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Dear Dr. Harman, 1 

 2 

 3 

 4 

 5 

We would like to thank you and both the anonymous reviewers for those comments and 6 

suggestions which helped to improve the paper. As per your suggestion of minor revision 7 

before publication, we have included the model calibration and validation from the other 8 

paper into this paper. By doing this we avoid citation of the other paper, which has been 9 

rejected. We have also responded to the comments that were given by reviewer #2 and 10 

acknowledged the limitations of the study that are related to the shift in Plant Functional 11 

Types (PFTs) due to climate change (increase in temperature) and the impact on vegetation of 12 

increasing atmospheric CO2. We made these changes in the revised manuscript in which all 13 

changes are tracked in blue color.  14 

 15 

 16 

Kind Regards, 17 

Dr Yongping Wei 18 

 19 
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Authors’ responses 28 

Authors’ responses (in blue) to Anonymous Referee #2 comments (in black) on “Including 29 

the dynamic relationship between climate variables and vegetation LAI into a hydrological 30 

model to improve streamflow prediction under climate change” by Z. K. Tesemma et al. 31 

 32 

This study aims to predict future water yields incorporating vegetation dynamics in a VIC 33 

hydrological model based on two emission scenarios. This study is based on the assumption 34 

that seasonal vegetation dynamics strongly depend on accumulative water deficits 35 

(precipitation - potential evapotranspiration), developed for three plant functional types 36 

(PFTs) from global remote sensing datasets (MODIS). The paper starts with the critiques of 37 

stationarity assumption in future hydrological simulations. I totally agree to this point in that 38 

traditional hydrologic modeling has often ignored the importance of vegetation response to 39 

changing climates. However, the authors make a same mistake when applying Eq. 5 for the 40 

prediction of vegetation dynamics in the future. There are two main reasons why I reject this 41 

paper. 42 

First, distributions of plant functional types would not be constant under climate changes. 43 

Each PFT shares similar ecophysiological behavior in photosynthesis and evapotranspiration, 44 

which is one of the reason why this study develops the different equations of vegetation 45 

dynamics for three PFTs. Therefore, the changes in PFT distributions are quite critical to 46 

predict ecosystem water use and resulting hydrologic behavior under climate change. The 47 

shifts of vegetation distributions in response to temperature increases and subsequent water 48 

balance are well-documented in Mediterranean climate regions (e.g. Lenihan et al. 2003; 49 

Crimmins et al. 2011), which significantly undermines the credibility of this study. 50 

We understand the concern of Referee #2 on changes in plant functional types (PFTs) due to 51 

change in climate (increase in temperature) and in the revised version of the manuscript we 52 

acknowledged the limitation of our study in which static PFTs were used.  53 

Here we would like to explain the rationale for why static PFTs were used in our study. 54 

Firstly, it is known that vegetation growth in Australia is highly controlled by precipitation 55 

(water supply), and is less controlled by temperature and radiation (Nemani et al., 2003). 56 

Hence, most vegetation dynamics can be explained by variation in precipitation, which 57 

formed the basis of the LAI-climate model developed in Tesemma et al. (2014). In our study 58 
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area PFTs are largely determined by land use (human activities), such as forest clearing for 59 

agriculture, which is difficult to project into the future, rather than natural responses of 60 

vegetation to changed climatic conditions. We agree with the reviewer that in theory there are 61 

possible changes in PFTs due to increased temperature, but in this catchment human 62 

influence are likely to dominate. 63 

Second, the strong dependency of vegetation dynamics on water balance does not 64 

marginalize the CO2 fertilization effect on vegetation. Many studies suggest that the CO2 65 

fertilization would decrease stomatal conductance, increase water use efficiency and drought 66 

tolerance (e.g. Nowak 2004; Ainsworth and Rogers 2007). While this CO2 effect can be 67 

limited by nutrient supply in temperate forests (e.g. Oren et al. 2001), water-limited 68 

ecosystems would be benefited from increased water use efficiency (Wullschleger et al. 69 

2002; Huang et al 2007; Koutavas et al. 2012). Therefore, many ecologists suggest that an 70 

interaction with CO2 should not be ignored, when we model vegetation responses to droughts 71 

in the future. 72 

Several ecohydrologists have tried to deconvolve the effect of precipitation, temperature and 73 

CO2 in the future hydrological modeling across different ecoregions (e.g. Baron et al. 2000). 74 

Tague et al. (2009) suggested that future hydrologic behavior and ecosystem productivity will 75 

depend on the balance between CO2 controls on water use efficiency and vegetation 76 

responses to climate changes in Mediterranean climate region. Vicente-Serrano et al. (2015) 77 

suggested that the effect of rising CO2 on canopy-level productivity might be strongly 78 

mediated by moisture conditions from mesic to xeric sites in temperate conifer forests. 79 

Interactions between vegetation and hydrology can be particularly important in the water-80 

limited ecosystems, where vegetation dynamics and its water use are strongly coupled, as 81 

well as subsequent hydrologic behavior. However, few studies have considered the potential 82 

feedbacks between vegetation, climate, and hydrology in future hydrological modeling. I 83 

hope that hydrologists can start on the common ground with ecologists when including 84 

vegetation dynamics in future hydrological modeling under a changing climate. 85 

Partially Agree. We understand the reviewers concern about the vegetation effect of 86 

increasing atmospheric CO2 and we have already discussed this effect in the manuscript. We 87 

have modified our discussion of this issue slightly to clarify our assumption of not modelling 88 

this effect. The reason why we did not include the stomata suppression effects of rising 89 

atmospheric CO2 is because the net impact on runoff could be small (Huntington, 2008; 90 
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Uddling et al., 2008) due to the offsetting nature of the fertilization effect on LAI. We believe 91 

the revised discussion deals with this issue sufficiently. 92 

 93 

 94 
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Abstract 127 

Anthropogenic climate change is projected to enrich the atmosphere with carbon dioxide, 128 

change vegetation dynamics and influence the availability of water at the catchment scale. 129 

This study combines a non-linear model for estimating changes in leaf area index (LAI) due 130 

to climate fluctuations with the Variable Infiltration Capacity (VIC) hydrological model to 131 

improve catchment streamflow prediction under a changing climate. The combined model 132 

was applied to thirteen gauged catchments with different land cover types (crop, pasture and 133 

tree) in the Goulburn-Broken Catchment, Australia for the “Millennium Drought” (1997–134 

2009) relative to the period (1983–1995), and for two future periods (2021–2050 and 2071–135 

2100) for two emission scenarios (RCP4.5 and RCP8.5) were compared with the baseline 136 

historical period of 1981–2010. This region was projected to be warmer and mostly drier in 137 

the future as predicted by 38 Coupled Model Inter-comparison Project Phase 5 (CMIP5) runs 138 

from 15 Global Climate Models (GCMs) and for two emission scenarios. The results showed 139 

that during the Millennium Drought there was about a 29.7%–66.3% reduction in mean 140 

annual runoff due to reduced precipitation and increased temperature. When drought induced 141 

changes in LAI are included, smaller reductions in mean annual runoff of between 29.3% and 142 

61.4% were predicted. The proportional increase in runoff due to modelling LAI was 1.3%–143 

10.2% relative to not including LAI. For projected climate change under the RCP4.5 144 

emission scenario ignoring the LAI response to changing climate could lead to a further 145 

reduction in mean annual runoff of between 2.3% and 27.7% in the near-term (2021–2050) 146 

and 2.3% to 23.1% later in the century (2071–2100) relative to modelling the dynamic 147 

response of LAI to precipitation and temperature changes. Similar results (near-term 2.5% to 148 
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25.9% and end of century 2.6% to 24.2%) were found for climate change under the RCP8.5 149 

emission scenario. Incorporating climate-induced changes in LAI in the VIC model reduced 150 

the projected declines in streamflow and confirms the importance of including the effects of 151 

changes in LAI in future projections of streamflow. 152 

 153 

Key words: Climate change, leaf area index, drought, catchment streamflow, vegetation 154 

dynamics, VIC hydrological model.  155 
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1 Introduction 156 

Recently, climate changes have been observed in different parts of Australia (Chiew et al., 157 

2011; Cai and Cowan, 2008; Hughes et al., 2012; Lockart et al., 2009; Potter and Chiew, 158 

2011). Specifically, south-eastern Australian catchments have experienced changes in 159 

streamflow due to fluctuations in climate as observed during the recent “Millennium 160 

Drought’’ (1997-2009) which lasted more than a decade (Chiew et al., 2011; Verdon-Kidd 161 

and Kiem, 2009). This drought may be representative of future climatic conditions in this 162 

region.  163 

The projected water availability for future climates derived from downscaled outputs from 164 

global and regional climate models indicate increases of mean annual runoff by 10% to 40% 165 

in some parts of the world (high northern latitudes) and 10% to 30% reduction elsewhere 166 

(southern Europe, Middle East and south-eastern Australia) (Milly et al., 2005). More 167 

recently, Roderick and Farquhar (2011) examined climate and catchment characteristics for 168 

sensitivity to changes in runoff in Murray-Darling Basin in southeast Australia from a 169 

theoretical point of view and estimated that a 10% change in precipitation would lead to a 170 

26% change in runoff and a 10% change in potential evaporation would lead to a 16% change 171 

in runoff with all other variables being constant. In south-eastern Australia it has been 172 

projected that there will be a reduction in mean annual runoff of 10% on average when 173 

different climate models are used as input to hydrological models (Cai and Cowan, 2008; 174 

Chiew et al., 2009; Roderick and Farquhar, 2011; Teng et al., 2012a; Vaze and Teng, 2011). 175 

These studies assessed the possible impacts of climate change on total runoff based on 176 

rainfall-runoff relationships which only considered first order effects of changes in 177 

precipitation and temperature with subsequent impacts on evaporative demand.  178 

There is evidence that such relationships are not stationary over time (Chiew et al., 2014; 179 

Peel and Blöschl, 2011; Vaze et al., 2010), which implies that the studies discussed in the 180 

previous paragraph may be missing an important factor. One approach to improving 181 

modelling under changing conditions is to use variable monthly leaf area index (LAI) in the 182 

hydrologic model. Using observed climate variability and streamflow responses, observed 183 

monthly LAI has been shown to improve soil moisture prediction (Ford and Quiring, 2013). 184 

The improvements are largest under either relatively wet or dry climatic conditions, i.e. in 185 

wet and dry years, rather than average years. In most south-eastern Australia, LAI primarily 186 

responds to the availability of water and changes in vegetation type, such as conversion of 187 

forest to cropland or pasture, but also responds, to a lesser extent, to changes in temperature 188 
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and rising atmospheric CO2 concentrations. Most of these LAI responses are expected to be 189 

affected by projected climate change. These climate-induced changes in vegetation LAI may 190 

impact on evapotranspiration and runoff and hence should be considered when making runoff 191 

projections for climate change scenarios.  192 

Dynamic Global Vegetation Models (DGVMs) have been used to assess the vegetation effect 193 

of climate change on large-scale hydrological processes and patterns (Murray et al., 2012a, 194 

2011). A list of available DGVMs and their processes representations (photosynthesis, 195 

respiration, allocation, and phenology) can be found in Wullschleger et al. (2014), while 196 

Scheiter et al. (2013) provides a review of the possible sources of uncertainty related to 197 

representation of plant functional type (PFT) in DGVMs. Most DGVMs overestimate runoff; 198 

mainly due to model structure problems along with operating at low spatial and temporal 199 

resolution (Murray et al., 2012b). While the relationships between LAI and climate 200 

fluctuation have been modelled (Ellis and Hatton, 2008; O'Grady et al., 2011; Jahan and Gan, 201 

2011; Palmer et al., 2010; Tesemma et al., 2014; White et al., 2010), none of them have been 202 

incorporated in hydrological models for the purpose assessing future climate change impacts 203 

on streamflow. The poor hydrological sub models in DGVMs and the static vegetation in 204 

most hydrological models mean that importance of the indirect vegetation-related (LAI) 205 

effects relative to the direct effects of changes in precipitation and temperature on 206 

hydrological response at catchment scale have rarely been studied. This limits understanding 207 

of the linkages between climate fluctuations and vegetation dynamics, and their combined 208 

impacts on hydrological processes. 209 

The main objective of this study is to examine the relative effects on mean annual runoff of 210 

changes in direct climate forcing (mainly precipitation and temperature) and direct climate 211 

forcing combined with climate-induced LAI changes under changed climate scenarios. 212 

Comparative analysis of these two cases enables the effect on mean annual runoff of allowing 213 

LAI to respond to a changing climate to be identified. Specifically, our study combined the 214 

LAI–Climate model developed in Tesemma et al. (2014) with the Variable Infiltration 215 

Capacity (VIC) hydrologic model to assess the impact on catchment runoff of how LAI is 216 

modelled (constant seasonal LAI or LAI varying in response to climate) under changing 217 

climatic conditions. As noted above, this combined model showed significant improvements 218 

in runoff simulations under historic conditions. Here we investigate two sets of changing 219 

climatic conditions: (1) the observed Millennium Drought (1997–2009), which is a persistent 220 

(>10 year) large change in climate; and (2) projected climate change for both wet and dry 221 
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catchments using 38 Coupled Model Inter-comparison Project Phase 5 (CMIP5) runs from 15 222 

different Global Climate Models (GCMs) for two future periods, 2021–2050 and 2071–2100, 223 

for two emission scenarios, RCP4.5 and RCP8.5). The results obtained from this study are 224 

expected to demonstrate whether modelling LAI in a way that responds to changing climatic 225 

conditions is important for modelling runoff during projected climate change in the study 226 

area.  227 
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2 Research approach  228 

This section provides details about the dataset, the characteristics of the selected catchments 229 

and the modelling exercises. The catchment characteristics and dataset used in this study are 230 

briefly described in section 2.1. The application of multiple GCMs and emission scenarios 231 

output method are explained in section 2.2. The relationship between LAI and climatic 232 

variables are presented in section 2.3, and the hydrologic modelling experiment approach 233 

used to assess the impact of changes in climate on runoff are described in section 2.4. 234 

2.1 Catchment characteristics and dataset 235 

All the study catchments are located in the Goulburn-Broken Catchment which is a tributary 236 

of the Murray-Darling Basin, Australia. The Goulburn-Broken Catchment extends between 237 

35.8° to 37.7° S and between 144.6° to 146.7° E (Figure 1a) with a range of altitude from 238 

approximately 1790 m on the southern side to 86 m above mean sea level on the northern 239 

side of the catchment. The mean annual precipitation of the study catchments ranges from 240 

659 (in the north) to 1407 mm year
-1

 (in the south) calculated for the period (1982–2012). 241 

The majority of the precipitation (about 60%) occurs during winter and spring. The reference 242 

potential evapotranspiration (PET) calculated using the Food and Agricultural Organization 243 

(FAO56) method, ranges from 903 mm year
-1

 (in the north) to 1046 mm year
-1

 (in the south). 244 

Hence, the dryness index (mean annual reference potential evapotranspiration divided by 245 

mean annual precipitation) varies from 0.64 to 1.6 (Figure 1b). The dominant land cover type 246 

in most of the catchments is forest (mainly tall open Eucalyptus forest and Eucalyptus 247 

woodlands) with some pasture in all catchments. A small amount of cropland is located in 248 

some of the catchments (Figure 1c). 249 

Gridded input data used for the hydrological modelling include the daily precipitation, 250 

maximum and minimum temperature, vapour pressure and solar exposure data obtained from 251 

the Australian Water Availability Project (AWAP) of the Bureau of Meteorology (Jones et 252 

al., 2009) and gridded daily wind run data from McVicar et al. (2008) that was generated 253 

from point measurements. All data have a spatial resolution of 0.05° × 0.05° (approximately 254 

5km × 5km), and the period from 1982 to 2012 was selected for this study. The daily 255 

streamflow data at the outlet of the selected calibration catchments were obtained from the 256 

Victorian Water Resources Warehouse (http://data.water.vic.gov.au/monitoring.htm). The 257 

missed streamflow data were filled by regressing between neighbouring catchments. The 258 

elevation data were collected from the GEODATA 9 Second Digital Elevation Model (DEM-259 
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9S) Version 3 (Geoscience Australia, 2008). The elevation data were resampled to a 260 

resolution of 0.05° × 0.05° using the spatial average. The land cover input data were derived 261 

from the National Dynamic Land Cover Dataset which provides a land cover map for the 262 

whole of Australia at a resolution of 0.00235° × 0.00235° (approximately 250m × 250m) and 263 

can be accessed at (http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_71071). 264 

LAI data were collected from the Global Land Surface Satellite (GLASS) product which is 265 

available for download from Beijing Normal University (http://www.bnu-datacenter.com). 266 

The soil parameters in the VIC model running resolution were derived from the five minute 267 

resolution Food and Agriculture Organization dataset (FAO, 1995). The root distribution in 268 

three soil layers was derived from the global ecosystem root distribution dataset (Schenk and 269 

Jackson, 2002). 270 

2.2 Applying multiple GCMs and multiple emission scenarios 271 

Outputs from many climate models from the Coupled Model Inter-comparison Project Phase 272 

5 (CMIP5) (Taylor et al., 2012) are used as input to the hydrological model. CMIP5 contains 273 

model runs for four representative concentration pathways (RCPs), which provide radiative 274 

forcing scenarios over the 21
st
 century (Moss et al., 2010; Vuuren et al., 2011). In this study 275 

two emission scenarios were chosen: a midrange mitigation scenario, referred to as RCP4.5 276 

and a high emissions scenario RCP8.5 (Meinshausen et al., 2011). RCP4.5 results in a 277 

radiative forcing value of 4.5 Wm
-2

 at the end of the 21
st 

century relative to the preindustrial 278 

value, while RCP8.5 provides a radiative forcing increase throughout the 21
st
 century to a 279 

maximum of 8.5 Wm
-2

 at the end of the century. 280 

CMIP5 Global Climate Model (GCM) data were obtained from (http://climexp.knmi.nl 281 

accessed 28 February 2014). These data were re-sampled to a common grid resolution of 2.5° 282 

since each GCM has a different spatial resolution (some are the same, but most are different). 283 

A total of 38 RCP4.5 and RCP8.5 runs from 15 different GCM models have been used in this 284 

study to include the possible uncertainty among climate models. For each of the 38 runs, 285 

daily precipitation, minimum and maximum temperature data were collected for three 286 

periods, 1981–2010 (historical run), 2021–2050 and 2071–2100 (future runs). An assessment 287 

of the ability of the CMIP5 runs to reproduce the observed base line seasonality of 288 

precipitation, minimum and maximum temperature is shown in Figure 2. The seasonality in 289 

precipitation and temperature were well captured by most CMIP5 runs with biases which 290 

require correction. 291 
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Low spatial resolution GCM outputs require downscaling for application in catchment 292 

hydrology studies. Here the ‘delta-change’ statistical downscaling technique was used to 293 

downscale and bias-correct the GCM outputs (Fowler et al., 2007). Delta-change was 294 

selected due to its low computational intensiveness and easy applicability to a range of 295 

GCMs. We acknowledge the limitations of this method include an assumption of stationarity 296 

in change factors, climate feedbacks are not incorporated and an inability to capture changes 297 

in extreme events and year to year variability. Dynamic downscaling, which solves some of 298 

these problems, was not used as it has high computational demand and is not readily available 299 

for a range of GCM runs and scenarios (Fowler et al., 2007). A simple statistical downscaling 300 

method was appropriate for this study as we were interested in the impact of including 301 

climate induced LAI change on the runoff results. In the study area, the monthly LAI is 302 

strongly related to three month and/or nine month moving average moisture state 303 

(precipitation minus reference potential evapotranspiration) (Tesemma et al., 2014). 304 

Therefore, so long as the precipitation is consistent between the two runs we can assess the 305 

importance of the change in LAI representation between model runs. It has been suggested 306 

that extreme precipitation might change differently to mean precipitation under climate 307 

change (Harrold et al., 2005) and the delta-change method does not capture this. Nevertheless 308 

delta-change was used as this study concentrates on average runoff which is strongly linked 309 

to overall catchment wetness, rather than floods which are linked to a combination of 310 

catchment wetness and extreme precipitation. Hence consideration of extreme precipitation 311 

events is less important in this study. 312 

Statistical downscaling was applied to each of the GCM outputs and emission scenarios. 313 

Since the study area is covered by four GCM grid cells, the area weighted average 314 

precipitation, minimum and maximum temperatures of the GCM grid cells covering the study 315 

area were computed. The area weighted average values were then statistically downscaled 316 

using the delta change approach. Delta changes were calculated separately for each of the 12 317 

months. For temperatures the delta changes were calculated using  318 

∆��j� = T	
��
�j� −  T������
��j�                                                                                 �1� 

where ΔT(j) is the delta change in the 30-year mean monthly minimum or maximum 319 

temperature as simulated by the climate model for the future period and RCP of interest 320 

(2021–2050 or 2071–2100, RCP4.5 or RCP8.5), T������j�, relative to the mean for the 321 

baseline period (1981–2010) climate model simulation,  T������
��j�. j represents the month. 322 
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ΔT(j) is then applied to the daily baseline (1980–2010) observations, Tobs(j,i), for each pixel of 323 

the climate gridded data (which is the same as the VIC model grid pixels) to obtain the 324 

statistically downscaled minimum or maximum daily temperature, TΔ�j, i� for month j and 325 

day i. 326 

T∆�j, i� = ��� �j, i� + ∆��j�                                                                                           �2� 

For precipitation, the delta changes value is computed as a proportional change rather than a 327 

shift: 328 

∆	�j� = P	
��
�j� 
P������
��j�                                                                                                       �3� 

and then applied to the observations using: 329 

  P∆�j, i� = P����j, i� × ∆	�j�                                                                                         �4� 

Here ΔP(j) is the delta change in 30-year mean monthly precipitation as simulated by the 330 

climate model P	
��
�j� for two future periods (2021–2050 and 2071–2100) relative to the 331 

baseline simulation P������
��j�; PΔ�j, i� is the statistically downscaled daily precipitation for 332 

the projected future climate change scenario for month j and day i, Pobs(j, i) is observed daily 333 

precipitation for the historical period (1981–2010) for month j and day i for each of the 334 

precipitation pixel of the gridded climate data. The delta change approach maintains a similar 335 

(but shifted or scaled) spatial variation of temperature and precipitation as that in the 336 

historical observed gridded data. The daily pattern of weather variation and the relationships 337 

between the various weather variables are also maintained. Because historic weather data 338 

provides the basis for the temporal patterns, the well-recognized issue of “GCM drizzle” is 339 

eliminated. The delta change method also corrects for differences between the mean elevation 340 

of the four GCM grid cells by scaling up or down the historical spatial variation of 341 

temperature and precipitation across the catchment.  342 

2.3 Relationship between LAI and climate variables 343 

Tesemma et al. (2014) showed that monthly LAI of each vegetation type was closely related 344 

to changes in moisture state (precipitation minus reference evapotranspiration) of six-monthly 345 

moving averages for crop and pasture, and nine-monthly moving averages for trees. 346 

Differences in LAI response for the same change in moisture state among the three vegetation 347 

types were also observed as differences in model parameters of the LAI–Climate relationship. 348 

Tesemma et al. (2014) provides details on the derivation of the LAI–Climate relationship for 349 
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the Goulburn-Broken Catchment. The three LAI models developed for crop, pasture and tree 350 

are given below. 351 

LAI =  
*+
+,
++
- ./0.23/0

.4�5	678�979:;�7 <=>.?===?@.=ABC DE   ,                            if Crop
..0.K2LM

.4�5	678�979:;�7 ?N.A<=CA@.O?OC DE   ,                           if Pasture
..2.KUL.

.4�5	678�979:;�V =C.<O?>NA.>?O< DE    ,                             if Tree
                                           (5) 352 

Where LAI is the leaf area index of the cover type (tree/pasture/crop), P is the six month 353 

moving average of precipitation for crop and pasture, and the nine month moving average for 354 

trees, and PET is the respective reference evapotranspiration. 355 

The monthly LAI was then simulated for both historical and future climate scenarios using 356 

the LAI–Climate model (Eq. 5) driven with the appropriate climate inputs. In this study 357 

monthly average reference potential evapotranspiration (PET, mm day
-1

) was estimated using 358 

the standard FAO Penman-Monteith daily computations (Allen et al., 1998) and then 359 

aggregating to monthly values. The reference potential evapotranspiration for future climate 360 

scenarios was computed using the projected minimum and maximum temperatures,while 361 

incoming shortwave radiation and vapour pressure were derived from daily temperature 362 

range using the algorithms of Kimball et al. (1997) and Thornton and Running (1999). The 363 

wind speed was kept the same as the historical observations. A significant literature exists 364 

(see discussion in Supplementary Material of McMahon et al., 2015) around the issue of 365 

using temperature to drive future changes in reference potential evapotranspiration (PET). 366 

We acknowledge this assumption and note that it is likely to have limited impact on our 367 

runoff results in the mainly water limited catchments modelled here. The historical or future 368 

precipitation was used in Eq. 5 according to the scenario being modelled. Potential LAI 369 

variations in the baseline years (1981–2010) and the two future periods (2021–2050 and 370 

2071–2100), for each of the two future emission scenarios, were simulated using the 371 

downscaled outputs from the 38 CMIP5 runs of the 15 GCMs, as input into the LAI–Climate 372 

model (Eq.5). The uncertainty ranges in modelled LAI that come from the difference in 373 

climate input were determined by using the downscaled 38 CMIP5 runs individually in Eq. 5. 374 
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2.4 Hydrological model and experimental design 375 

In this study we used the three layers VIC model (version 4.1.2g) to simulate streamflow. The 376 

VIC macroscale model is a spatially distributed conceptual hydrological model that balances 377 

both water and energy budgets over a grid cell. It simulates soil moisture, evapotranspiration, 378 

snow pack, runoff, baseflow and other hydrologic properties at daily or sub-daily time steps 379 

by solving both the governing water and energy balance equations (Liang et al., 1996). VIC 380 

estimates infiltration and runoff using the variable infiltration curve that represents the sub-381 

grid spatial variability in soil moisture capacity (Liang et al., 1994; Zhao et al., 1995) and 382 

Penman-Monteith for potential evapotranspiration computation. The ability of the model to 383 

incorporate spatial representation of climate and inputs of soil, vegetation and other 384 

landscape properties make it applicable for climate and land use / land cover change impact 385 

studies. The VIC model has been widely used for a number of hydrological studies in 386 

different climatic zones across the globe (Zhao et al., 2012a; Zhao et al., 2012b; Cuo et al., 387 

2013).  388 

The seven most sensitive model parameters (b, Ds, Ws, Dsmax, d2, d3 and exp) in the VIC 389 

model (Demaria et al., 2007) were calibrated against observed streamflow from thirteen 390 

selected sub-catchments with different climate and land cover composition that are 391 

representative of the main runoff generating regions of the Goulburn-Broken catchment. The 392 

model parameters were calibrated separately for each selected unregulated sub-catchment and 393 

applied uniformly within a sub-catchment (Figure 1). The Multi-Objective Complex 394 

Evolution (MOCOM-UA) algorithm (Yapo et al., 1998) was used to calibrate the model. This 395 

algorithm was implemented on each of the selected catchments separately to calibrate the 396 

model against the observed runoff. The model was first calibrated for the entire period 397 

(1982–2012), then using the calibrated parameters as initial guesses, the model was re-398 

calibrated for the period 1982–1997 and evaluated for the period 1998–2012. During the 399 

calibration, VIC ran on a daily basis but the objective function was calculated on a monthly 400 

basis. Three criteria (objective functions) were used to evaluate the model’s performance 401 

during calibration: the Nash–Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) between 402 

observed and simulated flow, the logarithm of Nash–Sutcliffe efficiency (logNSE) which 403 

penalizes errors at peak flow, and the percentage bias from the observed mean flow (PBIAS). 404 

VIC model was run at daily time step and input data with a 5km by 5km spatial grid 405 

resolution for 30 years from January 1981 to December 2010 to produce the baseline and 406 

experiment runs. Two model experiments were run: the first experiment considered the recent 407 
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historical climate (Millennium Drought, 1997–2009) and LAI estimates using the simple 408 

LAI-Climate model against the relatively normal historical climate period (1983–1995). The 409 

second experiment considered the future climate from 38 CMIP5 runs and corresponding LAI 410 

derivatives for two periods (2021–2050 and 2071–2100), and two emission scenarios RCP4.5 411 

and RCP8.5 with respect to the historical period (1981–2010). Both sets of simulations were 412 

performed over the thirteen calibrated study catchments within the Goulburn-Broken 413 

Catchment (Figure 1b). A flow chart of the modelling method is given in (Figure 3). 414 

To identify the effect on mean annual runoff of allowing LAI to respond to a changing 415 

climate, compared with LAI not responding, we used the following steps: (1) the calibrated 416 

model was forced with inputs of historical climate data and LAI data modelled from using the 417 

historical climate data (1981–2010) to establish baseline streamflow estimates; (2) the model 418 

was forced with projected future climate inputs and corresponding modelled LAI to produce 419 

projected streamflow for future scenarios; (3) the future climates were input along with the 420 

LAI data used in step 1 to produce projected streamflow that ignore project LAI changes . 421 

The difference in mean annual runoff between steps 3 and 1 represents the climate effect (CC 422 

effect); on mean annual runoff of only Precipitation and Temperature. Whereas the difference 423 

in mean annual runoff between steps 2 and 1 represents the net effect (CC + LAI effect); on 424 

mean annual runoff of allowing LAI to respond to a changing climate in addition to the direct 425 

climate forcing (Precipitation and Temperature). The difference in mean annual runoff 426 

between steps 2 and 3 represents the component of the runoff response related to climate-427 

induced changes in LAI. For the millennium drought (1997–2009) the above two changes in 428 

mean annual runoff were estimated in a similar fashion taking (1983–1995) time period as 429 

relatively normal period. The percentage change of mean annual runoff against the historical 430 

mean annual runoff for climate change effect (Qclim) (Eq. 6), climate change and LAI effect 431 

(Qnet) (Eq. 7); and the percentage of CC effect offset by LAI effect (Qlai) (Eq. 8) were 432 

estimated as follows:  433 

WXYZ[ =  \.UU ∗ � ^_`abcd`efg hijklbldm eg`nfbm o ^_`abcd`efg hij_`abcd`efg eg`nfbm  �
^_`abcd`efg hij_`abcd`efg eg`nfbm p                                                     (6) 434 

W�qr =  s.UU ∗ � ^klbldm hijklbldm eg`nfbm o ^_`abcd`efg hij_`abcd`efg eg`nfbm   �
^_`abcd`efg hij_`abcd`efg eg`nfbm t                                                       (7) 435 

WYuZ =  v.UU ∗ � ^eg`no ^wmb �^wmb x                                                                                         (8) 436 
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3 Results  437 

This section provides results from the modelling exercises. First the model calibration and 438 

evaluation are discussed in section 3.1. The change in climate variables during: (1) the recent 439 

observed prolonged drought; and (2) future climate change projections for the study 440 

catchments are presented in section 3.2. The impact on both LAI (section 3.3) and catchment 441 

streamflow (section 3.4) of changes in climate input during the Millennium Drought and 442 

future climate change projections are also provided. These results provide readers with a 443 

comparison of the anticipated future change in climate with the recently observed drought. 444 

3.1 Model calibration and evaluation results 445 

The calibrated model parameters and model performance during calibration (1982–1997) and 446 

evaluation (1998–2012) periods for each sub-catchment are listed in Table 1. Most of the 447 

calibrated catchments have NSE of more than 70% during both calibration and evaluation 448 

periods (Table 1). In most of the selected catchments the simulated runoff for both calibration 449 

and evaluation periods met the “satisfactory” criteria according to (Moriasi et al., 2007), with 450 

NSE > 50% and the percentage absolute bias is generally less than 25% during calibration 451 

and evaluation periods. Although VIC captured the temporal variability of runoff well, there 452 

were some systematic biases in the runoff simulated. The model overestimates peak flow in a 453 

few cases and underestimates low flow in most of the catchments. The sources of these biases 454 

need to be investigated in order to understand the performance of the model. To do this, the 455 

estimated monthly biases are plotted against the monthly climate inputs: precipitation, 456 

temperature and LAI (not shown here). The calibrated catchments showed no relationship 457 

between AWAP gridded climate data and simulated runoff biases. The biases are likely 458 

related to the model structure (Kalma et al., 1995) rather than the model inputs.  459 

3.2 Change in the climate variables from change in climate 460 

3.2.1 Millennium drought 461 

The Millennium Drought brought a decline in the mean annual precipitation over the selected 462 

catchments which ranged from 17.9% to 24.1%, with a mean of 20.9% when compared with 463 

the period (1983–1995). It also brought an increase in mean annual temperature which ranged 464 

from 0.2° C to 0.4° C, with an average of 0.3° C as compared to the temperature in the period 465 

(1983–1995). All thirteen study catchments experienced a similar change in both 466 

precipitation and temperature (Table 2).  467 
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3.2.2 Future climate 468 

Averaged over all 38 CMIP5 runs, the mean annual precipitation in 2021–2050 over the 469 

selected catchments is projected to decline by 2.9% and 3.7%, relative to the historical period 470 

1981–2010, under the RCP4.5 and RCP8.5 scenarios respectively. By the end of the century 471 

(2071–2100) mean annual precipitation is projected to decline by 5% and 5.2% under the 472 

RCP4.5 and RCP8.5 scenarios respectively (Table 3). The mean annual temperature is also 473 

projected to increase in both future periods and emission scenarios (Table 3). 474 

Most precipitation projections showed a shift towards drier climates in all seasons except 475 

summer in both emission scenarios and periods. The variability in projected mean monthly 476 

precipitation among climate models indicates great uncertainty between GCMs (Figure 4a-d). 477 

The mean monthly temperature of all climate models clearly deviated from the baseline 478 

period (1981-2010), underlining the consistent change signal between GCMs (Figure 4e-h). 479 

The median of the 38 CMIP5 mean monthly precipitation data over the Goulburn-Broken 480 

Catchment in the RCP4.5 emission scenario showed declines in most of the months. The 481 

decreases were up to 6% in 2021–2050 (Figure 4a) and up to 11% in 2071–2100 (Figure 4c). 482 

Similarly, under the RCP8.5 emission scenario the median monthly precipitation, other than 483 

in January and February for both periods, showed decreases up to 7% in 2021–2050 (Figure 484 

4b) and up to 18% in 2071–2100 (Figure 4d). The simulations for January and February 485 

showed median increases of up to 4% and 5% respectively in 2071–2100 from the historical 486 

baseline. Some climate models projected very wet future climates while others projected 487 

relatively dry climates. There are relatively high uncertainties in the projected mean monthly 488 

precipitation results in summer when compared with the mean monthly precipitation in 489 

winter among the climates models. 490 

In contrast to precipitation the projected mean monthly temperatures from all CMIP5 runs 491 

showed increases, the median of the mean monthly temperatures of all CMIP5 38 runs 492 

increased by about 0.8° C in winter and 1° C in summer in 2021–2050 (Figure 4e), and by 493 

about 1.3° C in winter and 1.8° C in summer in 2071–2100 (Figure 4g) under the RCP4.5 494 

scenario. Under the RCP8.5 emission scenario the temperatures increased by 1° C in winter 495 

and by 1.4° C in summer during 2021–2050 (Figure 4f) and by 2° C and 3° C in winter and 496 

summer respectively by the end of the 21
st
 century (Figure 4h). After precipitation the second 497 

variable that drives water availability is potential evapotranspiration. Here PET is expected to 498 

increase among all CMIP5 runs as it is being driven solely by changes in temperature given 499 

that actual vapour pressure and solar radiation was also simulated as a function of 500 
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temperature. In the near future period (2021–2050) the median of all CMIP5 mean monthly 501 

reference evapotranspiration projections increase by 5% to 13% in both emission scenarios, 502 

with the largest change in winter and the smallest in summer. In the future period of 2071–503 

2100, the mean monthly reference evapotranspiration increased by 7% in summer and 25% in 504 

winter under RCP4.5 emission scenarios, and by 10% in summer and 28% in winter under 505 

the RCP8.5 emission scenarios.  506 

3.3 Impact on LAI from change in climate 507 

3.3.1 Millennium drought 508 

The effects of the Millennium Drought (1997–2009) on modelled crop LAI were very severe 509 

with reductions in mean annual LAI between catchments of 38.1% to 48.0%, with a mean of 510 

42.7% (Table 2). The reduction in LAI of pasture was between 16.7% and 21.6% across the 511 

thirteen selected catchments with a spatial average of 19.4% (Table 2). The LAI of trees 512 

responded less than crop and pasture, and reductions were in the range 5.7% to 14.0%, with a 513 

spatial mean of 9.2% (Table 2). A significant reduction in each cover type also brought an 514 

overall decline in areal weighted sum of all land cover types LAI in the selected catchments 515 

which ranged from 5.8% to 17.9% (Table 2), which is similar to the reduction for trees, 516 

where tree is the dominant land cover type. 517 

3.3.2 Future climate 518 

The changes in mean monthly LAI of crop, pasture and trees averaged over the whole 519 

Goulburn-Broken Catchment under future climates are vary between the CMIP5 runs and 520 

global warming scenarios. Averaged over all 38 CMIP5 runs, the near future (2021–2050) 521 

results for the study catchment showed that the mean annual LAI of cropland, pasture and 522 

trees declined up to 13%, 6.7% and 5.4% under the RCP4.5 scenarios, and by up to 16%, 8% 523 

and 6.6% under the RCP8.5 scenario (Table 3). A further reduction in the mean annual LAI 524 

of each land cover was simulated by the end of the 21
st
 century for both emission scenarios 525 

(Table 3). 526 

The effect of projected climate change on monthly total LAI (area weighted sum of all land 527 

cover types LAI) for the study catchments is given in (Figure 5). The median of the 38 528 

CMIP5 runs simulated mean monthly LAI showed declines in all three land cover types. 529 

Despite similar percentage changes in mean monthly precipitation and temperature forcing, 530 

the mean monthly total LAI across the catchment shows the largest decline in autumn and the 531 

smallest decline in spring during both future periods and scenarios. This difference reflects 532 
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the seasonality of moisture availability influencing plant growth. Based on the median of the 533 

38 CMIP5 runs, the predicted decline in the mean monthly LAI for crop, pasture and trees 534 

was 18.1%, 10.3% and 7.9% respectively in the period 2021–2050 (Figure 5a, e, i) and 535 

27.7%, 16.6% and 12.8% respectively in the period 2071–2100 under RCP4.5 (Figure 5c, g, 536 

k). Larger reductions were simulated under the RCP8.5 emission scenario with 21.4%, 12.7% 537 

and 9.5% in the period 2021–2050 (Figure 5b, f, j) and 36.5%, 22.5% and 17.9% respectively 538 

for crop, pasture and tree in the period 2071–2100 (Figure 5d, h, l).  539 

3.4 Impacts on runoff from change in climate 540 

3.4.1 Millennium drought 541 

The impact of the Millennium Drought on streamflow due to changes in precipitation and 542 

temperature alone and changes in precipitation and temperature and modelled LAI were 543 

simulated using the VIC model. The simulated reductions in mean annual streamflow during 544 

the Millennium Drought (1997–2009) as compared with the relatively normal period (1983–545 

1995) across the selected catchments due to the change in climate alone ranged from 29.7% 546 

to 66.3% with a mean of 50% (Table 2). The reductions in LAI resulting from the decline in 547 

precipitation and increase in temperature increased mean annual streamflow by between 1.3% 548 

and 10.2% relative to the direct climate effect above (Table 2 and Figure 6).  549 

3.4.2 Future climate 550 

The average of the 38 CMIP5 runs under the RCP4.5 scenario produced declines in mean 551 

annual runoff due to the change in precipitation and temperature alone (Qclim) that ranged 552 

from 6.8% to 20.3% in the period 2021–2050, and 11.5% to 30.1% for the period 2071–2100 553 

(Table 3 and Figure 7). For the higher emission scenario (RCP8.5), the reductions were a 554 

little larger-ranging from 8.3% to 23.3% in 2021–2050 and from 14.5% to 35.1% by the end 555 

the 21
st
 century (Table 3 and Figure 6). The reductions in runoff due to climate are offset 556 

through the LAI effect (Qlai) that ranged from 2.3% to 27.7% and from 2.3% to 23.1% in the 557 

near and far future periods respectively under the RCP4.5 emission scenario. Similar offsets 558 

of 2.5% to 25.9% and 2.6% to 24.2% in the near and far future periods respectively were also 559 

found under the RCP8.5 emission scenario (Table 3 and Figure 7).  560 

The differences between GCMs in terms of the net climate change impacts (CC + LAI) on 561 

mean annual runoff and the LAI contribution to that effect are shown in Figure 8 and Figure 562 

9 respectively. While large uncertainty exists among the 38 CMIP5 runs, the median between 563 

the models showed declines in the net climate change (CC + LAI) projections of mean annual 564 
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runoff in all catchments (Figure 8). The median decline in the mean annual runoff due to the 565 

net climate change impact was 15.3% and 26.7% in 2021–2050 and 2071–2100 respectively, 566 

under RCP4.5. A larger decline of 21.6% and 31.8% in 2021–2050 and 2071–2100 567 

respectively occurred under RCP8.5 (Figure 8). The simulated LAI effects of the climate 568 

change showed smaller variation between GCMs than the net climate change (CC + LAI) 569 

effect on mean annual runoff. The LAI effect works to offset the reduction in mean annual 570 

runoff resulting from lower precipitation and higher temperature. Figure 9 shows the 571 

magnitude of the LAI effect as a percentage of the magnitude of direct climate change effect 572 

(noting they work in opposite directions). The median of this across the 38 CMIP5 runs was 573 

up to 20%, depending on the month. The simulated LAI effect on mean annual runoff showed 574 

smaller variation between GCMs than the net climate change (CC + LAI) effect on mean 575 

annual runoff.  576 

The direct climate change (CC) effect, the LAI effect of climate change and the net climate 577 

change (CC+LAI) effect on the mean monthly runoff for the selected catchments are given: 578 

Catchments 6 (Figure 10a, d, g, j), Catchment 10 (Figure 10b, e, h , k), and Catchment 11 579 

(Figure 10c, f, i , l). Catchments 6 and 10 are located in a high annual precipitation zone with 580 

trees as the dominant vegetation cover; whereas Catchment 11 is covered mostly with pasture 581 

and has relatively lower annual precipitation than Catchments 6 and 10. Depending on the 582 

month, for the 38 CMIP5 runs in 2021–2050 the median reduction in mean monthly runoff 583 

(Qnet) were up to 10%, 24%, and 34% for catchment 6, 10, and 11, respectively for both the 584 

RCP4.5 and RCP8.5 scenarios (Figure 10). Further reductions projected by the end of the 21
st
 585 

century were up to 17%, 37% and 52% for catchments 6, 10, and 11, respectively, under both 586 

scenarios (Figure 10). Catchment 6 showed the lowest seasonality in the climate change 587 

effects for both emission scenarios and the LAI-related effects of climate change also showed 588 

the smallest seasonal variation. Catchment 11 runoff was the most impacted by projected 589 

climate changes and had the greatest benefit from LAI effects of climate change under both 590 

emission scenarios and future periods. The seasonal pattern of the LAI effect of climate 591 

change is similar under both RCP scenarios. The magnitude of this effect is relatively higher 592 

for drier projected future climates.   593 
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4 Discussion and Conclusion 594 

This study investigated the importance of incorporating the relationship between changing 595 

climate, in terms of precipitation and temperature, and vegetation LAI into a hydrological 596 

model to estimate changes in mean monthly and mean annual runoff under changing climatic 597 

conditions in the Goulburn-Broken Catchment, south-eastern Australia. A combination of 598 

VIC hydrological simulations with a simple model that relates climatic fluctuations with LAI 599 

for three different vegetation types revealed that 21
st
 century climate change impacts on LAI 600 

significantly influence the projected runoff in the study catchments. LAIs of forest, pasture 601 

and crop were predicted to decline in the 21
st
 century due to reductions in precipitation and 602 

increases in temperature. 603 

Reduced LAI in response to a drier and warmer climate would reduce transpiration from 604 

vegetation and evaporative losses from canopy interception, which leaves the soil relatively 605 

wetter than if LAI response to climate was not included. This is important for runoff 606 

generation process as it promotes saturation excess runoff and subsurface flow, which are the 607 

dominant cause of runoff generation in the study region (Western et al., 1999). Previous 608 

studies in the region (Chiew et al., 2009; Chiew et al., 2011; Teng et al., 2012a; Teng et al., 609 

2012b) concluded that runoff would decrease due to increases in evaporative demand and 610 

decreases in precipitation as a result of ongoing warming in the 21
st
 century. However, the 611 

relationship between LAI and climate fluctuations was not taken into account in their 612 

modelling experiments. Therefore, in these studies the LAI effect is ignored and there is 613 

consequent overestimation of the runoff decline in the range of 2.3% to 27.7% (Figure 6 and 614 

Figure 7). 615 

Projections of climate-induced vegetation dynamics and their hydrological impacts are 616 

influenced by various uncertainties that arise from using downscaled GCM outputs as inputs 617 

to the hydrologic model. These include large uncertainties in projections for precipitation 618 

from the various CMIP5 simulations (Teng et al., 2012b). In addition, the method used to 619 

downscale the GCM outputs really only captures changes the mean; however, any change in 620 

variability, which could have an effect on the projected future runoff, is ignored. The 621 

ensemble of 38 CMIP5 simulations from 15 GCMs was used to determine the range of 622 

uncertainty between GCMs. The results showed that the range of future climate projections 623 

from the various GCMs is wide, one climate model could project a very wet future climate 624 

while another a relatively dry climate. This suggests future analyses in other catchments 625 

should apply downscaled climate change scenarios from several CMIP5 runs from a range of 626 
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GCM models to the study area to get a sense of the possible range of climate change impact 627 

on both LAI and streamflow.  628 

The results of this study illustrate that reduction of future precipitation and increase in mean 629 

temperature lead to reduction of runoff in a general sense. However, if the hydrologic model 630 

incorporated dynamic LAI information, as a function of changing climate, it would reduce 631 

the impact on runoff that comes from the climate alone. Reduction of LAI due to reduction of 632 

precipitation and increase in temperature decreases the evapotranspiration from vegetation 633 

and leaves the soil relatively wetter than if climate-induced changes in LAI were not 634 

represented in the modeling. The higher catchment moisture contents slightly increased 635 

runoff and partially offset the reduction in runoff due to changes in climate. 636 

In interpreting the results presented here it is important to examine the assumptions that were 637 

made and the extent to which the results are dependent on those assumptions. Runoff 638 

processes can also triggered by other precipitation characteristics (intensity, duration, inter-639 

storm duration) which have not been considered in this study. If inter-storm durations are 640 

expected to increase, this will alter the hydrologic fluxes even if the mean precipitation is 641 

maintained. However, the Climate–LAI model used in the study area (Tesemma et al., 2014) 642 

is related mainly to precipitation and potential evapotranspiration during the previous 6 to 9 643 

months. This limits the impact of changes in extreme precipitation characteristics in terms of 644 

modelling the Climate–LAI relationship. In order to satisfy the aim of this paper, which is to 645 

assess the impact of allowing LAI to respond to a changing climate, so long as the 646 

precipitation series is consistent between the runs with and without LAI responding to 647 

climate, we can assess the importance of the change in LAI on runoff simulation. Hence, in 648 

this study consideration of changing extreme precipitation events is less important; although 649 

it would be important for studies with the objective of predicting future floods or reservoir 650 

management. 651 

Another assumption of this study was that the impact on runoff of rising atmospheric CO2 652 

concentrations, via changes in LAI and stomatal conductance, is small relative to the 653 

moisture availability effects. Therefore, here we assumed LAI responded only to precipitation 654 

and PET changes, not changes in CO2. Changes in atmospheric CO2 concentrations could 655 

affect vegetation through increasing LAI and narrowing stomata (Ainsworth and Rogers, 656 

2007; Ewert, 2004; Warren et al., 2011). However, increased LAI may be limited by the 657 

availability of nutrients, particularly nitrogen (Fernández-Martínez et al., 2014; Körner, 658 

2006). Most of the results on this effect are derived from point experiments which could not 659 
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be extrapolated to the catchment scale where there is a complex interaction between soil, 660 

vegetation and climate. Increasing atmospheric CO2 could also have two other effects on 661 

vegetation dynamics. First, biomass allocation may shift towards more above-ground plant 662 

structure (Obrist and Arnone, 2003), which implies more canopy leaf than active rooting area. 663 

This change could influence the water balance in either direction by increasing 664 

evapotranspiration due to interception losses or by decreasing evapotranspiration through 665 

limiting plant water uptake. Second, rising atmospheric CO2 may favor C3 species over C4 666 

species, which could lead to more woody plants compared to some grass species (Yu et al., 667 

2014). This could influence the water balance by increasing evapotranspiration and 668 

decreasing runoff. In addition at the canopy scale, the evapotranspiration effect of increased 669 

LAI can be masked by shading among leaves, soil cover and raised canopy humidity 670 

(Hikosaka et al., 2005; Bunce, 2004). A study that considered both effects suggested that the 671 

fertilization effect of rising CO2 is larger than the stomatal pore reduction effect, and the net 672 

effect is decreases in runoff (Piao et al., 2007). These two effects of increasing atmospheric 673 

CO2 concentrations on vegetation work in opposite directions from a water balance 674 

perspective and may offset each other if they are close in magnitude (Gerten et al., 2008). In 675 

south-east Australia, it is known that vegetation growth is highly controlled by precipitation 676 

(water supply), and is less controlled by temperature and radiation (Nemani et al., 2003). 677 

Hence, most vegetation dynamics can be explained by variation in climate, which formed the 678 

basis of the LAI–Climate model developed in Tesemma et al. (2014). We acknowledge 679 

changing CO2 levels could influence vegetation growth and water use efficiency and hence 680 

runoff, but we expect the impact on runoff to be smaller (Huntington, 2008; Uddling et al., 681 

2008) than that due to changes in moisture state. Hence, exclusion of the fertilization and 682 

stomata suppression effects of rising atmospheric CO2 on vegetation may not change the 683 

results significantly. However, the impact on runoff of CO2 fertilization at the catchment 684 

scale remains an important area of on-going research. 685 

A further assumption was that any effect of climate change on the spatial distribution of plant 686 

functional type (PFT) was ignored. That is the same spatial distribution of vegetation was 687 

used but with changed LAI. We acknowledge that changing climate (i.e increase in 688 

temperature) may shift the spatial distribution of PFTs, which has been reported in 689 

Mediterranean climate region (eg Lenihan et al., 2003; Crimmins et al., 2011). However, in 690 

our study area PFTs are largely determined by historical land use change (human activities) 691 

such as forest clearing for agriculture, rather than natural responses of vegetation to changed 692 
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climatic conditions. Therefore, future changes in the spatial distribution of agricultural crops 693 

and pastures are difficult to project as they are not solely due to climatic changes. In the 694 

forested areas, it is likely that issues that change water use such as changes in fire regime 695 

(Heath et al., 2014) and forest age (Cornish and Vertessy, 2001) would dominate over 696 

differences between species. Eucalyptus species already occupy high-altitude areas of the 697 

study catchment, which leaves little room for PFT changes due to up-slope migration in a 698 

warming climate. Most over-story trees in our study area are Eucalypts and while some 699 

movement of boundaries between dominant species may be expected, water use 700 

characteristics are likely to be relatively similar and there is insufficient information to 701 

represent species specific details of either migration or water use. Including these effects in 702 

the model may improve the results, but there is insufficient understanding at the granularity 703 

required to do so at present.  704 

In summary, in this paper we use the VIC hydrological model to assess the impact on mean 705 

annual streamflow of ignoring climate induced changes in LAI for two changing climatic 706 

situations: (1) the recently observed “Millennium Drought”; and (2) for downscaled projected 707 

future climate change scenarios from 38 CMIP5 runs in the Goulburn-Broken catchment, 708 

Australia. In the Millennium Drought (1997–2009) not modelling the response of LAI to 709 

changing climatic variables led to further reduction in mean annual runoff, relative to the pre-710 

drought period (1983–1995), of between 1.3% and 10.2% relative to modelling the dynamic 711 

response of LAI to decreased precipitation and increased temperature (Table 2 and Figure 6). 712 

For projected climate change under the RCP4.5 emission scenario ignoring the LAI response 713 

to changing climate could lead to a further reduction in mean annual runoff of between 2.3% 714 

and 27.7%, relative to the baseline period (1981–2010), in the near-term (2021–2050) and 715 

2.3% to 23.1% later in the century (2071–2100) relative to modelling the dynamic response 716 

of LAI to precipitation and temperature changes. Similar results (near-term 2.5% to 25.9% 717 

and end of century 2.6% to 24.2%) were found for climate change under the RCP8.5 718 

emission scenario (Table 3 and Figure 7). Due to the strong relationship between climatic 719 

variation and LAI, the Climate–LAI interaction should be included in hydrological models 720 

for improved climate change impact assessments and modelling under changing climatic 721 

conditions, particularly in arid and semi-arid regions where vegetation is strongly influenced 722 

by climate.  723 
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Table 1 Calibrated model parameters and model performance during calibration (1982–1997) 1004 

and evaluation (1998–2012) periods. 1005 

ID River and station name Model parameters Calibration (1982-1997) Evaluation (1998-2012) 

  b Ds Ws d2 d3 Dsmax exp 

Nash 

(%) 

logNash 

(%) 

Bias 

(%) 

Nash 

(%) 

logNash 

(%) 

Bias 

(%) 

1 Moonee Creek @ Lima 0.149 0.598 0.170 1.99 0.47 0.13 2.98 82.7 80.2 2.2 86.1 78.1 8.0 

2 Delatite River @ Tonga Bridge 0.062 0.014 0.755 0.81 1.88 0.30 2.95 82.7 91.9 6.4 84.2 89.4 -5.4 

3 Howqua River @ Glan Esk 0.244 0.291 0.006 1.65 0.28 11.60 1.15 90.4 89.4 -2.5 89.3 90.3 -0.8 

4 Goulburn River @ Dohertys 0.206 0.891 0.035 1.43 0.45 22.01 1.42 95.9 91.0 2.2 92.4 90.8 -2.4 

5 Big river @ Jamieson 0.183 0.610 0.736 1.70 0.81 0.01 2.19 89.7 86.5 8.9 81.5 85.7 11.9 

6 Rubicon River @ Rubicon 0.216 0.059 0.200 0.52 1.77 19.29 1.28 93.8 94.9 -2.4 87.4 92.0 3.4 

7 Acheron River @ Taggerty 0.168 0.030 0.293 1.97 1.84 0.16 2.59 82.6 85.8 9.5 82.4 84.4 -2.4 

8 

Murrindindi River @ above 

colwells 0.130 0.801 0.297 1.97 1.89 1.11 2.67 68.9 62.8 14.6 79.7 84.7 3.9 

9 Yea river @ Devlins Bridge 0.072 0.428 0.646 1.93 1.27 0.05 2.99 79.8 78.3 26.4 68.0 69.3 34.1 

10 King Parrot Creek @ Flowerdale 0.071 0.041 0.665 0.71 1.95 0.73 2.87 61.5 66.1 45.8 73.0 62.6 41.1 

11 Sugarloaf Creek @ Ash Bridge 0.001 0.592 0.804 1.31 1.18 0.00 1.39 78.6 73.4 -3.5 59.0 40.0 127.5 

12 Hughes Creek @ Tarcombe road 0.043 0.215 0.514 1.04 1.88 0.07 3.20 82.5 89.3 9.2 62.7 58.9 39.2 

13 Home Creek @ Yarck 0.0004 0.415 0.524 0.66 1.91 0.01 2.97 81.7 87.1 -12.7 75.6 64.7 30.7 

 1006 

 1007 

Table 2. Vegetation type distributions for each catchment and changes in mean annual 1008 

precipitation, temperature, LAI and streamflow during the Millennium Drought (1997–2009) 1009 

relative to (1983–1995). 1010 

Catchments ID 

Variables* 1 2 3 4 5 6 7 8 9 10 11 12 13 

Crop cover (%) 0.6 1.0         1.5 1.2 1.2 

Pasture cover (%) 14.4 32.7 3.3 6.4 0.92 5.5 9.94 2.57 25.9 7.62 63.5 56.3 48.8 

Tree cover (%) 85.0 66.3 96.7 93.6 99.1 94.5 90.1 97.4 74.1 92.4 35 42.6 50.1 

P (%) -23.2 -23.6 -21.1 -18.0 -17.9 -21.0 -20.1 -20.1 -19.4 -21.7 -19.5 -22.6 -24.1 

T (0C) 0.2 0.3 0.3 0.4 0.4 0.3 0.3 0.2 0.3 0.2 0.3 0.3 0.3 

LAI crop (%) -44.2 -48.0         -38.1 -41.8 -41.4 

LAI pasture (%) -20.5 -21.6 -19.5 -16.9 -16.7 -18.7 -19.0 -19.1 -19.5 -19.7 -19.6 -20.2 -20.8 

LAI tree (%) -11.4 -10.3 -8.2 -6.6 -5.7 -5.9 -7.0 -6.3 -9.1 -9.2 -14.0 -12.5 -13.9 

LAI total (%) -12.9 -14.4 -8.6 -7.3 -5.8 -6.6 -8.2 -6.6 -11.8 -10.0 -17.9 -17.2 -17.6 

Qclim (%) -49.3 -61.5 -43.7 -39.1 -42.9 -29.7 -44.0 -41.2 -55.2 -57.1 -66.3 -61.8 -57.9 

Qnet (%) -48.0 -59.7 -42.8 -38.3 -42.3 -29.3 -43.2 -40.6 -53.3 -55.2 -61.4 -56.1 -53.2 

Qlai (%) 2.6 3.0 2.1 2.1 1.5 1.3 1.9 1.4 3.6 3.4 8.0 10.2 8.9 

* P (%) is the change in mean annual precipitation in percentage, T (0C) is the change in mean annual temperature in Degree Celsius, Qclim 1011 
indicates the climate effect on runoff, Qnet is the net effect of climate and LAI on runoff and Qlai is proportion of the climate effect (Qclim) 1012 
that is offset by the LAI effect.  1013 

  1014 
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Table 3. Impacts on mean annual precipitation, temperature, LAI and streamflow of projected 1015 

climate change averaged over 38 CMIP5 runs relative to (1981–2010). 1016 

 Catchments ID 

Periods Variables* 1 2 3 4 5 6 7 8 9 10 11 12 13 

 

 

 

 

2021-2050 

RCP4.5 

P (%) -2.9 -2.9 -2.9 -2.9 -2.9 -2.9 -2.9 -2.9 -2.9 -2.9 -2.9 -2.9 -2.9 

T (0C) 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 

LAI crop (%) -12.9 -13.0         -12.9 -13.0 -12.8 

LAI pasture (%) -5.9 -5.6 -5.4 -5.6 -5.3 -4.8 -5.4 -5.4 -6.1 -6.1 -6.7 -6.3 -6.3 

LAI tree (%) -3.9 -2.9 -2.5 -2.4 -2.0 -1.7 -2.1 -1.9 -3.0 -3.0 -5.4 -4.6 -4.8 

LAI total (%) -4.2 -3.9 -2.6 -2.6 -2.0 -1.8 -2.5 -1.9 -3.8 -3.2 -6.3 -5.6 -5.7 

Qclim (%) -12.3 -17.6 -11.4 -11.5 -13.5 -6.8 -12.4 -12.6 -17.4 -18.4 -20.3 -18.9 -14.2 

Qnet (%) -11.4 -16.3 -10.9 -11.1 -13.2 -6.6 -11.9 -12.2 -15.8 -17.0 -16.3 -14.8 -11.7 

Qlai (%) 7.9 8.0 4.6 3.6 2.3 3.0 4.2 3.3 10.1 8.2 24.5 27.7 21.4 

 

 

 

 

2021-2050 

RCP8.5 

P (%) -3.7 -3.7 -3.7 -3.7 -3.7 -3.7 -3.7 -3.7 -3.7 -3.7 -3.7 -3.7 -3.7 

T (0C) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 

LAI crop (%) -15.7 -15.7         -15.7 -15.7 -15.5 

LAI pasture (%) -7.2 -6.9 -6.7 -6.8 -6.5 -5.9 -6.6 -6.6 -7.4 -7.5 -8.1 -7.7 -7.7 

LAI tree (%) -4.8 -3.7 -3.1 -3.0 -2.5 -2.1 -2.7 -2.3 -3.7 -3.7 -6.6 -5.6 -5.9 

LAI total (%) -5.2 -4.8 -3.3 -3.2 -2.5 -2.3 -3.1 -2.4 -4.7 -4.0 -7.7 -6.9 -6.9 

Qclim (%) -14.6 -20.7 -13.7 -13.8 -16.3 -8.3 -14.8 -15.0 -20.1 -21.3 -23.3 -21.4 -16.1 

Qnet (%) -13.6 -19.2 -13.2 -13.3 -15.8 -8.1 -14.3 -14.5 -18.3 -19.7 -19.0 -17.0 -13.4 

Qlai (%) 7.4 7.8 3.8 3.8 3.2 2.5 3.5 3.4 9.8 8.1 22.6 25.9 20.1 

 

 

 

 

 

2071-2100 

RCP4.5 

P (%) -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 

T (0C) 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 

LAI crop (%) -21.1 -21.3         -20.8 -21.0 -20.7 

LAI pasture (%) -9.8 -9.5 -9.2 -9.4 -9.0 -8.2 -9.2 -9.2 -10.2 -10.3 -11.0 -10.4 -10.5 

LAI tree (%) -6.6 -5.1 -4.4 -4.2 -3.5 -3.0 -3.9 -3.4 -5.3 -5.3 -9.2 -7.8 -8.2 

LAI total (%) -7.2 -6.7 -4.6 -4.5 -3.6 -3.3 -4.4 -3.5 -6.6 -5.7 -10.5 -9.4 -9.5 

Qclim (%) -19.7 -27.5 -18.6 -18.8 -22.1 -11.5 -20.3 -20.7 -26.9 -28.1 -30.1 -27.7 -21.7 

Qnet (%) -18.3 -25.7 -17.9 -18.1 -21.6 -11.2 -19.6 -20.1 -24.7 -26.2 -25.2 -22.5 -18.6 

Qlai (%) 7.7 7.0 3.9 3.9 2.3 2.7 3.6 3.0 8.9 7.3 19.4 23.1 16.7 

 

 

 

 

2071-2100 

RCP8.5 

P (%) -5.2 -5.2 -5.2 -5.2 -5.2 -5.2 -5.2 -5.2 -5.2 -5.2 -5.2 -5.2 -5.2 

T (0C) 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 

LAI crop (%) -28.3 -28.3         -28.5 -28.5 -28.1 

LAI pasture (%) -13.6 -13 -12.5 -12.9 -12.2 -11.1 -12.5 -12.5 -14 -14.1 -15.4 -14.6 -14.7 

LAI tree (%) -9.5 -7.4 -6.3 -6.0 -5.1 -4.3 -5.5 -4.8 -7.6 -7.6 -13.2 -11.2 -11.8 

LAI total (%) -10.2 -9.4 -6.5 -6.5 -5.2 -4.7 -6.2 -5.0 -9.2 -8.1 -14.9 -13.3 -13.4 

Qclim (%) -24.0 -33.5 -23.9 -24.2 -27.4 -14.5 -25.0 -25.6 -32.0 -33.0 -35.1 -32.8 -25.3 

Qnet (%) -22.3 -31.3 -23.0 -23.3 -26.7 -14.1 -24.0 -24.8 -29.4 -30.8 -29.2 -26.4 -21.7 

Qlai (%) 7.6 7.0 3.9 3.9 2.6 2.8 4.2 3.2 8.8 7.1 20.2 24.2 16.6 

* P (%) is the change in mean annual precipitation in percentage, T (0C) is the change in mean annual temperature in Degree Celsius, Qclim 1017 
indicates the climate effect on runoff, Qnet is the net effect of climate and LAI on runoff and Qlai is proportion of the climate effect (Qclim) 1018 
that is offset by the LAI effect.   1019 
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 1020 

 1021 

 1022 

Figure 1. Location map of the study area (a), dryness index (mean annual reference 1023 

evapotranspiration divided by mean annual precipitation) (b) and land cover type (c). 1024 

  1025 
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1026 
Figure 2. Long-term mean monthly climate observations plotted with the 38 CMIP5 runs 1027 

during the baseline period (1980–2010) for Goulburn-Broken Catchment (a) long-term mean 1028 

monthly precipitation (b) long-term mean monthly maximum temperature and (c) long-term 1029 

mean monthly minimum temperature. 1030 
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 1032 

Figure 3. Flowchart showing the modelling experiments and calculation of effects: CC effect 1033 

indicates the climate change effect of precipitation and temperature with unchanged LAI, CC 1034 

+ LAI effect indicates the climate change effect of precipitation, temperature and leaf area 1035 

index. 1036 
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1038 
Figure 4. Box plots of percentage changes in the mean monthly precipitation (a, b, c, d) and 1039 

changes in mean monthly temperatures (e, f, g, h) in the Goulburn-Broken Catchment for the 1040 

future periods 2021–2050 and 2071–2100 for the 38 CMIP5 runs of climate projections. 1041 

Changes are relative to the historical (1981–2010) mean monthly precipitation and 1042 

temperatures. The lower boundary of the box indicates the 25
th

 percentile, a line within the 1043 

box marks the median, and the upper boundary of the box indicates the 75
th

 percentile and the 1044 

whiskers are delimited by the maximum and minimum.  1045 
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1046 
Figure 5. Box plots of changes in mean monthly LAI derived from the 38 CMIP5 runs for 1047 

climate projections during 2021–2050 and 2071–2100 under RCP4.5 and RCP8.5 scenarios 1048 

for crop (a, b, c, d); pasture (e, f, g, h) and tree (i, j, k, l) in the Goulburn-Broken Catchment. 1049 

Changes are relative to LAI calculated using climate time series for the 1981–2010 baseline. 1050 

The lower boundary of the box indicates the 25
th

 percentile, a line within the box marks the 1051 

median, and the upper boundary of the box indicates the 75
th

 percentile and the whiskers are 1052 

delimited by the maximum and minimum. 1053 
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 1055 

Figure 6. Impacts on catchment mean annual streamflow of the Millennium drought (1997–1056 

2009) relative to the period 1983–1995. CC effect indicates precipitation and temperature 1057 

effect with unchanged LAI; CC + LAI effect indicates precipitation, temperature and LAI 1058 

effect. The proportional LAI effect indicates the LAI effect as a percentage of the CC effect. 1059 
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 1061 

 1062 

Figure 7. Impact on catchment mean annual streamflow average over the 38CMIP5 runs of 1063 

projected climate change for the future periods 2021–2050 and 2071–2100 under RCP4.5 (a, 1064 

b) and RCP8.5 (c, d), relative to the 1981–2010 base period. CC effect indicates precipitation 1065 

and temperature effect with unchanged LAI; CC + LAI effect indicates precipitation, 1066 

temperature and LAI effect. The proportional LAI effect indicates the LAI effect as a 1067 

percentage of the CC effect. 1068 
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 1070 

1071 
Figure 8. Box plots of the net climate change (CC + LAI) effect on mean annual runoff 1072 

during (2021–2050, 2071–2100) under RCP4.5 (a, b) and RCP8.5 (c, d) emission scenarios 1073 

from each of the 38 CMIP5 runs. Changes are relative to the historical (1981–2010) period. 1074 

The lower boundary of the box indicates the 25
th

 percentile, a line within the box marks the 1075 

median, and the upper boundary of the box indicates the 75
th

 percentile and the whiskers are 1076 

delimited by the maximum and minimum. 1077 
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1079 
Figure 9. Box plots of contribution of LAI to the climate change effect on mean annual runoff 1080 

for future (2021–2050, 2071–2100) climate forcing under RCP4.5 (a, b) and RCP8.5 (c, d) 1081 

emission scenarios from each of the 38 CMIP5 runs as compared to the historical (1981–1082 

2010) period. The LAI effect is normalized by the effect of precipitation and temperature 1083 

with unchanged LAI (i.e. CC effect) and expressed as a percentage. The lower boundary of 1084 

the box indicates the 25
th

 percentile, a line within the box marks the median, and the upper 1085 

boundary of the box indicates the 75
th

 percentile and the whiskers are delimited by the 1086 

maximum and minimum. 1087 
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1089 
Figure 10. Box plots of impacts on mean monthly streamflow from 38 CMIP5 runs of 1090 

catchment 6 (a, d, g and j), catchment 10 (b, e, h and k), and catchment 11 (c, f, i and l) of 1091 

projected climate change for future periods (2021–2050) and (2071–2100) under RCP4.5 and 1092 

RCP8.5 respectively relative to the 1981–2010 base period. CC effect indicates precipitation 1093 

and temperature effect with unchanged LAI; CC + LAI effect indicates precipitation, 1094 

temperature and LAI effect. The lower boundary of the box indicates the 25
th

 percentile, a 1095 

line within the box marks the median, and the upper boundary of the box indicates the 75
th

 1096 

percentile and the whiskers are delimited by the maximum and minimum. 1097 
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