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Dear Dr. Harman,

We would like to thank you and both the anonymous reviewers for those comments and
suggestions which helped to improve the paper. As per your suggestion of minor revision
before publication, we have included the model calibration and validation from the other
paper into this paper. By doing this we avoid citation of the other paper, which has been
rejected. We have also responded to the comments that were given by reviewer #2 and
acknowledged the limitations of the study that are related to the shift in Plant Functional
Types (PFTs) due to climate change (increase in temperature) and the impact on vegetation of
increasing atmospheric CO,. We made these changes in the revised manuscript in which all

changes are tracked in blue color.

Kind Regards,

Dr Yongping Wei
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Authors’ responses

Authors’ responses (in blue) to Anonymous Referee #2 comments (in black) on “Including
the dynamic relationship between climate variables and vegetation LAI into a hydrological

model to improve streamflow prediction under climate change” by Z. K. Tesemma et al.

This study aims to predict future water yields incorporating vegetation dynamics in a VIC
hydrological model based on two emission scenarios. This study is based on the assumption
that seasonal vegetation dynamics strongly depend on accumulative water deficits
(precipitation - potential evapotranspiration), developed for three plant functional types
(PFTs) from global remote sensing datasets (MODIS). The paper starts with the critiques of
stationarity assumption in future hydrological simulations. I totally agree to this point in that
traditional hydrologic modeling has often ignored the importance of vegetation response to
changing climates. However, the authors make a same mistake when applying Eq. 5 for the

prediction of vegetation dynamics in the future. There are two main reasons why I reject this

paper.

First, distributions of plant functional types would not be constant under climate changes.
Each PFT shares similar ecophysiological behavior in photosynthesis and evapotranspiration,
which is one of the reason why this study develops the different equations of vegetation
dynamics for three PFTs. Therefore, the changes in PFT distributions are quite critical to
predict ecosystem water use and resulting hydrologic behavior under climate change. The
shifts of vegetation distributions in response to temperature increases and subsequent water
balance are well-documented in Mediterranean climate regions (e.g. Lenihan et al. 2003;

Crimmins et al. 2011), which significantly undermines the credibility of this study.

We understand the concern of Referee #2 on changes in plant functional types (PFTs) due to
change in climate (increase in temperature) and in the revised version of the manuscript we

acknowledged the limitation of our study in which static PFTs were used.

Here we would like to explain the rationale for why static PFTs were used in our study.
Firstly, it is known that vegetation growth in Australia is highly controlled by precipitation
(water supply), and is less controlled by temperature and radiation (Nemani et al., 2003).
Hence, most vegetation dynamics can be explained by variation in precipitation, which

formed the basis of the LAI-climate model developed in Tesemma et al. (2014). In our study
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area PFTs are largely determined by land use (human activities), such as forest clearing for
agriculture, which is difficult to project into the future, rather than natural responses of
vegetation to changed climatic conditions. We agree with the reviewer that in theory there are
possible changes in PFTs due to increased temperature, but in this catchment human

influence are likely to dominate.

Second, the strong dependency of vegetation dynamics on water balance does not
marginalize the CO, fertilization effect on vegetation. Many studies suggest that the CO2
fertilization would decrease stomatal conductance, increase water use efficiency and drought
tolerance (e.g. Nowak 2004; Ainsworth and Rogers 2007). While this CO, effect can be
limited by nutrient supply in temperate forests (e.g. Oren et al. 2001), water-limited
ecosystems would be benefited from increased water use efficiency (Wullschleger et al.
2002; Huang et al 2007; Koutavas et al. 2012). Therefore, many ecologists suggest that an
interaction with CO2 should not be ignored, when we model vegetation responses to droughts

in the future.

Several ecohydrologists have tried to deconvolve the effect of precipitation, temperature and
CO2 in the future hydrological modeling across different ecoregions (e.g. Baron et al. 2000).
Tague et al. (2009) suggested that future hydrologic behavior and ecosystem productivity will
depend on the balance between CO2 controls on water use efficiency and vegetation
responses to climate changes in Mediterranean climate region. Vicente-Serrano et al. (2015)
suggested that the effect of rising CO2 on canopy-level productivity might be strongly
mediated by moisture conditions from mesic to xeric sites in temperate conifer forests.
Interactions between vegetation and hydrology can be particularly important in the water-
limited ecosystems, where vegetation dynamics and its water use are strongly coupled, as
well as subsequent hydrologic behavior. However, few studies have considered the potential
feedbacks between vegetation, climate, and hydrology in future hydrological modeling. I
hope that hydrologists can start on the common ground with ecologists when including

vegetation dynamics in future hydrological modeling under a changing climate.

Partially Agree. We understand the reviewers concern about the vegetation effect of
increasing atmospheric CO; and we have already discussed this effect in the manuscript. We
have modified our discussion of this issue slightly to clarify our assumption of not modelling
this effect. The reason why we did not include the stomata suppression effects of rising

atmospheric CO, is because the net impact on runoff could be small (Huntington, 2008;
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Uddling et al., 2008) due to the offsetting nature of the fertilization effect on LAI. We believe

the revised discussion deals with this issue sufficiently.
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Including the dynamic relationship between climate variables and
leaf area index in a hydrological model to improve streamflow
prediction under a changing climate

Z. K. Tesemma'; Y. Wei'; M. C. Peel' and A. W. Western'

[1] Department of Infrastructure Engineering, The University of Melbourne, Parkville,

Victoria, 3010, Australia.

Correspondence to: Yongping Wei (ywei @unimelb.edu.au)

Abstract

Anthropogenic climate change is projected to enrich the atmosphere with carbon dioxide,
change vegetation dynamics and influence the availability of water at the catchment scale.
This study combines a non-linear model for estimating changes in leaf area index (LAI) due
to climate fluctuations with the Variable Infiltration Capacity (VIC) hydrological model to
improve catchment streamflow prediction under a changing climate. The combined model
was applied to thirteen gauged catchments with different land cover types (crop, pasture and
tree) in the Goulburn-Broken Catchment, Australia for the “Millennium Drought” (1997-
2009) relative to the period (1983-1995), and for two future periods (2021-2050 and 2071—
2100) for two emission scenarios (RCP4.5 and RCP8.5) were compared with the baseline
historical period of 1981-2010. This region was projected to be warmer and mostly drier in
the future as predicted by 38 Coupled Model Inter-comparison Project Phase 5 (CMIPS5) runs
from 15 Global Climate Models (GCMs) and for two emission scenarios. The results showed
that during the Millennium Drought there was about a 29.7%—66.3% reduction in mean
annual runoff due to reduced precipitation and increased temperature. When drought induced
changes in LAI are included, smaller reductions in mean annual runoff of between 29.3% and
61.4% were predicted. The proportional increase in runoff due to modelling LAI was 1.3%—
10.2% relative to not including LAI. For projected climate change under the RCP4.5
emission scenario ignoring the LAI response to changing climate could lead to a further
reduction in mean annual runoff of between 2.3% and 27.7% in the near-term (2021-2050)
and 2.3% to 23.1% later in the century (2071-2100) relative to modelling the dynamic

response of LAI to precipitation and temperature changes. Similar results (near-term 2.5% to
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25.9% and end of century 2.6% to 24.2%) were found for climate change under the RCP8.5
emission scenario. Incorporating climate-induced changes in LAI in the VIC model reduced
the projected declines in streamflow and confirms the importance of including the effects of

changes in LAI in future projections of streamflow.

Key words: Climate change, leaf area index, drought, catchment streamflow, vegetation

dynamics, VIC hydrological model.
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1 Introduction

Recently, climate changes have been observed in different parts of Australia (Chiew et al.,
2011; Cai and Cowan, 2008; Hughes et al., 2012; Lockart et al., 2009; Potter and Chiew,
2011). Specifically, south-eastern Australian catchments have experienced changes in
streamflow due to fluctuations in climate as observed during the recent “Millennium
Drought’” (1997-2009) which lasted more than a decade (Chiew et al., 2011; Verdon-Kidd
and Kiem, 2009). This drought may be representative of future climatic conditions in this

region.

The projected water availability for future climates derived from downscaled outputs from
global and regional climate models indicate increases of mean annual runoff by 10% to 40%
in some parts of the world (high northern latitudes) and 10% to 30% reduction elsewhere
(southern Europe, Middle East and south-eastern Australia) (Milly et al., 2005). More
recently, Roderick and Farquhar (2011) examined climate and catchment characteristics for
sensitivity to changes in runoff in Murray-Darling Basin in southeast Australia from a
theoretical point of view and estimated that a 10% change in precipitation would lead to a
26% change in runoff and a 10% change in potential evaporation would lead to a 16% change
in runoff with all other variables being constant. In south-eastern Australia it has been
projected that there will be a reduction in mean annual runoff of 10% on average when
different climate models are used as input to hydrological models (Cai and Cowan, 2008;
Chiew et al., 2009; Roderick and Farquhar, 2011; Teng et al., 2012a; Vaze and Teng, 2011).
These studies assessed the possible impacts of climate change on total runoff based on
rainfall-runoff relationships which only considered first order effects of changes in

precipitation and temperature with subsequent impacts on evaporative demand.

There is evidence that such relationships are not stationary over time (Chiew et al., 2014;
Peel and Bloschl, 2011; Vaze et al., 2010), which implies that the studies discussed in the
previous paragraph may be missing an important factor. One approach to improving
modelling under changing conditions is to use variable monthly leaf area index (LAI) in the
hydrologic model. Using observed climate variability and streamflow responses, observed
monthly LAI has been shown to improve soil moisture prediction (Ford and Quiring, 2013).
The improvements are largest under either relatively wet or dry climatic conditions, i.e. in
wet and dry years, rather than average years. In most south-eastern Australia, LAI primarily
responds to the availability of water and changes in vegetation type, such as conversion of

forest to cropland or pasture, but also responds, to a lesser extent, to changes in temperature

7
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and rising atmospheric CO, concentrations. Most of these LAI responses are expected to be
affected by projected climate change. These climate-induced changes in vegetation LAI may
impact on evapotranspiration and runoff and hence should be considered when making runoff

projections for climate change scenarios.

Dynamic Global Vegetation Models (DGVMs) have been used to assess the vegetation effect
of climate change on large-scale hydrological processes and patterns (Murray et al., 2012a,
2011). A list of available DGVMs and their processes representations (photosynthesis,
respiration, allocation, and phenology) can be found in Wullschleger et al. (2014), while
Scheiter et al. (2013) provides a review of the possible sources of uncertainty related to
representation of plant functional type (PFT) in DGVMs. Most DGVMs overestimate runoff;
mainly due to model structure problems along with operating at low spatial and temporal
resolution (Murray et al., 2012b). While the relationships between LAI and climate
fluctuation have been modelled (Ellis and Hatton, 2008; O'Grady et al., 2011; Jahan and Gan,
2011; Palmer et al., 2010; Tesemma et al., 2014; White et al., 2010), none of them have been
incorporated in hydrological models for the purpose assessing future climate change impacts
on streamflow. The poor hydrological sub models in DGVMs and the static vegetation in
most hydrological models mean that importance of the indirect vegetation-related (LAI)
effects relative to the direct effects of changes in precipitation and temperature on
hydrological response at catchment scale have rarely been studied. This limits understanding
of the linkages between climate fluctuations and vegetation dynamics, and their combined

impacts on hydrological processes.

The main objective of this study is to examine the relative effects on mean annual runoff of
changes in direct climate forcing (mainly precipitation and temperature) and direct climate
forcing combined with climate-induced LAI changes under changed climate scenarios.
Comparative analysis of these two cases enables the effect on mean annual runoff of allowing
LAI to respond to a changing climate to be identified. Specifically, our study combined the
LAI-Climate model developed in Tesemma et al. (2014) with the Variable Infiltration
Capacity (VIC) hydrologic model to assess the impact on catchment runoff of how LAI is
modelled (constant seasonal LAI or LAI varying in response to climate) under changing
climatic conditions. As noted above, this combined model showed significant improvements
in runoff simulations under historic conditions. Here we investigate two sets of changing
climatic conditions: (1) the observed Millennium Drought (1997-2009), which is a persistent

(>10 year) large change in climate; and (2) projected climate change for both wet and dry
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catchments using 38 Coupled Model Inter-comparison Project Phase 5 (CMIP5) runs from 15
different Global Climate Models (GCMs) for two future periods, 2021-2050 and 2071-2100,
for two emission scenarios, RCP4.5 and RCP8.5). The results obtained from this study are
expected to demonstrate whether modelling LAl in a way that responds to changing climatic
conditions is important for modelling runoff during projected climate change in the study

area.
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2 Research approach

This section provides details about the dataset, the characteristics of the selected catchments
and the modelling exercises. The catchment characteristics and dataset used in this study are
briefly described in section 2.1. The application of multiple GCMs and emission scenarios
output method are explained in section 2.2. The relationship between LAI and climatic
variables are presented in section 2.3, and the hydrologic modelling experiment approach

used to assess the impact of changes in climate on runoff are described in section 2.4.
2.1 Catchment characteristics and dataset

All the study catchments are located in the Goulburn-Broken Catchment which is a tributary
of the Murray-Darling Basin, Australia. The Goulburn-Broken Catchment extends between
35.8° to 37.7° S and between 144.6° to 146.7° E (Figure 1a) with a range of altitude from
approximately 1790 m on the southern side to 86 m above mean sea level on the northern
side of the catchment. The mean annual precipitation of the study catchments ranges from
659 (in the north) to 1407 mm year'1 (in the south) calculated for the period (1982-2012).
The majority of the precipitation (about 60%) occurs during winter and spring. The reference
potential evapotranspiration (PET) calculated using the Food and Agricultural Organization
(FAO56) method, ranges from 903 mm year'1 (in the north) to 1046 mm year'1 (in the south).
Hence, the dryness index (mean annual reference potential evapotranspiration divided by
mean annual precipitation) varies from 0.64 to 1.6 (Figure 1b). The dominant land cover type
in most of the catchments is forest (mainly tall open Eucalyptus forest and Eucalyptus
woodlands) with some pasture in all catchments. A small amount of cropland is located in

some of the catchments (Figure 1c).

Gridded input data used for the hydrological modelling include the daily precipitation,
maximum and minimum temperature, vapour pressure and solar exposure data obtained from
the Australian Water Availability Project (AWAP) of the Bureau of Meteorology (Jones et
al., 2009) and gridded daily wind run data from McVicar et al. (2008) that was generated
from point measurements. All data have a spatial resolution of 0.05° x 0.05° (approximately
Skm x 5km), and the period from 1982 to 2012 was selected for this study. The daily
streamflow data at the outlet of the selected calibration catchments were obtained from the
Victorian Water Resources Warehouse (http://data.water.vic.gov.au/monitoring.htm). The
missed streamflow data were filled by regressing between neighbouring catchments. The

elevation data were collected from the GEODATA 9 Second Digital Elevation Model (DEM-
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9S) Version 3 (Geoscience Australia, 2008). The elevation data were resampled to a
resolution of 0.05° x 0.05° using the spatial average. The land cover input data were derived
from the National Dynamic Land Cover Dataset which provides a land cover map for the
whole of Australia at a resolution of 0.00235° x 0.00235° (approximately 250m x 250m) and
can be accessed at (http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_71071).
LAI data were collected from the Global Land Surface Satellite (GLASS) product which is

available for download from Beijing Normal University (http://www.bnu-datacenter.com).

The soil parameters in the VIC model running resolution were derived from the five minute
resolution Food and Agriculture Organization dataset (FAO, 1995). The root distribution in
three soil layers was derived from the global ecosystem root distribution dataset (Schenk and

Jackson, 2002).
2.2 Applying multiple GCMs and multiple emission scenarios

Outputs from many climate models from the Coupled Model Inter-comparison Project Phase
5 (CMIPS) (Taylor et al., 2012) are used as input to the hydrological model. CMIP5 contains
model runs for four representative concentration pathways (RCPs), which provide radiative
forcing scenarios over the 21" century (Moss et al., 2010; Vuuren et al., 2011). In this study
two emission scenarios were chosen: a midrange mitigation scenario, referred to as RCP4.5
and a high emissions scenario RCP8.5 (Meinshausen et al., 2011). RCP4.5 results in a
radiative forcing value of 4.5 Wm™ at the end of the 21* century relative to the preindustrial
value, while RCP8.5 provides a radiative forcing increase throughout the 21* century to a

maximum of 8.5 Wm™ at the end of the century.

CMIP5 Global Climate Model (GCM) data were obtained from (http://climexp.knmi.nl

accessed 28 February 2014). These data were re-sampled to a common grid resolution of 2.5°
since each GCM has a different spatial resolution (some are the same, but most are different).
A total of 38 RCP4.5 and RCP8.5 runs from 15 different GCM models have been used in this
study to include the possible uncertainty among climate models. For each of the 38 runs,
daily precipitation, minimum and maximum temperature data were collected for three
periods, 1981-2010 (historical run), 2021-2050 and 2071-2100 (future runs). An assessment
of the ability of the CMIPS5 runs to reproduce the observed base line seasonality of
precipitation, minimum and maximum temperature is shown in Figure 2. The seasonality in
precipitation and temperature were well captured by most CMIPS5 runs with biases which

require correction.

11
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Low spatial resolution GCM outputs require downscaling for application in catchment
hydrology studies. Here the ‘delta-change’ statistical downscaling technique was used to
downscale and bias-correct the GCM outputs (Fowler et al., 2007). Delta-change was
selected due to its low computational intensiveness and easy applicability to a range of
GCMs. We acknowledge the limitations of this method include an assumption of stationarity
in change factors, climate feedbacks are not incorporated and an inability to capture changes
in extreme events and year to year variability. Dynamic downscaling, which solves some of
these problems, was not used as it has high computational demand and is not readily available
for a range of GCM runs and scenarios (Fowler et al., 2007). A simple statistical downscaling
method was appropriate for this study as we were interested in the impact of including
climate induced LAI change on the runoff results. In the study area, the monthly LAI is
strongly related to three month and/or nine month moving average moisture state
(precipitation minus reference potential evapotranspiration) (Tesemma et al.,, 2014).
Therefore, so long as the precipitation is consistent between the two runs we can assess the
importance of the change in LAI representation between model runs. It has been suggested
that extreme precipitation might change differently to mean precipitation under climate
change (Harrold et al., 2005) and the delta-change method does not capture this. Nevertheless
delta-change was used as this study concentrates on average runoff which is strongly linked
to overall catchment wetness, rather than floods which are linked to a combination of
catchment wetness and extreme precipitation. Hence consideration of extreme precipitation

events is less important in this study.

Statistical downscaling was applied to each of the GCM outputs and emission scenarios.
Since the study area is covered by four GCM grid cells, the area weighted average
precipitation, minimum and maximum temperatures of the GCM grid cells covering the study
area were computed. The area weighted average values were then statistically downscaled
using the delta change approach. Delta changes were calculated separately for each of the 12

months. For temperatures the delta changes were calculated using

AT(D = Tprojn(j) - Tbaseline(j) (1D

where Ar(j) is the delta change in the 30-year mean monthly minimum or maximum

temperature as simulated by the climate model for the future period and RCP of interest

(2021-2050 or 2071-2100, RCP4.5 or RCP8.5), Tpmjn(j), relative to the mean for the

baseline period (1981-2010) climate model simulation, Tp,seline(i). j represents the month.

12



323
324
325
326

327
328

329

330

331

332
333
334
335
336
337
338
339
340
341
342

343

344
345
346
347
348
349

A1(j) is then applied to the daily baseline (1980-2010) observations, T,p(j,1), for each pixel of
the climate gridded data (which is the same as the VIC model grid pixels) to obtain the
statistically downscaled minimum or maximum daily temperature, TA(j,i) for month j and

day 1.

Ta(Gh 1) = Tops (1) + Ar(j) (2)

For precipitation, the delta changes value is computed as a proportional change rather than a
shift:
~— Poroin()
A,() = __promA7 3)

baseline (J)

and then applied to the observations using:

Here Ap(j) is the delta change in 30-year mean monthly precipitation as simulated by the
climate model ﬁprojn(j) for two future periods (2021-2050 and 2071-2100) relative to the

baseline simulation Ppagejine (j); Pa(j, i) is the statistically downscaled daily precipitation for
the projected future climate change scenario for month j and day i, Poys(j, 1) is observed daily
precipitation for the historical period (1981-2010) for month j and day i for each of the
precipitation pixel of the gridded climate data. The delta change approach maintains a similar
(but shifted or scaled) spatial variation of temperature and precipitation as that in the
historical observed gridded data. The daily pattern of weather variation and the relationships
between the various weather variables are also maintained. Because historic weather data
provides the basis for the temporal patterns, the well-recognized issue of “GCM drizzle” is
eliminated. The delta change method also corrects for differences between the mean elevation
of the four GCM grid cells by scaling up or down the historical spatial variation of

temperature and precipitation across the catchment.
2.3 Relationship between LAI and climate variables

Tesemma et al. (2014) showed that monthly LAI of each vegetation type was closely related
to changes in moisture state (precipitation minus reference evapotranspiration) of six-monthly
moving averages for crop and pasture, and nine-monthly moving averages for trees.
Differences in LAI response for the same change in moisture state among the three vegetation
types were also observed as differences in model parameters of the LAI-Climate relationship.

Tesemma et al. (2014) provides details on the derivation of the LAI-Climate relationship for

13
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the Goulburn-Broken Catchment. The three LAI models developed for crop, pasture and tree

are given below.

( 136.4836

(P-PET)— 159.4555) ’
425607

if Crop
1+exp<_(

62;95 .
(ERED ey ¢ if Pasture )

62.8487

LAl = < <
1+exp

4.2091
<_((P—PET)+ 57.1849)) ’
\ 1+exp 36.9481

if Tree

Where LAI is the leaf area index of the cover type (tree/pasture/crop), P is the six month
moving average of precipitation for crop and pasture, and the nine month moving average for

trees, and PET is the respective reference evapotranspiration.

The monthly LAI was then simulated for both historical and future climate scenarios using
the LAI-Climate model (Eq. 5) driven with the appropriate climate inputs. In this study
monthly average reference potential evapotranspiration (PET, mm day'l) was estimated using
the standard FAO Penman-Monteith daily computations (Allen et al., 1998) and then
aggregating to monthly values. The reference potential evapotranspiration for future climate
scenarios was computed using the projected minimum and maximum temperatures,while
incoming shortwave radiation and vapour pressure were derived from daily temperature
range using the algorithms of Kimball et al. (1997) and Thornton and Running (1999). The
wind speed was kept the same as the historical observations. A significant literature exists
(see discussion in Supplementary Material of McMahon et al., 2015) around the issue of
using temperature to drive future changes in reference potential evapotranspiration (PET).
We acknowledge this assumption and note that it is likely to have limited impact on our
runoff results in the mainly water limited catchments modelled here. The historical or future
precipitation was used in Eq. 5 according to the scenario being modelled. Potential LAI
variations in the baseline years (1981-2010) and the two future periods (2021-2050 and
2071-2100), for each of the two future emission scenarios, were simulated using the
downscaled outputs from the 38 CMIP5 runs of the 15 GCMs, as input into the LAI-Climate
model (Eq.5). The uncertainty ranges in modelled LAI that come from the difference in

climate input were determined by using the downscaled 38 CMIP5 runs individually in Eq. 5.
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2.4 Hydrological model and experimental design

In this study we used the three layers VIC model (version 4.1.2g) to simulate streamflow. The
VIC macroscale model is a spatially distributed conceptual hydrological model that balances
both water and energy budgets over a grid cell. It simulates soil moisture, evapotranspiration,
snow pack, runoff, baseflow and other hydrologic properties at daily or sub-daily time steps
by solving both the governing water and energy balance equations (Liang et al., 1996). VIC
estimates infiltration and runoff using the variable infiltration curve that represents the sub-
grid spatial variability in soil moisture capacity (Liang et al., 1994; Zhao et al., 1995) and
Penman-Monteith for potential evapotranspiration computation. The ability of the model to
incorporate spatial representation of climate and inputs of soil, vegetation and other
landscape properties make it applicable for climate and land use / land cover change impact
studies. The VIC model has been widely used for a number of hydrological studies in
different climatic zones across the globe (Zhao et al., 2012a; Zhao et al., 2012b; Cuo et al.,
2013).

The seven most sensitive model parameters (b, Ds, Ws, Dsmax, d2, d3 and exp) in the VIC
model (Demaria et al., 2007) were calibrated against observed streamflow from thirteen
selected sub-catchments with different climate and land cover composition that are
representative of the main runoff generating regions of the Goulburn-Broken catchment. The
model parameters were calibrated separately for each selected unregulated sub-catchment and
applied uniformly within a sub-catchment (Figure 1). The Multi-Objective Complex
Evolution (MOCOM-UA) algorithm (Yapo et al., 1998) was used to calibrate the model. This
algorithm was implemented on each of the selected catchments separately to calibrate the
model against the observed runoff. The model was first calibrated for the entire period
(1982-2012), then using the calibrated parameters as initial guesses, the model was re-
calibrated for the period 1982-1997 and evaluated for the period 1998-2012. During the
calibration, VIC ran on a daily basis but the objective function was calculated on a monthly
basis. Three criteria (objective functions) were used to evaluate the model’s performance
during calibration: the Nash—Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) between
observed and simulated flow, the logarithm of Nash—Sutcliffe efficiency (logNSE) which

penalizes errors at peak flow, and the percentage bias from the observed mean flow (PBIAS).

VIC model was run at daily time step and input data with a Skm by Skm spatial grid
resolution for 30 years from January 1981 to December 2010 to produce the baseline and

experiment runs. Two model experiments were run: the first experiment considered the recent
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historical climate (Millennium Drought, 1997-2009) and LAI estimates using the simple
LAI-Climate model against the relatively normal historical climate period (1983-1995). The
second experiment considered the future climate from 38 CMIPS5 runs and corresponding LAI
derivatives for two periods (2021-2050 and 2071-2100), and two emission scenarios RCP4.5
and RCP8.5 with respect to the historical period (1981-2010). Both sets of simulations were
performed over the thirteen calibrated study catchments within the Goulburn-Broken

Catchment (Figure 1b). A flow chart of the modelling method is given in (Figure 3).

To identify the effect on mean annual runoff of allowing LAI to respond to a changing
climate, compared with LAI not responding, we used the following steps: (1) the calibrated
model was forced with inputs of historical climate data and LAI data modelled from using the
historical climate data (1981-2010) to establish baseline streamflow estimates; (2) the model
was forced with projected future climate inputs and corresponding modelled LAI to produce
projected streamflow for future scenarios; (3) the future climates were input along with the
LAI data used in step 1 to produce projected streamflow that ignore project LAI changes .
The difference in mean annual runoff between steps 3 and 1 represents the climate effect (CC
effect); on mean annual runoff of only Precipitation and Temperature. Whereas the difference
in mean annual runoff between steps 2 and 1 represents the net effect (CC + LAI effect); on
mean annual runoff of allowing LAI to respond to a changing climate in addition to the direct
climate forcing (Precipitation and Temperature). The difference in mean annual runoff
between steps 2 and 3 represents the component of the runoff response related to climate-
induced changes in LAI. For the millennium drought (1997-2009) the above two changes in
mean annual runoff were estimated in a similar fashion taking (1983-1995) time period as
relatively normal period. The percentage change of mean annual runoff against the historical
mean annual runoff for climate change effect (Q.im) (Eq. 6), climate change and LAI effect
(Qner) (Eq. 7); and the percentage of CC effect offset by LAI effect (Qu;) (Eq. 8) were

estimated as follows:

historical LAI _~ @historical LAI

Qclim = (6)

historical climate

[100 x( quture climate historical climate )]
thstorical LAI

Qnet = (N

historical climate

future climate historical climate
100 = ( quture LAI = Qhistorical LAI )
thstorical LAI

Qi = [100 * (Qctim— Qnet )] (8)

Qnet
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3 Results

This section provides results from the modelling exercises. First the model calibration and
evaluation are discussed in section 3.1. The change in climate variables during: (1) the recent
observed prolonged drought; and (2) future climate change projections for the study
catchments are presented in section 3.2. The impact on both LAI (section 3.3) and catchment
streamflow (section 3.4) of changes in climate input during the Millennium Drought and
future climate change projections are also provided. These results provide readers with a

comparison of the anticipated future change in climate with the recently observed drought.

3.1 Model calibration and evaluation results

The calibrated model parameters and model performance during calibration (1982-1997) and
evaluation (1998-2012) periods for each sub-catchment are listed in Table 1. Most of the
calibrated catchments have NSE of more than 70% during both calibration and evaluation
periods (Table 1). In most of the selected catchments the simulated runoff for both calibration
and evaluation periods met the “satisfactory” criteria according to (Moriasi et al., 2007), with
NSE > 50% and the percentage absolute bias is generally less than 25% during calibration
and evaluation periods. Although VIC captured the temporal variability of runoff well, there
were some systematic biases in the runoff simulated. The model overestimates peak flow in a
few cases and underestimates low flow in most of the catchments. The sources of these biases
need to be investigated in order to understand the performance of the model. To do this, the
estimated monthly biases are plotted against the monthly climate inputs: precipitation,
temperature and LAI (not shown here). The calibrated catchments showed no relationship
between AWAP gridded climate data and simulated runoff biases. The biases are likely

related to the model structure (Kalma et al., 1995) rather than the model inputs.

3.2 Change in the climate variables from change in climate
3.2.1 Millennium drought

The Millennium Drought brought a decline in the mean annual precipitation over the selected
catchments which ranged from 17.9% to 24.1%, with a mean of 20.9% when compared with
the period (1983—-1995). It also brought an increase in mean annual temperature which ranged
from 0.2° C to 0.4° C, with an average of 0.3° C as compared to the temperature in the period
(1983-1995). All thirteen study catchments experienced a similar change in both

precipitation and temperature (Table 2).
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3.2.2 Future climate

Averaged over all 38 CMIP5 runs, the mean annual precipitation in 2021-2050 over the
selected catchments is projected to decline by 2.9% and 3.7%, relative to the historical period
1981-2010, under the RCP4.5 and RCP8.5 scenarios respectively. By the end of the century
(2071-2100) mean annual precipitation is projected to decline by 5% and 5.2% under the
RCP4.5 and RCP8.5 scenarios respectively (Table 3). The mean annual temperature is also

projected to increase in both future periods and emission scenarios (Table 3).

Most precipitation projections showed a shift towards drier climates in all seasons except
summer in both emission scenarios and periods. The variability in projected mean monthly
precipitation among climate models indicates great uncertainty between GCMs (Figure 4a-d).
The mean monthly temperature of all climate models clearly deviated from the baseline
period (1981-2010), underlining the consistent change signal between GCMs (Figure 4e-h).
The median of the 38 CMIP5 mean monthly precipitation data over the Goulburn-Broken
Catchment in the RCP4.5 emission scenario showed declines in most of the months. The
decreases were up to 6% in 2021-2050 (Figure 4a) and up to 11% in 2071-2100 (Figure 4c).
Similarly, under the RCP8.5 emission scenario the median monthly precipitation, other than
in January and February for both periods, showed decreases up to 7% in 2021-2050 (Figure
4b) and up to 18% in 2071-2100 (Figure 4d). The simulations for January and February
showed median increases of up to 4% and 5% respectively in 2071-2100 from the historical
baseline. Some climate models projected very wet future climates while others projected
relatively dry climates. There are relatively high uncertainties in the projected mean monthly
precipitation results in summer when compared with the mean monthly precipitation in

winter among the climates models.

In contrast to precipitation the projected mean monthly temperatures from all CMIPS runs
showed increases, the median of the mean monthly temperatures of all CMIP5 38 runs
increased by about 0.8° C in winter and 1° C in summer in 2021-2050 (Figure 4e), and by
about 1.3° C in winter and 1.8° C in summer in 2071-2100 (Figure 4g) under the RCP4.5
scenario. Under the RCP8.5 emission scenario the temperatures increased by 1° C in winter
and by 1.4° C in summer during 2021-2050 (Figure 4f) and by 2° C and 3° C in winter and
summer respectively by the end of the 21* century (Figure 4h). After precipitation the second
variable that drives water availability is potential evapotranspiration. Here PET is expected to
increase among all CMIPS5 runs as it is being driven solely by changes in temperature given

that actual vapour pressure and solar radiation was also simulated as a function of
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temperature. In the near future period (2021-2050) the median of all CMIP5 mean monthly
reference evapotranspiration projections increase by 5% to 13% in both emission scenarios,
with the largest change in winter and the smallest in summer. In the future period of 2071-
2100, the mean monthly reference evapotranspiration increased by 7% in summer and 25% in
winter under RCP4.5 emission scenarios, and by 10% in summer and 28% in winter under

the RCP8.5 emission scenarios.
3.3 Impact on LAl from change in climate
3.3.1 Millennium drought

The effects of the Millennium Drought (1997-2009) on modelled crop LAI were very severe
with reductions in mean annual LAI between catchments of 38.1% to 48.0%, with a mean of
42.7% (Table 2). The reduction in LAI of pasture was between 16.7% and 21.6% across the
thirteen selected catchments with a spatial average of 19.4% (Table 2). The LAI of trees
responded less than crop and pasture, and reductions were in the range 5.7% to 14.0%, with a
spatial mean of 9.2% (Table 2). A significant reduction in each cover type also brought an
overall decline in areal weighted sum of all land cover types LAI in the selected catchments
which ranged from 5.8% to 17.9% (Table 2), which is similar to the reduction for trees,

where tree is the dominant land cover type.
3.3.2 Future climate

The changes in mean monthly LAI of crop, pasture and trees averaged over the whole
Goulburn-Broken Catchment under future climates are vary between the CMIPS runs and
global warming scenarios. Averaged over all 38 CMIP5 runs, the near future (2021-2050)
results for the study catchment showed that the mean annual LAI of cropland, pasture and
trees declined up to 13%, 6.7% and 5.4% under the RCP4.5 scenarios, and by up to 16%, 8%
and 6.6% under the RCP8.5 scenario (Table 3). A further reduction in the mean annual LAI
of each land cover was simulated by the end of the 21* century for both emission scenarios

(Table 3).

The effect of projected climate change on monthly total LAI (area weighted sum of all land
cover types LAI) for the study catchments is given in (Figure 5). The median of the 38
CMIPS5 runs simulated mean monthly LAI showed declines in all three land cover types.
Despite similar percentage changes in mean monthly precipitation and temperature forcing,
the mean monthly total LAI across the catchment shows the largest decline in autumn and the

smallest decline in spring during both future periods and scenarios. This difference reflects
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the seasonality of moisture availability influencing plant growth. Based on the median of the
38 CMIPS runs, the predicted decline in the mean monthly LAI for crop, pasture and trees
was 18.1%, 10.3% and 7.9% respectively in the period 2021-2050 (Figure Sa, e, 1) and
27.7%, 16.6% and 12.8% respectively in the period 2071-2100 under RCP4.5 (Figure 5c, g,
k). Larger reductions were simulated under the RCP8.5 emission scenario with 21.4%, 12.7%
and 9.5% in the period 2021-2050 (Figure 5b, f, j) and 36.5%, 22.5% and 17.9% respectively
for crop, pasture and tree in the period 2071-2100 (Figure 5d, h, 1).

3.4 Impacts on runoff from change in climate
3.4.1 Millennium drought

The impact of the Millennium Drought on streamflow due to changes in precipitation and
temperature alone and changes in precipitation and temperature and modelled LAI were
simulated using the VIC model. The simulated reductions in mean annual streamflow during
the Millennium Drought (1997-2009) as compared with the relatively normal period (1983—
1995) across the selected catchments due to the change in climate alone ranged from 29.7%
to 66.3% with a mean of 50% (Table 2). The reductions in LAI resulting from the decline in
precipitation and increase in temperature increased mean annual streamflow by between 1.3%

and 10.2% relative to the direct climate effect above (Table 2 and Figure 6).
3.4.2 Future climate

The average of the 38 CMIPS runs under the RCP4.5 scenario produced declines in mean
annual runoff due to the change in precipitation and temperature alone (Q.»,) that ranged
from 6.8% to 20.3% in the period 2021-2050, and 11.5% to 30.1% for the period 2071-2100
(Table 3 and Figure 7). For the higher emission scenario (RCP8.5), the reductions were a
little larger-ranging from 8.3% to 23.3% in 2021-2050 and from 14.5% to 35.1% by the end
the 21* century (Table 3 and Figure 6). The reductions in runoff due to climate are offset
through the LAI effect (Qy,;) that ranged from 2.3% to 27.7% and from 2.3% to 23.1% in the
near and far future periods respectively under the RCP4.5 emission scenario. Similar offsets
of 2.5% to 25.9% and 2.6% to 24.2% in the near and far future periods respectively were also

found under the RCP8.5 emission scenario (Table 3 and Figure 7).

The differences between GCMs in terms of the net climate change impacts (CC + LAI) on
mean annual runoff and the LAI contribution to that effect are shown in Figure 8 and Figure
9 respectively. While large uncertainty exists among the 38 CMIP5 runs, the median between

the models showed declines in the net climate change (CC + LAI) projections of mean annual
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runoff in all catchments (Figure 8). The median decline in the mean annual runoff due to the
net climate change impact was 15.3% and 26.7% in 2021-2050 and 2071-2100 respectively,
under RCP4.5. A larger decline of 21.6% and 31.8% in 2021-2050 and 2071-2100
respectively occurred under RCP8.5 (Figure 8). The simulated LAI effects of the climate
change showed smaller variation between GCMs than the net climate change (CC + LAI)
effect on mean annual runoff. The LAI effect works to offset the reduction in mean annual
runoff resulting from lower precipitation and higher temperature. Figure 9 shows the
magnitude of the LAI effect as a percentage of the magnitude of direct climate change effect
(noting they work in opposite directions). The median of this across the 38 CMIP5 runs was
up to 20%, depending on the month. The simulated LAI effect on mean annual runoff showed
smaller variation between GCMs than the net climate change (CC + LAI) effect on mean

annual runoff.

The direct climate change (CC) effect, the LAI effect of climate change and the net climate
change (CC+LAI) effect on the mean monthly runoff for the selected catchments are given:
Catchments 6 (Figure 10a, d, g, j), Catchment 10 (Figure 10b, e, h , k), and Catchment 11
(Figure 10c, f, i, 1). Catchments 6 and 10 are located in a high annual precipitation zone with
trees as the dominant vegetation cover; whereas Catchment 11 is covered mostly with pasture
and has relatively lower annual precipitation than Catchments 6 and 10. Depending on the
month, for the 38 CMIPS5 runs in 2021-2050 the median reduction in mean monthly runoff
(Qhner) were up to 10%, 24%, and 34% for catchment 6, 10, and 11, respectively for both the
RCP4.5 and RCP8.5 scenarios (Figure 10). Further reductions projected by the end of the 21%
century were up to 17%, 37% and 52% for catchments 6, 10, and 11, respectively, under both
scenarios (Figure 10). Catchment 6 showed the lowest seasonality in the climate change
effects for both emission scenarios and the LAl-related effects of climate change also showed
the smallest seasonal variation. Catchment 11 runoff was the most impacted by projected
climate changes and had the greatest benefit from LAI effects of climate change under both
emission scenarios and future periods. The seaso