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Abstract

Assimilation of remotely sensed soil moisture data (SM–DA) to correct soil water stores
of rainfall-runoff models has shown skill in improving streamflow prediction. In the case
of large and sparsely monitored catchments, SM–DA is a particularly attractive tool.
Within this context, we assimilate active and passive satellite soil moisture (SSM)5

retrievals using an ensemble Kalman filter to improve operational flood prediction within
a large semi-arid catchment in Australia (> 40 000 km2). We assess the importance of
accounting for channel routing and the spatial distribution of forcing data by applying
SM–DA to a lumped and a semi-distributed scheme of the probability distributed model
(PDM). Our scheme also accounts for model error representation and seasonal biases10

and errors in the satellite data.
Before assimilation, the semi-distributed model provided more accurate streamflow

prediction (Nash–Sutcliffe efficiency, NS=0.77) than the lumped model (NS=0.67) at
the catchment outlet. However, this did not ensure good performance at the “ungauged”
inner catchments. After SM–DA, the streamflow ensemble prediction at the outlet15

was improved in both the lumped and the semi-distributed schemes: the root mean
square error of the ensemble was reduced by 27 and 31 %, respectively; the NS
of the ensemble mean increased by 7 and 38 %, respectively; the false alarm ratio
was reduced by 15 and 25 %, respectively; and the ensemble prediction spread was
reduced while its reliability was maintained.20

Our findings imply that even when rainfall is the main driver of flooding in semi-
arid catchments, adequately processed SSM can be used to reduce errors in the
model soil moisture, which in turn provides better streamflow ensemble prediction.
We demonstrate that SM–DA efficacy is enhanced when the spatial distribution in
forcing data and routing processes are accounted for. At ungauged locations, SM–25

DA is effective at improving streamflow ensemble prediction, however, the updated
prediction is still poor since SM–DA does not address systematic errors in the model.
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1 Introduction

Floods have large negative impacts on society, causing destruction of infrastructure
and crops, erosion, and in the worst cases, injury and loss of life (Thielen et al., 2009).
To reduce flood impacts on public safety and the economy, early and accurate alert
systems are needed. These systems rely on hydrologic model predictions, whose5

accuracy in turn is highly dependent on the quality of the data used to force and
calibrate them. Therefore, in the case of sparsely monitored and ungauged catchments,
flood prediction suffers from large uncertainties.

A plausible approach to reduce model uncertainties in the sparsely monitored
catchments is to exploit remotely sensed hydro-meteorological observations to correct10

the states or parameters of the model in a data assimilation (DA) framework. Within
this context, satellite soil moisture (SSM) products are appealing given the vital role
of soil moisture (SM) in the runoff generation. SM influences the partitioning of energy
and water (rainfall, infiltration and evapotranspiration) between the land surface and the
atmosphere (Western et al., 2002). SSM observations provide global scale information15

and can be obtained in near real time at regular and reasonably frequent time intervals.
This makes them valuable for improving the representation of catchment wetness. The
accuracy of SSM has been assessed by a number of studies (Albergel et al., 2009,
2010, 2012; Draper et al., 2009; Gruhier et al., 2010; Brocca et al., 2011; Su et al.,
2013). In general, they have showed promising performance, with moderate correlation20

between SSM and ground data, but with significant bias at some locations.
In the last decade a large number of studies have explored SSM data assimilation

(SM–DA) to correct the water states of models. These studies can be categorised
in two main groups; the first, and larger group, has focused their evaluation on the
improvement of the SM predicted by the model (generally working with land surface25

models, e.g., Crow and van Loon, 2006; Crow and Reichle, 2008; Crow and Van den
Berg, 2010; Reichle et al., 2008; Ryu et al., 2009). The second, and smaller group
(where our study fits), has focused on the improvement of streamflow prediction
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in rainfall-runoff models (Francois et al., 2003; Brocca et al., 2010, 2012; Alvarez-
Garreton et al., 2013, 2014; Chen et al., 2014; Wanders et al., 2014).

While the studies from the first group evaluate the improvement in prediction of
the same variable that is updated in the assimilation scheme (SM), studies in the
second groups focus on streamflow, which involves indirect improvements due to5

better representation of SM. The potential improvement of streamflow predictions in
the latter case is constrained by the particular runoff mechanisms operating within
a catchment. Accordingly, even when a model structure and parametrisation are
capable of representing the runoff mechanisms, improving streamflow prediction by
reducing error in soil moisture depends on the error covariance between these two10

components. This error covariance (which in the model space will be defined by the
representation given to the different sources of uncertainty) may become marginal
when the errors in streamflow come mainly from errors in rainfall input data (Crow
and Ryu, 2009). This physical constraint is case specific and determines the potential
skill of SM–DA for improving streamflow prediction. To understand and assess this skill,15

further studies focusing on the improvement of streamflow prediction are needed with
different model characteristics, such as structure, parametrisation and performance
before assimilation; and with different catchment characteristics, such as climate,
scale, soils, geology, land cover and density of monitoring network. Among the latter,
semi-arid catchments present unique rainfall-runoff processes which have been rarely20

studied in SM–DA.
Here we address this gap by studying the Warrego River catchment in Australia,

a large and sparsely monitored semi-arid basin. We set up the probability distributed
model (PDM) within the catchment, and assimilate passive and active SSM products
using an ensemble Kalman filter (Evensen, 2003), for the purpose of improving25

operational flood prediction. We devise an operational SM–DA scheme to answer three
main questions. (1) While rainfall is presumably the main driver of flood generation in
semi-arid catchments, can we effectively improve streamflow prediction by correcting
the soil water state of the model? (2) What is the impact of accounting for channel
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routing and the spatial distribution of forcing data on SM–DA performance? (3) What
are the prospects for improving streamflow within ungauged inner catchments using
SSM?

A series of SM–DA experiments using a lumped version of PDM have already been
undertaken in this study catchment by Alvarez-Garreton et al. (2014). They found5

that assimilating passive microwave SSM improved flood prediction, while highlighting
specific limitations in their scheme. In this paper we address those limitations by
applying more robust techniques in the SM–DA framework. In particular, we improve
the representation of model error by explicitly treating forcing, parameter and structural
errors. We incorporate additional SSM products and apply instrument variables10

regression techniques for SSM seasonal rescaling and observations error estimation.
Furthermore, we employ a semi-distributed scheme to evaluate the advantages of
accounting for channel routing and the spatial distribution of forcing data.

In this paper, Sect. 2 presents a description of the study catchment and the data
used. Section 3 presents the methodology, including a description of the rainfall-15

runoff model, the EnKF formulation and the specific steps for setting up the SM–DA
scheme. These include the error model estimation, estimation of profile SM based on
the satellite surface data, the rescaling of satellite observations and observation error
estimation. Section 4 presents the results and discussion. Section 5 summarises the
main conclusions of the study.20

2 Study area and data

The study area is the semi-arid Warrego catchment (42 870 km2) located in
Queensland, Australia (Fig. 1). The catchment has an important flooding history, with
at least three major floods within the last 15 years. The study area also features
geographical and climatological conditions that enable SSM retrievals to have higher25

accuracy than in other areas. These conditions include the size of the catchment, the
a semi-arid climate and the low vegetation cover. Moreover, the ground-monitoring
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network within the catchment is sparse thus satellite data is likely to be more valuable
than in well-instrumented catchments. The catchment has summer-dominated rainfall
with mean monthly rainfall of 80 mm in January, and 20 mm in August. Mean maximum
daily temperature in January is above 30 ◦C and in July below 20 ◦C. The runoff
seasonality is characterised by peaks in summer months and minimum values in winter5

and spring. The mean annual precipitation over the catchment is 520 mm.
Daily rainfall data was collected from the gauge-interpolated dataset of the Australian

Water Availability Project (AWAP), which has a spatial resolution of 0.05◦ (Jones
et al., 2009). Hourly streamflow records were collected from the State of Queensland,
Department of Natural Resources and Mines (http://watermonitoring.dnrm.qld.gov.au)10

for the 3 gauges within the catchment (Fig. 1). Daily discharge was calculated
based on the daily AWAP time convention (09:00 a.m.–08:59 a.m. LT, UTC+10 h).
The flood classification for the study catchment (at the catchment outlet, N7) is
provided by the Australian Bureau of Meteorology (BoM) as river height threshold
values, corresponding to minor, moderate and major floods. These threshold values15

expressed as streamflow (mm day−1) are 0.06, 0.55 and 2.05, respectively and relate
to flood impact rather than recurrence interval. The associated annual exceedance
probability for the minor, moderate and major floods at N7 are 15.7, 3.1, and 0.95 %,
respectively (calculated using the complete daily streamflow record period). Potential
evapotranspiration was obtained from the climatological 0.05◦ grid data provided by the20

BoM (Australian Data Archive for Meteorology database). Daily values were estimated
by assuming a uniform daily distribution within a month.

Three SSM products are used here. The first is the Advance Microwave Scanning
Radiometer – Earth Observing System (AMSR-E, AMS hereafter) version 5 VUA-
NASA LPRM (Land Parameter Retrieval Model) Level 3 gridded product (Owe et al.,25

2008). The second product is the TU-WIEN (Vienna University of Technology) ASCAT
(ASC hereafter) data produced using the change-detection algorithm (Water Retrieval
Package, version 5.4) (Naeimi et al., 2009). The third SSM product is the Soil
Moisture and Ocean Salinity (SMOS) satellite (SMO hereafter), version RE01 (Re-
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processed 1 day global soil moisture product) provided by Centre Aval de Traitement
des Donnees. The overpass times of the AMS, ASC and SMO over the study
catchments are 01:30 a.m./p.m., 10:00 a.m./p.m. and 06:00 a.m./p.m. LT (UTC+10 h),
respectively. Figure 2 summarises the period of record of the different datasets.

For each satellite dataset, a daily averaged SSM was calculated for the complete5

catchment (or sub-catchment in the case of the semi-distributed scheme). The areal
estimate of SSM over the catchment is given by averaging the values of ascending and
descending satellite passes on days when more than 50 % of the pixels had valid data.
For the case of the passive sensors (AMS and SMO), we subtracted the long-term
temporal mean of the ascending and descending datasets to remove the systematic10

bias between them (Brocca et al., 2011; Draper et al., 2009). Then, daily SSM was
calculated as the average between the mean-removed ascending and descending
passes (if both were available) or directly as the mean-removed available pass. For
ASC retrievals, given the unbiased ascending and descending measurements, daily
SSM was calculated from the actual ascending and descending values averaged over15

the catchment.

3 Methods

3.1 Lumped and semi-distributed model schemes

The probability distributed model (PDM) is a conceptual rainfall-runoff model that
has been widely used in hydrologic research and applications (Moore, 2007). The20

model treats soil moisture (S1 in Fig. 3) as a distributed variable following a Pareto
distribution function. The SM component together with the net rainfall (rainfall minus
evapotranspiration and groundwater recharge) define the separation between direct
runoff and subsurface runoff. Direct runoff is routed through two cascade of reservoirs
(S21 and S22 in Fig. 3, with time constants k1 and k2, respectively). Subsurface runoff25

is estimated based on the drainage from S1 and transformed into baseflow by using
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a storage reservoir (S3 in Fig. 3 with time constant kb). These are then combined as
total runoff, or streamflow. A detailed description of the model conceptualisation and
the formulation of the different rainfall-runoff processes is presented in Moore (2007).

PDM was set up using both a lumped scheme and a semi-distributed scheme
(see Fig. 1). The semi-distributed scheme was configured with 7 sub-catchments5

(SC1 to SC7), each using the lumped version of PDM. The area and mean annual
rainfall (MAR) of each sub-catchment are summarised in Table 1. The river routing
between upstream and downstream sub-catchments in the semi-distributed scheme
was represented by a linear Muskingum method (Gill, 1978):

S = km (Ix+ (1−x)O) , (1)10

where S is the storage within the routing reach, km is the storage time constant, I
and O are the streamflow at the beginning and end of the reach, respectively, and x
is a weighting factor parameter. The time-dependant model parameters in the semi-
distributed scheme (k1, k2 and kb) were scaled by the area of each sub-catchment,15

and km from Muskingum routing was scaled by the length of the river channel between
corresponding nodes. The remaining model and routing parameters of the semi-
distributed scheme were treated as homogeneous.

The lumped and the semi-distributed models were calibrated by using a genetic
algorithm (Chipperfield and Fleming, 1995) with an objective function based on the20

Nash–Sutcliffe model efficiency (NS) (Nash and Sutcliffe, 1970). The calibration was
done within the period 1 January 1967–31 May 2003 and the evaluation within 1 June
2003–2 March 2014. To make fair comparisons between the two model setups in
a scenario where the inner catchments are ungauged, the semi-distributed scheme
was calibrated using only the outlet gauge (N7 in Fig. 1). The performance of the25

calibrated models was evaluated based on the NS at the catchment outlet (N7, Fig. 1)
and at inner nodes N1 and N3, in the case of the semi-distributed scheme.

To analyse the runoff mechanisms simulated by the lumped and the semi-distributed
schemes, we calculated the lag-correlation between rainfall and streamflow, and
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between antecedent SM and streamflow. This enables further understanding of the
improvement in streamflow that can be expected by improving the simulated SM
content through SM–DA.

3.2 EnKF formulation

The ensemble Kalman filter (EnKF) proposed by Evensen (2003) has been widely5

used in hydrologic applications given the highly nonlinear nature of runoff processes.
In the EnKF, the error covariance between model and observations is calculated from
Monte Carlo-based ensemble realisations. In this way, the model and observation
uncertainties are propagated and the streamflow prediction is treated as an ensemble
of equally likely realisations. The uncertainty of the streamflow prediction can be10

derived from the ensemble, which provides valuable information for operational flood
alert systems.

In a state-updating assimilation approach, the state ensemble is created by
perturbing forcing data, parameters and/or states of the model with unbiased errors.
As we will see in Sect. 3.3, an N-member ensemble of the water content in S1 (θ15

hereafter) was generated by perturbing rainfall forcing data, the model parameter k1,
and θ. Then, the error of the state member i at time t was estimated as

θ−
i ,t

′ = θ−
i ,t −

1
N

N∑
i=1

θ−
i ,t, (2)

where the superscript “−” denotes the state prediction prior to assimilation step. The20

anomaly vector for time step t was defined by θ−(t)′ = {θ−
1,t

′
,θ−

2,t
′
, . . .,θ−

N,t
′} and the

error covariance of the model state (P −) was estimated at each time step as:

P −(t) =
1

N −1
θ−(t)′ ·

(
θ−(t)′

)T
. (3)

When a daily SSM observation from AMS, ASC or SMO was available, each member25

of the background prediction (θ−) was updated. Before being assimilated, each of the
10643
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three SSM datasets was transformed to represent a profile SM and then rescaled to
remove systematic differences between the model and the transformed observation
(details in Sects. 3.5 and 3.6). We sequentially assimilated a N-member ensemble of
the transformed and rescaled AMS, ASC and SMO (θams,θasc and θsmo, respectively)
and updated θ− with the following 3 steps:5

1. If θams was available at time t,

θ+
i ,t = θ−

i ,t +K 1
t

(
θams
i ,t −Hθ−

i ,t

)
, (4)

where H is an operator that transforms the model state to the measurement
space. In order to correct additive and multiplicative biases between the model10

predictions and the microwave retrievals, remotely sensed SM is rescaled in
a separate step (see Sect. 3.6), thus H reduced to a unit matrix. The Kalman
gain K 1

t was calculated as

K 1
t =

P −
t HT

HP −
t HT +R1

t

, (5)
15

where R1
t is the error variance of θams estimated in the rescaling procedure

(Sect. 3.6). If θams was not available, θ+
i ,t = θ−

i ,t.

2. If θasc was available at time t, we updated the model soil moisture with

θ++
i ,t = θ+

i ,t +K 2
t

(
θasc
i ,t −Hθ+

i ,t

)
, (6)

20

where K 2
t was calculated as

K 2
t =

P −
t HT

HP −
t HT +R2

t

. (7)
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R2
t is the error variance of θasc and P − is the model error covariance re-calculated

by applying Eq. (3) to the updated soil moisture θ+
i ,t. If θasc was not available,

θ++
i ,t = θ+

i ,t.

3. If θsmo was available at time t, we updated the model soil moisture with

θ+++
i ,t = θ++

i ,t +K 3
t

(
θsmo
i ,t −Hθ++

i ,t

)
, (8)5

where K 3
t was calculated as

K 3
t =

P −
t HT

HP −
t HT +R3

t

. (9)

R3
t is the error variance of θsmo and P − is the model error covariance re-calculated10

by applying Eq. (3) to the updated soil moisture θ++
i ,t . If θsmo was not available,

θ+++
i ,t = θ++

i ,t .

3.3 Error model representation

The main sources of uncertainty in hydrologic models are the errors in the forcing data,
the model structure and the incorrect specification of model parameters (Liu and Gupta,15

2007). Generally, these errors are represented by adding unbiased synthetic noise to
forcing variables, model state variables and/or model parameters.

The estimation of these errors is among the most crucial challenges in DA, as it
determines the value of the Kalman gain. Moreover, in the case of a state updating
SM–DA, the ability of the scheme to improve streamflow prediction will mainly depend20

on the covariance between the errors in SM states and modelled streamflow, which
directly depends on the specific representation and estimation of the model errors.

To represent the forcing uncertainty, we adopted a multiplicative error model for the
rainfall data (McMillan et al., 2011; Tian et al., 2013). In particular, we followed the
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scheme used in various SM–DA studies (e.g., Chen et al., 2011; Brocca et al., 2012;
Alvarez-Garreton et al., 2014) and represented a spatially homogeneous rainfall error
(εp) as

εp ∼ lnN
(

1,σ2
p

)
, (10)

5

where σp is the standard deviation of the lognormal distribution. The above
representation assumes a spatially homogeneous fraction of the error to the rainfall
intensity, which could be an over simplification in a large area like the study catchment.
However, it avoids the estimation of additional error parameters (e.g., spatial correlation
parameter) in an already highly undetermined problem (see Sect. 3.4).10

The parameter uncertainty was represented by perturbing the time constant
parameter (k1) for store S21, a highly sensitive parameter of the model that directly
affects the streamflow generation by influencing the water stored in both surface
storages S21 and S22 (note that in the PDM formulation used, the time constant k2
is calculated as a function of k1). The parameter error (εk) adopted was15

εk ∼ N
(

0,σ2
k

)
, (11)

where σk is the standard deviation of the normal distribution.
Following the scheme used in most SM–DA experiments (e.g., Reichle et al., 2008;

Crow and Van den Berg, 2010; Chen et al., 2011; Hain et al., 2012), the model20

structural error was represented by perturbing the SM prediction (θ) with a spatially
homogeneous additive random error,

εs ∼ N
(

0,σ2
s

)
, (12)

where σs is the standard deviation of the normal distribution.25

The physical boundary conditions of SM (porosity as an upper bound and residual
water content as a lower bound) are represented by the model through the storage
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capacity of S1. When θ approaches the limits of S1 capacity, applying unbiased
perturbation to θ can lead to truncation bias in the background prediction. The latter
can result in mass balance errors and degrade the performance of the EnKF (Ryu
et al., 2009). Moreover, the Kalman filter assumes unbiased state variables. This issue
is of particular importance in arid regions like the study area, where the soil water5

content can get rapidly depleted by evapotranspiration and transmission losses, thus
approaching the residual water content of the soil. To ensure that the state ensemble
remained unbiased after perturbation we implemented the bias correction scheme
proposed by Ryu et al. (2009).

The truncation bias correction consisted on running a single unperturbed model10

prediction (θ−0
t ) in parallel with the perturbed model prediction (θ−

i ,t). A mean bias,

δt, of the N-member ensemble prediction was calculated by subtracting θ−0
t from the

ensemble mean, as follows (Ryu et al., 2009):

δt =
1
N

N∑
i=1

θ−
i ,t −θ−0

t . (13)
15

Then, a bias corrected ensemble of state variables, θ̃−
i ,t, was obtained by subtracting

δt from each member of the perturbed ensemble, θ−
i ,t.

Although the latter resulted in unbiased state ensemble, there are still some
important but subtle effects that arise from the highly non-linear nature of hydrologic
models that need to be guarded against in SM–DA. Representing model errors by20

adding unbiased perturbation to forcing, model parameters and/or model states can
lead to a biased streamflow ensemble prediction (e.g., Ryu et al., 2009; Plaza et al.,
2012). This biased streamflow ensemble prediction (open-loop hereafter) is degraded
compared with the streamflow predicted by the unperturbed calibrated model. As
a consequence, improvement of the open-loop after SM–DA may in part be due to25

the correction of bias introduced during the assimilation process itself.
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3.4 Error model parameters calibration

To calibrate the error model parameters (σp, σk and σs), we evaluated how the open-
loop ensemble prediction compared with the observed streamflow at the catchment
outlet. For this we used a maximum a posteriori (MAP) scheme, a Bayesian inference
procedure detailed by Wang et al. (2009) that maximises the probability of observing5

historical events given the model and error parameters. In other words, it maximises
the probability of having the streamflow observation within the open-loop streamflow.

The N-member open-loop (Qol
sim) can be expressed as

Qol
sim(t) =QT(t)+εm(t), (14)

10

where QT is the (unknown) truth streamflow and εm is the error of the streamflow
prediction and consists of forcing, parameter and states errors:

εm(t) = f (εp,εk ,εs). (15)

The observed streamflow at N7 (Qobs) can be expressed as a function of the same15

(unknown) truth and the streamflow observation error (εobs),

Qobs(t) =QT(t)+εobs(t). (16)

Combining Eqs. (14) and (16), the model ensemble prediction of the observed
streamflow (Q̂obs) is expressed as:20

Q̂obs(t) =Qol
sim(t)+εm(t)+εobs(t). (17)

Following Li et al. (2014), εobs was assumed to be serially independent multiplicative
error following a normal distribution (mean 1 and standard deviation of 0.2). Then, the
likelihood function (L) defining the probability of observing the historical streamflow25
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data given the calibrated model parameters (x), and the error model parameters (σp,
σk and σs), was expressed by

L(Qobs|x,σp,σk ,σs) =Πn
t=1p(Qobs(t)|Q̂obs(t)). (18)

To maximise L, we applied a logarithm transformation to it and maximised the sum over5

time of the transformed function. The probability density function (p) at each time step
was estimated by assuming that the ensemble prediction of the observed streamflow,
Q̂obs(t), follows a Gaussian distribution, with its mean and standard deviation computed
using the ensemble members. The period used to calibrate the error model parameters
was 1 January 1998–31 May 2003.10

An important aspect to highlight about this error parameter calibration is that it
is a highly-undetermined problem. Only one data set (streamflow at N7) is used
to calibrate the error parameters, while there might be many combinations of
error parameters to generate similar streamflow ensemble (equifinality on the error
parameters).15

3.5 Profile soil moisture estimation

The aim of the stochastic assimilation detailed in Sect. 3.2 is to correct θ (water
content of S1), which is a profile average SM representing a soil layer depth determined
by calibration. By assuming a porosity of 0.46, (A-horizon information reported in
McKenzie et al., 2000), and the model S1 storage of 396 mm (420 mm) for the lumped20

(semi-distributed) scheme, this profile SM roughly represents the upper 1 m of the soil.
On the other hand, the SSM observations represent only the few top centimetres of
the soil column. To provide the model with information about more realistic dynamics
of θ, we applied the exponential filter proposed by Wagner et al. (1999) to the SSM
to estimate the soil wetness index (SWI) of the root-zone. SWI has been widely used25

to represent deeper layer SM based on SSM observations (e.g., Albergel et al., 2008;
Brocca et al., 2009, 2010, 2012; Ford et al., 2014; Qiu et al., 2014). SWI was recursively
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calculated as:

SWI(t) = SWI(t−1)+Gt [SSM(t)−SWI(t−1)] , (19)

where Gt is a gain term varying between 0 and 1 as:

Gt =
Gt−1

Gt−1 +e
−
(
t−(t−1)

T

) . (20)5

T is a calibrated parameter that implicitly accounts for several physical parameters
(Albergel et al., 2008). T was calibrated by maximising the correlation between SWI
and θ during the first year of each SSM dataset. SWI was calculated independently for
AMS, ASC and SMO datasets (named SWIAMS, SWIASC and SWISMO, respectively)10

and then rescaled to remove systematic differences with the model prediction
(Sect. 3.6).

3.6 Rescaling and observation error estimation

The systematic differences (e.g., biases) between θ and the SWI derived from each
satellite product must be removed prior to applying a bias-blind data assimilation15

scheme (Dee and Da Silva, 1998). We applied instrument variable (IV) regression to
resolve the biases and estimate the measurement errors simultaneously (Su et al.,
2014a). In three-data IV regression analysis, also known as triple collocation (TC)
analysis (Stoffelen, 1998; Yilmaz and Crow, 2013), the model θ, the passive SWI and
active SWI are used as data triplet. As sample size requirement for TC is stringent20

(Zwieback et al., 2012), a pragmatic threshold of 100 triplet sample was imposed
(Scipal et al., 2008). During periods when only one satellite product was available
(i.e., before ASC) or when the sample threshold for TC was not met, a two-data IV
regression using lagged variables (LV) offers a practical substitute (Su et al., 2014a).
Such LV analysis was performed on the model θ and a single satellite SWI, with the25

lagged variable coming from the model.
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In most SM–DA experiments, the error in SSM has been treated as time-invariant
(e.g., Reichle et al., 2008; Ryu et al., 2009; Crow and Van den Berg, 2010; Brocca et al.,
2010, 2012; Alvarez-Garreton et al., 2014), however, studies evaluating SSM products
have shown an important temporal variability in the measurement errors (Loew and
Schlenz, 2011; Su et al., 2014a). Since a data assimilation scheme explicitly updates5

the model prediction based on the relative weights of the model and the observation
errors, assuming a constant observation error may lead to over-correction of the model
state if the actual error is higher, and vice versa.

Temporal characterisation of the observation error can be achieved by applying TC
(or LV) to specific time windows of the observation and model prediction (for example,10

by grouping the triplets or doublets by month-of-the-year). There is however, a trade-
off between the sampling window (which defines the temporal characterisation of the
error) and the sample size (number of triplets in each subset). In an operational context
this trade-off becomes more critical since only past observations are available. After
analysing the temporal variability of the observation errors using the complete period15

of record (not shown here), we found that a 4 month sampling window can reproduce
seasonality in errors while ensuring sufficient data samples for the TC and LV schemes.
With this analysis we also assessed the suitability of using LV, which yielded similar
results to TC although some positive bias in LV error variance estimates relative to TC
was noted (not shown here).20

Summarising, the procedure of rescaling and error estimation consisted of:

1. From the start of the AMS dataset, we grouped LV triplets (SWIAMS(t), θ(t) and
θ(t−1)) into three subsets: December–March, April–July and August–November.

2. We applied LV and thus, estimated the observation error and rescaling factors
for a given four month subset only when a minimum of 100 samples was reached25

(after one year of AMS dataset). After the first year of AMS, new daily triplets were
added into the corresponding 4 month data pool (retaining all earlier triplets) and
LV was applied, on a daily basis, to the updated subset.
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3. When ASC was available, LV triplets (SWIASC(t), θ(t) and θ(t−1)) subsets were
formed following step 1 criteria and LV was applied after the 4 month data pools
had more than 100 samples, following step 2.

4. In parallel with step 3, TC triplets were formed using the two available satellite
datasets (SWIAMS(t), SWIASC(t) and θ(t)) and grouped into the four month5

subsets defined in step 1. TC was applied only when the 4 month data pools
contained more than 100 samples (after approximately 3 years of ASC data).

5. Steps 3 and 4 were repeated when SMO was available. The triplets for TC in this
case were given by SWIASC(t), SWISMO(t) and θ(t).

6. Once steps 1–5 were completed, a single time series of observations error and10

rescaling factors were constructed for each satellite-derived SWI by selecting TC
results when available, and LV results if not. This criterion was adopted because
LV is susceptible to bias due to auto-correlated errors in the model SM (Su et al.,
2014a).

3.7 Evaluation metrics15

To evaluate the SM–DA results, we used four different metrics. Firstly, the normalised
root mean squared difference (NRMSE) was calculated as the ratio of the root mean
square difference (RMSE) between the updated streamflow ensemble (Qup

sim) and the
observed streamflow to the RMSE between the open-loop (ensemble streamflow
prediction without assimilation, Qol

sim) and the observed discharge:20

NRMSE =

1
N

∑N
i=1

√∑T
t=1

(
Qup

sim(i ,t)−Qobs(t)
)2

1
N

∑N
i=1

√∑T
t=1

(
Qol

sim(i ,t)−Qobs(t)
)2

, (21)
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where N = 1000 is the number of ensemble members. The NRMSE provides
information about both the spread of the ensemble and the performance the ensemble
mean, which is considered as the best estimate of the ensemble prediction. Moreover,
as it is calculated in the natural space, it gives more weight to high flows.

To further evaluate the performance of the ensemble mean, we calculated the Nash5

Sutcliffe efficiency (NS) for the entire evaluation period as follow (example for the open-
loop case):

NSol = 1−

∑
t

(
Qobs(t)−Qol

sim(t)
)2

∑
t

(
Qobs(t)−Qobs

)2
, (22)

where Qol
sim is the open-loop ensemble mean. Similarly, NSup was calculated by10

applying Eq. (22) to the updated ensemble mean (Qup
sim).

We also estimated the probability of detection (POD) of daily flow rates (not flood
events) exceeding minor, moderate and major floods, for the open-loop and the
updated ensemble mean, as follows (example for the open-loop case):

PODol =

#
(
Qol

sim ≥Q15.7%
obs and Qobs ≥Q15.7%

obs

)
#
(
Qobs ≥Q15.7%

obs

) , (23)15

where the symbol # represents the number of times. Q15.7%
obs is the observed streamflow

corresponding to a minor flood classification. This corresponds to a flow (not flood)
frequency of 15.7 % (see Sect. 2). Similarly, PODup was calculated by applying Eq. (23)

to the updated ensemble mean (Qup
sim). Finally, we estimated the false alarm ratio (FAR)20
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for daily flows as (example for the open-loop case):

FARol =

#
(
Qol

sim ≥Q15.7%
obs and Qobs < Q15.7%

obs

)
#
(
Qobs < Q15.7%

obs

) . (24)

Similarly, FARup was calculated by applying Eq. (24) to the updated ensemble mean.
To evaluate the reliability of the streamflow ensemble prediction before and after5

SM–DA, we inspected the rank histograms of the ensemble following Anderson
(1996). A reliable ensemble should have a uniform histogram while u-shape (n-shape)
histogram indicates that the ensemble spread is too small (large) (De Lannoy et al.,
2006).

The evaluation period of SM–DA was 1 June 2003–2 March 2014, which is10

independent of all scheme component calibration periods (see Sects. 3.1, 3.4 and 3.5).

4 Results and discussion

4.1 Model calibration

The streamflow at the outlet of the study catchment (N7 in Fig. 1) features long periods
of zero-flow, a negligible baseflow component and sharp flow peaks after rainfall15

events, when the catchment has reached a threshold level of wetness (see observed
streamflow in Fig. 4).

The simulated streamflow from the lumped and the semi-distributed schemes
are presented in Fig. 4. To help visualisation of these time series, the calibration
and evaluation periods were plotted separately. The evaluation period was further20

separated into two sub-periods, evaluation sub-period 1 (1 June 2003–30 April 2007),
characterised by having only moderate and minor floods and evaluation sub-period 2
(1 May 2007–2 March 2014), which had three major flooding events. The plots show
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that both the lumped and the semi-distributed models are generally able to capture
the catchment hydrologic behaviour. As expected, the spatial distribution of forcing
data and the channel routing accounted by the semi-distributed scheme enhanced the
overall performance of the model, with lower residual values through time (Fig. 4a.2,
b.2 and c.2) and consistently improved the simulation of peak flows. In the evaluation5

period, the NS at N7 for the lumped and the semi-distributed schemes was 0.67 and
0.77, respectively.

The good performance of the semi-distributed scheme at the catchment outlet,
however, was not reflected at the inner catchments. The NS calculated at the inner
gauges, N1 and N3 (not used in the calibration of the model parameters), resulted in NS10

of 0.28 and −1.89 in the evaluation period, respectively. Such poor performance may
be attributed in part to errors in the spatially distributed rainfall dataset, but are more
likely due to an inadequate model parametrisation scheme and errors in the model
structure. It is however beyond of the scope of this work to address those specific
factors, although they are considered in the evaluation of SM–DA experiments in the15

context of the expected benefits in ungauged sub-catchments.
To focus the evaluation on periods with flood events, the lag-correlation between

the daily streamflow simulated at N7 and the daily rainfall (Fig. 5), and between daily
streamflow and θ (Fig. 6), was calculated for daily streamflow values greater than
Q15.7%

obs . The lumped scheme simulates a stronger (weaker) link between θ (rainfall)20

and streamflow than the semi-distributed scheme. This is represented by a higher
(lower) r values in panel a compared to panels b–h in Fig. 6 (Fig. 5). These different
representations of the catchment runoff response will have a direct impact on the
skill of SM–DA to improve streamflow prediction. A strong relationship between θ and
streamflow prediction suggests strong correlation between their errors, and therefore,25

greater potential improvement of streamflow resulting from an improved representation
of θ.

If we assume that the semi-distributed scheme provides a better representation of
runoff response within the entire catchment (based on its better model performance
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at the outlet), Figs. 5 and 6 also suggest that daily rainfall is the main control on
runoff generation and thus has a stronger impact in the streamflow prediction than
soil moisture. Figure 6 shows that flood prediction strongly depends on antecedent
soil moisture for up to the preceding 3 days. The strong correlation found at lag-0
suggests that the real time SM correction given by the proposed SM–DA would be5

a good strategy to improve flood prediction.

4.2 Error model parameters and ensemble prediction

The calibrated error parameters for the lumped and the semi-distributed schemes
are σp = 1.286 mm and 0.977 mm; σs = 0.099 and 0.03 and σk = 0.084 and 0.018,
respectively. σs is expressed as a percentage of the total storage capacity (396 mm in10

the lumped scheme and 420 mm in the semi-distributed scheme) and σk is expressed
as a percentage of the calibrated parameter k1.

The rank histograms of the generated ensemble prediction (open-loop) are
presented in Fig. 7. The n-shaped histograms at the catchment outlet (N7), for both
lumped and semi-distributed model schemes (Fig. 7a and b, respectively), suggests15

that the open-loop ensembles are unbiased, but feature wider spread than an ideal
ensemble. The width of the spread will be critical for the evaluation of SM–DA
(Sect. 4.4) since any decrease of the spread would be considered as an improvement
of the ensemble prediction.

The wider spread of the open-loop ensembles at the catchment outlet can be due to20

factors such as an over-prediction of parameters by the MAP calibration algorithm, and
the representation of the model error with time-constant error parameters. The latter
becomes critical given the distinct behaviour of the intermittent streamflow response
within the catchment, which could indicate a distinct behaviour in the model errors as
well.25

The ensemble prediction at N1 (Fig. 7c) features high bias while the ensemble
prediction at N3 (Fig. 7d) presents a non-biased ensemble with adequate spread (note
that observations at N1 and N3 were not used to calibrate the error parameters). The
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large bias at N1 owes to the large errors in the calibrated model in SC1 (see Sect. 4.1).
Given the highly non-linear nature of runoff mechanisms, unbiased perturbation of
forcing, states or parameters can further increase the bias in streamflow prediction.

4.3 SWI estimation and rescaling

The SSM derived from AMS, ASC and SMO are presented in Fig. 8a, for the lumped5

model. The SSM datasets feature significantly higher noise than the modelled θ. This
can be explained by factors such as random errors in the satellite retrievals (Su et al.,
2014b), and the rapid variation of water content in the surface layer of soil due to
infiltration and evapotranspiration losses. Figure 8b presents the SWI derived from the
SSM products, after seasonal rescaling. This plot shows better agreement between10

model and observations due to SWI filtering/transformation, even when the higher
noise in the rescaled SWI time series is still present.

Table 2 summarises the results of the SWI calibration and seasonal rescaling for the
lumped model, showing the T parameter for each SWI and the correlation coefficient
(r) between θ and SWI before and after rescaling (SWIr ). These results confirm the15

visual assessment of plots in Fig. 8 by showing an important increase in the linear
correlation coefficient with θ when SSM is transformed into SWI. The correlation
is further increased after rescaling, which illustrates that there is clear benefit from
performing seasonal bias correction. Note that applying a constant rescaling factor
would have no impact on on the correlation between θ and SWIr .20

The optimal T values (Table 2) are difficult to validate since there is no ground data to
compare with and, it has been shown that they strongly depend on physical processes
of the study site (Ceballos et al., 2005), thus direct comparison with other studies
cannot be made reliably. Indeed, previous studies have shown a wide range of optimal
T values for soil depths ranging between 10 and 100 cm. As an example, in Fig. 9 we25

summarised the optimal T found in 5 different studies.
There are some key theoretical issues that should be considered when using SWI

as a profile SM estimator. Firstly, the parameter T in Eq. (20) was estimated by
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maximising the correlation between SWI and θ, which could introduce cross-correlated
errors between them. This would violate the IV regression assumption of no correlation
between the errors among the triplets (Sect. 3.6). A way to overcome this issue,
if data requirements are meet, would be to estimate a profile SM independently of
the rainfall-runoff model prediction, for example by using a physically-based model to5

transfer surface SM into deeper layers (e.g., Richards, 1931; Beven and Germann,
1982; Manfreda et al., 2014).

Secondly, the SWI formulation explicitly incorporates autocorrelation terms,
which would result in autocorrelated errors in the observation, which violates an
EnKF assumption: independence between observation and prediction errors. The10

autocorrelation in the observation error can be transferred to the updated θ+ during
the SM–DA updating step. In that case, the θ− background prediction error covariance
at time t+1 would be correlated to the error of the new available SWI at time t+1.
In contrast with the first issue listed above, the violation of the EnKF assumption can
not be avoided by replacing SWI with a physically-based model, since the latter would15

result in profile SM strongly correlated with previous states as well. Indeed, given the
physical mechanisms of water flux in the unsaturated soil, this problem will be present
whenever a profile SM estimated from SSM is used as an observation in an EnKF-
based DA framework. A way to overcome this could be to work with models that
explicitly account for the water in the top few centimetres of soil and therefore can20

directly assimilate a (rescaled) SSM retrieval. However, the errors in SSM retrievals
are probably already autocorrelated (Crow and Van den Berg, 2010).

Breaching some of the EnKF-based DA and the IV-based rescaling assumptions
could in theory degrade the performance of the SM–DA scheme, when the variable
analysed is directly soil moisture (Crow and Van den Berg, 2010; Reichle et al., 2008;25

Ryu et al., 2009). The performance of the SM–DA with respect to the improvement
in streamflow however, seems to be less sensitive to these violated assumptions, as
shown by Alvarez-Garreton et al. (2013, 2014). This highlights the need for further
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studies focusing on SM–DA for the purposes of improving streamflow prediction from
rainfall-runoff models.

4.4 Satellite soil moisture data assimilation

The ensemble predictions of streamflow and θ, before and after SM–DA, for the lumped
and the semi-distributed schemes at N7, are presented in Fig. 10. It can be seen from5

this figure that the truncation bias correction (Sect. 3.3) was successful in creating
a non-biased θ ensemble when the unperturbed model approached the soil water
storage bounds (Fig. 10a.2 and b.2).

The rank histograms at N7, N1 and N3 are presented in Fig. 7. The ensemble
predictions at the catchment outlet are more reliable for both the lumped (Fig. 7a)10

and the semi-distributed schemes after SM–DA (Fig. 7b). However, there is
a slight tendency towards overestimation of the observed streamflow. The ensemble
predictions at the “ungauged” inner catchments after SM–DA are reliable for SC1
(Fig. 7c) and biased for SC3 (Fig. 7d). These results are similar to the ones found
in the ensemble prediction before SM–DA (Fig. 7c and d).15

The evaluation statistics of the SM–DA are summarised in Table 3. The streamflow
data of the inner catchments (N1 and N3) were used only for evaluation purposes
in the semi-distributed scheme, therefore they are representative of “ungauged” inner
catchments.

The NRMSE in Table 3 (all values below 1) demonstrates that the SM–DA was20

effective at reducing the streamflow prediction uncertainty (RMSE) across all gauged
and ungauged catchments. The reductions in the RMSE ranged from 24 to 31 %
for the different evaluation nodes. The NRMSE combines precision improvement
(i.e., reduction of ensemble spread) with prediction accuracy improvement (i.e.,
enhancement of ensemble mean performance) resulting from the SM–DA. Given that25

the ensemble open-loop spread was larger than an ideal ensemble (based on the n-
shaped rank histograms in Fig. 7), the reduction of the ensemble spread may be in part
artificial.
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The performance of the ensemble mean was assessed by computing the NSol and
NSup (Table 3). A first thing to note is that NSol presents a slight degradation of the
unperturbed models (NS of 0.67 and 0.77 for the unperturbed lumped and semi-
distributed schemes at N7, respectively, as presented in Sect. 4.1). This degradation
was introduced in the ensemble generation process and is attributed to the highly non-5

linear runoff mechanisms represented by the model. The latter can be drawn since
in the ensemble generation process (Sect. 3.3), the forcing data, the model states
and the model parameters were perturbed with un-biased errors. The perturbation of
forcing was un-biased and did not result in biased θ ensemble. The perturbation of
parameter K1 was unbiased. The θ perturbation was un-biased and, by applying the10

bias correction scheme (Ryu et al., 2009), we ensured that the generated θ ensemble
was un-biased as well. However, the state perturbation bias correction by Ryu et al.
(2009) was not able to completely remove biases in fluxes originating from non-linear
model physics.

At the catchment outlet, the NS of the ensemble mean after SM–DA improved by 7 %15

and 38 %, for the lumped and semi-distributed models, respectively. At the ungauged
catchments, SM–DA was also effective at improving the performance of the ensemble
mean, compared to the open-loop. However, the performance of the model in those
catchments was still poor (NSup below 0.18). This can be explained by the systematic
errors of the model on those catchments before assimilation, which were not addressed20

by the SM–DA.
The POD values at the catchment outlet (N7) show that before and after SM–DA,

the model is consistently capable of detecting minor floods. Although this does not
demonstrate an advantage of the SM–DA scheme proposed here, it does reflect the
adequacy of the model ensemble prediction for simulating minor (and larger) floods.25

Consistently with previous results, the prediction of the semi-distributed model at the
inner catchments is poorer in terms of detecting minor floods. The lower FAR values
after SM–DA demonstrates the efficacy of the scheme in reducing the number of times
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the model predicted an unobserved minor flood, at both the gauged and the ungauged
catchments.

In summary, SM–DA was effective at improving streamflow ensemble predictions
in the gauged and the ungauged catchments. The improvement was reflected by
a reduction in the RMSE, an increase in the NS efficiency, and a decrease in the FAR.5

By accounting for rainfall spatial distribution and routing process within the large study
catchment, we improved the model performance at the outlet compared to a lumped
homogeneous scheme, which in turn improved the performance of the SM–DA. The
latter was achieved even though the relation between θ and the streamflow prediction
was weaker in the semi-distributed scheme (Fig. 6). The proposed SM–DA scheme10

therefore, has the merits of improving streamflow ensemble predictions by correcting
the SM state of the model, even when rainfall appears to be the main driver of the
runoff mechanism (see Sect. 4.1).

5 Conclusions

This paper presents an evaluation of the assimilation of passive and active satellite soil15

moisture observations (SM–DA) into a conceptual rainfall-runoff model (PDM) for the
purpose of reducing flood prediction uncertainty in a sparsely monitored catchment.
We set up the experiments in the large semi-arid Warrego River Basin (> 40 000 km2)
in south central Queensland, Australia. Within this context, we explore the advantages
of accounting for the forcing data spatial distribution and the routing processes within20

the catchment.
The framework proposed here rigorously addressed the two main stages of a SM–

DA scheme: model error representation and satellite data processing. We applied the
different methods in the context of a sparsely monitored large catchment (i.e., limited
data), under operational streamflow and flood forecasting scenarios (i.e., not future25

information is used in any of the presented methods).
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The model error representation was the most critical step in the SM–DA scheme,
since it determined the error covariance between observations and model state, and
thus the potential efficacy of SM–DA. Moreover, the SM–DA evaluation was done
against the open-loop ensemble prediction. The open-loop ensembles at the catchment
outlet were un-biased, however, they featured sub-optimal (too large) spread. The latter5

was highlighted as the main limitation of the proposed scheme (Sect. 4.2), which had
direct implications for the evaluation on the SM–DA results. Further exploration of
model error representation (sources of error and the structure of those errors) and
error parameter estimation should be explored to improve the characteristics of the
open-loop ensemble prediction.10

In the satellite data processing, we highlighted that the use of an exponential filter
to transfer surface information into deeper layers may potentially lead to violation of
some of TC and EnKF assumptions (Sect. 4.3). Possible solutions to overcome this
would be to use more physically-based methods to transfer SSM into deeper layers or
to use a rainfall-runoff model that explicitly accounts for the surface soil layer that can15

directly assimilate a (rescaled) SSM product. Both solutions however, are constrained
by the ancillary data available for satisfactory implementation of a physically-based
model. In the rescaling and error estimation procedure, we applied TC and LV to avoid
error-in-variable biases. Applying these to correct biases in the SWI, showed improved
agreement between observed and modelled SM.20

The evaluation of the SM–DA results led to several insights. (1) The SM–DA was
successful at improving the open-loop ensemble prediction at the catchment outlet, for
both the lumped and the semi-distributed case. (2) Accounting for spatial distribution in
the model forcing data and for the routing processes within the large study catchment
improved the skill of the SM–DA at the catchment outlet. (3) The SM–DA was effective25

at improving streamflow prediction at the ungauged locations, compared to the open-
loop. However, the updated prediction in those catchments was still poor, because the
systematic errors before assimilation are not addressed by a SM–DA scheme.
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This work provides new evidence of the efficacy of SM–DA to improve streamflow
ensemble prediction in sparsely instrumented catchments. We demonstrate that SM–
DA skill can be enhanced if the spatial distribution of forcing data and routing processes
within the catchment are accounted for in large catchments. We show that SM–DA
performance is directly related to the model quality before assimilation, therefore5

we recommend that efforts should be focused on ensuring adequate models, while
evaluating the trade-offs between more complex models and data availability.
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Table 1. Area and mean annual rainfall (MAR) of the catchments used in the lumped and semi-
distributed schemes.

Catchment Area (km2) MAR (mm)

SC1 14 670 492
SC2 4453 532
SC3 8070 596
SC4 5431 524
SC5 4067 503
SC6 2130 467
SC7 4049 418

Total 42 870 512
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Table 2. Summary of SSM and SWI for the entire catchment.

Dataset T r between θ and
(days) SSM SWI SWIr

AMS 3 0.65 0.74 0.94
ASC 11 0.77 0.92 0.97
SMO 40 0.46 0.79 0.93
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Table 3. SM–DA evaluation statistics calculated at the catchment outlet (N7) and at the inner
catchments (N1 and N3).

Statistic Lumped scheme Semi-distributed scheme
(N7) (N7) (N1) (N3)

NRMSE 0.73 0.69 0.76 0.75

NSol 0.61 0.53 −0.02 −5.36
NSup 0.65 0.73 0.18 −2.47

PODol 1.00 0.99 0.61 0.74
PODup 0.99 0.98 0.58 0.71

FARol 0.20 0.20 0.13 0.17
FARup 0.17 0.15 0.10 0.14
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Figure 1. The Warrego river basin located in Queensland, Australia (left panel). A close-up of
the area is presented on the right panel. The lumped PDM scheme is set up over the entire
catchment, while the semi-distributed scheme divides the total catchment in 7 sub-catchments
(SC1–SC7).
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Figure 2. Period of record of the different datasets. The initial date of the plot was set as the
beginning of the streamflow data record.
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Fig. 4. Simulated, observed daily streamflow (Q) and model streamflow prediction residuals (simulated minus observed) at the catchment
outlet (N7). (a.1) and (a.2) present the calibration period. (b.1) and (b.2) present the evaluation sub-period 1, which has only moderate and
minor flood events. (c.1) and (c.2) present the evaluation sub-period 2, which has 3 major flood events. The daily rainfall plotted in the right
axis corresponds to the averaged rainfall over the entire catchment.

4.2 Error model parameters and ensemble prediction

The calibrated error parameters for the lumped and the semi-
distributed scheme are σp = 1.286 mm and 0.977 mm; σs =690

0.099 and 0.03 and σk = 0.084 and 0.018, respectively. σs

is expressed as a percentage of the total storage capacity
(396 mm in the lumped scheme and 420 mm in the semi-

Figure 4. Simulated, observed daily streamflow (Q) and model streamflow prediction residuals
(simulated minus observed) at the catchment outlet (N7). (a.1) and (a.2) present the calibration
period. (b.1) and (b.2) present the evaluation sub-period 1, which has only moderate and
minor flood events. (c.1) and (c.2) present the evaluation sub-period 2, which has 3 major
flood events. The daily rainfall plotted in the right axis corresponds to the averaged rainfall over
the entire catchment.
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Figure 5. Lag-correlation coefficient (r) between the simulated streamflow at N7 (mm day−1),
and the daily rainfall (mm) of the entire catchment (a) and the 7 sub-catchments (b–h).
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Figure 6. Lag-correlation coefficient (r) between the simulated streamflow at N7 (mm day−1),
and θ from the lumped (a) and the semi-distributed (b–h) model schemes.
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Figure 7. Rank histograms of the open-loop and updated streamflow ensemble predictions.
(a) presents the results from the lumped scheme at node N7. (b–d) present the results from
the semi-distributed (semidist) scheme at nodes N7, N1 and N3.
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Figure 8. (a) shows the model soil water content in the left axis and the satellite soil moisture
(SSM) observations in the right axis. (b) shows the soil moisture in the model space, after the
three SSM datasets were transformed into a soil wetness index (SWI) and then rescaled by
using TC or LV (SWIrAMS, SWIrASC and SWIrSMO).
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Figure 9. Optimal T parameter against soil depth found in previous studies.
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Figure 10. Streamflow (Q) and soil moisture (θ) ensemble prediction at the catchment outlet,
before and after SM–DA. (a.1) and (a.2) present the results for the lumped model. (b.1) and
(b.2) present the results for the semi-distributed model.
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