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Abstract. Assimilation of remotely sensed soil moisture data
(SM-DA) to correct soil water stores of rainfall-runoff mod-
els has shown skill in improving streamflow prediction. In the
case of large and sparsely monitored catchments, SM-DA is
a particularly attractive tool. Within this context, we assimi-5

late satellite soil moisture (SM) retrievals from the Advanced
Microwave Scanning Radiometer (AMSR-E), the Advanced
Scatterometer (ASCAT) and the Soil Moisture and Ocean
Salinity (SMOS) instrument, using an Ensemble Kalman fil-
ter to improve operational flood prediction within a large10

semi-arid catchment in Australia (>40,000km2). We assess
the importance of accounting for channel routing and the
spatial distribution of forcing data by applying SM-DA to a
lumped and a semi-distributed scheme of the probability dis-
tributed model (PDM). Our scheme also accounts for model15

error representation and seasonal biases and errors in the
satellite data.

Before assimilation, the semi-distributed model provided
more accurate streamflow prediction (Nash-Sutcliffe effi-
ciency, NSE=0.77) than the lumped model (NSE=0.67) at the20

catchment outlet. However, this did not ensure good perfor-
mance at the “ungauged” inner catchments. After SM-DA,
the streamflow ensemble prediction at the outlet was im-
proved in both the lumped and the semi-distributed schemes:
the root mean square error of the ensemble was reduced by25

22% and 24%, respectively; the false alarm ratio was reduced
by 9% in both cases; the peak volume error was reduced by
58% and 1%, respectively; the ensemble skill was improved
(evidenced by 12% and 13% reductions in the continuous
ranked probability scores, respectively); and the ensemble30

reliability was increased in both cases (expressed by flatter
rank histograms).

Our findings imply that even when rainfall is the main
driver of flooding in semi-arid catchments, adequately pro-
cessed satellite SM can be used to reduce errors in the model35

soil moisture, which in turn provides better streamflow en-
semble prediction. We demonstrate that SM-DA efficacy is
enhanced when the spatial distribution in forcing data and
routing processes are accounted for. At ungauged locations,
SM-DA is effective at improving streamflow ensemble pre-40

diction, however, the updated prediction is still poor since
SM-DA does not address systematic errors in the model.

1 Introduction

Floods have large negative impacts on society, causing de-45

struction of infrastructure and crops, erosion, and in the worst
cases, injury and loss of life (Thielen et al., 2009). To reduce
flood impacts on public safety and the economy, early and
accurate alert systems are needed. These systems rely on hy-
drologic models, whose accuracy in turn is highly dependent50

on the quality of the data used to force and calibrate them.
Therefore, in the case of sparsely monitored and ungauged
catchments, flood prediction suffers from large uncertainties.

A plausible approach to reduce model uncertainties in the
sparsely monitored catchments is to exploit remotely sensed55

hydro-meteorological observations to correct the states or
parameters of the model in a data assimilation framework.
Within this context, satellite soil moisture (SM) products are
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appealing given the vital role of SM in runoff generation. SM
influences the partitioning of energy and water (rainfall, infil-60

tration and evapotranspiration) between the land surface and
the atmosphere (Western et al., 2002). Satellite SM observa-
tions provide global scale information and can be obtained in
near real time at regular and reasonably frequent time inter-
vals. This makes them valuable for improving the represen-65

tation of catchment wetness. The accuracy of these obser-
vations has been assessed by a number of studies (Albergel
et al., 2009; Draper et al., 2009; Albergel et al., 2010; Gruhier
et al., 2010; Brocca et al., 2011; Albergel et al., 2012; Su
et al., 2013). In general, they have shown promising perfor-70

mance, with moderate correlation between satellite SM and
ground data, but with significant bias at some locations.

In the last decade a large number of studies have explored
satellite SM data assimilation (SM-DA) to correct the soil
water states of models. These studies can be categorised into75

two main groups; the first, and larger group, has focused on
the improvement of the SM predicted by the model (gener-
ally working with land surface models, e.g., Crow and van
Loon, 2006; Crow and Reichle, 2008; Crow and Van den
Berg, 2010; Reichle et al., 2008; Ryu et al., 2009). The sec-80

ond, and smaller group (where our study fits), has focused on
the improvement of streamflow prediction in rainfall-runoff
models (Francois et al., 2003; Brocca et al., 2010b, 2012;
Alvarez-Garreton et al., 2013, 2014; Chen et al., 2014; Wan-
ders et al., 2014).85

Studies from the first group evaluate the prediction im-
provement of the same variable that is updated in the as-
similation scheme (SM). Improvements in streamflow pre-
dictions investigated by studies in the second group are not
exclusively influenced by better representation of SM. The90

potential improvement of streamflow predictions in the latter
case is constrained by the particular runoff mechanisms op-
erating within a catchment. Accordingly, even when a model
structure and parametrisation are capable of representing the
runoff mechanisms, improving streamflow prediction by re-95

ducing error in soil moisture depends on the error covariance
between these two components. This error covariance (which
in the model space will be defined by the representation given
to the different sources of uncertainty) may become marginal
when the errors in streamflow come mainly from errors in100

rainfall input data (Crow and Ryu, 2009). This physical con-
straint is case specific and determines the potential skill of
SM-DA for improving streamflow prediction. To understand
and assess this skill, further studies focusing on the im-
provement of streamflow prediction are needed with different105

model characteristics, such as structure, parametrisation and
performance before assimilation; and with different catch-
ment characteristics, such as climate, scale, soils, geology,
land cover and density of monitoring network. Among the
latter, semi-arid catchments present distinct rainfall-runoff110

processes which have been rarely studied in SM-DA.
Here we address this gap by studying the Warrego River

catchment in Australia, a large and sparsely monitored semi-

arid basin. We set up the probability distributed model
(PDM) within the catchment, and assimilate passive and ac-115

tive satellite SM products using an Ensemble Kalman filter
(Evensen, 2003), for the purpose of improving operational
flood prediction. We devise an operational SM-DA scheme
to answer three main questions. 1) While rainfall is presum-
ably the main driver of flood generation in semi-arid catch-120

ments, can we effectively improve streamflow prediction by
correcting the soil water state of the model? 2) What is the
impact of accounting for channel routing and the spatial dis-
tribution of forcing data on SM-DA performance? 3) What
are the prospects for improving streamflow prediction within125

ungauged sub-catchments using satellite SM?.
A series of SM-DA experiments using a lumped version of

PDM have already been undertaken in this study catchment
by Alvarez-Garreton et al. (2014). They found that assimilat-
ing passive microwave satellite SM improved flood predic-130

tion, while highlighting specific limitations in their scheme.
In this paper we address those limitations by applying more
robust techniques in the SM-DA framework. In particular, we
improve the representation of model error by explicitly treat-
ing forcing, parameter and structural errors. We incorporate135

additional satellite products and apply instrumental variable
regression techniques for seasonal rescaling and observations
error estimation. Furthermore, we employ a semi-distributed
scheme to evaluate the advantages of accounting for channel
routing and the spatial distribution of forcing data.140

In this paper, Sect. 2 presents a description of the study
catchment and the data used. Section 3 presents the method-
ology, including a description of the rainfall-runoff model,
the EnKF formulation and the specific steps for setting up the
SM-DA scheme. These include the error model estimation,145

estimation of profile SM based on the satellite surface data,
the rescaling of satellite observations and observation er-
ror estimation. Section 4 presents the results and discussion.
Section 5 summarises the main conclusions of the study.

2 Study area and data150

The study area is the semi-arid Warrego catchment (42,870
km2) located in Queensland, Australia (Fig.1). The catch-
ment has an important flooding history, with at least three
major floods within the last 15 years. The study area also
features geographical and climatological conditions that en-155

able satellite SM retrievals to have higher accuracy than in
other areas. These conditions include the size of the catch-
ment, the semi-arid climate and the low vegetation cover.
Moreover, the ground-monitoring network within the catch-
ment is sparse thus satellite data is likely to be more valu-160

able than in well-instrumented catchments. The catchment
has summer-dominated rainfall with mean monthly rainfall
of 80 mm in January, and 20 mm in August. Mean maxi-
mum daily temperature in January is above 30◦C and be-
low 20◦C in July. The runoff seasonality is characterised165
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by peaks in summer months and minimum values in winter
and spring. The mean annual precipitation over the catch-
ment is 520 mm. The governing runoff mechanisms within
the study catchment, Alvarez-Garreton et al. (2014) showed
that streamflow has a negligible baseflow component and the170

surface runoff is generated only when a wetness threshold is
exceeded. They concluded that soil moisture exerts an im-
portant control on the runoff generation mechanisms. In this
work, the runoff mechanisms analysis is deepened by look-
ing at model predictions (Sect. 3.1).175

Daily rainfall data was computed from the Aus-
tralian Water Availability Project (AWAP), which has a
grid resolution of 0.05◦ (Jones et al., 2009). Hourly
streamflow records were collected from the State of
Queensland, Department of Natural Resources and Mines180

(http://watermonitoring.dnrm.qld.gov.au) (Fig.1). Daily dis-
charge was calculated based on the daily AWAP time con-
vention (9am-9am local time, UTC+10h). The flood clas-
sification for the study catchment (at the catchment outlet,
N7) was provided by the Australian Bureau of Meteorol-185

ogy as river height threshold values, corresponding to mi-
nor, moderate and major floods. These threshold values ex-
pressed as streamflow (mm/day) are 0.06, 0.55 and 2.05, re-
spectively and relate to flood impact rather than recurrence
interval. The associated annual exceedance probability for190

the minor, moderate and major floods at N7 are 15.7%, 3.1%
and 0.95%, respectively (calculated using the complete daily
streamflow record period). Potential evapotranspiration was
obtained from the Australian Data Archive for Meteorology
database. Daily values were estimated by assuming a uni-195

form daily distribution within a month.
Three satellite products were used here. The first was the

Advanced Microwave Scanning Radiometer - Earth Observ-
ing System (AMS hereafter) version 5 VUA-NASA Land Pa-
rameter Retrieval Model Level 3 gridded product (Owe et al.,200

2008). AMS uses C- (6.9 GHz) and X-band (10.65 and 18.7
GHz) radiance observations to derive near-surface soil mois-
ture (2 to 3 cm depth) using a land-surface radiative transfer
model. The product used is in units of volumetric water con-
tent (m3 m−3) and has a regular grid of 0.25◦.205

The second product was the TU-WIEN (Vienna Univer-
sity of Technology) ASCAT (ASC hereafter) data produced
using the change-detection algorithm (Water Retrieval Pack-
age, version 5.4) (Naeimi et al., 2009). ASC transmits elec-
tromagnetic waves in C-band (5.3Gz) and measures the210

backscattered microwave signal. The change-detection algo-
rithm assumes that land surface characteristics are relatively
static over long time periods. Based on this, the differences
between instantaneous backscatter coefficients and the his-
torical highest and lowest values for a given incident angle,215

are related to changes in soil moisture (Wagner et al., 1999).
The final SM estimate is provided in relative terms as the de-
gree of saturation and has a nominal spatial resolution vary-
ing from 25 to 50 km.

The third satellite product was the Soil Moisture and220

Ocean Salinity satellite (SMO hereafter), version RE01 (Re-
processed 1-day global soil moisture product) SM provided
by the Centre Aval de Traitement des Donnees. SMO uses
L-band (1.4 GHz) detectors to measure microwave radia-
tion emitted from depth of up to approximately 5 cm. Near-225

surface soil moisture is obtained in units of volumetric water
content (m3 m−3) at a spatial resolution of approximately
43 km, by using the forward physical model inversion de-
scribed by Kerr et al. (2012). The overpass times of the
AMS, ASC and SMO satellites over the study catchments are230

1.30am/pm, 10am/pm and 6am/pm local time (UTC+10h),
respectively. Figure 2 summarises the period of record of the
different datasets.

For each satellite dataset, a daily averaged SM was cal-
culated for the complete catchment (or sub-catchment in the235

case of the semi-distributed scheme). The areal estimate of
satellite SM over the catchment was given by averaging the
values of ascending and descending satellite passes on days
when more than 50% of the pixels had valid data. For the case
of the passive sensors (AMS and SMO), we subtracted the240

long-term temporal mean of the ascending and descending
datasets to remove the systematic bias between them (Brocca
et al., 2011; Draper et al., 2009). Then, daily satellite SM
was calculated as the average between the mean-removed as-
cending and descending passes (if both were available) or245

directly as the mean-removed available pass. For ASC re-
trievals, given the unbiased ascending and descending mea-
surements, daily satellite SM was calculated from the actual
ascending and descending values averaged over the catch-
ment.250

3 Methods

3.1 Lumped and semi-distributed model schemes

The probability distributed model (PDM) is a conceptual
rainfall-runoff model that has been widely used in hydrologic
research and applications (Moore, 2007). PDM is a parsimo-255

nious model, where the runoff production is controlled by the
absorption capacity of the soil (including canopy and surface
detention). This process is conceptualised by a store with a
distribution of capacities across the catchment and the spa-
tial distribution of these capacities is described by a proba-260

bility distribution (Moore, 2007). The spatial variability of
store capacities can be related to different soil depths, which
was identified as the most dominant factor governing runoff
variability in a semi-arid catchment (Jothityangkoon et al.,
2001).265

In the current formulation, the model treats soil mois-
ture store (S1 in Fig.3) over the entire catchment as a dis-
tributed variable with capacities (c) following a Pareto distri-
bution function, F (c). At a given time, the different stores
receive water from rainfall and lose water by evaporation270

and groundwater recharge (drainage). The shallower stores
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Fig. 1. The Warrego river basin located in Queensland, Australia (left panel). A close-up of the area is presented on the right panel. The
lumped PDM scheme is set up over the entire catchment, while the semi-distributed scheme divides the total catchment in 7 sub-catchments
(SC1 to SC7).
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Fig. 2. Periods of record of the different datasets. The initial date of
the plot was set as the beginning of the streamflow data record

with capacities less than a critical capacity, C∗, start to gen-
erate direct runoff, while the rest accumulates the water as
soil moisture. The proportion of the catchment that gener-
ates runoff can therefore be expressed in terms of the Pareto275

density function, f(c), as

prob(c≤ C∗) = F (C∗) =

C∗∫
0

f(c)dc. (1)

In this way, for a time t, the soil moisture over the entire
catchment, θ (water content of S1), can be expressed as the
summation of all the store capacities greater than C∗(t):280

θ(t) =

C∗(t)∫
0

(1−F (c))dc. (2)

Note that the critical capacity C∗ varies in a time interval ∆t
based on the net rainfall rate during that time, P ,

C∗(t+ ∆t) = C∗(t) +P∆t. (3)

Direct runoff is calculated based on Eq. 1 and routed285

through two cascade of reservoirs (S21 and S22 in Fig.3, with

Total
 runoff

Surface
 runoff

Drainage

Slow flow storage

Fast flow storagesE

P

S1

S22S21

S3

Q

Direct 
runoff

Sub-surface 
runoff

Baseflow

Fig. 3. The PDM scheme

time constants k1 and k2, respectively). Subsurface runoff is
estimated based on the drainage from S1 and transformed
into baseflow by using a storage reservoir (S3 in Fig.3 with
time constant kb). These are then combined as total runoff,290

or streamflow. A detailed description of the model conceptu-
alisation and the formulation of the different rainfall-runoff
processes is presented in Moore (2007).

PDM was set up using both a lumped scheme and a semi-
distributed scheme (see Fig.1). The semi-distributed scheme295

was configured with 7 sub-catchments (SC1 to SC7), each
using the lumped version of PDM. The area and mean an-
nual rainfall of each sub-catchment are summarised in Table
1. The river routing between upstream and downstream sub-
catchments in the semi-distributed scheme was represented300

by a linear Muskingum method (Gill, 1978):

S = km (Ix+ (1−x)O) , (4)

where S is the storage within the routing reach, km is the
storage time constant, I and O are the streamflow at the be-
ginning and end of the reach, respectively, and x is a weight-305

ing factor parameter. The time constant parameters of the
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storages S21, S22 and S3 (k1, k2 and kb, respectively) were
scaled by the area of each sub-catchment, and km from the
Muskingum routing was scaled by the length of the river
channel between corresponding nodes. The remaining model310

and routing parameters of the semi-distributed scheme were
treated as homogeneous.

Table 1. Area and mean annual rainfall of the catchments used in
the lumped and semi-distributed schemes.

Catchment
Area Mean annual
(km2) rainfall (mm)

SC1 14,670 492
SC2 4,453 532
SC3 8,070 596
SC4 5,431 524
SC5 4,067 503
SC6 2,130 467
SC7 4,049 418
Total 42,870 512

The lumped and the semi-distributed models were cali-
brated by using a genetic algorithm (Chipperfield and Flem-
ing, 1995) with an objective function based on the Nash-315

Sutcliffe model efficiency (NSE) (Nash and Sutcliffe, 1970).
The models were calibrated for the period 01 January 1967
- 31 May 2003 and evaluation performed for the period 01
June 2003 - 02 March 2014. To make fair comparisons be-
tween the two model setups in a scenario where the inner320

catchments are ungauged, the semi-distributed scheme was
calibrated using only the outlet gauge (N7 in Fig.1). The
performance of the calibrated models was evaluated based
on the NSE at the catchment outlet (N7, Fig.1) and at inner
nodes N1 and N3, in the case of the semi-distributed scheme.325

To analyse the runoff mechanisms simulated by the
lumped and the semi-distributed schemes, we calculated the
lag-correlation between rainfall and streamflow, and between
antecedent SM and streamflow. This enables further under-
standing of the improvement in streamflow that can be ex-330

pected by improving the simulated SM content through SM-
DA.

3.2 EnKF formulation

The ensemble Kalman filter (EnKF) proposed by Evensen
(2003) has been widely used in hydrologic applications given335

the highly nonlinear nature of runoff processes. In the EnKF,
the error covariance between the model and observations is
calculated from Monte Carlo-based ensemble realisations. In
this way, the model and observation uncertainties are propa-
gated and the streamflow prediction is treated as an ensemble340

of equally likely realisations. The uncertainty of the stream-
flow prediction can be derived from the ensemble, which

provides valuable information for operational flood alert sys-
tems.

In a state-updating assimilation approach, the state ensem-345

ble is created by perturbing forcing data, parameters and/or
states of the model with unbiased errors. As we will see
in Sect. 3.3, an N -member ensemble of model soil mois-
ture, θ = {θ1,θ2, ...θN}, was generated by perturbing rain-
fall forcing data, the model parameter k1, and θ. Then, the350

soil water error of member i at time t was estimated as

θ−i (t)
′
= θ−i (t)− 1

N

N∑
i=1

θ−i (t), (5)

where the superscript “−” denotes the state prediction prior
to the assimilation step. The error vector for time step t was
defined as θ−(t)′ = {θ−1 (t)

′
,θ−2 (t)

′
, ...,θ−N (t)

′} and the error355

covariance of the model state (P−) was estimated at each
time step as:

P−(t) =
1

N − 1
θ−(t)′ ·

(
θ−(t)′

)T
. (6)

When a daily SM observation from AMS, ASC or SMO
was available, each member of the background prediction360

(θ−) was updated. Before being assimilated, each of the
three observation datasets was transformed to represent a
profile SM and then rescaled to remove systematic differ-
ences between the model and the transformed observations
(details in Sects. 3.5 and 3.6). We sequentially assimilated an365

N -member ensemble of the transformed and rescaled AMS,
ASC and SMO (named θams,θasc and θsmo, respectively)
and updated each member of θ− with the following 3 steps:

1. If θams was available at time t,

θ+i (t) = θ−i (t) +K1(t) · (θams
i (t)−Hθ−i (t)), (7)370

where H is an operator that transforms the model state
to the measurement space. Since the additive and mul-
tiplicative biases between the model predictions and the
microwave retrievals were removed via rescaling in a
separate step (see Section 3.6), H reduced to a unit ma-375

trix. The Kalman gain K1(t) was calculated as

K1(t) =
P−(t)HT

HP−(t)HT +R1(t)
, (8)

where R1(t) is the error variance of θams estimated
in the rescaling procedure (Sect. 3.6). If θams was not
available, θ+(t) = θ−(t).380

2. If θasc was available at time t, we updated the model
soil moisture with

θ++
i (t) = θ+i (t) +K2(t) · (θasci (t)−Hθ+i (t)), (9)

where K2(t) was calculated as

K2(t) =
P−(t)HT

HP−(t)HT +R2(t)
. (10)385

R2(t) is the error variance of θasc and P− is the model
error covariance re-calculated by applying Eq.(6) to the
updated soil moisture θ+(t). If θasc was not available,
θ++(t) = θ+(t).
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3. If θsmo was available at time t, we updated the model390

soil moisture with

θ+++
i (t) = θ++

i (t) +K3(t) · (θsmo
i (t)−Hθ++

i (t)), (11)

where K3(t) was calculated as

K3(t) =
P−(t)HT

HP−(t)HT +R3(t)
. (12)

R3(t) is the error variance of θsmo and P− is the model395

error covariance re-calculated by applying Eq.(6) to the
updated soil moisture θ++(t). If θsmo was not avail-
able, θ+++(t) = θ++(t).

In the case of the semi-distributed scheme, during the
updating steps described above, each sub-catchment was400

treated independently and no spatial cross-correlation in the
satellite measurements was considered. The order of the
products assimilated in steps 1 to 3 was arbitrary; however,
we checked that different orders did not significantly affect
the SM-DA results.405

3.3 Error model representation

The main sources of uncertainty in hydrologic models are
the errors in the forcing data, the model structure and the
incorrect specification of model parameters (Liu and Gupta,
2007). Generally, these errors are represented by adding un-410

biased synthetic noise to forcing variables, model state vari-
ables and/or model parameters.

The estimation of model errors is among the most crucial
challenges in data assimilation, as it determines the value of
the Kalman gain. In the case of a state updating SM-DA, the415

ability of the scheme to improve streamflow prediction will
mainly depend on the covariance between the errors in SM
states and modelled streamflow, which directly depends on
the specific representation and estimation of the model er-
rors.420

To represent the forcing uncertainty, we adopted a multi-
plicative error model for the rainfall data (McMillan et al.,
2011; Tian et al., 2013). In particular, we followed the
scheme used in various SM-DA studies (e.g., Chen et al.,
2011; Brocca et al., 2012; Alvarez-Garreton et al., 2014) and425

represented a spatially homogeneous rainfall error (εp) as

εp ∼ lnN(1,σ2
p), (13)

where σp is the standard deviation of the lognormal distri-
bution. The above representation assumes a spatially homo-
geneous fraction of the error to the rainfall intensity, which430

could be an over simplification in a large area like the study
catchment. However, it avoids the estimation of additional
error parameters (e.g., spatial correlation parameter) in an al-
ready highly undetermined problem (see Sect. 3.4).

The parameter uncertainty was represented by perturbing435

the time constant parameter (k1) for store S21, a highly sen-
sitive parameter of the model that directly affects the stream-

flow generation by influencing the water stored in both sur-
face storages S21 and S22 (note that in the PDM formula-
tion used, the time constant k2 is calculated as a function440

of k1). Given the lack of prior information about the struc-
ture of the parameter error (εk), we adopted a normally dis-
tributed multiplicative error with unit mean and standard de-
viation of σk, following previous SM-DA studies working
with rainfall-runoff models (Brocca et al., 2010b, 2012).445

Following the scheme used in most SM-DA experiments
(e.g., Reichle et al., 2008; Crow and Van den Berg, 2010;
Chen et al., 2011; Hain et al., 2012), the model structural
error was represented by perturbing the SM prediction (θ)
with a spatially homogeneous additive random error,450

εs ∼N(0,σ2
s), (14)

where σs is the standard deviation of the normal distribution.
The physical limits of SM (porosity as an upper bound

and residual water content as a lower bound) are represented
by the model through the storage capacity of S1. When θ455

approaches the limits of S1, applying unbiased perturbation
to θ can lead to truncation bias in the background predic-
tion. This can then result in mass balance errors and degrade
the performance of the EnKF (Ryu et al., 2009). Moreover,
the Kalman filter assumes unbiased state variables. This is-460

sue is of particular importance in arid regions like the study
area, where the soil water content can be rapidly depleted by
evapotranspiration and transmission losses, thus approach-
ing the residual water content of the soil. To ensure that the
state ensemble remained unbiased after perturbation we im-465

plemented the bias correction scheme proposed by Ryu et al.
(2009).

The truncation bias correction consisted of running a sin-
gle unperturbed model prediction (θ−0) in parallel with the
perturbed model prediction (θ−i, ). At each time step, the mean470

bias, δ(t), of the N -member ensemble prediction was calcu-
lated by subtracting θ−0(t) from the ensemble mean, as fol-
lows (Ryu et al., 2009):

δ(t) =
1

N

N∑
i=1

θ−i (t)− θ−0(t). (15)

Then, a bias corrected ensemble of state variables, θ̃−i (t),475

was obtained by subtracting δ(t) from each member of the
perturbed ensemble, θ−i (t).

Although the latter resulted in unbiased state ensembles,
some important but subtle effects remain that arise from the
highly non-linear nature of hydrologic model. These need480

to be guarded against in SM-DA. Representing model er-
rors by adding unbiased perturbation to forcing, model pa-
rameters and/or model states can lead to a biased stream-
flow ensemble prediction (e.g., Ryu et al., 2009; Plaza et al.,
2012), compared with the unperturbed model run. This bi-485

ased streamflow ensemble prediction (open-loop hereafter)
is degraded compared with the streamflow predicted by the
unperturbed calibrated model. As a consequence, improve-
ment of the open-loop after SM-DA will in part be due to the
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correction of bias introduced during the assimilation process490

itself.
To avoid overestimating the SM-DA efficacy due to the

above issue, we applied the bias correction scheme proposed
by Ryu et al., (2009) directly to the streamflow prediction.
We used the unperturbed model run to estimate a mean bias495

in the streamflow (following Eq. 12, but using streamflow
instead of soil moisture) and then corrected each ensemble
member by subtracting this mean bias. This practical tool
ensures that the streamflow ensemble mean maintains the
performance skill of the unperturbed (calibrated) model run,500

thus avoiding artificial degradation of the unperturbed model
run by bias. To our knowledge, this approach has not been
applied in SM-DA previous studies.

3.4 Error model parameters calibration

To calibrate the error model parameters (σp, σk and σs), we505

evaluated the open-loop ensemble prediction (Qol) against
the observed streamflow at the catchment outlet. In this we
used a maximum a posteriori (MAP) scheme, a Bayesian in-
ference procedure detailed by Wang et al. (2009) that max-
imises the probability of observing historical events given the510

model and error parameters. In other words, it maximises the
probability of having the streamflow observation within the
open-loop streamflow.

Member i from the N -member open-loop can be ex-
pressed as515

Qol
i (t) =QT (t) + εm(t), (16)

where QT is the (unknown) truth streamflow and εm is the
error of the streamflow prediction and consists of forcing,
parameter and states errors:

εm(t) = f(εp(t), εk(t), εs(t)). (17)520

The observed streamflow at N7 (Qobs) can be expressed as
a function of the same (unknown) truth and the streamflow
observation error (εobs),

Qobs(t) =QT (t) + εobs(t). (18)

Combining Eqs. 16 and 18, the model ensemble prediction525

of the observed streamflow (Q̂obs) is expressed as:

Q̂obs(t) =Qol(t) + εm(t) + εobs(t). (19)

Following Li et al. (2014), εobs was assumed to be a seri-
ally independent multiplicative error following a normal dis-
tribution (mean 1 and standard deviation of 0.2). Then, the530

likelihood function (L) defining the probability of observing
the historical streamflow data given the calibrated model pa-
rameters (x), and the error model parameters (σp, σk and σs),
was expressed as

L(Qobs|x,σp,σk,σs) = Πn
t=1p(Qobs(t)|Q̂obs(t)). (20)535

To maximise L, we applied a logarithm transformation to
it and maximised the sum over time of the transformed func-
tion. The probability density function (p) at each time step

was estimated by assuming that the ensemble prediction of
the observed streamflow, Q̂obs(t), follows a Gaussian distri-540

bution, with its mean and standard deviation computed using
the ensemble members. The period used to calibrate the error
model parameters was 01 January 1998 - 31 May 2003.

An important aspect to highlight about this error parame-
ter calibration is that it is a highly underdetermined problem.545

Only one data set (streamflow at N7) is used to calibrate the
error parameters, while there might be many combinations
of error parameters that can generate similar streamflow en-
semble (equifinality on the error parameters).

3.5 Profile soil moisture estimation550

The aim of the stochastic assimilation detailed in Sect. 3.2
is to correct θ, which is a profile average SM representing
a soil layer depth determined by calibration. By assuming a
porosity of 0.46, (A-horizon information reported in McKen-
zie et al. (2000)), and the model S1 storage capacity of 396555

mm (420 mm) for the lumped (semi-distributed) scheme, this
profile SM roughly represents the upper 1 m of the soil. On
the other hand, the satellite SM observations represent only
the few top centimetres of the soil column (see Sect. 2). To
provide the model with information about more realistic dy-560

namics of θ, we applied the exponential filter proposed by
Wagner et al. (1999) to the satellite SM to estimate the soil
wetness index (SWI) of the root-zone. SWI has been widely
used to represent deeper layer SM based on satellite observa-
tions (e.g., Albergel et al., 2008; Brocca et al., 2009, 2010b,565

2012; Ford et al., 2014; Qiu et al., 2014). SWI was recur-
sively calculated as:

SWI(t) = SWI(t− 1) +G(t) [SSM(t)− SWI(t− 1)] , (21)

where SSM(t) is the satellite SM observation and G(t) is a
gain term varying between 0 and 1 as:570

G(t) =
G(t− 1)

G(t− 1) + e
−
(

t−(t−1)
T

) . (22)

T is a calibrated parameter that implicitly accounts for sev-
eral physical parameters (Albergel et al., 2008). T was cal-
ibrated by maximising the correlation between SWI and the
unperturbed model soil moisture (θ) during the first year of575

satellite data. This calibration period was selected to max-
imise the independent evaluation period (see Section 3.7);
however, more representative values are likely to be ob-
tained if a longer period was used for calibration. SWI was
calculated independently for each of the AMS, ASC and580

SMO datasets (named SWIAMS, SWIASC and SWISMO, re-
spectively) and then rescaled to remove systematic differ-
ences with the model prediction (Sect. 3.6).

3.6 Rescaling and observation error estimation

The systematic differences (e.g., biases) between θ and the585

SWI derived from each satellite product must be removed
prior to applying a bias-blind data assimilation scheme (Dee
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and Da Silva, 1998). We applied instrumental variable (IV)
regression to resolve the biases and estimate the measure-
ment errors simultaneously (Su et al., 2014a). In three-590

data IV regression analysis, also known as triple collocation
(TC) analysis (Stoffelen, 1998; Yilmaz and Crow, 2013), the
model θ, the passive SWI and active SWI are used as the
data triplet. As the sample size requirement for TC is strin-
gent (Zwieback et al., 2012), a pragmatic threshold of 100595

triplet sample was imposed (Scipal et al., 2008). During pe-
riods when only one satellite product was available (i.e., be-
fore ASC) or when the sample threshold for TC was not met,
a two-data set IV regression using lagged variables (LV) was
applied as a practical substitute (Su et al., 2014a). The LV600

analysis was performed on the model θ and a single satellite
SWI, with the lagged variable coming from the model.

In most SM-DA experiments, the error in satellite SM has
been treated as time-invariant (e.g., Reichle et al., 2008; Ryu
et al., 2009; Crow and Van den Berg, 2010; Brocca et al.,605

2010b, 2012; Alvarez-Garreton et al., 2014); however, stud-
ies evaluating satellite SM products have shown an impor-
tant temporal variability in the measurement errors (Loew
and Schlenz, 2011; Su et al., 2014a). Since a data assimi-
lation scheme explicitly updates the model prediction based610

on the relative weights of the model and the observation er-
rors, assuming a constant observation error may lead to over-
correction of the model state if the actual error is higher, and
vice versa.

Temporal characterisation of the observation error can be615

achieved by applying TC (or LV) to specific time windows
of the observations and model predictions (for example,
by grouping the triplets or doublets by month-of-the-year).
There is however, a trade-off between the sampling window
(which defines the temporal characterisation of the error) and620

the sample size (number of triplets in each subset). In an op-
erational context this trade-off becomes more critical since
only past observations are available. After analysing the tem-
poral variability of the observation errors using the complete
period of record (not shown here), we found that a 4-month625

sampling window can reproduce seasonality in errors while
ensuring sufficient data samples for the TC and LV schemes.
With this analysis we also assessed the suitability of using
LV, which yielded similar results to TC although some pos-
itive bias in LV error variance estimates relative to TC was630

noted (not shown here).
Summarising, the procedure for rescaling and error esti-

mation consists of:

1. From the start of the AMS dataset, we grouped LV
triplets (SWIAMS(t), θ(t) and θ(t− 1)) into three sub-635

sets: Dec-Mar, Apr-Jul and Aug-Nov.

2. We applied LV and thus, estimated the observation error
variance and rescaling factors for a given 4-month sub-
set only when a minimum of 100 samples was reached
(after one year of AMS dataset). After the first year640

of AMS, new seasonal triplets were added into the

corresponding 4-month data pool (retaining all earlier
triplets) and LV was applied to the updated subset.

3. When ASC was available, LV triplets (SWIASC(t), θ(t)
and θ(t− 1)) subsets were formed following step 1 cri-645

teria and LV was applied after the 4-month data pools
had more than 100 samples, following step 2.

4. In parallel with step 3, TC triplets were formed using the
two available satellite datasets (SWIAMS(t), SWIASC(t)
and θ(t)) and grouped into the 4-month subsets defined650

in step 1. TC was applied only when the 4-month data
pools contained more than 100 samples (after approxi-
mately 3 years of ASC data).

5. Steps 3 and 4 were repeated when SMO was avail-
able. The triplets for TC in this case were given by655

SWIASC(t), SWISMO(t) and θ(t).

6. Once steps 1-5 were complete, a single time series of
observations error variance and rescaling factors was
constructed for each satellite-derived SWI by selecting
TC results when available, and LV results if not. This660

criterion was adopted because LV is susceptible to bias
due to auto-correlated errors in the model SM (Su et al.,
2014a). The rescaled observations from AMS, ASC and
SMO were named θams, θasc and θsmo, respectively.

3.7 Evaluation metrics665

To evaluate the SM-DA results, we used six different met-
rics. Firstly, the normalised root mean squared difference
(NRMSE) was calculated as the ratio of the root mean square
error (RMSE) between the updated streamflow ensemble
(Qup) and the observed streamflow to the RMSE between670

the open-loop (ensemble streamflow prediction without as-
similation, Qol) and the observed discharge:

NRMSE =

1
N

∑N
i=1

√∑T
t=1 (Qup

i (t)−Qobs(t))2

1
N

∑N
i=1

√∑T
t=1

(
Qol

i (t)−Qobs(t)
)2 , (23)

where N = 1000 is the number of ensemble members. The
NRMSE provides information about both the spread of the675

ensemble and the performance the ensemble mean, which is
considered as the best estimate of the ensemble prediction.
Moreover, as it is calculated in the natural space, it gives
more weight to high flows.

To further evaluate the performance of the ensemble mean,680

we calculated the Nash Sutcliffe efficiency (NSE) for the en-
tire evaluation period as follows (example for the open-loop
case):

NSEol = 1−

∑
t

(
Qobs(t)−Qol(t)

)2
∑

t

(
Qobs(t)−Qobs

)2 , (24)

whereQol is the open-loop ensemble mean. Similarly, NSEup685

was calculated by applying Eq.(24) to the updated ensemble
mean (Qup).
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We also estimated the probability of detection (POD) of
daily flow rates (not flood events) exceeding minor, moderate
and major floods, for the open-loop and the updated ensem-690

ble mean, as follows (example for the open-loop case):

PODol =
#(Qol >=Q15.7%

obs & Qobs >=Q15.7%
obs )

#(Qobs >=Q15.7%
obs )

, (25)

where the symbol # represents the number of times. Q15.7%
obs

is the observed streamflow corresponding to a minor flood
classification. This corresponds to a flow (not flood) fre-695

quency of 15.7% (see Sect. 2). Similarly, PODup was cal-
culated by applying Eq.(25) to the updated ensemble mean
(Qup). We estimated the false alarm ratio (FAR) for daily
flows as (example for the open-loop case):

FARol =
#(Qol >=Q15.7%

obs & Qobs <Q15.7%
obs )

#(Qobs <Q15.7%
obs )

. (26)700

Similarly, FARup was calculated by applying Eq.(26) to the
updated ensemble mean.

Finally, we calculated the aggregated peak volume error
(PVE, in mm) of the ensemble mean, for days when the ob-
served streamflow was above a minor flood classification (t∗705

days in Eq. 27). An example for the open-loop, PVE was cal-
culated as

PVEol =
∑
t∗

(
Qol(t∗)−Qobs(t∗)

)
. (27)

To evaluate the skill of the streamflow ensemble prediction
before and after SM-DA, we calculated the continuos ranked710

probability score (CRPS; Robertson et al., 2013). CRPS is
used as a measure of the ensemble errors. In the case of the
deterministic unperturbed run, CRPS reduces to the mean ab-
solute error. The reliability of the ensembles was also evalu-
ated by inspecting the rank histograms of the ensemble fol-715

lowing Anderson (1996). A reliable ensemble should have a
uniform histogram while a u-shape (n-shape) histogram indi-
cates that the ensemble spread is too small (large) (De Lan-
noy et al., 2006).

The evaluation period for the SM-DA was 01 June 2003720

- 02 March 2014. This period is independent of all scheme
component calibration periods (see Sects. 3.1, 3.4 and 3.5).

4 Results and discussion

4.1 Model calibration

The streamflow at the outlet of the study catchment (N7 in725

Fig.1) features long periods of zero-flow, a negligible base-
flow component and sharp flow peaks after rainfall events,
when the catchment has reached a threshold level of wetness
(see observed streamflow in Fig.4).

The simulated streamflows from the lumped and the semi-730

distributed schemes are presented in Fig.4. To help visual-
isation of these time series, the calibration and evaluation
periods were plotted separately. The evaluation period was

further separated into two sub-periods, evaluation sub-period
1 (01 June 2003 - 30 April 2007), characterised by having735

only moderate and minor floods and evaluation sub-period
2 (30 April 2007 - 02 March 2014), which had three ma-
jor flooding events. The plots show that both the lumped and
the semi-distributed models are generally able to capture the
catchment hydrologic behaviour. As expected, the spatial dis-740

tribution of forcing data and the channel routing accounted
for by the semi-distributed scheme enhanced the overall per-
formance of the model, with lower residual values through
time (panels a.2, b.2 and c.2 in Fig.4) and consistently im-
proved the simulation of peak flows.745

Table 2 presents the evaluation statistics for the stream-
flow prediction in the calibration and evaluation periods, for
both the catchment outlet and the inner catchments (notice
that N1 does not have data in the calibration period). The
different statistics in this table consistently show that, at the750

catchment outlet, the semi-distributed has consistently bet-
ter performance than the lumped scheme in terms of RMSE,
NSE, PEV and CRPS. Both schemes show better statistics in
the evaluation period due to the higher flows over that period.

Table 2. Model evaluation at the catchment outlet (N7) and at the
inner catchments (N1 and N3), for calibration and evaluation peri-
ods. RMSE and PVE statistics are in units of mm.

Statistic
Lumped scheme Semi-distributed scheme

(N7) (N7) (N1) (N3)

RMSEcalib 0.19 0.18 - 0.3
RMSEeval 0.21 0.18 0.53 0.46

NSEcalib 0.52 0.59 - 0.39
NSEeval 0.67 0.77 0.28 -1.89

PODcalib 0.79 0.76 - 0.76
PODeval 0.93 0.91 0.54 0.73

FARcalib 0.09 0.10 - 0.15
FAReval 0.11 0.11 0.07 0.14

PVEcalib -70.86 -39.99 - 168.23
PVEeval 1.30 34.75 -100.53 115.52

CRPScalib 0.29 0.28 - 0.58
CRPSeval 0.56 0.33 0.92 0.49

755

The good performance of the semi-distributed scheme at
the catchment outlet was not reflected at the inner catch-
ments. To explore the reasons for such bad performance,
we separately calibrated the model parameters in those sub-
catchments by using all the available N7, N1 and N3 obser-760

vations. The results (not shown here) revealed that in this
case, the model was able to adequately simulate streamflow
in those sub-catchments (NSE in evaluation period of 0.78,
0.69 and 0.84 at N1, N3 and N7 nodes, respectively). Based
on this, we argue that the problem of the poor model per-765

formance in the “ungauged” inner catchments is most likely
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due to sub-optimal parameter estimation (due to the limited
information about catchment heterogeneity provided by the
integrated catchment streamflow response) and unlikely to be
due to errors in the input data or model structure.770

To focus the analysis of the catchment runoff mechanisms
on periods with flood events, the lag-correlation between
the daily streamflow simulated at N7 and the daily rain-
fall (Fig.5), and between daily streamflow and θ (Fig.6),
was calculated for daily streamflow values greater than775

Q15.7%
obs , or minor flood level. The lumped scheme indicates

a stronger (weaker) link between θ (rainfall) and stream-
flow than the semi-distributed scheme. This is represented
by higher (lower) r values in panel a compared with panels
b-h in Fig.6 (Fig.5). These different representations of the780

catchment runoff response will have a direct impact on the
skill of SM-DA to improve streamflow prediction. A strong
relationship between θ and streamflow prediction suggests
strong correlation between their errors, and therefore, greater
potential improvement of streamflow resulting from an im-785

proved representation of θ.
If we assume that the semi-distributed scheme provides

a better representation of runoff response within the entire
catchment (based on its better model performance at the out-
let), Figs. 5 and 6 also suggest that daily rainfall is the main790

control on runoff generation and thus has a stronger im-
pact in the streamflow prediction than soil moisture. Figure
6 shows that flood prediction strongly depends on antecedent
soil moisture for up to the preceding 3 days. The strong cor-
relation found at lag-0 suggests that the real time SM correc-795

tion given by the proposed SM-DA would be a good strategy
to improve flood prediction.

4.2 Error model parameters and ensemble prediction

The calibrated error parameters for the lumped and the semi-
distributed schemes are σp = 1.286 mm and 0.977 mm; σs =800

0.099 and 0.03 and σk = 0.084 and 0.018, respectively. σs
is expressed as a percentage of the total storage capacity
(396 mm in the lumped scheme and 420 mm in the semi-
distributed scheme) and σk is expressed as a percentage of
the calibrated parameter k1.805

The rank histograms of the generated ensemble predic-
tion (open-loop) are presented in Fig.7. The histograms at
the catchment outlet (N7) are either n-shape or displaced to
one side, for both the lumped and semi-distributed model
schemes (Figs.7a and 7b, respectively). This suggests that810

the open-loop ensembles are slightly biased (with respect to
the observed streamflow) and feature wider spread than an
ideal ensemble. The width of the spread will be critical for
the evaluation of SM-DA (Sect. 4.4) since any decrease of
the spread would be considered as an improvement of the815

ensemble prediction.
The wider spread of the open-loop ensembles at the catch-

ment outlet could be due to factors such as an over-prediction
of error parameters by the MAP calibration algorithm, or the

representation of the model error with time-constant error pa-820

rameters. The latter becomes critical given the distinct be-
haviour of the intermittent streamflow response within the
catchment, which could indicate distinct behaviour in the
model errors as well.

The ensemble predictions at the inner nodes N1 and N3825

(Figs.7c and 7d, respectively) feature high bias with respect
to the observed streamflow (note that observations at N1 and
N3 were not used to calibrate the error parameters). The large
bias at these inner nodes result from the large errors in the
calibrated model in SC1 and SC3 (see Sect. 4.1).830

4.3 SWI estimation and rescaling

The satellite SM derived from AMS, ASC and SMO are pre-
sented in Fig.8a, for the lumped model. The satellite datasets
feature significantly higher noise than the modelled θ. This
can be explained by factors such as random errors in the835

satellite retrievals (Su et al., 2014b), and the rapid varia-
tion of water content in the surface layer of soil due to in-
filtration and evapotranspiration losses. Figure 8b presents
the SWI derived from the satellite products, after seasonal
rescaling (θams, θasc and θsmo). This plot shows better840

agreement between model and observations due to SWI fil-
tering/transformation, even when the higher noise in the
rescaled SWI time series is still present.

Figure 8c shows the seasonal observation error variance,
and reveals a clear variation in the error with time. The vari-845

ation of the seasonal error values is due to the alternative use
of TC or LV, and to the increasing sample size of each sea-
sonal pool (see Section 3.6), which should reduce the uncer-
tainties coming from finite sample size. One limitation of this
procedure is its assumption that the errors vary seasonally850

without inter-annual variability. Since there are inter-annual
cycles (wet and dry years), one may also expect the errors to
vary with year. Ideally, moving-window estimation with win-
dows smaller than 3 months should be considered, but that
would cause greater sampling uncertainties for the TC and855

LV estimates. The inverse relationships between θams and
θams error variances at some times could be due to the pas-
sive retrieval by AMS compared with the active ASC, among
other factors.

A common error standard deviation value used in previous860

SM-DA studies is 3% m3m−3 (e.g., Chen et al., 2011). This
constant error, when transformed according to the soil mois-
ture storage capacity of the model and the soil porosity (see
Section 3.5) gives an error variance of 667 (750) mm2 for the
lumped (semi-distributed) scheme. As a simple comparison,865

these values are within the range of the error variance esti-
mated through seasonal LV/TC; however, a comprehensive
analysis of the impacts of accounting for seasonality in SM-
DA is not performed here since it fells beyond the scope of
this work.870

Table 3 summarises the results of the SWI calibration and
seasonal rescaling for the lumped model, showing the T pa-
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Fig. 4. Simulated and observed daily streamflow (Q) and model streamflow prediction residuals (simulated minus observed) at the catchment
outlet (N7). (a.1) and (a.2) present the calibration period. (b.1) and (b.2) present evaluation sub-period 1, which has only moderate and minor
flood events. (c.1) and (c.2) present evaluation sub-period 2, which has 3 major flood events. The daily rainfall plotted on the right axis
correspond to the averaged rainfall over the entire catchment.

rameter for each SWI and the correlation coefficient (r) be-
tween θ and the satellite SM before and after SWI transfor-
mation and rescaling (θobs). These results confirm the visual875

assessment of plots in Fig.8 by showing an important in-

crease in the linear correlation coefficient with θ when satel-
lite SM is transformed into SWI. The correlation is further
increased after rescaling, which illustrates that there is clear
benefit from performing seasonal bias correction. Note that880
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Fig. 5. Lag-correlation coefficient (r) between the simulated
streamflow at N7 (mm d−1), and the daily rainfall (mm d−1) of
the entire catchment (a) and the 7 sub-catchments (b)-(h).
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Fig. 6. Lag-correlation coefficient (r) between the simulated
streamflow at N7 (mm d−1), and θ (mm d−1) from the lumped (a)
and the semi-distributed (b)-(h) model schemes.

applying a constant rescaling factor would have no impact on
on the correlation between θ and θobs.

Table 3. Parameter T and correlation coefficient be-
tween model SM (θ) and satellite SM, before and
after SWI transformation and rescaling. Results are
presented for the entire catchment.

Dataset
T r between θ and

(days) Satellite SM SWI θobs

AMS 3 0.65 0.74 0.94
ASC 11 0.77 0.92 0.97
SMO 40 0.46 0.79 0.93

The optimal T values (Table 3) are difficult to validate
since there is no ground data to compare with and, given that
it has been shown that they strongly depend on the physi-885

cal processes of the study site (Ceballos et al., 2005), direct
comparison with other studies cannot be made reliably. In-
deed, previous studies have shown a wide range of optimal
T values for soil depths ranging between 10 and 100 cm.
As an example, in Fig.9 we have summarised the optimal T890

found in 5 different studies (Albergel et al., 2008; Brocca
et al., 2009, 2010a; Ford et al., 2014; Wagner et al., 1999).

Previous studies have shown that optimal T value in-
creases with layer depth (e.g., Brocca et al., 2010a).Results
presented here show an increased T value for SMO, which895

would be inconsistent with L-band having a deeper penetra-
tion than AMS C-band (to limit the comparison within pas-
sive retrievals). We speculate that these differences might be
due various factors, including the different retrievals methods
(which have quite different assumptions pertaining to spatial900

heterogeneity) and the influence that radio-frequency inter-
ference noise. Moreover, to the best of our knowledge, the
existing studies examining the dependence of T on the soil
depths are usually based on a single satellite product against
in situ measurements at variable depths. Hence it is diffi-905

cult to compare our results against these studies due to the
increased complexity due to different sensing and retrieval
methods.

There are some key theoretical issues that should be con-
sidered when using SWI as a profile SM estimator. Firstly,910

the parameter T in Eq.(22) was estimated by maximising
the correlation between SWI and θ, which could introduce
cross-correlated errors between them. This would violate the
IV regression assumption of no correlation between the er-
rors among the triplets (Sect. 3.6). A way to overcome this915

issue, if data requirements are met, would be to estimate a
profile SM independently of the rainfall-runoff model pre-
diction, for example by using a physically-based model to
transfer surface SM into deeper layers (e.g., Richards, 1931;
Beven and Germann, 1982; Manfreda et al., 2014).920

Secondly, the SWI formulation explicitly incorporates au-
tocorrelation terms, which would result in autocorrelated er-
rors in the observation, which violates an EnKF assump-
tion: independence between observation and prediction er-
rors. The autocorrelation in the observation error can be925

transferred to the updated θ+ during the SM-DA updating
step. In that case, the θ− background prediction error co-
variance at time t+ 1 would be correlated to the error of the
rescaled SWI at time t+ 1. In contrast with the first issue
listed above, the violation of the EnKF assumption can not930

be avoided by replacing SWI with a physically-based model,
since the latter would result in profile SM strongly correlated
with previous states as well. Indeed, given the physical mech-
anisms of water flux in the unsaturated soil, this problem will
be present whenever a profile SM estimated from satellite935

SM is used as an observation in an EnKF-based data assimi-
lation framework. A way to overcome this could be to work
with models that explicitly account for the water in the top
few centimetres of soil and therefore can directly assimilate
a (rescaled) satellite retrieval. However, the errors in satellite940

SM retrievals are probably already autocorrelated (Crow and
Van den Berg, 2010).

Breaching some of the EnKF-based scheme and/or the
IV-based rescaling assumptions could theoretically degrade
the performance of the SM-DA scheme, when the variable945

analysed is soil moisture (Crow and Van den Berg, 2010;
Reichle et al., 2008; Ryu et al., 2009). In this context, the
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Fig. 8. (a) shows the model soil moisture on the left axis (θ) and the satellite soil moisture observations in the right axis. (b) shows the soil
moisture on the model space, after the three satellite datasets were transformed into a soil wetness index (SWI) and then rescaled by using
TC or LV (θams, θasc and θsmo). (c) shows the rescaled satellite SM observations error variance.

performance of SM-DA with respect to the improvement in
streamflow has been under-investigated. Alvarez-Garreton et
al. (2013, 2014) show that in terms of streamflow prediction,950

SM-DA seems to be less sensitive to violation of these as-
sumptions. Both the lower sensitivity and the apparent con-

tradiction with previous studies analysing soil moisture pre-
diction performance highlight the need for further studies fo-
cusing on SM-DA for the purposes of improving streamflow955

prediction from rainfall-runoff models.
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4.4 Satellite soil moisture data assimilation

The ensemble predictions of streamflow and θ, before and af-
ter SM-DA, for the lumped and the semi-distributed schemes
at N7, are presented in Fig.10. The truncation bias correction960

(Sect. 3.3) was successful in creating an unbiased θ ensem-
ble when the unperturbed model approached the soil water
storage bounds (Figs.10a.2 and 10b.2).

The rank histograms at N7, N1 and N3 are presented in
Fig. 7. For all the evaluated nodes, the ensemble predictions965

are more reliable after SM-DA (flatter histograms compared
with the open-loop). The consistent overestimation of the ob-
served streamflow in the open-loop ensembles (diagonal his-
tograms displaced towards the higher ensemble percentiles)
is partially addressed by the SM-DA.970

The evaluation statistics for the SM-DA are summarised
in Table 4. The streamflow data of the inner catchments (N1
and N3) were used only for evaluation purposes in the semi-
distributed scheme, therefore they are representative of “un-
gauged” inner catchments.975

Table 4. SM-DA evaluation statistics calculated at the catchment
outlet (N7) and at the inner catchments (N1 and N3).

Statistic
Lumped scheme Semi-distributed scheme

(N7) (N7) (N1) (N3)

NRMSE 0.78 0.76 0.81 0.83

NSEol 0.67 0.77 0.28 -1.75
NSEup 0.64 0.78 0.26 -1.39

PODol 0.96 0.92 0.56 0.69
PODup 0.94 0.93 0.55 0.69

FPol 0.11 0.11 0.07 0.12
FPup 0.10 0.10 0.06 0.11

PVEol 5.63 35.30 -96.87 56.42
PVEup -2.37 34.93 -109.66 40.71

CRPSol 0.32 0.26 0.74 0.20
CRPSup 0.28 0.23 0.73 0.24

The NRMSE in Table 4 (all values below 1) demonstrates
that the SM-DA was effective in reducing the streamflow pre-
diction uncertainty (RMSE) across all gauged and ungauged
catchments. The reductions in the RMSE ranged from 17 to

24% for the different evaluation nodes. The NRMSE com-980

bines precision improvement (i.e., reduction of ensemble
spread) with prediction accuracy improvement (i.e., enhance-
ment of ensemble mean performance) resulting from the SM-
DA. Given that the ensemble open-loop spread was larger
than an ideal ensemble (based on the n-shaped rank his-985

tograms in Fig.7), the reduction of the ensemble spread may
be in part artificial.

The performance of the ensemble mean was assessed by
computing the NSEol and NSEup (Table 4). At the catchment
outlet, the NSE of the ensemble mean after SM-DA only990

improved for the semi-distributed scheme. At the ungauged
catchments, SM-DA was effective at improving the perfor-
mance of the ensemble mean only at N3, compared with the
open-loop. However, the performance of the model in that
catchment was still poor. This can be explained by the sys-995

tematic errors present in the model for those catchments be-
fore assimilation, which were not addressed by the SM-DA.

The POD values at the catchment outlet (N7) show that
before and after SM-DA, the model is consistently capable
of detecting minor floods. Although this does not demon-1000

strate an advantage of the SM-DA scheme proposed here, it
does reflect the adequacy of the model ensemble prediction
for simulating minor (and larger) floods. Consistently with
previous results, the prediction of the semi-distributed model
at the inner catchments is poorer in terms of detecting mi-1005

nor floods. The lower FAR values after SM-DA demonstrates
the efficacy of the scheme in reducing the number of times
the model predicted an unobserved minor flood, at both the
gauged and the ungauged catchments.

The open-loop PVE was improved (lower PVE values)1010

after SM-DA at N7 (for both the lumped and the semi-
distributed schemes) and at N3. This was not the case how-
ever, for inner node N1, at which the PVE was higher af-
ter SM-DA, compared with the open-loop. When compared
to the unperturbed model run (Table 2), the assimilation1015

of satellite soil moisture improved the performance of the
model in terms of PVE at all the nodes and for both the
lumped and semi-distributed schemes.

The skill of the ensembles after SM-DA was improved at
the catchment outlet by 12% and 13% (expressed by a reduc-1020

tion in CRPS) for the lumped and semi-distributed scheme,
respectively, and by a 17% at N1. The skill of the updated
ensemble was also consistently higher than the unperturbed
model run (Table 2).

To summarise the efficacy of the SM-DA, we take into ac-1025

count the characteristics of the ensemble predictions (open-
loop and updated) in terms of the their mean, skill and reli-
ability. Overall, SM-DA was effective at improving stream-
flow ensemble predictions in the gauged and the ungauged
catchments. By accounting for rainfall spatial distribution1030

and routing process within the large study catchment, we im-
proved the model performance at the outlet compared with
a lumped homogeneous scheme.This led to greater improve-
ments from the SM-DA for the semi-distributed model. The
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Fig. 10. Streamflow (Q in mm d−1) and soil moisture (θ in mm d−1) ensemble prediction at the catchment outlet, before and after SM-DA
for evaluation sub-period 2 (01 May 2007 - 02 March 2014), which had three major flooding events. (a.1) and (a.2) present the results for the
lumped model. (b.1) and (b.2) present the results for the semi-distributed model.

latter was achieved even though the relation between θ and1035

the streamflow prediction was weaker in the semi-distributed
scheme (Fig.6). The proposed SM-DA scheme therefore, has
the merits of improving streamflow ensemble predictions by
correcting the SM state of the model, even when rainfall ap-
pears to be the main driver of the runoff mechanism (see Sect.1040

4.1).

5 Conclusions

This paper presents an evaluation of the assimilation of pas-
sive and active satellite soil moisture observations (SM-DA)
into a conceptual rainfall-runoff model (PDM) for the pur-1045

pose of reducing flood prediction uncertainty in a sparsely
monitored catchment. We set up the experiments in the large
semi-arid Warrego River Basin (>40,000 km2) in south cen-
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tral Queensland, Australia. Within this context, we explore
the advantages of accounting for the forcing data spatial dis-1050

tribution and the routing processes within the catchment.
The framework proposed here rigorously addressed the

two main stages of a SM-DA scheme: model error repre-
sentation and satellite data processing. We applied the dif-
ferent methods in the context of a sparsely monitored large1055

catchment (i.e., limited data), under operational streamflow
and flood forecasting scenarios (i.e., not future information
is used in any of the presented methods).

The model error representation was the most critical step
in the SM-DA scheme, since it determined the error covari-1060

ance between observations and model state, and thus the po-
tential efficacy of SM-DA. Moreover, the SM-DA evaluation
was done against the open-loop ensemble prediction. The
open-loop ensembles at the catchment outlet provide key in-
formation about prediction uncertainty, which is required for1065

assessing risks associated with water management decisions
(Robertson et al., 2013). These ensembles showed a slight
bias with respect to the observed streamflow and featured a
wide spread. Further exploration of model error representa-
tion (sources of error and the structure of those errors) and1070

error parameter estimation is required to improve the charac-
teristics of the open-loop ensemble prediction.

In the satellite data processing, we highlighted that the use
of an exponential filter to transfer surface information into
deeper layers may potentially lead to violation of some of1075

TC and EnKF assumptions (Sect. 4.3). Possible solutions to
overcome this would be to use more physically-based meth-
ods to transfer satellite SM into deeper layers or to use a
rainfall-runoff model that explicitly accounts for the surface
soil layer that can directly assimilate a (rescaled) satellite1080

SM product. However, both solutions are constrained by the
ancillary data available for satisfactory implementation of a
physically-based model. In the rescaling and error estima-
tion procedure, we applied seasonal TC and LV to avoid
error-in-variable biases. Applying these to correct biases in1085

the SWI, showed improved agreement between observed and
modelled SM. This seasonal approach is novel in the context
of SM-DA and tends to lead to closer agreement between
model and observations. Further investigation is required to
assess the impacts and importance of accounting for season-1090

ality in rescaling and error estimation.
The evaluation of the SM-DA results led to several in-

sights. 1) The SM-DA was successful at improving the open-
loop ensemble prediction at the catchment outlet, for both the
lumped and the semi-distributed case. 2) Accounting for spa-1095

tial distribution in the model forcing data and for the routing
processes within the large study catchment improved the skill
of the SM-DA at the catchment outlet. 3) The SM-DA was
effective at improving streamflow prediction at the ungauged
locations, compared with the open-loop. However, the up-1100

dated prediction in those catchments was still poor, because
the systematic errors before assimilation are not addressed
by a SM-DA scheme.

This work provides new evidence of the efficacy of
SM-DA in improving streamflow ensemble predictions in1105

sparsely instrumented catchments. We demonstrate that SM-
DA skill can be enhanced if the spatial distribution of forc-
ing data and routing processes within the catchment are ac-
counted for in large catchments. We show that SM-DA per-
formance is directly related to the model quality before as-1110

similation, therefore we recommend that efforts should be
focused on ensuring adequate models, while evaluating the
trade-offs between more complex models and data availabil-
ity.
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