellites provide spatial information with a high temporal frequency over wide areas, which make remotely sensed land use maps and hydrological variables an attractive alternative to conventionally collected data sets. However, the uncertainty about the possible errors in remote sensing estimates has been an ongoing concern among the users of these products. The goal of this study was to investigate the errors and reliability of some of these remotely sensed hydrological variables created by advanced algorithms developed during the last 10 years. The main interest of this review was to understand the measure of error in remote sensing data for water accounting. The review focused on ET, precipitation, and land use classifications. A comprehensive literature review was conducted and for each variable several numbers of peer-reviewed publications post 2000 were consulted for reported difference of satellite-based estimates from conventional ground measurement. It is important to note that conventional ground measurements come with their own errors and uncertainty that should ideally be taken in consideration when used for verifying the accuracy of satellite-based estimates. However, in most documented studies these ground measurements are treated as "the best available estimates" in the absence of reliable information on their accuracy. As such they are widely used to validate the data that are based on non-conventional methods, e.g. satellite based data. The probability distribution functions of the mean absolute percentage errors for all three variables were created. The results show that the average MAPE for satellite-based estimates of annual or seasonal ET, rainfall, and land use classification are 5.4%, 18.5 %, 14.6% respectively. The largest error is thus associated with rainfall. Bias correction and local calibration of global and regional rainfall products seem to improve the quality of the data layers. However, more research is needed to improve remotely sensed rainfall estimation algorithms, with a focus on downscaling procedures as the standard pixel size is often too large. Radar based regional precipitation estimates that offer higher spatio-temporal resolutions are a promising option that need to be utilized further. Also the attenuation of microwave signals between cellular communication networks can be used for assessing areal averaged rainfall. In addition, given the differences among reported precipitation by different global and regional products for the same pixels, there is a need for a data base that offers an ensemble based on a rigorous and statistically sound method. In contrast to rainfall, the error in satellite-based ET is relatively small. ET is a vital component of hydrological cycle and reliable estimates of ET are essential for modeling river basin hydrology accurately. Remotely sensed ET can be used both as input to distributed hydrological models, and as a means to calibrate the simulations. Nonetheless, despite its existing potential and accuracy, satellite-based ET is under-utilized in hydrological studies. Contributing factors are presumably the difficulty to access and acquire reliable ET data through the public domain, and the difficulty to compare it with reliable field data. Thus, future focus should be on development of open access ET data bases. Such efforts are already being done by some organizations such as USGS, USDA, and CSIRO. However, these product are not yet made available to the public. There is also a need for higher resolution ET data both spatial
and temporal. This is key factor if satellite based ET data are to be used extensively in water management and hydrological studies. Land use mapping is one of the earliest ways in which satellite imagery was used to produce environmental information and it is the most widely studied subject in employing remote sensing. The quality of the classifications has improved over time by the availability of high resolution images and the use of remote sensing in land classification mapping is currently used as a standard method. The land use classifications come with an overall MAPE of 14.6%, and accuracy of 85%. This level of accuracy, although acceptable, calls for improvements given the wide use of these maps. Another important issue is the need for a new type of land use mapping dedicated to agricultural and river basin water management issues. This is of essential value when land use maps are used in hydrological and water management related studies such as water accounting. As revealed by the results of this review study, there is a great deal of heterogeneity regarding the accuracy and reliability of remotely sensing data and methods. Often times reliability of RS-based products is rather case and location specific. Future research could, therefore, aim at cross-comparing remote sensing data and methods on ET, rainfall and land use for different regions, e.g. continental scale or small region, and for different research tasks such as those with focus on hydrological processes or on human-land-atmosphere interactions. # Acknowledgements. Funds for this research were provided by the CGIAR Research Programme on Water Land and Ecosystems. #### References Abd El-Kawy, O. R., Rød, J. K., Ismail, H. a. and Suliman, A. S.: Land use and land cover change detection in the western Nile delta of Egypt using remote sensing data, Appl. Geogr., 31(2), 483–494, doi:10.1016/j.apgeog.2010.10.012, 2011. Aguirre-Gutiérrez, J., Seijmonsbergen, A. C. and Duivenvoorden, J. F.: Optimizing land cover classification accuracy for change detection, a combined pixel-based and object-based approach in a mountainous area in Mexico, Appl. Geogr., 34, 29–37, doi:10.1016/j.apgeog.2011.10.010, 2012. - Allen, R. G., Pereira, L., Raes, D. and Smith, M.: Crop evapotranspiration: guidelines for computing crop water requirements, Issues 56-57, Food and Agriculture Organization of the United Nations., 1998. - Allen, R. G., Tasumi, M., Morse, A. and Trezza, R.: A Landsat-based energy balance and evapotranspiration model in Western US water rights regulation and planning, Irrig. Drain. Syst., 19(3-4), 251–268, doi:10.1007/s10795-005-5187-z, 2005. - Allen, R. G., Tasumi, M., Morse, A., Trezza, R., Wright, J. L., Bastiaanssen, W., Kramber, W., Lorite, I. and Robison, C. W.: Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC) Applications, J. Irrig. Drain. Eng., 133(4), 395–406, 2007. - Allen, R., Irmak, A., Trezza, R., Hendrickx, J. M. H., Bastiaanssen, W. and Kjaersgaard, J.: Satellite-based ET estimation in agriculture using SEBAL and METRIC, Hydrol. Process., 25(26), 4011–4027, doi:10.1002/hyp.8408, 2011. - Almazroui, M., Islam, M. N., Jones, P. D., Athar, H. and Rahman, M. A.: Recent climate change in the Arabian Peninsula: Seasonal rainfall and temperature climatology of Saudi Arabia for 1979–2009, Atmos. Res., 111, 29–45, doi:10.1016/j.atmosres.2012.02.013, 2012. - Anderson, M. C., Kustas, W. P., Alfieri, J. G., Gao, F., Hain, C., Prueger, J. H., Evett, S., Colaizzi, P., Howell, T. and Chávez, J. L.: Mapping daily evapotranspiration at Landsat spatial scales during the BEAREX'08 field campaign, Adv. Water Resour., 50, 162–177, doi:10.1016/j.advwatres.2012.06.005, 2012. - Anderson, M. C., Kustas, W. P., Norman, J. M., Hain, C. R., Mecikalski, J. R., Schultz, L., González-Dugo, M. P., Cammalleri, C., d'Urso, G., Pimstein, a. and Gao, F.: Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery, Hydrol. Earth Syst. Sci., 15(1), 223–239, doi:10.5194/hess-15-223-2011, 2011. - Anderson, M., Norman, J. M., Diak, G. R., Kustas, W. P. and Mecikalski, J. R.: A Two-Source Time-Integrated Model for Estimating Surface Fluxes Using Thermal Infrared Remote Sensing, Remote Sens. Environ., 60(2), 195–216, doi:10.1016/S0034-4257(96)00215-5, 1997. - Andre, J. C., Goutorbe, J. P. and Penier, A.: HAPEX-MOBILHY, a hydrologic atmospheric pilot experiment for the study of water budget and evaporation flux at the climatic scales., Bull. Am. Meteorol. Soc., 67, 138–144, 1986. - Asadullah, A., Mcintyre, N. and Kigobe, M. A. X.: Evaluation of five satellite products for estimation of rainfall over Uganda / Evaluation de cinq produits satellitaires pour l'estimation des précipitations en Ouganda Evaluation of five satellite products for estimation of rainfall over Uganda, Hydrol. Sci. J., 53(6), 1137–1150, 2010. - Austin, P. M.: Relation between measured radar reflectivity and surface rainfall, Mon. Weather Rev., 115(5), 1053–1070, 1987. - Australian Bureau of Statistics (ABS): Water Account, Australia 2000-01, Canberra., 2004. - Awulachew, S. B., Molden, D., Smakhtin, V. and Peden, D.: The Nile River Basin: Water, Agriculture, Governance and Livelihoods, Routledge., 2013. - Bach, M., Breuer, L., Frede, H. G., Huisman, J. a., Otte, A. and Waldhardt, R.: Accuracy and congruency of three different digital land-use maps, Landsc. Urban Plan., 78(4), 289–299, doi:10.1016/j.landurbplan.2005.09.004, 2006. - Barrett, E. C.: Precipitation monitoring by satellites. Remote sensing for studies of global environmental changes, ISPRA Courses, RS/88/10, Commission of European communities,, Joint Research Center, Ispra Establishment, Italy., 1988. - Barrett, E. C. and Beaumont, M. J.: Satellite rainfall monitoring: An overview, Remote Sens. Rev., 11(1-4), 23–48, doi:10.1080/02757259409532257, 1994. - Bastiaanssen, W. G. ., Molden, D. J. and Makin, I. W.: Remote sensing for irrigated agriculture: examples from research and possible applications, Agric. Water Manag., 46(2), 137–155, doi:10.1016/S0378-3774(00)00080-9, 2000. - Bastiaanssen, W. G. M.: Remote sensing in water resources management: the state of the art., International Water Management Institute., 1998. - Bastiaanssen, W. G. M., Ahmad, M.-D. and Chemin, Y.: Satellite surveillance of evaporative depletion across the Indus Basin, Water Resour. Res., 38(12), 9–1–9–9, doi:10.1029/2001WR000386, 2002. - Bastiaanssen, W. G. M. and Chandrapala, L.: Water balance variability across Sri Lanka for assessing agricultural and environmental water use, Agric. Water Manag., 58(2), 171–192, 2003. - Bastiaanssen, W. G. M., Cheema, M. J. M., Immerzeel, W. W., Miltenburg, I. and Pelgrum, H.: The surface energy balance and actual evapotranspiration of the transboundary Indus Basin estimated from satellite measurements and the ETLook model, Water Resour. Res., doi:10.1029/2011WR010482, 2012. - Bastiaanssen, W. G. M., Menenti, M., Feddes, R. A., Holtslag, A. A. M., Pelgrum, H., Wang, J., Ma, Y., Moreno, J. F., Roerink, G. J. and van der Wal, T.: A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation, J. Hydrol., 212-213, 198–212, 1998. - Bastiaanssen, W. G. M., Miltenburg, I., Evans, R., Molloy, R., Bastiaanssen, F. and van der Pol, E.: An operational satellite-based irrigation monitoring and scheduling tool for saving water in irrigation, in Irrigation and Drainage Conference, Swan Hill, Vic, Australia., 2009. - Batra, N., Islam, S., Venturini, V., Bisht, G. and Jiang, L.: Estimation and comparison of evapotranspiration from MODIS and AVHRR sensors for clear sky days over the Southern Great Plains, Remote Sens. Environ., 103(1), 1–15, doi:10.1016/j.rse.2006.02.019, 2006. - Bicheron, P., Defourny, P., Brockmann, C., Schouten, L., Vancutsem, C., Huc, M., Bontemps, S., Leroy, M., Achard, F., FHerold, M., Ranera, F. and Arino, O.: GLOBCOVER Products Report Description and Products Description and Validation Report, MEDIAS, France., 2008. - Bitew, M. M. and Gebremichael, M.: Evaluation of satellite rainfall products through hydrologic simulation in a fully distributed hydrologic model, Water Resour. Res., 47(6), W06526, doi:10.1029/2010WR009917, 2011. - Blanco, P. D., Colditz, R. R., López Saldaña, G., Hardtke, L. a., Llamas, R. M., Mari, N. a., Fischer, A., Caride, C., Aceñolaza, P. G., del Valle, H. F., Lillo-Saavedra, M., Coronato, F., Opazo, S. a., Morelli, F., Anaya, J. a., Sione, W. F., Zamboni, P. and Arroyo, V. B.: A land cover map of Latin America and the Caribbean in the framework of the SERENA project, Remote Sens. Environ., 132, 13–31, doi:10.1016/j.rse.2012.12.025, 2013. - Bolle, H. J., Eckardt, M., Koslowsky, D., Maselli, F., Melia-Miralles, J., Menenti, M., Olesen, F.-S., Petkov, L., Rasool, I. and van deGriend, A.: Mediterranean land-surface processes assessed from space, Springer, Series: Regional Climate Studies, XXVIII., 2006. - Bosch, J. M. and Hewlett, J. D.: A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration, J. Hydrol., 55(1-4), 3–23, doi:10.1016/0022-1694(82)90117-2, 1982. - Büttner, G., Feranec, J. and Jaffrain, G.: The thematic accuracy of Corine land cover 2000, Copenhagen., 2006. - C. Teixeira, a. H. and Bastiaanssen, W. G. M.: Five methods to interpret field measurements of energy fluxes over a micro-sprinkler-irrigated mango orchard, Irrig. Sci., 2010. - Campbell, G. S. and Norman, J. M.: An introduction to environmental biophysics, Springer., 1998. - Cassidy, L., Southworth, J., Gibbes, C. and Binford, M.: Beyond classifications: Combining continuous and discrete approaches to better understand land-cover change within the lower Mekong River region, Appl. Geogr., 39, 26–45, doi:10.1016/j.apgeog.2012.11.021, 2013. - Chartres, C. and Varma, S.: Out of Water: From Abundance to Scarcity and How to Solve the World's Water
Problems, FT Press., 2010. - Chávez, J. L., Neale, C. M. U., Prueger, J. H. and Kustas, W. P.: Daily evapotranspiration estimates from extrapolating instantaneous airborne remote sensing ET values, Irrig. Sci., 27(1), 67–81, doi:10.1007/s00271-008-0122-3, 2008. - Cheema, M. J. M. and Bastiaanssen, W. G. M.: Land use and land cover classification in the irrigated Indus Basin using growth phenology information from satellite data to support water management analysis, Agric. Water Manag., 97(10), 1541–1552, 2010. - Cheema, M. J. M. and Bastiaanssen, W. G. M.: Local calibration of remotely sensed rainfall from the TRMM satellite for different periods and spatial scales in the Indus Basin, Int. J. Remote Sens., 33(8), 2603–2627, 2012. - Chehbouni, A., Kerr, Y. H., Watts, C., Hartogensis, O., Goodrich, D., Scott, R., Schieldge, J., Lee, K., Shuttleworth, W. J., Dedieu, G. and De Bruin, H. A. R.: Estimation of area-average sensible heat flux using a large-aperture scintillometer during the Semi-Arid Land-Surface-Atmosphere (SALSA) Experiment, Water Resour. Res., 35(8), 2505–2511, doi:10.1029/1999WR900111, 1999. - Chen, C., Yu, Z., Li, L. and Yang, C.: Adaptability Evaluation of TRMM Satellite Rainfall and Its Application in the Dongjiang River Basin, Procedia Environ. Sci., 10, Part A(0), 396–402, doi:http://dx.doi.org/10.1016/j.proenv.2011.09.065, 2011. - Choudhury, B. J.: Synergism of optical and microwave observations for land surface studies, in Passive microwave remote sensing of land–atmosphere interactions, edited by P. microwave remote sensing of land-atmosphere interactions. N. V. B. B.J. Choudhury, Y.H. Kerr, E.G. Njoku, & P. Pampaloni (Eds.), pp. 155–191, VSP BV, Netherlands., 1995. - Cihlar, J.: Land cover mapping of large areas from satellites: Status and research priorities, Int. J. Remote Sens., 21, 1093–1114, 2000. - Cingolani, a: Mapping vegetation in a heterogeneous mountain rangeland using landsat data: an alternative method to define and classify land-cover units, Remote Sens. Environ., 92(1), 84–97, doi:10.1016/j.rse.2004.05.008, 2004. - Clark, M. L., Aide, T. M., Grau, H. R. and Riner, G.: A scalable approach to mapping annual land cover at 250 m using MODIS time series data: A case study in the Dry Chaco ecoregion of South America, Remote Sens. Environ., 114(11), 2816–2832, doi:10.1016/j.rse.2010.07.001, 2010. Cleugh, H. a., Leuning, R., Mu, Q. and Running, S. W.: Regional evaporation estimates from flux tower and MODIS satellite data, Remote Sens. Environ., 106(3), 285–304, doi:10.1016/j.rse.2006.07.007, 2007. Colditz, R. R., López Saldaña, G., Maeda, P., Espinoza, J. A., Tovar, C. M., Hernández, A. V., Benítez, C. Z., Cruz López, I. and Ressl, R.: Generation and analysis of the 2005 land cover map for Mexico using 250m MODIS data, Remote Sens. Environ., 123, 541–552, doi:10.1016/j.rse.2012.04.021, 2012. Collischonn, B., Collischonn, W. and Tucci, C. E. M.: Daily hydrological modeling in the Amazon basin using TRMM rainfall estimates, J. Hydrol., 360(1–4), 207–216, doi:http://dx.doi.org/10.1016/j.jhydrol.2008.07.032, 2008. Congalton, R. G.: A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data, Remote Sens. Environ., 46, 35–46, 1991. Cotonnec, A. and Du, L. Le: A Comparison of Parametric Classification Procedures of Remotely Sensed Data Applied on Different Landscape Units, Remote Sens. Environ., 4257(00), 2001. Courault, D., Seguin, B. and Olioso, A.: Review on estimation of evapotranspiration from remote sensing data: From empirical to numerical modeling approaches, Irrig. Drain. Syst., 19(3-4), 223–249, doi:10.1007/s10795-005-5186-0, 2005. Cracknell, A. P. and Hayes, L.: Introduction to remote sensing, Taylor & Francis., 1991. Dee, D. P., Uppala, S. M., Simmons, a. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. a., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, a. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, a. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, a. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N. and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. R. Meteorol. Soc., 137(656), 553–597, doi:10.1002/qj.828, 2011. Dinku, T., Ceccato, P., Grover Kopec, E., Lemma, M., Connor, S. J. and Ropelewski, C. F.: Validation of satellite rainfall products over East Africa's complex topography, Int. J. Remote Sens., 28(7), 1503–1526, doi:10.1080/01431160600954688, 2007. Dinku, T., Connor, S. and Ceccato, P.: Nile River Basin, in Nile River Basin, edited by A. M. Melesse, pp. 109–127, Springer Netherlands, Dordrecht., 2011. Duan, Z. and Bastiaanssen, W. G. M.: First results from Version 7 TRMM 3B43 precipitation product in combination with a new downscaling–calibration procedure, Remote Sens. Environ., 131(0), 1–13, doi:http://dx.doi.org/10.1016/j.rse.2012.12.002, 2013. - Dugdale, G. and Milford, J. R.: Rainfall estimation over the Sahel using Meteosat thermal infrared data, in ISLSCP Parameterization of Land-Surface Characteristics: use of Satellite Data in Climate Studies, edited by E. Rolfe and B. Battrick, pp. 315–319, ESA, Paris., 1986. - Dunne, S. C., Entekhabi, D. and Njoku, E. .: Impact of multiresolution active and passive microwave measurements on soil moisture estimation using the Ensemble Kalman Smoother, IEEE Trans. Geosci. Remote Sens., 45(4), 1016–1028, 2007. - Engman, E. T. and Gurney, R. J.: Remote sensing in hydrology., Chapman and Hall Ltd., 1991. - Estes, A. B., Kuemmerle, T., Kushnir, H., Radeloff, V. C. and Shugart, H. H.: Land-cover change and human population trends in the greater Serengeti ecosystem from 1984–2003, Biol. Conserv., 147(1), 255–263, doi:10.1016/j.biocon.2012.01.010, 2012. - Euser, T., Luxemburg, W., Everson, C., Mengistu, M., Clulow, a. and Bastiaanssen, W.: A new method to measure bowen ratios using high resolution vertical dry and wet bulb temperature profiles, Hydrol. Earth Syst. Sci. Discuss., 10(6), 7161–7196, doi:10.5194/hessd-10-7161-2013, 2013. - Evans, R., Bastiaanssen, W., Molloy, R., Hulbert, S. and Miltenburg, I.: Improving the picture for irrigation using SEBAL in Australia to measure evapotranspiration (ET), in Irrigation and Drainage Conference 2009, Swan Hill, Vic, Australia., 2009. - Feidas, H.: Validation of satellite rainfall products over Greece, Theor. Appl. Climatol., 99(1-2), 193–216, doi:10.1007/s00704-009-0135-8, 2009. - Fernandes, K., Fu, R. and Betts, A. K.: How well does the ERA40 surface water budget compare to observations in the Amazon River basin?, J. Geophys. Res., 113(D11), D11117, doi:10.1029/2007JD009220, 2008. - Foody, G. M.: Status of land cover classification accuracy assessment, Remote Sens. Environ., 80(1), 185–201, doi:10.1016/S0034-4257(01)00295-4, 2002. - Franklin, S. E. and Wulder, M. a.: Remote sensing methods in medium spatial resolution satellite data land cover classification of large areas, Prog. Phys. Geogr., 26(2), 173–205, doi:10.1191/0309133302pp332ra, 2002. - Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A. and Huang, X.: MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets, Remote Sens. Environ., 114(1), 168–182, doi:10.1016/j.rse.2009.08.016, 2010. - Fu, Q., Ruan, R. and Liu, Y.: Accuracy Assessment of Global Satellite Mapping of Precipitation (GSMaP) Product over Poyang Lake Basin, China, Procedia Environ. Sci., 10(Esiat), 2265–2271, doi:10.1016/j.proenv.2011.09.354, 2011. - Gamanya, R., De Maeyer, P. and De Dapper, M.: An automated satellite image classification design using object-oriented segmentation algorithms: A move towards standardization, Expert Syst. Appl., 32(2), 616–624, doi:10.1016/j.eswa.2006.01.055, 2007. - García-Mora, T. J., Mas, J.-F. and Hinkley, E. A.: Land cover mapping applications with MODIS: a literature review, Int. J. Digit. Earth, 5(1), 63–87, doi:10.1080/17538947.2011.565080, 2012. - Getirana, A. C. V, Espinoza, J. C. V, Ronchail, J. and Rotunno Filho, O. C.: Assessment of different precipitation datasets and their impacts on the water balance of the Negro River basin, J. Hydrol., 404(3–4), 304–322, doi:http://dx.doi.org/10.1016/j.jhydrol.2011.04.037, 2011. - Glenn, E. P., Doody, T. M., Guerschman, J. P., Huete, A. R., King, E. a., McVicar, T. R., Van Dijk, A. I. J. M., Van Niel, T. G., Yebra, M. and Zhang, Y.: Actual evapotranspiration estimation by ground and remote sensing methods: the Australian experience, Hydrol. Process., 25(26), 4103–4116, doi:10.1002/hyp.8391, 2011. - Glenn, E. P., Huete, A. R., Nagler, P. L., Hirschboeck, K. K. and Brown, P.: Integrating Remote Sensing and Ground Methods to Estimate Evapotranspiration, CRC. Crit. Rev. Plant Sci., 26(3), 139–168, doi:10.1080/07352680701402503, 2007. - Gonzalez-Dugo, M. P., Neale, C. M. U., Mateos, L., Kustas, W. P., Prueger, J. H., Anderson, M. C. and Li, F.: A comparison of operational remote sensing-based models for estimating crop evapotranspiration, Agric. For. Meteorol., 149(11), 1843–1853, doi:10.1016/j.agrformet.2009.06.012, 2009. - Goutorbe, J. P., Lebel, T., Dolman, A. J., Gash, J. H. C., Kabat, P., Kerr, Y. H., Monteny, B., Prince, S. D., Stricker, J. N. M., Tinga, A. and Wallace, J. S.: An overview of HAPEX-Sahel: a study in climate and desertification, J. Hydrol., 188-189(null), 4–17, doi:10.1016/S0022-1694(96)03308-2, 1997. - Gowda, P. H., Colaizzi, P. D., Evett, S. R., Howell, T. A. and Tolk, J. A.: Remote sensing based energy balance algorithms for mapping ET: current status and future challenges, Trans. ASABE, 50(5), 1639–1644, 2007. - Groeneveld, D. P., Baugh, W. M., Sanderson, J. S. and Cooper, D. J.: Annual groundwater evapotranspiration mapped from single satellite scenes, J. Hydrol., 344(1-2), 146–156,
doi:10.1016/j.jhydrol.2007.07.002, 2007. - Guerschman, J. P., Van Dijk, A. I. J. M. J. M., Mattersdorf, G., Beringer, J., Hutley, L. B., Leuning, R., Pipunic, R. C. and Sherman, B. S.: Scaling of potential evapotranspiration with MODIS data reproduces flux observations and catchment water balance observations across Australia, J. Hydrol., 369(1–2), 107–119, doi:10.1016/j.jhydrol.2009.02.013, 2009. - Hafeez, M. M. M., Chemin, Y., Van De Giesen, N., Bouman, B. A. M. A. M. and N, V. D. G.: Estimation of crop water deficit through remote sensing in Central Luzon, Philippines, in IEEE International Geoscience and Remote Sensing Symposium, vol. 5, pp. 2778–2780, IEEE., 2002. - Hartogensis, O. K., Weisensee, U., Evans, J., van Kesteren, A. J. H. and Beyrich, F.: First Results of two Optical Millimeter-wave Scintillometer Systems during LITFASS2009, 10th EMS Annu. Meet. 10th Eur. Conf. Appl. Meteorol. Abstr. held Sept. 13-17, 2010 Zürich, Switzerland. http://meetings.copernicus.org/ems2010/, id.EMS2010-357, -1, 357 [online] Available from: http://adsabs.harvard.edu/abs/2010ems..confE.357H (Accessed 5 October 2013), 2010. - Hemakumara, H. M. and Chandrapala, L.: Evapotranspiration uxes over mixed vegetation areas measured from large aperture scintillometer, , 58, 109–122, 2003. - Houser, P. R., Shuttleworth, W. J., Famiglietti, J. S. and Goodrich, D. C.: Integration of soil moisture remote sensing and hydrologic modeling using data assimilation, Water Resour. Res., 34(12), 3405–3420, 1998. - Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G., Hong, Y., Bowman, K. P. and Stocker, E. F.: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales, J. Hydrometeorol., 8(1), 38–55, doi:10.1175/JHM560.1, 2007. - Hunink, J. E., Immerzeel, W. W. and Droogers, P.: A High-resolution Precipitation 2-step mapping Procedure (HiP2P): Development and application to a tropical mountainous area, Remote Sens. Environ., 140, 179–188, doi:10.1016/j.rse.2013.08.036, 2014. - Immerzeel, W. W. and Droogers, P.: Calibration of a distributed hydrological model based on satellite evapotranspiration, J. Hydrol., 349(3-4), 411–424, doi:10.1016/j.jhydrol.2007.11.017, 2008. - Irmak, A.: Evapotranspiration Remote Sensing and Modeling, edited by A. Irmak, InTech, Rijeka, Croatia., 2012. - Irmak, A., Ratcliffe, I. and Hubbard, K.: Estimation of Land Surface Evapotranspiration with a Satellite Remote Sensing Procedure,, 2011. - Jackson, T. J., Le Vine, D. M., Griffis, A. J., Goodrich, D. C., Schmugge, T. J., Swift, C. T. and O'Neill, P. E.: Soil moisture and rainfall estimation over a semiarid environment with the ESTAR microwave radiometer, IEEE Trans. Geosci. Remote Sens., 31(4), 836–841, doi:10.1109/36.239906, 1993. - Jarmain, C., Everson, C., Savage, M., Mengisto, M., Clulow, A., Walker, S. and Gush, M.: Refining tools for evaporation monitoring in support of water resources management, Water Research Commission, Pretoria, South Africa., 2009. - Jarmain, C., Klaasse, A., Bastiaanssen, W. G. M. and Roux, A. S.: Remote sensing tools for water use efficiency of grapes in the Winelands region, Western Cape, in 13th Sanciahs symposium, Cape town., 2007. - Jhorar, R. A. J. K., Smit, A. A. M. F. R., Bastiaanssen, W. G. M. and Roest, C. W. J.: Calibration of a distributed irrigation water management model using remotely sensed evapotranspiration rates and groundwater heads, Irrig. Drain., 60, 57–69, doi:10.1002/ird, 2011. - Jia, Z., Liu, S., Xu, Z., Chen, Y. and Zhu, M.: Validation of remotely sensed evapotranspiration over the Hai River Basin, China, J. Geophys. Res., 117(D13), D13113, doi:10.1029/2011JD017037, 2012. - Jiang, L., Islam, S., Guo, W., Singh Jutla, A., Senarath, S. U. S., Ramsay, B. H. and Eltahir, E.: A satellite-based Daily Actual Evapotranspiration estimation algorithm over South Florida, Glob. Planet. Change, 67(1-2), 62–77, doi:10.1016/j.gloplacha.2008.12.008, 2009. - Jiang, S., Ren, L., Hong, Y., Yong, B., Yang, X., Yuan, F. and Ma, M.: Comprehensive evaluation of multi-satellite precipitation products with a dense rain gauge network and optimally merging their simulated hydrological flows using the Bayesian model averaging method, J. Hydrol., 452-453, 213–225, doi:10.1016/j.jhydrol.2012.05.055, 2012. - Kalma, J. D., McVicar, T. R. and McCabe, M. F.: Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data, Surv. Geophys., 29(4-5), 421–469, 2008. - Kandrika, S. and Roy, P. S.: Land use land cover classification of Orissa using multi-temporal IRS-P6 awifs data: A decision tree approach, Int. J. Appl. Earth Obs. Geoinf., 10(2), 186–193, doi:10.1016/j.jag.2007.10.003, 2008. - Karimi, P., Bastiaanssen, W. G. M. and Molden, D.: Water Accounting Plus (WA+) a water accounting procedure for complex river basins based on satellite measurements, Hydrol. Earth Syst. Sci., 17, 245902472, 2013a. - Karimi, P., Bastiaanssen, W. G. M., Molden, D. and Cheema, M. J. M.: Basin-wide water accounting based on remote sensing data: an application for the Indus Basin, Hydrol. Earth Syst. Sci., 17(7), 2473–2486, doi:10.5194/hess-17-2473-2013, 2013b. - Kavzoglu, T. and Colkesen, I.: A kernel functions analysis for support vector machines for land cover classification, Int. J. Appl. Earth Obs. Geoinf., 11(5), 352–359, doi:10.1016/j.jag.2009.06.002, 2009. - Kaya, S., Pultz, T. J., Mbogo, C. M., Beier, J. C. and Mushinzimana, E.: The Use of Radar Remote Sensing for Identifying Environmental Factors Associated with Malaria Risk in Coastal Kenya, Toronto., 2002. - Keuchel, J., Naumann, S., Heiler, M. and Siegmund, A.: Automatic land cover analysis for Tenerife by supervised classification using remotely sensed data, Remote Sens. Environ., 86(4), 530–541, doi:10.1016/S0034-4257(03)00130-5, 2003. - Kidd, C.: Satellite rainfall climatology: a review, Int. J. Climatol., 21(9), 1041–1066, doi:10.1002/joc.635, 2001. - King, E. A., Niel, T. G. Van, Dijk, A. I. J. M. Van, Wang, Z., Paget, M. J., Raupach, T., Guerschman, J., Haverd, V., Mcvicar, T. R., Miltenburg, I., Raupach, M. R. and Zhang, Y.: Actual Evapotranspiration Estimates for Australia Inter-comparison and Evaluation, CSIRO: Water for a Healthy Country National Research Flagship Copyright., 2011. - Kite, G. and Droogers, P.: Comparing evapotranspiration estimates from satellites, hydrological models and field data, J. Hydrol., 229(1-2), 1–2, doi:10.1016/S0022-1694(99)00193-6, 2000. - Kizza, M., Westerberg, I., Rodhe, A. and Ntale, H. K.: Estimating areal rainfall over Lake Victoria and its basin using ground-based and satellite data, J. Hydrol., 464-465(0), 401–411, doi:10.1016/j.jhydrol.2012.07.024, 2012. - Klein, I., Gessner, U. and Kuenzer, C.: Regional land cover mapping and change detection in Central Asia using MODIS time-series, Appl. Geogr., 35(1-2), 219–234, doi:10.1016/j.apgeog.2012.06.016, 2012. - Kolios, S. and Stylios, C. D.: Identification of land cover/land use changes in the greater area of the Preveza peninsula in Greece using Landsat satellite data, Appl. Geogr., 40, 150–160, doi:10.1016/j.apgeog.2013.02.005, 2013. - Kummerow, C., Olson, W. S. and Giglio, L.: A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors, IEEE Trans. Geosci. Remote Sens., 34(5), 1213–1232, doi:10.1109/36.536538, 1996. - Kustas, W. P., Anderson, M. C., French, A. N. and Vickers, D.: Using a remote sensing field experiment to investigate flux-footprint relations and flux sampling distributions for tower and aircraft-based observations, Adv. Water Resour., 29(2), 355–368, doi:10.1016/j.advwatres.2005.05.003, 2006. - Kustas, W. P. and Norman, J. M.: Use of remote sensing for evapotranspiration monitoring over land surfaces, Hydrol. Sci. J., 41(4), 495–516, doi:10.1080/02626669609491522, 1996. - Lal, D., Clark, B., Bettner, T., Thoreson, B. and Snyder, R.: Rice evapotranspiration estimates and crop coefficients in Glenn-Colusa Irrigation District, Sacramento Valley, California, in USCID Water Management Conference, Austin., 2012. - Li, H., Wang, H., Kong, Y. and Li, L.: Estimation of evapotranspiration in Yellow River Delta wetland based on two-source energy balance (TSEB) model, in 2011 19th International Conference on Geoinformatics, pp. 1–7, IEEE., 2011. - Lillesand, T. M., Kiefer, R. W. and Chipman, J. W.: Remote sensing and image interpretation., , (Ed.5) [online] Available from: - http://www.cabdirect.org/abstracts/20043080717.html;jsessionid=4D15F4728ED98EB58A54008120B2116D (Accessed 5 October 2013), 2004. - Liu, T. and Yang, X.: Mapping vegetation in an urban area with stratified classification and multiple endmember spectral mixture analysis, Remote Sens. Environ., 133, 251–264, doi:10.1016/j.rse.2013.02.020, 2013. - Liu, X.-H., Skidmore, A. K. and Van Oosten, H.: Integration of classification methods for improvement of land-cover map accuracy, ISPRS J. Photogramm. Remote Sens., 56(4), 257–268, doi:10.1016/S0924-2716(02)00061-8, 2002. - Ma, W., Hafeez, M., Rabbani, U., Ishikawa, H. and Ma, Y.: Retrieved actual ET using SEBS model from Landsat-5 TM data for irrigation area of Australia, Atmos. Environ., 59, 408–414, doi:10.1016/j.atmosenv.2012.05.040, 2012. - Maes, W. H., Heuvelmans, G. and Muys, B.: Assessment of Land Use Impact on Water-Related Ecosystem Services Capturing the Integrated Terrestrial—Aquatic System, Environ. Sci. Technol., 43(19), 7324–7330, doi:10.1021/es900613w, 2009. - Mallick, K., Bhattacharya, B. K., Chaurasia, S. and Dutta, S.: International Journal of Remote Evapotranspiration using MODIS data and limited ground observations over selected agroecosystems in India, (March 2013), 2091–2110, 2007. - Mayaux, P., Eva, H., Gallego, J., Strahler, A. H. A. H., Herold, M., Agrawal, S., Naumov, S., De Miranda, E. E., Di Bella, C. M., Ordoyne, C., Kopin, Y., Roy, P. S. S., Member, S., Miranda, E.
E. De and Bella, C. M. Di: Validation of the global land cover 2000 map, IEEE Trans. Geosci. Remote Sens., 44(7), 1728–1739, doi:10.1109/TGRS.2006.864370, 2006. - Mcvicar, T. R. and Jupp, D. L. B.: Estimating one-time-of-day meteorological data from standard daily data as inputs to thermal remote sensing based energy balance models, , 96, 1999. - Mcvicar, T. R. and Jupp, D. L. B.: Using covariates to spatially interpolate moisture availability in the Murray Darling Basin A novel use of remotely sensed data, Remote Sens. Environ., 79, 199–212, 2002. - Meijninger, W. M. L. and de Bruin, H. a. R.: The sensible heat fluxes over irrigated areas in western Turkey determined with a large aperture scintillometer, J. Hydrol., 229(1-2), 42–49, doi:10.1016/S0022-1694(99)00197-3, 2000. - Milewski, A., Sultan, M., Jayaprakash, S. M., Balekai, R. and Becker, R.: RESDEM, a tool for integrating temporal remote sensing data for use in hydrogeologic investigations, Comput. Geosci., 35(10), 2001–2010, doi:10.1016/j.cageo.2009.02.010, 2009. - Moffitt, C. B., Hossain, F., Adler, R. F., Yilmaz, K. K. and Pierce, H. F.: Validation of a TRMM-based global Flood Detection System in Bangladesh, Int. J. Appl. Earth Obs. Geoinf., 13(2), 165–177, doi:http://dx.doi.org/10.1016/j.jag.2010.11.003, 2011. - Mohamed, Y. a., Bastiaanssen, W. G. M. and Savenije, H. H. G.: Spatial variability of evaporation and moisture storage in the swamps of the upper Nile studied by remote sensing techniques, J. Hydrol., 289(1-4), 145–164, doi:10.1016/j.jhydrol.2003.11.038, 2004. - Molden, D.: Water for food, water for life: A comprehensive assessment of water management in agriculture, Earthscan., 2007. - Molden, D., Bin, D., Loeve, R., Barker, R. and Tuong, T. P.: Agricultural water productivity and savings: policy lessons from two diverse sites in China, Water Policy, 9(S1), 29, 2007. - Moon, B., Hong, J., Lee, B., Yun, J. I., Park, E. W. and Kim, J.: CO2 and energy exchange in a rice paddy for the growing season of 2002 in Hari, Korea Byung-Kwan, Korean J. Agric. For. Meteorol., 5(2), 51–60, 2003. - Moran, M. S., Clarke, T. R., Inoue, Y. and Vidal, A.: Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index, Remote Sens. Environ., 49(3), 246–263, doi:10.1016/0034-4257(94)90020-5, 1994. - Moran, M. S. and Jackson, R. D.: Assessing the spatial distribution of evapotranspiration using remotely sensed inputs, J. Environ. Qual., 20(4), 725–737, 1991. - Mu, Q., Heinsch, F. A., Zhao, M. and Running, S. W.: Development of a global evapotranspiration algorithm based on MODIS and global meteorology data, Remote Sens. Environ., 111, 519–536, 2007. - Mu, Q., Zhao, M. and Running, S. W.: Improvements to a MODIS global terrestrial evapotranspiration algorithm, Remote Sens. Environ., 115(8), 1781–1800, doi:10.1016/j.rse.2011.02.019, 2011. - Mucher, C. A., Steinnocher, K. T., Kressler, F. P. and Heunks, C.: Land cover characterization and change detection for environmental monitoring of pan-Europe, Int. J. Remote Sens., 21(6-7), 1159–1181, doi:10.1080/014311600210128, 2000. - Mueller, B., Hirschi, M., Jimenez, C., Ciais, P., Dirmeyer, P. a., Dolman, a. J., Fisher, J. B., Jung, M., Ludwig, F., Maignan, F., Miralles, D. G., McCabe, M. F., Reichstein, M., Sheffield, J., Wang, K., Wood, E. F., Zhang, Y. and Seneviratne, S. I.: Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis, Hydrol. Earth Syst. Sci., 17(10), 3707–3720, doi:10.5194/hess-17-3707-2013, 2013. - Munthali, K. G. and Murayama, Y.: Land use/cover change detection and analysis for Dzalanyama forest reserve, Lilongwe, Malawi, Procedia Soc. Behav. Sci., 21, 203–211, doi:10.1016/j.sbspro.2011.07.035, 2011. - Nemani, R. R. and Running, S. W.: Estimation of Regional Surface Resistance to Evapotranspiration from NDVI and Thermal-IR AVHRR Data, J. Appl. Meteorol., 28(4), 276–284, doi:10.1175/1520-0450, 1989. - Norman, J. M., Kustas, W. P. and Humes, K. S.: Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature, Agric. For. Meteorol., 77(3-4), 263–293, doi:10.1016/0168-1923(95)02265-Y, 1995. - Oldeland, J., Dorigo, W., Lieckfeld, L., Lucieer, A. and Jürgens, N.: Combining vegetation indices, constrained ordination and fuzzy classification for mapping semi-natural vegetation units from hyperspectral imagery, Remote Sens. Environ., 114(6), 1155–1166, doi:10.1016/j.rse.2010.01.003, 2010. - Otukei, J. R. and Blaschke, T.: Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms, Int. J. Appl. Earth Obs. Geoinf., 12, S27–S31, doi:10.1016/j.jag.2009.11.002, 2010. - Pan, X., Zhang, S., Zhang, H., Na, X. and Li, X.: A variable precision rough set approach to the remote sensing land use/cover classification, Comput. Geosci., 36(12), 1466–1473, doi:10.1016/j.cageo.2009.11.010, 2010. - Peña-Barragán, J. M., Ngugi, M. K., Plant, R. E. and Six, J.: Object-based crop identification using multiple vegetation indices, textural features and crop phenology, Remote Sens. Environ., 115(6), 1301–1316, doi:10.1016/j.rse.2011.01.009, 2011. - Pérez-Hoyos, a., García-Haro, F. J. and San-Miguel-Ayanz, J.: A methodology to generate a synergetic land-cover map by fusion of different land-cover products, Int. J. Appl. Earth Obs. Geoinf., 19, 72–87, doi:10.1016/j.jag.2012.04.011, 2012. - Petropoulos, G. P., Kalaitzidis, C. and Prasad Vadrevu, K.: Support vector machines and object-based classification for obtaining land-use/cover cartography from Hyperion hyperspectral imagery, Comput. Geosci., 41, 99–107, doi:10.1016/j.cageo.2011.08.019, 2012. - Petty, G. W.: The status of satellite-based rainfall estimation over land, Remote Sens. Environ., 51(1), 125–137, doi:10.1016/0034-4257(94)00070-4, 1995. - Petty, G. W. and Krajewski, W. F. W. F.: Satellite estimation of precipitation over land, Hydrol. Sci. J., 41(4), 433–452, doi:10.1080/02626669609491519, 1996. - Pierre, C., Bergametti, G., Marticorena, B., Mougin, E., Lebel, T. and Ali, A.: Pluriannual comparisons of satellite-based rainfall products over the Sahelian belt for seasonal vegetation modeling, J. Geophys. Res., 116(D18), D18201, doi:10.1029/2011JD016115, 2011. - Qi, Z., Yeh, A. G.-O., Li, X. and Lin, Z.: A novel algorithm for land use and land cover classification using RADARSAT-2 polarimetric SAR data, Remote Sens. Environ., 118, 21–39, doi:10.1016/j.rse.2011.11.001, 2012. - Rana, G. and Katerji, N.: Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: a review, Eur. J. Agron., 13(2-3), 125–153, doi:10.1016/S1161-0301(00)00070-8, 2000. - Rango, A., Ritchie, J. C., Kustas, W. P., Schmugge, T. J., Humes, K. S., Hipps, L. E., Prueger, J. H. and HavstadRango, K. M.: JORNEX: A multidisciplinary remote sensing campaign to quantify plant community/atmospheric interactions in the northern Chihuahuan desert of New Mexico, Hydrol. a Chang. Environ., 585–590, 1998. - Ren, G., Zhu, A.-X., Wang, W., Xiao, W., Huang, Y., Li, G., Li, D. and Zhu, J.: A hierarchical approach coupled with coarse DEM information for improving the efficiency and accuracy of forest mapping over very rugged terrains, For. Ecol. Manage., 258(1), 26–34, doi:10.1016/j.foreco.2009.03.043, 2009. - Renó, V. F., Novo, E. M. L. M., Suemitsu, C., Rennó, C. D. and Silva, T. S. F.: Assessment of deforestation in the Lower Amazon floodplain using historical Landsat MSS/TM imagery, Remote Sens. Environ., 115(12), 3446–3456, doi:10.1016/j.rse.2011.08.008, 2011. - Rodriguez-Galiano, V. and Chica-Olmo, M.: Land cover change analysis of a Mediterranean area in Spain using different sources of data: Multi-seasonal Landsat images, land surface temperature, digital terrain models and texture, Appl. Geogr., 35(1-2), 208–218, doi:10.1016/j.apgeog.2012.06.014, 2012. - Roerink, G. ., Su, Z. and Menenti, M.: S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance, Phys. Chem. Earth, Part B Hydrol. Ocean. Atmos., 25(2), 147–157, doi:10.1016/S1464-1909(99)00128-8, 2000. - Roerink, G. J., Menenti, M., Soepboer, W. and Su, Z.: Assessment of climate impact on vegetation dynamics by using remote sensing, Phys. Chem. Earth, Parts A/B/C, 28(1-3), 103–109, doi:10.1016/S1474-7065(03)00011-1, 2003. - Rosema, A.: Comparison of Meteosat-based rainfall and evapotranspiration mapping in the Sahel region, Int. J. Remote Sens., 11(12), 2299–2309, doi:10.1080/01431169008955176, 1990. - Rozenstein, O. and Karnieli, A.: Comparison of methods for land-use classification incorporating remote sensing and GIS inputs, Appl. Geogr., 31(2), 533–544, doi:10.1016/j.apgeog.2010.11.006, 2011. - Schuurmans, J. M., Troch, P. A., Veldhuizen, A. A., Bastiaanssen, W. G. M. and Bierkens, M. F. P.: Assimilation of remotely sensed latent heat flux in a distributed hydrological model, Adv. Water Resour., 26(2), 151–159, 2003. - Scott, C. A., Bastiaanssen, W. G. M. and Ahmad, M.-D.: Mapping Root Zone Soil Moisture Using Remotely Sensed Optical Imagery, J. Irrig. Drain. Eng., 129(5), 326–335, doi:10.1061/(ASCE)0733-9437(2003)129:5(326), 2003. - Semire, F. A., Mohd-Mokhtar, R., Ismail, W., Mohamad, N. and Mandeep, J. S. S.: Ground validation of space-borne satellite rainfall products in Malaysia, Adv. Sp. Res., 50(9), 1241–1249, doi:10.1016/j.asr.2012.06.031, 2012. - Setiawan, H., Mathieu, R. and Thompson-Fawcett, M.: Assessing the applicability of the V–I–S model to map urban land use in the developing world: Case study of Yogyakarta, Indonesia, Comput. Environ. Urban Syst., 30(4), 503–522, doi:10.1016/j.compenvurbsys.2005.04.003, 2006. - Shao, Y. and Lunetta, R. S.: Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points, ISPRS J. Photogramm. Remote Sens., 70, 78–87, doi:10.1016/j.isprsjprs.2012.04.001, 2012. -
Shimoni, M., Borghys, D., Heremans, R., Perneel, C. and Acheroy, M.: Fusion of PolSAR and PolInSAR data for land cover classification, Int. J. Appl. Earth Obs. Geoinf., 11(3), 169–180, doi:10.1016/j.jag.2009.01.004, 2009. - Shrestha, D. P. and Zinck, J. A.: Land use classification in mountainous areas: integration of image processing, digital elevation data and field knowledge (application to Nepal), Int. J. Appl. Earth Obs. Geoinf., 3(1), 78–85, doi:10.1016/S0303-2434(01)85024-8, 2001. - Singh, R. K., Irmak, A., Irmak, S. and Martin, D. L.: Application of SEBAL Model for Mapping Evapotranspiration and Estimating Surface Energy Fluxes in South-Central Nebraska, J. Irrig. Drain. Eng., 134(3), 273–285, doi:10.1061/(ASCE)0733-9437(2008)134:3(273), 2008. - Singh, R. K., Liu, S., Tieszen, L. L., Suyker, A. E. and Verma, S. B.: Estimating seasonal evapotranspiration from temporal satellite images, Irrig. Sci., 30(4), 303–313, doi:10.1007/s00271-011-0287-z, 2011. - Smith, D. M., Kniveton, D. R. and Barrett, E. C.: A Statistical Modeling Approach to Passive Microwave Rainfall Retrieval, J. Appl. Meteorol., 37(2), 135–154, 1998. - Smith, E. A., Cooper, H. J., Xiang, X., Mugnai, A. and Tripoli, G. J.: Foundations for Statistical-Physical Precipitation Retrieval from Passive Microwave Satellite Measurements. Part I: Brightness-Temperature Properties of a Time-dependent Cloud-Radiation Model, J. Appl. Meteorol., 31(6), 506–531, doi:10.1175/1520-0450, 1992. - Smits, P. C., Dellepiane, S. G. and Schowengerdt, R. a.: Quality assessment of image classification algorithms for land-cover mapping: A review and a proposal for a cost-based approach, Int. J. Remote Sens., 20(8), 1461–1486, doi:10.1080/014311699212560, 1999. - Song, M., Civco, D. L. and Hurd, J. D.: A competitive pixel-object approach for land cover classification, Int. J. Remote Sens., 26(22), 4981–4997, doi:10.1080/01431160500213912, 2005. - Soppe, R. W., Bastiaanssen, W., Keller, A., Clark, B., Thoreson, B., Eckhardt, J. and Davids, G.: Use of High Resolution Thermal Landsat Data to Estimate Evapotranspiration Within the Imperial Irrigation District in Southern California, Am. Geophys. Union, 2006. - Stavrakoudis, D. G., Theocharis, J. B. and Zalidis, G. C.: A Boosted Genetic Fuzzy Classifier for land cover classification of remote sensing imagery, ISPRS J. Photogramm. Remote Sens., 66(4), 529–544, doi:10.1016/j.isprsjprs.2011.01.010, 2011. - Stefanov, W. L., Ramsey, M. S. and Christensen, P. R.: Monitoring urban land cover change: An expert system approach to land cover classification of semiarid to arid urban centers, Remote Sens. Environ., 77, 173–185, 2001. - Stephens, G. L. and Kummerow, C. D.: The Remote Sensing of Clouds and Precipitation from Space: A Review, J. Atmos. Sci., 64(11), 3742–3765, doi:10.1175/2006JAS2375.1, 2007. - Stisen, S. and Sandholt, I.: Evaluation of remote-sensing-based rainfall products through predictive capability in hydrological runoff modelling, Hydrol. Process., 24(7), 879–891, doi:10.1002/hyp.7529, 2010. - Su, F., Hong, Y. and Lettenmaier, D. P.: Evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) and Its Utility in Hydrologic Prediction in the La Plata Basin, J. Hydrometeorol., 9(4), 622–640, doi:10.1175/2007JHM944.1, 2008. - Su, Z.: The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes SEBS The Surface Energy Balance, Hydrol. Earth Syst. Sci., 6(1), 85–100, 2002. - Sulla-Menashe, D., Friedl, M. a., Krankina, O. N., Baccini, A., Woodcock, C. E., Sibley, A., Sun, G., Kharuk, V. and Elsakov, V.: Hierarchical mapping of Northern Eurasian land cover using MODIS data, Remote Sens. Environ., 115(2), 392–403, doi:10.1016/j.rse.2010.09.010, 2011. - Szuster, B. W., Chen, Q. and Borger, M.: A comparison of classification techniques to support land cover and land use analysis in tropical coastal zones, Appl. Geogr., 31(2), 525–532, doi:10.1016/j.apgeog.2010.11.007, 2011. - Taşdemir, K., Milenov, P. and Tapsall, B.: A hybrid method combining SOM-based clustering and object-based analysis for identifying land in good agricultural condition, Comput. Electron. Agric., 83, 92–101, doi:10.1016/j.compag.2012.01.017, 2012. - Tasumi, M., Trezza, R., Allen, R. G. and Wright, J. L.: U.S. Validation Tests on the SEBAL Model for Evapotranspiration via Satellite, in 54th IEC meeting of the international commission on irrigation and drainage (ICID) Workshop remote sensing of ET for large regions. Vol. 17., pp. 1–14., 2003. - Teixeira, a. H. D. C., Bastiaanssen, W. G. M., Ahmad, M. D. and Bos, M. G.: Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the Low-Middle São Francisco River basin, Brazil, Agric. For. Meteorol., 149(3-4), 462–476, 2009. - Teixeira, a. H. D. C., Bastiaanssen, W. G. M., Moura, M. S. B., Soares, J. M., Ahmad, M. D. and Bos, M. G.: Energy and water balance measurements for water productivity analysis in irrigated mango trees, Northeast Brazil, Agric. For. Meteorol., 148(10), 1524–1537, doi:10.1016/j.agrformet.2008.05.004, 2008. - Thenkabail, P. S., Biradar, C. M., Noojipady, P., Dheeravath, V., Li, Y., Velpuri, M., Gumma, M., Gangalakunta, O. R. P., Turral, H., Cai, X., Vithanage, J., Schull, M. a. and Dutta, R.: Global irrigated area map (GIAM), derived from remote sensing, for the end of the last millennium, Int. J. Remote Sens., 30(14), 3679–3733, doi:10.1080/01431160802698919, 2009a. - Thenkabail, P. S., Schull, M. and Turral, H.: Ganges and Indus river basin land use/land cover (LULC) and irrigated area mapping using continuous streams of MODIS data, Remote Sens. Environ., 95(3), 317–341, doi:10.1016/j.rse.2004.12.018, 2005. - Thenkabail, P., Turral, H., Biradar, C. and Lyon, J. G.: Remote sensing of global croplands for food security, CRC Press, Boca Raton, FL., 2009b. - Thoreson, B., Clark, B., Soppe, R., Keller, A., Bastiaanssen, W. G. M. and Eckhardt, J.: Comparison of evapotranspiration estimates from remote sensing (SEBAL), water balance, and crop coefficient approaches, in ASCE World Environmental and Water Resources Congress 2009: Great Rivers., 2009. - Tovar, C., Seijmonsbergen, A. C. and Duivenvoorden, J. F.: Monitoring land use and land cover change in mountain regions: An example in the Jalca grasslands of the Peruvian Andes, Landsc. Urban Plan., 112, 40–49, doi:10.1016/j.landurbplan.2012.12.003, 2013. - Trambauer, P., Dutra, E., Maskey, S., Werner, M., Pappenberger, F., van Beek, L. P. H. and Uhlenbrook, S.: Comparison of different evaporation estimates over the African continent, Hydrol. Earth Syst. Sci. Discuss., 10(7), 8421–8465, doi:10.5194/hessd-10-8421-2013, 2013. - Tseng, M.-H., Chen, S.-J., Hwang, G.-H. and Shen, M.-Y.: A genetic algorithm rule-based approach for land-cover classification, ISPRS J. Photogramm. Remote Sens., 63(2), 202–212, doi:10.1016/j.isprsjprs.2007.09.001, 2008. - Twine, T. E., Kustas, W. P., Norman, J. M., Cook, D. R., Houser, P. R., Meyers, T. P., Prueger, J. H., Starks, P. J. and Wesely, M. L.: Correcting eddy-covariance flux underestimates over a grassland, Agric. For. Meteorol., 103(3), 279–300, doi:10.1016/S0168-1923(00)00123-4, 2000. - UN: System of Environmental Economic Accounting for Water, Geneva., 2007. - Venturini, V., Islam, S. and Rodriguez, L.: Estimation of evaporative fraction and evapotranspiration from MODIS products using a complementary based model, Remote Sens. Environ., 112(1), 132–141, doi:10.1016/j.rse.2007.04.014, 2008. - Verstraeten, W. W., Veroustraete, F. and Feyen, J.: Assessment of Evapotranspiration and Soil Moisture Content Across Different Scales of Observation, Sensors, 8(1), 70–117, doi:10.3390/s8010070, 2008. - Villarini, G., Krajewski, W. F. and Smith, J. a.: New paradigm for statistical validation of satellite precipitation estimates: Application to a large sample of the TMPA 0.25° 3-hourly estimates over Oklahoma, J. Geophys. Res., 114(D12), D12106, doi:10.1029/2008JD011475, 2009. - Voisin, N., Wood, A. W. and Lettenmaier, D. P.: Evaluation of Precipitation Products for Global Hydrological Prediction, J. Hydrometeorol., 9(3), 388–407, doi:10.1175/2007JHM938.1, 2008. - Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Liermann, C. R. and Davies, P. M.: Global threats to human water security and river biodiversity., Nature, 467(7315), 555–61, doi:10.1038/nature09440, 2010. - Wagner, W., Verhoest, N. E. C., Ludwig, R. and Tedesco, M.: Editorial "Remote sensing in hydrological sciences," Hydrol. Earth Syst. Sci., 13(6), 813–817, doi:10.5194/hess-13-813-2009, 2009. - Van der Walt, I. J., Struwig, a. and van Rensburg, J. R. J.: Forestry as a streamflow reduction activity in South Africa: Discussion and evaluation of the proposed procedure for the assessment of afforestation permit applications in terms of water sustainability, GeoJournal, 61(2), 173–181, doi:10.1007/s10708-004-2872-7, 2004. - Wang, J., Chen, Y., He, T., Lv, C. and Liu, A.: Application of geographic image cognition approach in land type classification using Hyperion image: A case study in China, Int. J. Appl. Earth Obs. Geoinf., 12, S212–S222, doi:10.1016/j.jag.2009.06.003, 2010. - Wang, J. R., Gogineni, S. P. and Ampe, J.: Active and passive microwave measurements of soil moisture in FIFE, J. Geophys. Res., 97(D17), 18979, doi:10.1029/92JD00848, 1992. - Wang, K., Wang, P., Li, Z., Cribb, M. and Sparrow, M.: A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature, J. Geophys. Res., 112(D15), D15107, doi:10.1029/2006JD008351, 2007. - Wang, Y. and Sun, D.: The ET estimation from ASTER image based on SEBAL and TSEB method, edited by J. Gong, Q. Zhu, Y. Liu, and S. Wang, , 6045, 604532–604532–8, doi:10.1117/12.651845, 2005. - Waske, B. and Braun, M.: Classifier ensembles for land cover mapping using multitemporal SAR imagery, ISPRS J. Photogramm. Remote
Sens., 64(5), 450–457, doi:10.1016/j.isprsjprs.2009.01.003, 2009. - Weiers, S., Groom, G. and Wissen, M.: Comparability and subjectivity of land cover maps produced with digital image classification techniques: some recent experiences from Denmark and northern Germany, Geogr. Tidsskr. Danish J. Geogr., 102, 59–77, 2002. - Whiteside, T. G., Boggs, G. S. and Maier, S. W.: Comparing object-based and pixel-based classifications for mapping savannas, Int. J. Appl. Earth Obs. Geoinf., 13(6), 884–893, doi:10.1016/j.jag.2011.06.008, 2011. - Wickham, J. D., Stehman, S. V., Gass, L., Dewitz, J., Fry, J. a. and Wade, T. G.: Accuracy assessment of NLCD 2006 land cover and impervious surface, Remote Sens. Environ., 130, 294–304, doi:10.1016/j.rse.2012.12.001, 2013. - Wilk, J., Kniveton, D., Andersson, L., Layberry, R., Todd, M. C., Hughes, D., Ringrose, S. and Vanderpost, C.: Estimating rainfall and water balance over the Okavango River Basin for hydrological applications, J. Hydrol., 331(1–2), 18–29, doi:http://dx.doi.org/10.1016/j.jhydrol.2006.04.049, 2006. - Winsemius, H. C., Schaefli, B., Montanari, A. and Savenije, H. H. G.: On the calibration of hydrological models in ungauged basins: A framework for integrating hard and soft hydrological information, Water Resour. Res., 45(12), W12422, doi:10.1029/2009WR007706, 2009. - Wu, B., Yan, N., Xiong, J., Bastiaanssen, W. G. M., Zhu, W. and Stein, A.: Validation of ETWatch using field measurements at diverse landscapes: A case study in Hai Basin of China, J. Hydrol., 436-437, 67–80, 2012. - Wu, C., Cheng, C., Lo, H. and Chen, Y.: Study on estimating the evapotranspiration cover coefficient for stream flow simulation through remote sensing techniques, Int. J. Appl. Earth Obs. Geoinf., 12(4), 225–232, doi:10.1016/j.jag.2010.03.001, 2010. - Yalew, S., Teferi, E. and Griensven, A. Van: Land Use Change and Suitability Assessment in the Upper Blue Nile Basin Under Water Resources and Socio- economic Constraints: A Drive Towards a Decision Support System, in International Congress on Environmental Modelling and Software Managing Resources of a Limited Planet, Sixth Biennial Meeting, edited by R. Seppelt, A. A. Voinov, S. Lange, and D. Bankamp, Leipzig, Germany., 2012. - Yang, Y., Shang, S. and Jiang, L.: Remote sensing temporal and spatial patterns of evapotranspiration and the responses to water management in a large irrigation district of North China, Agric. For. Meteorol., 164(0), 112–122, doi:10.1016/j.agrformet.2012.05.011, 2012. - Zhang, J., Hu, Y., Xiao, X., Chen, P., Han, S., Song, G. and Yu, G.: Satellite-based estimation of evapotranspiration of an old-growth temperate mixed forest, Agric. For. Meteorol., 149(6-7), 976–984, doi:10.1016/j.agrformet.2008.12.002, 2009. - Zhang, K., Kimball, J. S., Nemani, R. R. and Running, S. W.: A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006, Water Resour. Res., 46(9), n/a–n/a, doi:10.1029/2009WR008800, 2010a. - Zhang, X., Sun, R., Zhang, B. and Tong, Q.: Land cover classification of the North China Plain using MODIS_EVI time series, ISPRS J. Photogramm. Remote Sens., 63(4), 476–484, doi:10.1016/j.isprsjprs.2008.02.005, 2008. - Zhang, Y., Leuning, R., Hutley, L. B., Beringer, J., McHugh, I. and Walker, J. P.: Using long-term water balances to parameterize surface conductances and calculate evaporation at 0.05° spatial resolution, Water Resour. Res., 46(5), n/a–n/a, doi:10.1029/2009WR008716, 2010b. - Zhu, Z., Woodcock, C. E., Rogan, J. and Kellndorfer, J.: Assessment of spectral, polarimetric, temporal, and spatial dimensions for urban and peri-urban land cover classification using Landsat and SAR data, Remote Sens. Environ., 117, 72–82, doi:10.1016/j.rse.2011.07.020, 2012. Table 1: Overview of main existing regional and global scale satellite-based data sources of rainfall. The column "gauge" indicates whether a calibration against ground data is included | Product | Main principle data | Resolution | Spatial coverage | Gauge | Minimum
time steps
interval | Producer | |--------------------|---|------------|-------------------------|-------|-----------------------------------|-----------------------| | MPE | Meteosat 7, 8, 9 10 | 3 km | Indian ocean | N | 15 min | EUMETSAT | | CMORPH | Microwave estimates (DMSP F- 13, 14 & 15 (SSM/I), NOAA-15, 16, 17 & 18 (AMSU-B), AMSR-E, and TRMM (TMI)), IR motion vectors | 8 km | 50°N-S | N | 30 min | NOAA/CPC | | PERSIANN | Microwave estimates (DMSP F-13, 14, & 15, NOAA-15, 16, 17, and TRMM (TMI)) | 0.25° | 60°N-S | N | 1-hour | UC Irvine | | GSMap | Microwave estimates (DMSP F-13, 14 & 15 (SSM/I), AMSR, AMSR-E, and TRMM (TMI)) | 0.1° | 60°N-S | N | 1-hour | JAXA | | NRL-
Blended | Microwave estimates (DMSP F-13, 14, & 15 (SSM/I), F-16 (SSMIS)) | 0.25° | 60°N-S | N | 3-hour | NRL | | TCI(3G68) | Microwave estimates (TRMM (TMI)), and PR | 0.5° | 37°N-S | N | 1-hour | NASA | | TOVS | HIRS, MSU sounding retrievals | 1° | Global | N | daily | NASA | | Hydro
Estimator | GOES IR | 4 km | Global | N | 15 min | NOAA | | TRMM 3B42 | Microwave estimates (TRMM, SSM/I,
AMSR and AMSU), IR estimates from
geostationary satellites | 0.25° | 50°N-S | Y | 3-hour | NASA | | CPC-RFE2.0 | Microwave estimates (SSM/I, AMSU-B), IR estimates from METEOSAT | 0.1° | 20°W-55°E,
40°S-40°N | Y | daily | FEWS | | GPCP 1DD | IR estimates from geostationary satellites, TOVS | 1° | 50°N-S | Y | daily | NASA/GSFC | | CMAP | Microwave estimates (SSM/I), GOES IR | 2.5° | Global | Y | 5 days | NOAA | | TAMSAT | Meteosat thermal-IR | 3 km | Africa | Y | 10 days | Reading
University | | TRMM 3B43 | Microwave estimates (TRMM, SSM/I,
AMSR and AMSU), IR estimates from
geostationary satellites | 0.25° | 40°N-S | Y | monthly | NASA | | GPCP_V2 | Microwave estimates (SSM/I), IR, TOVS | 2.5° | Global | Y | monthly | NASA/GSFC | Table 2: Mean deviation of the input variables and the distribution of the error | Remote sensing parameter | Calibration | Mean absolute percentage error | Standard deviation error | Skewness | No. of data points | |--------------------------|-------------|--------------------------------|--------------------------|----------|--------------------| | • | | (%) | (%) | (-) | | | ET | No | 5.4 | 4.9 | 1.18 | 41 | | Rainfall | Yes | 18.5 | 15.4 | 0.90 | 69 | | Land use | Yes | 14.6 | 7.4 | 0.37 | 78 | Figure 1: Probability density function of the reported absolute deviations between ET estimates from remote sensing, and field measurement of ET. A season or longer period was considered. Figure 2: Probability density function of the reported absolute deviations between rainfall estimates from remote sensing, and field measurement of rainfall. Figure 3: Probability density function of the reported absolute deviations between land use estimates from remote sensing, and field inventories of land use. ## Appendix A: Literature review on evapotranspiration Table A1: Selected ET validation papers that describe experimental data sets covering a season or longer | Method | Field
instrument | Location and year | Land use | No. of images | Source | MAPE (%) | |------------------|---------------------|------------------------------------|------------------------------|---------------|---|----------| | METRIC | Lysimeter | Idhao, US, 1985 | Native sedge
forage | 4 | Allen et al. (2005) | 4 | | METRIC | Lysimeter | Idaho, US, 1989 | Sugar beet | 12 | Allen et al. (2007) | 1 | | ALEXI | Eddy
covariance | New Mexico, US.
2008 | Agricultural areas | 6 | Anderson et al. (2012) | 6.7 | | SEBAL | Water balance | Sri Lanka | River basin | - | Bastiaanssen and
Chandrapala (2003) | 1 | | SEBAL | Water balance | Indus, Pakistan | River basin | 20 | Bastiaanssen et al. (2002) | 5 | | SEBAL | Lysimeter | California, US, 2002 | Alfalfa | 7 | Cassel and Robertson
(personal
communication, 2006)
Cassel and Robertson | 2 | | SEBAL | Lysimeter | California, US, 2002 | Peaches | 7 | (personal communication, 2006)) | 7 | | SEBAL | Water balance | Murray Darling
Basin, Australia | river basin | - | Evans et al. (2009) | 1 | | NDVI based model | Eddy
covariance | New Mexico, US | Cottonwood,
saltcedar | 10 | Groeneveld et al. (2007) | 2.2 | | NDVI based model | Bowen ratio | Colorado, US, 2006 | Greasewood, salt rabbitbrush | 5 | Groeneveld et al. (2007) | 12.2 | | NDVI based model | Eddy
covariance | California, US, 2000-
2002 | Salt grass, alkali
sacaton | 9 | Groeneveld et al. (2007) | 12.5 | |------------------|--------------------|---|-------------------------------|-----|--------------------------------------|------| | SEBAL | Water balance | Central Luzon, 2001 | Rice | 3 | Hafeez et al. (2002) | 10.5 | | SEBAL | Scintillometer | Horana, 1999 | Palm trees and rice | 5 | Hemakumara and
Chandrapala (2003) | 0.9 | | METRIC | Bowen ratio | Nebraska,US, 2005 | Corn | 4 | Irmak et al. (2011) | 4.3 | | METRIC | Bowen ratio | Nebraska, US, 2006 | Corn | 4 | Irmak et al. (2011) | 4.2 | | SEBAL | Water balance | Western Cape,
South Africa 2004-
2006 | Grapes | 12 | Jarmain et al. (2007) | 12 | | ETWatch | Water balance | Hai basin, China –
2002 - 2009 | Basin | 135 | Jia et al. (2012) | 8.3 | | SatDAET | Lysimeter | Florida, US, 1998 | alkali scrub | 8 | Jiang et al. (2009) | 14 | | SatDAET | Lysimeter | Florida, US, 1999 | alkali scrub | 3 | Jiang et al. (2009) | 19 | | CMRS1 | Water balance | Australia | river basin | NA | King et al (2011) | 2.1 | | CMRS2 | Water balance | Australia | river basin | NA | King et al (2011) | 0.6 | | NDTI | Water balance | Australia | river basin | NA | King et al (2011) | 18 | | ETLooK | Water balance | Australia | river basin | NA | King et al (2011) | 3.9 |
 SEBAL | Scintillometer | Gediz basin, Turkey,
1998 | Grapes, cotton | 4 | Kite and Droogers (2000) | 16 | | SEBAL | Surface
renewal | Sacramento Valley,
US, 2001 | Rice | 8 | Lal et al. (2012) | 1 | | TSEB | Measurements | Yellow river, China,
2004 | Wetlands | - | Li et al. (2011) | 7.9 | |--------------|--------------------|-------------------------------|--|----|---------------------------------------|------| | SEBS | Measurements | Australia, 2009 | Irrigated
agriculture | 16 | Ma et al. (2012) | 7.5 | | METRIC/SEBAL | Water balance | India, 2003 | Irrigated
agriculture | 40 | Mallick et al. (2007) | 11.6 | | SEBAL | Water balance | Sudd, Sudan, 2000 | Wetland | - | Mohamed et al. (2004) | 1.8 | | SEBAL | Water balance | Sobat, Sudan, 2000 | Wetland | - | Mohamed et al. (2004) | 5.7 | | SEBAL | Water balance | California, US, 2002 | Almonds | 7 | Sanden (personal communication, 2005) | 1 | | SEBAL | Bowen ratio | Nebraska, US | Corn | 7 | Singh et al. (2008) | 5 | | METRIC | Eddy
covariance | Nebraska, US | River basin | 8 | Singh et al. (2011) | 1.7 | | SEBAL | Water balance | California, US | Irrigated
agriculture | 5 | Soppe et al. (2006) | 1 | | SEBAL | Lysimeter | Idaho, US,
1989-91 | Irrigated
agriculture | 11 | Tasumi et al. (2003) | 4.3 | | SEBAL | Eddy
covariance | Petrolina, 2001-
2007 | Mango, grapes | 9 | Teixeira et al. (2008) | 1 | | SEBAL | Eddy
covariance | Brazil | Natural vegetation and irrigated crops | 18 | Teixeira et al. (2009) | 1 | | SEBAL | Water balance | Imperial Valley,
1997-1998 | Several | 12 | Thoreson et al, (2009) | 1 | | SEBAL | Eddy
covariance | Middle Rio Grande,
US, 2002-2003 | Pecan, alfalfa | 7 | Wang and Sun (2005) | 3 | |------------------|--------------------|-------------------------------------|----------------------|----|---------------------|-----| | ETWatch | Lysimeter | Hai basin, China,
2002 - 2005 | wheat-maize rotation | - | Wu et al. (2012) | 9 | | ETWatch | Eddy
covariance | Hai basin, China,
2002 - 2005 | River basin | 20 | Wu et al. (2012) | 3 | | ETWatch | Water balance | Hai basin, China,
2002 - 2005 | River basin | - | Wu et al. (2012) | 1.8 | | SEBAL | Water balance | North district, China | Regional scale | 26 | Yang et al. (2012) | 5.6 | | WUE* based model | Eddy
covariance | Jilin province, China
2003 | Mixed forest | 45 | Zhang et al. (2009) | 4 | | WUE based model | Eddy
covariance | Jilin province, China
2004 | Mixed forest | 45 | Zhang et al. (2009) | 2 | | WUE based model | Eddy
covariance | Jilin province, China
2005 | Mixed forest | 45 | Zhang et al. (2009) | 0.4 | ^{*} Water Use Efficiency ## **Appendix B: Literature review on rainfall** Table B2: Selected validation papers that describe experimental data sets covering a season or longer. | Source | Area | Year | RS Data source | Deviation | |--------------------------------|-----------------------------|------------------|----------------|-----------| | Almazroui et al. (2011) | Saudi Arabia | 1998-2008 | TRMM | 0 | | Almazroui et al. (2012) | Saudi Arabia | 1998-2008 | TRMM | 12.05 | | Asadullah et al. (2010) | Uganda | 2003-2007 | CMORPH | 2 | | Asadullah et al. (2010) | Uganda | 2003-2007 | PERSIANN | 8 | | Asadullah et al. (2010) | Uganda | 2003-2007 | RFE 2.0 | 19 | | Asadullah et al. (2010) | Uganda | 2003-2007 | TRMM 3B42 | 8 | | Asadullah et al. (2010) | Uganda | 2003-2007 | TAMSAT | 12 | | Bitew and Gebremichael (2011) | Gilgel, Ethiopia | 2006-2007 | CMORPH | 29 | | Bitew and Gebremichael (2011) | Gilgel, Ethiopia | 2006-2007 | TRMM 3B42RT | 29 | | Bitew and Gebremichael (2011) | Gilgel, Ethiopia | 2006-2007 | PERSIANN | 58 | | Bitew and Gebremichael (2011) | Gilgel, Ethiopia | 2006-2007 | TRMM 3B42 | 64 | | Cheema and Bastiaanssen (2012) | Indus | 2007 | TRMM 3B43 V6 | 6.1 | | Cheema and Bastiaanssen (2012) | Indus | 2007 | TRMM 3B43 V6 | 10.9 | | Chen et al. (2011) | Dongjing basin, China | 2002-2010 | TRMM 3B42RT | 22.1 | | Collischonn et al. (2008) | Tapajo 's basin, Brazil | 1997-2006 | TRMM 3B42 | 12 | | Dinku et al. (2007) | Ethipian Highlands | 1998-2004 | TRMM 3B43 | 8 | | Dinku et al. (2011) | Blue Nile, Ethiopia | 1981-2004 | CMAP | 3 | | Dinku et al. (2011) | Blue Nile, Ethiopia | 1981-2004 | GPCP | 5 | | Dinku et al. (2011) | Blue Nile, Ethiopia | 2003-2004 | CMORPH | 1 | | Dinku et al. (2011) | Blue Nile, Ethiopia | 2003-2004 | TRMM 3B42 | 5 | | Dinku et al. (2011) | Blue Nile, Ethiopia | 2003-2004 | RFE | 48 | | Duan and Bastiaanssen (2013) | Lake Tana | 1999, 2000, 2004 | TRMM 3B43 V7 | 1 | | Duan and Bastiaanssen (2013) | Caspian sea, Iran | 2000-2003 | TRMM 3B43 V7 | 20 | | Feidas (2009) | Greece | 1998-2006 | TRMM 3B42 | 4.2 | | Feidas (2009) | Greece | 1998-2007 | TRMM 3B43 | 7.6 | | Feidas (2009) | Greece | 1998-2008 | GPCP-1DD | 28.7 | | Fernandes et al. (2008) | Amazon basin, South America | 1980-2002 | ERA-40 | 10 | | Fernandes et al. (2008) | Amazon basin, South America | 1980-2002 | GPCP | 7 | | Fu et al. (2011) | Poyang basin, China | 2003-2006 | GSMaP | 54 | |----------------------------|----------------------------|-----------|--------------|------| | Getirana et al. (2011) | Negro basin, South America | 1998-2002 | TMPA | 18 | | Getirana et al. (2011) | Negro basin, South America | 1998-2002 | NCEP-2 | 13 | | Getirana et al. (2011) | Negro basin, South America | 1998-2002 | ERA-40 | 18 | | Jiang et al. (2012) | Mishui Basin, China | 2003-2008 | CMORPH | 41 | | Jiang et al. (2012) | Mishui Basin, China | 2003-2008 | 3B42RT | 43 | | Jiang et al. (2012) | Mishui Basin, China | 2003-2008 | 3B42V6 | 4.54 | | Kizza et al. (2012) | Lake Victoria | 2001-2004 | TRMM 3B43 | 5 | | Kizza et al. (2012) | Lake Victoria | 2001-2004 | PERSIANN | 1 | | Milewski et al. (2009) | Egypt | | TRMM | 15 | | Moffitt et al. (2011) | Bangladesh | 2000-2005 | TRMM 3B42V6 | 11.6 | | Pierre et al. (2011) | Sahelian belt | 2004-2007 | RFE 2.0 | 23 | | Pierre et al. (2011) | Sahelian belt | 2004-2007 | TRMM 3B42 | 6 | | Pierre et al., (2011) | Sahelian belt | 2004-2007 | CMORPH | 34 | | Semire et al. (2012) | Malaysia | 2001-2010 | TRMM 3B43 V6 | 15 | | Stisen and Sandholt (2010) | Senegal river basin | 2003-2005 | CMORPH | 34 | | Stisen and Sanholt (2010) | Senegal river basin | 2003-2005 | PERSIANN | 47 | | Stisen and Sanholt (2010) | Senegal river basin | 2003-2005 | TRMM | 23 | | Stisen and Sanholt (2010) | Senegal river basin | 2003-2005 | CCD | 6 | | Stisen and Sanholt (2010) | Senegal river basin | 2003-2005 | CPC-FEWs | 21 | | Su et al. (2008) | La Plata Basin | 1998-2006 | TRMM | 6 | | Villarini et al. (2009) | Oklahoma, USA | 1998-2003 | TRMM | 10 | | Voisin et al. (2008) | Amazon | 1997-1999 | ERA-40 | 26.5 | | Voisin et al. (2008) | Amazon | 1997-1999 | GPCP 1DD | 24.7 | | Voisin et al. (2008) | Mississippi, USA | 1997-1999 | ERA-40 | 32.3 | | Voisin et al. (2008) | Mississippi, USA | 1997-1999 | GPCP 1DD | 25.3 | | Voisin et al. (2008) | Mackenzie, Canada | 1997-1999 | ERA-40 | 1.1 | | Voisin et al. (2008) | Mackenzie, Canada | 1997-1999 | GPCP 1DD | 28.8 | | Voisin et al. (2008) | Congo, Africa | 1997-1999 | ERA-40 | 13.4 | | Voisin et al. (2008) | Congo, Africa | 1997-1999 | GPCP 1DD | 31 | | Voisin et al. (2008) | Danube, Europe | 1997-1999 | ERA-40 | 29.1 | | Voisin et al. (2008) | Danube, Europe | 1997-1999 | GPCP 1DD | 17.1 | | Voisin et al. (2008) | Meckong, SEA | 1997-1999 | ERA-40 | 0.4 | |----------------------|---------------------|-----------|----------|------| | Voisin et al. (2008) | Meckong, SEA | 1997-1999 | GPCP 1DD | 4.1 | | Voisin et al. (2008) | Senegal | 1997-1999 | ERA-40 | 51.6 | | Voisin et al. (2008) | Senegal | 1997-1999 | GPCP 1DD | 23.3 | | Voisin et al. (2008) | Yellow river, China | 1997-1999 | ERA-40 | 1.3 | | Voisin et al. (2008) | Yellow river, China | 1997-1999 | GPCP 1DD | 30.4 | | Voisin et al. (2008) | Yenisei, Russia | 1997-1999 | ERA-40 | 0.7 | | Voisin et al. (2008) | Yenisei, Russia | 1997-1999 | GPCP 1DD | 26.2 | | Wilk et al. (2006) | Okavango basin | 1991-1996 | TRMM | 20 | ## Appendix C: Literature review on land use & land cover Table C1: Selected validation papers that report on confusion matrices | a | | • | - | Overall | |---------------------------------|--------------------------------------|------------|------------------------------|--------------| | Source | Area | Image Year | Image source | accuracy (%) | | Abd El-Kawy et al. (2011) | Nile Delta, Egypt | 2005 | Landsat ETM+ | 96 | | Aguirre-Gutiérrez et al. (2012) | Sierra Madre, Mexico | 2006 | Landsat ETM+ | 87 | | Bach et al. (2006) | Erda, Germany | 1989-1992 | CORINE | 75 | | Bach et al. (2006) | Erda, Germany | 1994 | (Landsat TM)
Landsat-5 TM | 79 | | Bach et al. (2006) | Stein., Germany | 1989-1992 | CORINE | 69 | | Bacii et ai. (2000) | Stelli., Germany | 1909-1992 | (Landsat TM) | 09 | | Bach et al. (2006) | Stein., Germany | 1994 | Landsat-5 TM | 74 | | Bicheron et al. (2008) | Global | 2004-2006 | MERIS/Envisat | 73 | | Blanco et al. (2013)) | Latin America | 2008 | Modis-Terra | 84 | | Büttner et al. (2006) | Global | 1999-2000 | Landsat | 87 | | , | | | ETM+/SPOT | | | Cassidy et al. (2013) | Lower Meckong | 2005 | Landsat TM | 85 | | Cheema and Bastiaanssen (2010) | Inuds basin | 2007 | SPOT/vegetation | 77 | | Cingolani (2004) | Cordoba, Argentina | 1997 | Landsat 5 TM | 86 | | Clark et al. (2010) | Dry Chaco, South
America | 2000-2008 | MODIS | 80 | | Colditz et al., (2012) | Mexico | 2005 | MODIS | 83 | | Cotonnec and Du (2001) | Baie de lannion, | 1996-97 | Landsat 5TM | 89 | | Estes et al. (2012) | France
Serengeti National
Park | 2002-2003 | Landsat ETM+ | 83 | | Friedl et al. (2010) | Global | 2000-2001 | Modis 5 | 75 | | Gamanya et al. (2007) | Central Zimbabwe | 2001 | ASTER | 92 | | Gamanya et al. 2007) | Central Zimbabwe | 2001 | Landsat TM | 89 | | Kandrika and Roy (2008) | Orissa, India | 2004-2005 |
AWiFS IRS-P6 | 87 | | Kavzoglu and Colkesen (2009) | Kocaeil, Turkey | 1997 | Landsat ETM+ | 91 | | Kavzoglu and Colkesen (2009) | Kocaeil, Turkey | 1997 | Landsat ETM+ | 90 | | Kavzoglu and Colkesen (2009) | Kocaeil, Turkey | 2002 | Aster | 88 | | Kavzoglu and Colkesen (2009) | Kocaeil, Turkey | 2002 | Aster | 93 | | Kavzoglu and Colkesen (2009) | Kocaeil, Turkey | 2002 | Aster | 91 | | Kavzoglu and Colkesen, 2009) | Kocaeil, Turkey | 1997 | Landsat ETM+ | 87 | | Kaya et al. (2002) | Kenya | 2001 | RADARSAT-1 | 85 | | Keuchel et al. (2003) | Tenerife, Spain | 1988 | Landsat 5TM | 90 | | Keuchel et al. (2003) | Tenerife, Spain | 1988 | Landsat 5TM | 88 | | Keuchel et al. (2003) | Tenerife, Spain | 1988 | Landsat 5TM | 93 | | Klein et al., (2012) | Central Asia | 2009 | MODIS | 91 | | Kolios and Stylios (2013) | Greece | 2009 | Landsat 7 ETM+ | 97 | | Liu and Yang (2013) | Jilin, China | 2009 | Landsat TM | 95 | |---|-----------------------------------|-----------|----------------------|----| | Liu et al. (2002) | Rondonia, Brazil | 1995/1997 | Landsat TM/Spot | 80 | | Mayaux et al. (2006) | Global | 1999-2000 | SPOT-Vegetation | 68 | | Munthali and Murayama (2011) | Dzalanyama, Malawi | 2008 | ALOS | 79 | | Munthali and Murayama (2011) | Dzalanyama, Malawi | 2000 | Landsat ETM+ | 78 | | Oldeland et al. (2010) | Rehoboth, Namibia | 2005 | HyMap | 98 | | Otukei and Blaschke (2010) | Pallisa, Uganda | 2001 | Landsat 7 ETM+ | 94 | | Pan et al. (2010) | Honghe Reserve,
China | 2006 | Landsat-5 TM | 88 | | Peña-Barragán et al. (2011) | Yolo County,
California | 2006 | ASTER | 79 | | Pérez-Hoyos et al. (2012) | Regional/Europe | - | Merged-global maps | 87 | | Petropoulos et al. (2012) | Greece | 2009 | Hyperion | 89 | | Qi et al. (2012) | Panyu, China | 2009 | RADARSAT-2
PolSAR | 87 | | Ren et al. (2009) | NW-Yunnan, China | 2000 | Landsat ETM+ | 97 | | Reno et al. (2011) | Amazon, Brazil | 2008 | Landsat 5 | 83 | | Renó et al., 2011) | Amazon, Brazil | 1970 | Landsat 2 | 86 | | Rodriguez-Galiano and Chica-
Olmo (2012) | Granada, Spain | 2004 | Landsat 5TM | 86 | | Rozenstein and Karnieli (2011) | Israel | 2009 | Landsat 5 TM | 81 | | Setiawan et al. (2006) | Yogyakarta, Indonesia | 1994 | Landsat TM | 80 | | Shao and Lunetta (2012) | North Carolina &
Virginia, USA | 2000-2009 | MODIS | 91 | | Shimoni et al. (2009) | Glinska Poljana,
Croatia | 2001 | E-SAR | 84 | | Shrestha and Zinck (2001) | Likhu basin, Nepal | 1988 | Landsat TM | 94 | | Song et al. (2005) | Connecticut, USA | 2001 | Landsat ETM | 85 | | Stavrakoudis et al. (2011) | Lake Kronia, Greece | 2005 | IKONOS | 93 | | Stefanov et al, (2001) | Arizona, USA | 1998 | Landsat TM | 85 | | Sulla-Menashe et al. (2011) | Regional/Northern
Eurasia | 2001-2005 | MODIS | 73 | | Szuster et al. (2011) | Thai island, Thailand | 2004 | ASTER | 95 | | Szuster et al. (2011) | Thai island, Thailand | 2004 | ASTER | 94 | | Szuster et al. (2011) | Thai island, Thailand | 2004 | ASTER | 94 | | Taşdemir et al. (2012) | Bulgaria | 2009 | Rapideye | 94 | | Thenkabail et al. (2009a) | Global | 1997-1999 | AVHHR | 79 | | Tovar et al. (2013) | Cajamarca, Peru | 2007 | Landsat 5 TM | 80 | | Tseng et al. (2008) | Connecticut, USA | 1987 | Landsat TM | 98 | | Wang et al. (2010) | Hengshan, China | 2003 | Hyprion | 80 | | Waske and Braun (2009) | Jena, Germany | 2005 | ENVISAT/ ERS-
2 | 83 | | Weiers et al (2002) | Schleswig-Holstein,
Germany | 1992-1997 | Landsat TM | 85 | | Weiers et al. (2002) | Denmark | 1992-1997 | Landsat TM | 70 | | Whiteside et al. (2011) | Florence creek,
Australia | 2000 | ASTER | 79 | |-------------------------|--------------------------------|-----------|--------------|----| | Wickham et al. (2013) | USA | 2001 | Landsat TM | 79 | | Wickham et al. (2013) | USA | 2006 | Landsat TM | 78 | | Wickham et al. (2013) | USA | 2001 | Landsat TM | 85 | | Wickham et al. (2013) | USA | 2006 | Landsat TM | 84 | | Wu et al. (2010) | Dan-Shuei, China | 1995 | Landsat 5 TM | 88 | | Zhang et al. (2008) | Northern China plain,
China | 2003 | MODIS_EVI | 75 | | Zhu et al. (2012) | Massachusetts, USA | 2007 | ALOS | 72 | | Zhu et al. (2012) | Massachusetts, USA | 2000-2007 | Landsat/ALOS | 94 | | Zhu et al. (2012) | Massachusetts, USA | 2000-2002 | Landsat | 93 | ## Appendix D. Glossary Table D1. Glossary | Term | Description | |-----------------|---| | 1DD | One Degree Daily | | 3B42RT | 3B42 real time | | ALEXI | Atmosphere-Land Exchange Inverse | | ALOS | Advanced Land Observing Satellite | | AMSR-E | Advanced Microwave Sounding Radiometer-Earth | | AMSU | Advanced Microwave Sounding Unit | | ASTER | Advanced Spaceborne Thermal Emission and Reflection | | | Radiometer | | AVHRR | Advanced Very High Resolution Radiometer | | CBERS | China Brazil Earth Resources Satellite | | CMAP | CPC Merged Analysis of Precipitation | | CMORPH | CPC Morphing technique | | CMRSET | CSIRO MODIS Reflectance-based Scaling ET | | CORINE | CO-ordination of INformation on the Environment | | CPC | Climate Prediction Center | | CSIRO | Commonwealth Science and Industrial Research Organisation | | DMSP | Defense Meteorological Satellite Program | | EARS | Environmental Analysis and Remote Sensing | | EUMETSAT | European Organisation for the Exploitation | | | of Meteorological Satellites | | FEWS | Famine Early Warning Systems (FEWS) | | GOES | Geostationary Operational Environmental Satellites | | GPCC | Global Precipitation Climatology Centre | | GPCP | Global Precipitation Climatology Project | | GPI | GOES precipitation index | | GSFC | Goddard Space Flight Center's (GSFC) | | GSMaP | Global Satellite Mapping of Precipitation | | HIRS | High-Resolution Infrared Sounder | | IR | Infrared | | IWMI | International Water Management Institute | | METRIC | Mapping EvapoTranspiration at high Resolution with Internalized | | | Calibration | | MODIS | Moderate Resolution Imaging Spectrometer | | MPE | Multi-Sensor Precipitation Estimate | | NASA | National Aeronautics and Space Administration | | NDTI | Normalised Difference Temperature Index | | NOAA | National Oceanic and Atmospheric Administratio | | PERSIANN | Precipitation Estimation From Remotely Sensed Information using | | , | Artificial Neural Networks | | PR | Precipitation radar | |---------|---| | RFE | Rainfall Estimation Algorithm | | SatDAET | Satellite daily ET | | SEBAL | Surface Energy Balance Algorithm for Land | | SEBS | Surface Energy Balance System | | SEEAW | System of Environmental-Economic Accounts for Water | | SPOT | Satellite Pour l'Observation de la Terre | | SSM/I | Special Sensor Microwave/Imager | | TAMSAT | Tropical Applications of Meteorology using Satellite data | | TCI | TRMM Combined Instrument | | TMI | TRMM Microwave Imager | | TOVS | TIROS Operational Vertical Sounder | | TRMM | Tropical rainfall measuring mission | | TSEB | Two source energy balance | | VIIRS | Visible Infrared Imager Radiometer Suite | | WIRADA | Water Information Research and Development Alliance |