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Dear Dr. Harman, 

We are very appreciative of your valuable comments and thoughtful assessment of our 

manuscripts titled “Effect of year-to-year variability of leaf area index on Variable Infiltration 

Capacity model performance and simulation of streamflow during drought” and “Reconciling 

the dynamic relationship between climate variables and vegetation productivity into a 

hydrological model to improve streamflow prediction under climate change”, which were 

published in HESSD. We have responded extensively and made the requested changes in 

these two manuscripts posted separately as replies to the reviewers as well as the relevant 

public comments. Here we give a short summary of our responses to your points.  

We fully understand your suggestion of combining the two papers into a single manuscript. 

However, we believe the revised manuscripts address the requested changes and now 

highlight the separate contributions of these two manuscripts. Therefore, we think it is better 

to keep them as separate papers for following reasons: 

1) These two manuscripts have very different research objectives. Manuscript 1 addresses the 

question of whether including vegetation variations into a hydrological model improve model 

performance in terms of runoff simulation. Manuscript 2 examines the relative effects on 

mean annual runoff of direct climate forcing (mainly precipitation and temperature) and when 

LAI responds to climate forcing under changed climate scenarios. This demonstrates that 

modelling LAI in a way that responds to changing climatic conditions is important for 

modelling runoff during projected climate change. It also provides a wide range of possible 
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net impacts of climate change on catchment streamflow in the study area. In addition we also 

demonstrated the importance of including LAI which respond to recent observed prolonged 

drought which is comparable to projected climate change under RCP8.5 emission scenarios. 

In both analyses the climate change induced LAI effect offsets the effect on streamflow of 

changed climate.  

2) Both papers are very lengthy (word count = 9800 and 10760), have 7 and 12 figures and 5 

and 2 tables. Combining the manuscripts would lose a significant amount of important 

information which in our opinion should be available to readers. 

3) The revised manucripts now clearly highlight the seperate contributions to exsting 

knowledge gaps. 

4) We found that Reviewer 1 of hess-2014-363 was positive and thought our approach 

advances climate change impact assessment of ecohydrological process provided that we 

could address according to their comments. 

 

We are looking forward to your assessment of the revised manuscripts. 

Regards, 

Dr Yongping Wei 
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Responses to reviewers’ comments 

We thank the reviewer for considering our manuscript and our response (in blue) to their 

comments (in black) are provided below. We propose to implement most of the major 

changes suggested by the reviewers. In the few cases where we do not agree we explain our 

reasoning.  

Responses to major comments of Reviewer #1 

General Comments: The authors have attempted to tease out the influence of vegetation 

adaptation to drought and future climate change in order determines the impact 

evapotranspiration will have on the catchment water balance. The paper lacks some of the 

specifics needed to determine the impact of some significant assumption made in the 

downscaling of GCM output. 

Agreed. We will revise the manuscript to provide more details about the downscaling of 

GCM output to the catchment scale.  

Additionally, how these downscaled datasets were then applied to VIC needs elaborating. 

The delta change values were applied to all VIC grid pixels separately assuming the same 

spatial distribution in the climatic variables (precipitation and temperature). We will revise 

the manuscript accordingly. 

The paper focuses on deviations from ‘mean’ conditions for the majority of the result 

reporting; however runoff processes are often triggered by precipitation events on the edge of 

the distributions. Without further statistical analysis it is impossible to determine how 

significant the modelled results are. There is no discussion on the precipitation characteristics 

of the region, and how these characteristics are predicted to change, which arguably might 

have the greatest impact on the partitioning of precipitation. 

We agree with the reviewer that runoff processes are influenced by precipitation events on 

the edge of the distribution and that this issue would be important for studies that focus on the 

impact of climate change on runoff generation mechanisms and runoff at sub-daily to daily 

time scales. However in this study we are interested in the impact of including climate 

induced LAI change on the annual runoff results. Therefore, consideration of extreme 

precipitation events is less important in this study. In the study area, the monthly LAI is 

strongly related to three month and or nine month moving average moisture state 

(precipitation – potential evapotranspiration) (Tesemma et al., 2014). Therefore, so long as 
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the precipitation is consistent between the two runs we can assess the importance of the 

change in LAI modelling on annual runoff. 

Responses to specific comments (S.C) of Reviewer #1 

S.C1: Pg 10598 “statistically downscaled using the delta change method” citations would be 

appropriate, Chen Fowler. 

Agreed.  We will cite Fowler et al., 2007 in the revised manuscript.  

S.C2: GCM output has known difficulties with regions of high relief. How different are the 4 

grid cells chosen for this study from each other? The authors aim to capture a precipitation 

gradient across several catchments, is this possible given the granularity of the GCM output? 

Partially Agree. We will revise the manuscript to provide more detail about the observed data 

used to drive VIC and the spatial resolution of VIC. The mean elevation of the four GCM 

grid cells is 172.3m, 347.7m, 83.3m and 128.5m above mean sea level respectively, which is 

not representative of the catchment relief. However, since we use the delta change method to 

statistically downscale the GCM output, the observed spatial variation of the climatic 

variables is maintained in the future projected climate. The GCM data only provide the 

degree of scaling up or down of the observed spatial pattern in the future projections. 

S.C3: Pg 10599 downscaling precipitation has several pitfalls. In particular the ‘wet bias’ due 

to the size of the gcm grid cells. When averaging 4 cells, this problem will be exaggerated. 

Based on equation (3) and (4) I see no methodology to solve the ‘a little rain all the time’ 

problem. 

Agree, but not relevant. The delta change downscaling technique takes the spatial variability 

and the temporal sequence of the observed baseline period re-scales it for the future 

projection, so the drizzle, or little rain all the time, problem is not relevant here. The delta 

change is calculated from 30 year monthly mean values so any GCM daily drizzle issues are 

aggregated. We will revise the manuscript to reflect this discussion.  

S.C4: There are no descriptive statistics examining the performance of the downscaling 

methodology. A validation/calibration test of the ability of the downscaling methodology to 

accurately capture the seasonality and the magnitude of precipitation is at the foundation of 

this study. 

Agreed. We will revise the manuscript to include the figure showing the seasonality between 

the GCM and observation in the historical period.  
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S.C5: Pg 10600 What method was used for the calculation of PET? The calculation of future 

PET was undertaken by only varying temp and precipitation patterns. Vapor pressure deficit 

is a critical component to evapotranspiration and in this case is kept constant. Some 

sensitivity analysis of this assumption would put the readers at ease that the results obtained 

are not just a function of the assumptions made in the paper. 

Agree. The PET calculation method used is the FAO56 Penman-Monteith. We will do a 

sensitivity analysis of this assumption and revise the manuscript to inform the readers of the 

importance of this assumption on the overall results.  

S.C6: Pg 10601 What was the initial condition for each of these simulations? Was there a 

spin up time? Where the periods examined assumed to be stationary?  

Agree. We will revise the manuscript to provide more detail about VIC and direct the readers 

to the detailed discussion of VIC and our modelling procedure in Tesemma et al., (2014, 

HESS discussion), which is currently under review. 

Most land surface models require a spin up period for stabilizing the internal equilibrium of 

the equations which are solved iteratively. The spin up period depends on the type of model 

and the purpose of the studies. In this study the VIC model was run at a daily interval for 30 

years from January 1981 to December 2010 to spin up the model and produce a restart file to 

be used as the initial condition for experiment runs. All experimental runs were initiated with 

the state produced from model spin up. The spatial resolution used to run VIC model was 

5km by 5km. 

S.C7: Pg 10601 The VIC model is a critical part of this work, but little detail of the model 

setup is given. What timestep, grid resolution etc were used? What PET method, infiltration 

scheme? 

Agree. We will revise the manuscript to provide more detail about VIC and direct the readers 

to the detailed discussion of VIC and our modelling procedure in Tesemma et al., (2014, 

HESS discussion), which is currently under review. 

We used a daily time step, a 5km by 5km spatial grid resolution and Penman-Monteith for 

potential evapotranspiration. VIC estimate infiltration and runoff using the variable 

infiltration capacity model which is a non-linear function of the soil moisture storage within 

the grid cell (Liang et al., 1994; Zhao et al., 1995). 
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S.C8: Pg 10603 “Most of the projected seasonal precipitation simulations showed a shift 

towards drier climates in all seasons except summer in both emission scenarios and periods. 

The variability in the projected mean monthly precipitation among climate models indicates 

great uncertainty but all climate models clearly deviated from the baseline period 20 (1981–

2010), underlining the change signal (Fig. 3).” Based on figure 3 I don’t see a ‘drying’ trend, 

the models seem to be split to me. I think just reporting the mean is not enough in this case. 

Perhaps a box plot or the standard deviations would help examine the change (same comment 

for tables 3 and 4). 

Agreed. We will convert the point graph into box plot to show the trend more clearly. 

S.C9: Figure 5: Caption doesn’t explain the ‘proportion of LAI effect’ 

Agreed. We will change and explain the proportion of LAI effect in the figure caption. 

S.C10: Pg 10608 “Projections of climate-induced vegetation dynamics and their hydrological 

impacts are influenced by various sources of uncertainties that arise from inputs from 

downscaled GCM outputs.” The authors discuss in depth the differences in means; however 

runoff processes in semi-arid catchments are rarely triggered by ‘mean’ conditions. There is 

no discussion on the precipitation characteristics of the regions (intensity, duration, 

interstorm) and how these are predicted to change. If interstorm periods are expected to 

increase, this will significantly alter the hydrologic fluxes even if the mean precipitation is 

maintained. Vegetation response to long dry periods would be more significant that response 

to changes in mean conditions. There is no discussion of existing models that use a more 

sophisticated vegetation module to model these effects. A review of these models would be 

useful to readers. 

The main objective of this study is to investigate the indirect effect of drought and future 

anticipated climate change on mean monthly /annual runoff through allowing vegetation LAI 

to change with climate. Therefore, consideration of extreme precipitation events is less 

important in this study; so long as the precipitation is consistent between the two runs we can 

assess the importance of the change in LAI modelling. Changes in precipitation 

characteristics would be important for studies with the objective of predicting climate change 

impact on flood behaviour, reservoir management and so on. 

Agreed. We will add a discussion of existing models that use a more sophisticated vegetation 

module to model these effects for readers’ interest. 
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Responses to major comments of Reviewer #2 

This manuscript presents the VIC model results under climate change scenarios for 13 

different watersheds in southeastern Australia. Based on their simulations, the reduction in 

water yield was (or will be) mitigated by the vegetation responses to hydroclimate changes 

(warmer). Although the manuscript presents an interesting point and is worthy of publication 

(somewhere), I am not sure it rises to the level of a HESS paper. Some of the results are quite 

obvious to me (the mitigation role of vegetation in climate changes). It could have been 

greatly improved by incorporating much more details in several sections, particularly the 

model description, results, and their interpretation. Especially, I cannot find any further or in-

depth discussion in the manuscript, which makes me feel more like reading a modeling 

exercise rather than a paper. My recommendation comes w/ three caveats: 

Noted – we respond to these concerns below. 

First, I’m a bit concerned about overlaps with two papers listed in references (Tessema et al. 

2014a and b). It seems that the LAI models and predictions were already covered by the first 

paper, and the modeling part (calibration and validation) were presented in the paired paper 

(Tessema et al. 2004b). In these kinds of scenario-based hydrological simulations, 

downscaling and bias correction processes would be most interesting to many readers (Hay, 

L. E., et al. "Use of regional climate model output for hydrologic simulations." Journal of 

Hydrometeorology 3.5 (2002): 571-590.) . However, I cannot find any merit about those 

processes. The presented downscaling process seems like a simple data generator based on 

the baseline climate data rather than actual statistical downscaling. It seems that the study site 

is located along the strong orographic gradient, however this factor was completely ignored 

in those processes. Check this paper (Praskievicz, Sarah, and Patrick Bartlein. "Hydrologic 

modeling using elevationally adjusted NARR and NARCCAP regional climate-model 

simulations: Tucannon River, Washington." Journal of Hydrology 517 (2014): 803-814.). 

They used a topographic correction of regional climate-model data for modeling the 

hydrology of mountainous basins for simulating hydrology under past or future climates. 

With the current downscaling method (I am not sure I can say ‘downscaling’), the predicted 

scenarios would be too much constrained by the baseline climate data, and will only produce 

averaged responses from GCM models. 2.2.2 section definitely overlaps with Tessema et al. 

2014a. 2.2.3 session is about how to deconvolve the simulation results into CC and 

vegetation effect. What are the unique methods and equations in this manuscript? I briefly 
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read the first paper in review. I am not sure whether this manuscript can be a stand-alone 

paper in a current form. 

Partially agree. The unique contribution of this manuscript is that we examine the relative 

effects of direct climate forcing (rainfall, atmospheric ET drivers) and direct climate forcing 

combined with climate induced LAI change on runoff under changed climate scenarios. 

Comparing these enables the LAI effect to be separated out. Most studies to date have looked 

at either only the direct climate forcing effects or only the combination of climate forcing 

change coupled with vegetation change. Specifically, our study was done by coupling the 

LAI-Climate model developed in Tesemma et al. (2014a) into the VIC hydrologic model and 

assess the impact on catchment runoff of how LAI is modelled (constant seasonal LAI or LAI 

varying in response to climate) under changing climatic conditions. We investigate two sets 

of changing climatic conditions: (1) the observed Millennium Drought, which is a persistent 

(>10 year) large change; and (2) projected climate change for both wet and dry sub-

catchments. Our results suggest that modelling LAI in a way that responds to changing 

climatic conditions is important for modelling runoff during drought and projected climate 

change. We believe this paper makes a significance contribution to the existing body of 

knowledge and is a stand-alone paper. 

Nevertheless, we do agree that we need to make this clearer in the introduction. We also 

agree that we need to provide more details about the model description, downscaling 

methodology, results, and their interpretation so that the significance of this work is more 

apparent. See our response to Review #1 who also made a similar request for more detail. 

Second, the manuscript starts with the critiques of stationarity assumption in future 

hydrological simulations (P10595 L24). I totally agree to this point in that the traditional 

hydrologic modeling has often ignored the importance of vegetation response during 

hydrologic regime changes. Many papers related to climate changes have mentioned the 

importance of vegetation in mitigating the effect of anthropogenic CO2 emission and 

resulting temperature increases. I think that the authors should have written in depth 

discussion regarding this point. However, it would be also the same problem to use the 

equation 5 for the prediction of LAI values in the future. It is naive to predict LAI values in 

100 years only with 6-9 months P - PET deficits. Leaving nutrient and CO2 issues aside, the 

authors assumes the constant PFT (plant functional types) for their simulations. However, 

tree lines will definitely move upward with warmer climate. I am sure this constant PFT 

assumption led to the conclusion that ET would decrease and soil remain wetter even with 
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warmer climate (P10608 L5), which I cannot agree to. The constant PFT assumption would 

decrease LAI values for tree dramatically, which might result in wetter soils with warmer 

climate. However, you would never get wetter soils under warmer climate. Rather, all trees 

would die off due to drought stress, and be substituted by other drought tolerant species. 

Partially agree. We agree with the reviewers concern about changes in plant functional types 

(PFTs) and we discussed our assumption that PFTs did not change in the manuscript. We 

make this limitation clearer in the paper and will add a comment about timescale of 

adjustment. Notwithstanding this, we note that our LAI-climate relationships were developed 

in a region that experienced a ten year drought (2000–2009, called the “Millennium 

drought”), which is comparable to projected climate conditions under the highest CO2 

emission scenario. The observed Millennium drought makes this study very interesting 

because we have a chance to see how vegetation responded to such severe water stresses 

under a prolonged (ten years) climate change. We believe our LAI-climate relationships 

developed under extreme drought conditions could reasonably represent how LAI may 

change under comparable anticipated changes in future climate. Furthermore, most over-story 

trees in our study area are Eucalypts and while some movement of boundaries between 

dominant species may be expected, water use characteristics are likely to be relatively similar 

and there is not sufficient information to represent species specific details of either migration 

or water use. 

In addition, it is know that in Australia vegetation growth is highly controlled by precipitation 

(water supply), and is less controlled by temperature and radiation (Nemani et al. 2003). 

Hence, most vegetation dynamics can be explained by variation in climate, which formed the 

basis of the LAI-climate model developed in Tesemma et al. (2014a). We acknowledge 

changing CO2 levels could influence vegetation growth, but to a smaller extent than climate 

does. Finally, while the reviewer has mentioned possible changes in PFTs under climate 

change, in our study area PFTs are strongly influenced by land use (human activities) such as 

forest clearing for agriculture, which are difficult to project into the future. It is likely that 

issues such as fire regime changes (Heath et al., 2014) and changes to forest age (Cornish and 

Vertessy, 2001) which change water use would dominate over differences between species. 

We will acknowledge these limitations in the revised manuscript. 

We will revise the manuscript to emphasis the unique opportunity that the Millennium 

drought has provided to investigate this issue. We will include a discussion of these issues in 
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the introduction section to help readers to be aware of the assumptions made in this analysis 

at the beginning of the paper, and deepen our discussion section as well. 

Third, I am not comfortable with the equivalence between LAI and productivity. Throughout 

the manuscript, those two terms were assumed as the same, but it is definitely not. 

Hydrologists often made the same mistake (e.g. Rodriguezâ˘ARˇ Iturbe, I., et al. "On the 

spatial and temporal links between vegetation, climate, and soil moisture." Water Resources 

Research 35.12 (1999): 3709-3722). Although LAI can be a result of accumulated 

productivity through allocation of photosynthates, the allocation ratios between above and 

belowground would be quickly responding to water and nutrient availability (Litton, 

Creighton M., James W. Raich, and Michael G. Ryan. "Carbon allocation in forest 

ecosystems." Global Change Biology 13.10 (2007): 2089-2109). This allocation process 

should be understood under the optimality principle for the compromise between different 

resources (light and water/nutrient). For example, this would lead to the conclusion that the 

vegetation with the same LAI values would have the same productivity regardless of their 

locations and climates, such as semiarid and tropical environment. This is why most remote 

sensing based models incorporate different environmental constraints, such as VPD, 

temperature, ET/PET etc., to convert LAI values to NPP/GPP terms (e.g. MODIS GPP/NPP), 

rather than using a constant radiation use efficiency value. Please remove the productivity 

term throughout the manuscript. 

Agreed. We will replace vegetation productivity with LAI throughout in the revised 

manuscript. 

Responses to specific comments (S.C) of Reviewer #2 

P10596 L9-12: This sentence is not clear to me.  

Agreed. We will revise the whole sentence for clarity. 

P10596 L11: Please do more literature reviews. There are tons of papers that examine the 

relationship between vegetation water use and streamflow generation under climate changes 

especially in Mediterranean climate regions (e.g. Walko, Robert L., et al. "Coupled 

atmosphere-biophysics-hydrology models for environmental modeling." Journal of applied 

meteorology 39.6 (2000): 931-944). Check the recent papers from Dr. Christina Tague at 

UCSB.  

Agreed. We will expand the literature reviews and include those papers mentioned-above in 

the revised manuscript. 
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Equations 6 and 7; Qclim, Qnet, and Qlai are confusing because they look like the water 

yields, but actually percent terms. Change those.  

In case where some catchments are wet and some catchments are dry, the percentage is 

preferable to use which allows comparison across catchments.  

P10608 L3-5: This is the most controversial result from the paper. I cannot agree. Do you 

need Table 2 to Table 5. Nobody would read those. 

Agreed. We will move the detailed results provided in those tables to Supplementary Material 

and convert the results in the tables into figures that are easier to follow. 
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Abstract 10 

Anthropogenic climate change is projected to enrich the atmosphere with carbon dioxide, 11 

change vegetation dynamics and influence the availability of water at the catchment. This 12 

study combines a non-linear model for estimating changes in leaf area index (LAI) due to 13 

climate fluctuations with the Variable Infiltration Capacity (VIC) hydrological model to 14 

improve catchment streamflow prediction under a changing climate. The combined model 15 

was applied to thirteen gauged catchments with different land cover types (crop, pasture and 16 

tree) in the Goulburn-Broken Catchment, Australia for the “Millennium Drought” (1997–17 

2009) relative to the period (1983–1995), and for two future periods (2021–2050 and 2071–18 

2100) for two emission scenarios (RCP4.5 and RCP8.5) were compared with the baseline 19 

historical period of 1981–2010. This region was projected to be warmer and mostly drier in 20 

the future as predicted by 38 Coupled Model Inter-comparison Project Phase 5 (CMIP5) runs 21 

from 15 Global Climate Models (GCMs) and for two emission scenarios. The results showed 22 

that during the Millennium Drought there was about a 29.7%–66.3% reduction in mean 23 

annual runoff due to reduced rainfall and increased temperature. When drought induced 24 

changes in LAI are included, smaller reductions in mean annual runoff of between 29.3% and 25 

61.4% were predicted. The proportional increase in runoff due to modelling LAI was 1.3%–26 

10.2% relative to not including LAI. For projected climate change under the RCP4.5 27 

emission scenario ignoring the LAI response to changing climate could lead to a further 28 

reduction in mean annual runoff of between 2.3% and 27.7% in the near-term (2021–2050) 29 

and 2.3% to 23.1% later in the century (2071–2100) relative to modelling the dynamic 30 

response of LAI to precipitation and temperature changes. Similar results (near-term 2.5% to 31 
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25.9% and end of century 2.6% to 24.2%) were found for climate change under the RCP8.5 32 

emission scenario. Incorporating climate-induced changes in LAI in VIC model reduced the 33 

projected declines in streamflow and confirms the importance of including the effects of 34 

changes in LAI in future projections of streamflow. 35 

 36 

Key words: Climate change, leaf area index, drought, catchment streamflow, vegetation 37 

dynamics, VIC hydrological model.  38 
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1 Introduction 39 

Recently, climate changes have been observed in different parts of Australia (Chiew et al., 40 

2011; Cai and Cowan, 2008; Hughes et al., 2012; Lockart et al., 2009; Potter and Chiew, 41 

2011). Specifically, south-eastern Australian catchments have experienced changes in 42 

streamflow due to fluctuations in climate as observed during the recent “Millennium 43 

Drought’’ (1997-2009) which lasted more than a decade (Chiew et al., 2011; Verdon-Kidd 44 

and Kiem, 2009). This drought may be representative of future climatic conditions in this 45 

region.  46 

The projected water availability for future climates derived from downscaled outputs from 47 

global and regional climate models indicate increases of mean annual runoff by 10% to 40% 48 

in some parts of the world (high northern latitudes) and 10% to 30% reduction elsewhere 49 

(southern Europe, Middle East and south-eastern Australia) (Milly et al., 2005). More 50 

recently, Roderick and Farquhar (2011) examined climate and catchment characteristics for 51 

sensitivity to changes in runoff in Murray-Darling Basin (MDB) in southeast Australia from a 52 

theoretical point of view and estimated that a 10% change in rainfall would lead to a 26% 53 

change in runoff and a 10% change in potential evaporation would lead to a 16% change in 54 

runoff with all other variables being constant. In south-eastern Australia it has been projected 55 

that there will be a reduction in mean annual runoff of 10% on average when different 56 

climate models are used as input to hydrological models (Cai and Cowan, 2008; Chiew et al., 57 

2009; Roderick and Farquhar, 2011; Teng et al., 2012a; Vaze and Teng, 2011). These studies 58 

assessed the possible impacts of climate change on total runoff based on rainfall-runoff 59 

relationships which only considered first order effects of changes in precipitation and 60 

temperature with subsequent impacts on evaporative demand.  61 

There is evidence that such relationships are not stationary over time (Chiew et al., 2014; 62 

Peel and Blöschl, 2011; Vaze et al., 2010), which implies that the studies discussed in the 63 

previous paragraph may be missing an important factor. One approach to improving 64 

modelling under changing conditions is to use variable monthly leaf area index (LAI) in the 65 

hydrologic model. Using observed climate variability and streamflow responses, observed 66 

monthly LAI has been shown to improve model performance relative to using mean monthly 67 

LAI (Tesemma et al., 2014b). The improvements are largest under either relatively wet or dry 68 

climatic conditions, i.e. in wet and dry years, rather than average years. In most south-eastern 69 

Australia, LAI primarily responds to the availability of water and changes in vegetation type, 70 

such as conversion of forest to cropland or pasture, but also responds, to a lesser extent, to 71 
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changes in temperature and rising atmospheric CO2 concentrations. Most of these LAI 72 

responses are expected to be affected by projected climate change. These climate-induced 73 

changes in vegetation LAI may impact on evapotranspiration and runoff and hence should be 74 

considered when making runoff projections for climate change scenarios.  75 

Dynamic Global Vegetation Models (DGVMs) have been used to assess the vegetation effect 76 

of climate change on large-scale hydrological processes and patterns (Murray et al., 2012a, 77 

2011). A list of available DGVMs and their processes representations (photosynthesis, 78 

respiration, allocation, and phenology) can be found in Wullschleger et al. (2014), while 79 

Scheiter et al. (2013) provides a review of the possible sources of uncertainty related to 80 

representation of plant functional type (PFT) in DGVMs. Most DGVMs overestimate runoff; 81 

mainly due to model structure problems along with operating at low spatial and temporal 82 

resolution (Murray et al., 2012b). While the relationships between LAI and climate 83 

fluctuation have been modelled (Ellis and Hatton, 2008; O'Grady et al., 2011; Jahan and Gan, 84 

2011; Palmer et al., 2010; Tesemma et al., 2014a; White et al., 2010), none of them have 85 

been incorporated in hydrological models for the purpose assessing future climate change 86 

impacts on streamflow. The poor hydrological sub models in DGVMs and the static 87 

vegetation in most hydrological models mean that importance of the indirect vegetation-88 

related (LAI) effects relative to the direct effects of changes in precipitation and temperature 89 

on hydrological response at catchment scale have rarely been studied. This limits 90 

understanding of the linkages between climate fluctuations and vegetation dynamics, and 91 

their combined impacts on hydrological processes. 92 

The main objective of this study is to examine the relative effects on mean annual runoff of 93 

changes in direct climate forcing (mainly precipitation and temperature) and direct climate 94 

forcing combined with climate-induced LAI changes under changed climate scenarios. 95 

Comparative analysis of these two cases enables the effect on mean annual runoff of allowing 96 

LAI to respond to a changing climate to be identified. Specifically, our study combined the 97 

LAI–Climate model developed in Tesemma et al. (2014a) with the VIC hydrologic model to 98 

assess the impact on catchment runoff of how LAI is modelled (constant seasonal LAI or LAI 99 

varying in response to climate) under changing climatic conditions. As noted above, this 100 

combined model showed significant improvements in runoff simulations under historic 101 

conditions. Here we investigate two sets of changing climatic conditions: (1) the observed 102 

Millennium Drought (1997–2009), which is a persistent (>10 year) large change in climate; 103 

and (2) projected climate change for both wet and dry catchments using 38 Coupled Model 104 
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Inter-comparison Project Phase 5 (CMIP5) runs from 15 different Global Climate Models 105 

(GCMs) for two future periods, 2021–2050 and 2071–2100, for two emission scenarios, 106 

RCP4.5 and RCP8.5). The results obtained from this study are expected to demonstrate 107 

whether modelling LAI in a way that responds to changing climatic conditions is important 108 

for modelling runoff during projected climate change in the study area.  109 
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2 Research approach  110 

This section provides details about the characteristics of the selected catchments and the 111 

modelling exercises. The climate and land cover of the study catchments are briefly described 112 

in section 2.1. The application of multiple GCMs and emission scenarios output method are 113 

explained in section 2.2. The relationship between LAI and climatic variables are presented 114 

in section 2.3, and the hydrologic modelling experiment approach used to assess the impact 115 

of changes in climate on runoff are described in section 2.4. 116 

2.1 Characteristics of selected catchments 117 

All the study catchments are located in the Goulburn-Broken Catchment which is a tributary 118 

of the Murray-Darling Basin (MDB), Australia. The Goulburn-Broken Catchment extends 119 

between 35.8
0
 to 37.7

0
 S and between 144.6

0
 to 146.7

0
 E (Figure 1a) with a range of altitude 120 

from approximately 1790 m on the southern side to 86 m above mean sea level on the 121 

northern side of the catchment. The mean annual rainfall of the study catchments ranges from 122 

659 (in the north) to 1407 mm/year (in the south) calculated for the period (1982–2012). The 123 

majority of the rainfall (about 60%) occurs during winter and spring. The reference 124 

evapotranspiration (PET) calculated using the Food and Agricultural Organization (FAO56) 125 

method, ranges from 903 (in the north) to 1046 mm/year (in the south). Hence, the dryness 126 

index (mean annual reference evapotranspiration divided by mean annual precipitation) 127 

varies from 0.64 to 1.6 (Figure 1b). The dominant land cover type in most of the catchments 128 

is forest (mainly tall open Eucalyptus forest and Eucalyptus woodlands) with some pasture in 129 

all catchments. A small amount of cropland is located in some of the catchments (Figure 1c). 130 

2.2 Applying multiple GCMs and multiple emission scenarios 131 

Outputs from many climate models from the Coupled Model Inter-comparison Project Phase 132 

5 (CMIP5) (Taylor et al., 2012) are used as input to the hydrological model. CMIP5 contains 133 

model runs for four representative concentration pathways (RCPs), which provide radiative 134 

forcing scenarios over the 21
st
 century (Moss et al., 2010; Vuuren et al., 2011). In this study 135 

two emission scenarios were chosen: a midrange mitigation scenario, referred to as RCP4.5 136 

and a high emissions scenario RCP8.5 (Meinshausen et al., 2011). RCP4.5 results in a 137 

radiative forcing value of 4.5 Wm
-2

 at the end of the 21
st 

century relative to the preindustrial 138 

value, while RCP8.5 provides a radiative forcing increase throughout the 21
st
 century to a 139 

maximum of 8.5 Wm
-2

 at the end of the century. 140 
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CMIP5 Global Climate Model (GCM) data were obtained from (http://climexp.knmi.nl 141 

accessed 28 February 2014). These data were re-sampled to a common grid resolution of 2.5° 142 

since each GCM has a different spatial resolution (some are the same, but most are different). 143 

A total of 38 RCP4.5 and RCP8.5 runs from 15 different GCM models have been used in this 144 

study to include the possible uncertainty among climate models. For each of the 38 runs, 145 

daily precipitation, minimum and maximum temperature data were collected for three 146 

periods, 1981–2010 (historical run), 2021–2050 and 2071–2100 (future runs). An assessment 147 

of the ability of the CMIP5 runs to reproduce the observed base line seasonality of 148 

precipitation, minimum and maximum temperature is shown in Figure 2. The seasonality in 149 

precipitation and temperature were well captured by most CMIP5 runs with biases which 150 

require correction. 151 

Low spatial resolution GCM outputs require downscaling for application in catchment 152 

hydrology studies. Here the ‘delta-change’ statistical downscaling technique was used to 153 

downscale and bias-correct the GCM outputs (Fowler et al., 2007). Delta-change was 154 

selected due to its low computational intensiveness and easy applicability to a range of 155 

GCMs. We acknowledge the limitations of this method include an assumption of stationarity 156 

in change factors, climate feedbacks are not incorporated and an inability to capture changes 157 

in extreme events and year to year variability. Dynamic downscaling, which solves some of 158 

these problems, was not used as it has high computational demand and is not readily available 159 

for a range of GCM runs and scenarios (Fowler et al., 2007). A simple statistical downscaling 160 

method was appropriate for this study as we were interested in the impact of including 161 

climate induced LAI change on the runoff results. In the study area, the monthly LAI is 162 

strongly related to three month and/or nine month moving average moisture state 163 

(precipitation – potential evapotranspiration) (Tesemma et al., 2014a). Therefore, so long as 164 

the precipitation is consistent between the two runs we can assess the importance of the 165 

change in LAI representation between model runs. It has been suggested that extreme 166 

rainfalls might change differently to mean rainfalls under climate change (Harrold et al., 167 

2005) and the delta-change method does not capture this. Nevertheless delta-change was used 168 

as this study concentrates on average runoff which is strongly linked to overall catchment 169 

wetness, rather than floods which are linked to a combination of catchment wetness and 170 

extreme rainfall. Hence consideration of extreme precipitation events is less important in this 171 

study. 172 
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Statistical downscaling was applied to each of the GCM outputs and emission scenarios. 173 

Since the study area is covered by four GCM grid cells, the area weighted average 174 

precipitation, minimum and maximum temperatures of the GCM grid cells covering the study 175 

area were computed. The area weighted average values were then statistically downscaled 176 

using the delta change approach. Delta changes were calculated separately for each of the 12 177 

months. For temperatures the delta changes were calculated using  178 

∆��j� = T�	
���j� −  T���������j�                                                                                 �1� 

where ΔT(j) is the delta change in the 30-year mean monthly minimum or maximum 179 

temperature as simulated by the climate model for the future period and RCP of interest 180 

(2021–2050 or 2071–2100, RCP4.5 or RCP8.5), T������j�, relative to the mean for the 181 

baseline period (1981–2010) climate model simulation,  T���������j�. j represents the month. 182 

ΔT(j) is then applied to the daily baseline (1980–2010) observations, Tobs(j,i), for each pixel of 183 

the climate gridded data (which is the same as the VIC model grid pixels) to obtain the 184 

statistically downscaled minimum or maximum daily temperature, TΔ�j, i� for month j and 185 

day i. 186 

T∆�j, i� = �����j, i� + ∆��j�                                                                                           �2� 

For precipitation, the delta changes value is computed as a proportional change rather than a 187 

shift: 188 

∆��j� = P�	
���j� 
P���������j�                                                                                                       �3� 

and then applied to the observations using: 189 

  P∆�j, i� = P
���j, i� × ∆��j�                                                                                         �4� 

Here ΔP(j) is the delta change in 30-year mean monthly precipitation as simulated by the 190 

climate model P�	
���j� for two future periods (2021–2050 and 2071–2100) relative to the 191 

baseline simulation P���������j�; PΔ�j, i� is the statistically downscaled daily precipitation for 192 

the projected future climate change scenario for month j and day i, Pobs(j, i) is observed daily 193 

precipitation for the historical period (1981–2010) for month j and day i for each of the 194 

precipitation pixel of the gridded climate data. The delta change approach maintains a similar 195 

(but shifted or scaled) spatial variation of temperature and precipitation as that in the 196 

historical observed gridded data. The daily pattern of weather variation and the relationships 197 
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between the various weather variables are also maintained. Because historic weather data 198 

provides the basis for the temporal patterns, the well-recognized issue of “GCM drizzle” is 199 

eliminated. The delta change method also corrects for differences between the mean elevation 200 

of the four GCM grid cells by scaling up or down the historical spatial variation of 201 

temperature and precipitation across the catchment.  202 

2.3 Relationship between LAI and climate variables 203 

Tesemma et al. (2014a) showed that monthly LAI of each vegetation type was closely related 204 

to changes in moisture state (precipitation minus reference evapotranspiration) of six-monthly 205 

moving averages for crop and pasture, and nine-monthly moving averages for trees. 206 

Differences in LAI response for the same change in moisture state among the three vegetation 207 

types were also observed as differences in model parameters of the LAI–Climate relationship. 208 

Tesemma et al. (2014a) provides details on the derivation of the LAI–Climate relationship for 209 

the Goulburn-Broken Catchment. The three LAI models developed for crop, pasture and tree 210 

are given below. 211 

LAI =  
)*
*+
**
, -./.12./

-3�4�567�8689:�6 ;<=.><<<>?.<@AB CD   ,                            if Crop
../.J1KL

-3�4�567�8689:�6 >M.@;<B@?.N>NB CD   ,                           if Pasture
..1.JTK-

-3�4�567�8689:�U <B.;N>=M@.=>N; CD    ,                             if Tree
                                           (5) 212 

Where LAI is the leaf area index of the cover type (tree/pasture/crop), P is the six month 213 

moving average of precipitation for crop and pasture, and the nine month moving average for 214 

trees, and PET is the respective reference evapotranspiration. 215 

The monthly LAI was then simulated for both historical and future climate scenarios using 216 

the LAI–Climate model (Eq. 5) driven with the appropriate climate inputs. In this study 217 

monthly average reference evapotranspiration (PET, mm day
-1

) was estimated using the 218 

standard FAO Penman-Monteith daily computations (Allen et al., 1998) and then aggregating 219 

to monthly values. The reference evapotranspiration (PET) for future climate scenarios was 220 

computed using the projected minimum and maximum temperatures,while incoming 221 

shortwave radiation and vapour pressure were derived from daily temperature range using the 222 

algorithms of Kimball et al. (1997) and Thornton and Running (1999). The wind speed was 223 

kept the same as the historical observations. A significant literature exists (see discussion in 224 
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Supplementary Material of McMahon et al., 2015) around the issue of using temperature to 225 

drive future changes in PET. We acknowledge this assumption and note that it is likely to 226 

have limited impact on our runoff results in the mainly water limited catchments modelled 227 

here. The historical or future precipitation was used in Eq. 5 according to the scenario being 228 

modelled. Potential LAI variations in the baseline years (1981–2010) and the two future 229 

periods (2021–2050 and 2071–2100), for each of the two future emission scenarios, were 230 

simulated using the downscaled outputs from the 38 CMIP5 runs of the 15 GCMs, as input 231 

into the LAI–Climate model (Eq.5). The uncertainty ranges in modelled LAI that come from 232 

the difference in climate input were determined by using the downscaled 38 CMIP5 runs 233 

individually in Eq. 5. 234 

2.4 Hydrological model and experimental design 235 

In this study we used the three layer Variable Infiltration Capacity model (VIC) model which 236 

has been used in different parts of the world and found to successfully simulate water balance 237 

components. The study used a rigorously calibrated and validated VIC model for each of the 238 

13 study catchments. The VIC models were calibrated separately using the Multi-Objective 239 

Complex Evolution (MOCOM-UA) algorithm (Yapo et al., 1998). For details on the model 240 

calibration and validation procedures and model evaluation results see Tesemma et al. 241 

(2014b). More detail about the modelling approach used in this study is described below. We 242 

used a daily time step, a 5km by 5km spatial grid resolution and FAO56 Penman-Monteith 243 

for potential evapotranspiration computation. VIC estimate infiltration and runoff using the 244 

variable infiltration capacity model which is a non-linear function of the soil moisture storage 245 

within the grid cell (Liang et al., 1994; Zhao et al., 1995). The ability of the model to 246 

incorporate spatial representation of climate and inputs of soil, vegetation and other 247 

landscape properties make it applicable for climate and land use / land cover change impact 248 

studies.  249 

Most land surface models require a spin up period to reach a dynamic equilibrium between 250 

the climate forcing and various model state-variables. The spin up period depends on the type 251 

of model and the purpose of the studies. In this study the VIC model was run at a daily time 252 

step for 30 years from January 1981 to December 2010 to spin up the model and to produce a 253 

restart file to be used as the initial condition for experiment runs. All experimental runs were 254 

initiated with the state produced from model spin up. The calibrated and validated VIC model 255 

used in this study is described by Tesemma et al. (2014b). Two model experiments were run: 256 

the first experiment considered the recent historical climate (Millennium Drought, 1997–257 
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2009) and LAI estimates using the simple LAI-Climate model against the relatively normal 258 

historical climate period (1983–1995). The second experiment considered the future climate 259 

from 38 CMIP5 runs and corresponding LAI derivatives for two periods (2021–2050 and 260 

2071–2100), and two emission scenarios RCP4.5 and RCP8.5 with respect to the historical 261 

period (1981–2010). Both sets of simulations were performed over the thirteen calibrated 262 

study catchments within the Goulburn-Broken Catchment (Figure 1b). A flow chart of the 263 

modelling method is given in (Figure 3). 264 

To identify the effect on mean annual runoff of allowing LAI to respond to a changing 265 

climate, compared with LAI not responding, we used the following steps: (1) the calibrated 266 

model was forced with inputs of historical climate data and LAI data modelled from using the 267 

historical climate data (1981–2010) to establish baseline streamflow estimates; (2) the model 268 

was forced with projected future climate inputs and corresponding modelled LAI to produce 269 

projected streamflow for future scenarios; (3) the future climates were input along with the 270 

LAI data used in step 1 to produce projected streamflows that ignore project LAI changes . 271 

The difference in mean annual runoff between steps 3 and 1 represents the climate effect (CC 272 

effect); on mean annual runoff of only Precipitation and Temperature. Whereas the difference 273 

in mean annual runoff between steps 2 and 1 represents the net effect (CC + LAI effect); on 274 

mean annual runoff of allowing LAI to respond to a changing climate in addition to the direct 275 

climate forcing (Precipitation and Temperature). The difference in mean annual runoff 276 

between steps 2 and 3 represents the component of the runoff response related to climate-277 

induced changes in LAI. For the millennium drought (1997–2009) the above two changes in 278 

mean annual runoff were estimated in a similar fashion taking (1983–1995) time period as 279 

relatively normal period. The percentage change of mean annual runoff against the historical 280 

mean annual runoff for climate change effect (Qclim) (Eq. 6), climate change and LAI effect 281 

(Qnet) (Eq. 7); and the percentage of CC effect offset by LAI effect (Qlai) (Eq. 8) were 282 

estimated as follows:  283 

VWXYZ =  [-TT ∗ � ]^_`abc_def ghijkakcl df_meal n ]^_`abc_def ghi^_`abc_def df_meal  �
]^_`abc_def ghi^_`abc_def df_meal o                                                     (6) 284 

V�pq =  r-TT ∗ � ]jkakcl ghijkakcl df_meal n ]^_`abc_def ghi^_`abc_def df_meal   �
]^_`abc_def ghi^_`abc_def df_meal s                                                       (7) 285 

VXtY =  u-TT ∗ � ]df_mn ]vla �]vla w                                                                                         (8) 286 
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3 Results  287 

This section provides results from the modelling exercises. The change in climate variables 288 

during: (1) the recent observed prolonged drought; and (2) future climate change projections 289 

for the study catchments are presented in section 3.1. The impact on both LAI (section 3.2) 290 

and catchment streamflow (section 3.3) of changes in climate input during the Millennium 291 

Drought and future climate change projections are also provided. These results provide 292 

readers with a comparison of the anticipated future change in climate with the recently 293 

observed drought. 294 

3.1 Change in the climate variables from change in climate 295 

3.1.1 Millennium drought 296 

The Millennium Drought brought a decline in the mean annual precipitation over the selected 297 

catchments which ranged from 17.9% to 24.1%, with a mean of 20.9% when compared with 298 

the period (1983–1995). It also brought an increase in mean annual temperature which ranged 299 

from 0.2 
0
C to 0.4 

0
C, with an average of 0.3 

0
C as compared to the temperature in the period 300 

(1983–1995). All thirteen study catchments experienced a similar change in both 301 

precipitation and temperature (Table 1).  302 

3.1.2 Future climate 303 

Averaged over all 38 CMIP5 runs, the mean annual precipitation in 2021–2050 over the 304 

selected catchments is projected to decline by 2.9% and 3.7%, relative to the historical period 305 

1981–2010, under the RCP4.5 and RCP8.5 scenarios respectively. By the end of the century 306 

(2071–2100) mean annual precipitation is projected to decline by 5% and 5.2% under the 307 

RCP4.5 and RCP8.5 scenarios respectively (Table 2). The mean annual temperature is also 308 

projected to increase in both future periods and emission scenarios (Table 2). 309 

Most precipitation projections showed a shift towards drier climates in all seasons except 310 

summer in both emission scenarios and periods. The variability in projected mean monthly 311 

precipitation among climate models indicates great uncertainty between GCMs (Figure 4a-d). 312 

The mean monthly temperature of all climate models clearly deviated from the baseline 313 

period (1981-2010), underlining the consistent change signal between GCMs (Figure 4e-h). 314 

The median of the 38 CMIP5 mean monthly precipitation data over the Goulburn-Broken 315 

Catchment in the RCP4.5 emission scenario showed declines in most of the months. The 316 

decreases were up to 6% in 2021–2050 (Figure 4a) and up to 11% in 2071–2100 (Figure 4c). 317 

Similarly, under the RCP8.5 emission scenario the median monthly precipitation, other than 318 
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in January and February for both periods, showed decreases up to 7% in 2021–2050 (Figure 319 

4b) and up to 18% in 2071–2100 (Figure 4d). The simulations for January and February 320 

showed median increases of up to 4% and 5% respectively in 2071–2100 from the historical 321 

baseline. Some climate models projected very wet future climates while others projected 322 

relatively dry climates. There are relatively high uncertainties in the projected mean monthly 323 

precipitation results in summer when compared with the mean monthly precipitation in 324 

winter among the climates models. 325 

In contrast to precipitation the projected mean monthly temperatures from all CMIP5 runs 326 

showed increases, the median of the mean monthly temperatures of all CMIP5 38 runs 327 

increased by about 0.8 
0
C in winter and 1 

0
C in summer in 2021–2050 (Figure 4e), and by 328 

about 1.3 
0
C in winter and 1.8 

0
C in summer in 2071–2100 (Figure 4g) under the RCP4.5 329 

scenario. Under the RCP8.5 emission scenario the temperatures increased by 1 
0
C in winter 330 

and by 1.4 
0
C in summer during 2021–2050 (Figure 4f) and by 2 

0
C and 3 

0
C in winter and 331 

summer respectively by the end of the 21
st
 century (Figure 4h). After precipitation the second 332 

variable that drives water availability is potential evapotranspiration. Here PET is expected to 333 

increase among all CMIP5 runs as it is being driven solely by changes in temperature given 334 

that actual vapour pressure and solar radiation was also simulated as a function of 335 

temperature. In the near future period (2021–2050) the median of all CMIP5 mean monthly 336 

reference evapotranspiration projections increase by 5% to 13% in both emission scenarios, 337 

with the largest change in winter and the smallest in summer. In the future period of 2071–338 

2100, the mean monthly reference evapotranspiration increased by 7% in summer and 25% in 339 

winter under RCP4.5 emission scenarios, and by 10% in summer and 28% in winter under 340 

the RCP8.5 emission scenarios.  341 

3.2 Impact on LAI from change in climate 342 

3.2.1 Millennium drought 343 

The effects of the Millennium Drought (1997–2009) on modelled crop LAI were very severe 344 

with reductions in mean annual LAI between catchments of 38.1% to 48.0%, with a mean of 345 

42.7% (Table 1). The reduction in LAI of pasture was between 16.7% and 21.6% across the 346 

thirteen selected catchments with a spatial average of 19.4% (Table 1). The LAI of trees 347 

responded less than crop and pasture, and reductions were in the range 5.7% to 14.0%, with a 348 

spatial mean of 9.2% (Table 1). A significant reduction in each cover type also brought an 349 

overall decline in areal weighted sum of all land cover types LAI in the selected catchments 350 
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which ranged from 5.8% to 17.9% (Table 1), which is similar to the reduction for trees, 351 

where tree is the dominant land cover type. 352 

3.2.2 Future climate 353 

The changes in mean monthly LAI of crop, pasture and trees averaged over the whole 354 

Goulburn-Broken Catchment under future climates are vary between the CMIP5 runs and 355 

global warming scenarios. Averaged over all 38 CMIP5 runs, the near future (2021–2050) 356 

results for the study catchment showed that the mean annual LAI of cropland, pasture and 357 

trees declined up to 13%, 6.7% and 5.4% under the RCP4.5 scenarios, and by up to 16%, 8% 358 

and 6.6% under the RCP8.5 scenario (Table 2). A further reduction in the mean annual LAI 359 

of each land cover was simulated by the end of the 21
st
 century for both emission scenarios 360 

(Table 2). 361 

The effect of projected climate change on monthly total LAI (area weighted sum of all land 362 

cover types LAI) for the study catchments is given in (Figure 5). The median of the 38 363 

CMIP5 runs simulated mean monthly LAI showed declines in all three land cover types. 364 

Despite similar percentage changes in mean monthly precipitation and temperature forcing, 365 

the mean monthly total LAI across the catchment shows the largest decline in autumn and the 366 

smallest decline in spring during both future periods and scenarios. This difference reflects 367 

the seasonality of moisture availability influencing plant growth. Based on the median of the 368 

38 CMIP5 runs, the predicted decline in the mean monthly LAI for crop, pasture and trees 369 

was 18.1%, 10.3% and 7.9% respectively in the period 2021–2050 (Figure 5a, e, i) and 370 

27.7%, 16.6% and 12.8% respectively in the period 2071–2100 under RCP4.5 (Figure 5c, g, 371 

k). Larger reductions were simulated under the RCP8.5 emission scenario with 21.4%, 12.7% 372 

and 9.5% in the period 2021–2050 (Figure 5b, f, j) and 36.5%, 22.5% and 17.9% respectively 373 

for crop, pasture and tree in the period 2071–2100 (Figure 5d, h, l).  374 

3.3 Impacts on runoff from change in climate 375 

3.3.1 Millennium drought 376 

The impact of the Millennium Drought on streamflow due to changes in precipitation and 377 

temperature alone and changes in precipitation and temperature and modelled LAI were 378 

simulated using the VIC model. The simulated reductions in mean annual streamflow during 379 

the Millennium Drought (1997–2009) as compared with the relatively normal period (1983–380 

1995) across the selected catchments due to the change in climate alone ranged from 29.7% 381 

to 66.3% with a mean of 50% (Table 1). The reductions in LAI resulting from the decline in 382 
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precipitation and increase in temperature increased mean annual streamflow by between 1.3% 383 

and 10.2% relative to the direct climate effect above (Table 1 and Figure 6).  384 

3.3.2 Future climate 385 

The average of the 38 CMIP5 runs under the RCP4.5 scenario produced declines in mean 386 

annual runoff due to the change in precipitation and temperature alone (Qclim) that ranged 387 

from 6.8% to 20.3% in the period 2021–2050, and 11.5% to 30.1% for the period 2071–2100 388 

(Table 2 and Figure 7). For the higher emission scenario (RCP8.5), the reductions were a little 389 

larger-ranging from 8.3% to 23.3% in 2021–2050 and from 14.5% to 35.1% by the end the 390 

21
st
 century (Table 2 and Figure 6). The reductions in runoff due to climate are offset through 391 

the LAI effect (Qlai) that ranged from 2.3% to 27.7% and from 2.3% to 23.1% in the near and 392 

far future periods respectively under the RCP4.5 emission scenario. Similar offsets of 2.5% to 393 

25.9% and 2.6% to 24.2% in the near and far future periods respectively were also found 394 

under the RCP8.5 emission scenario (Table 2 and Figure 7).  395 

The differences between GCMs in terms of the net climate change impacts (CC + LAI) on 396 

mean annual runoff and the LAI contribution to that effect are shown in Figure 8 and Figure 397 

9 respectively. While large uncertainty exists among the 38 CMIP5 runs, the median between 398 

the models showed declines in the net climate change (CC + LAI) projections of mean annual 399 

runoff in all catchments (Figure 8). The median decline in the mean annual runoff due to the 400 

net climate change impact was 15.3% and 26.7% in 2021–2050 and 2071–2100 respectively, 401 

under RCP4.5. A larger decline of 21.6% and 31.8% in 2021–2050 and 2071–2100 402 

respectively occurred under RCP8.5 (Figure 8). The simulated LAI effects of the climate 403 

change showed smaller variation between GCMs than the net climate change (CC + LAI) 404 

effect on mean annual runoff. The LAI effect works to offset the reduction in mean annual 405 

runoff resulting from lower precipitation and higher temperature. Figure 9 shows the 406 

magnitude of the LAI effect as a percentage of the magnitude of direct climate change effect 407 

(noting they work in opposite directions). The median of this across the 38 CMIP5 runs was 408 

up to 20%, depending on the month. The simulated LAI effect on mean annual runoff showed 409 

smaller variation between GCMs than the net climate change (CC + LAI) effect on mean 410 

annual runoff.  411 

The direct climate change (CC) effect, the LAI effect of climate change and the net climate 412 

change (CC+LAI) effect on the mean monthly runoff for the selected catchments are given: 413 

Catchments 6 (Figure 10a, d, g , j), Catchment 10 (Figure 10b, e, h , k), and Catchment 11 414 
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(Figure 10c, f, i , l). Catchments 6 and 10 are located in a high annual precipitation zone with 415 

trees as the dominant vegetation cover; whereas Catchment 11 is covered mostly with pasture 416 

and has relatively lower annual precipitation than Catchments 6 and 10. Depending on the 417 

month, for the 38 CMIP5 runs in 2021–2050 the median reduction in mean monthly runoff 418 

(Qnet) were up to 10%, 24%, and 34% for catchment 6, 10, and 11, respectively for both the 419 

RCP4.5 and RCP8.5 scenarios (Figure 10). Further reductions projected by the end of the 21
st
 420 

century were up to 17%, 37% and 52% for catchments 6, 10, and 11, respectively, under both 421 

scenarios (Figure 10). Catchment 6 showed the lowest seasonality in the climate change 422 

effects for both emission scenarios and the LAI-related effects of climate change also showed 423 

the smallest seasonal variation. Catchment 11 runoff was the most impacted by projected 424 

climate changes and had the greatest benefit from LAI effects of climate change under both 425 

emission scenarios and future periods. The seasonal pattern of the LAI effect of climate 426 

change is similar under both RCP scenarios. The magnitude of this effect is relatively higher 427 

for drier projected future climates.   428 
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4 Discussion and Conclusion 429 

This study investigated the importance of incorporating the relationship between changing 430 

climate, in terms of precipitation and temperature, and vegetation LAI into a hydrological 431 

model to estimate changes in mean monthly and mean annual runoff under changing climatic 432 

conditions in the Goulburn-Broken Catchment, south-eastern Australia. A combination of 433 

Variable Infiltration Capacity (VIC) hydrological simulations with a simple model that 434 

relates climatic fluctuations with LAI for three different vegetation types revealed that 21
st
 435 

century climate change impacts on LAI significantly influence the projected runoff in the 436 

study catchments. LAIs of forest, pasture and crop were predicted to decline in the 21
st
 437 

century due to reductions in precipitation and increases in temperature. 438 

Reduced LAI in response to a drier and warmer climate would reduce transpiration from 439 

vegetation and evaporative losses from canopy interception, which leaves the soil relatively 440 

wetter than if LAI response to climate was not included. This is important for runoff 441 

generation process as it promotes saturation excess runoff and subsurface flow, which are the 442 

dominant cause of runoff generation in the study region (Western et al., 1999). Previous 443 

studies in the region (Chiew et al., 2009; Chiew et al., 2011; Teng et al., 2012a; Teng et al., 444 

2012b) concluded that runoff would decrease due to increases in evaporative demand and 445 

decreases in precipitation as a result of ongoing warming in the 21
st
 century. However, the 446 

relationship between LAI and climate fluctuations was not taken into account in their 447 

modelling experiments. Therefore, in these studies the LAI effect is ignored and there is 448 

consequent overestimation of the runoff decline in the range of 2.3% to 27.7% (Figure 6 and 449 

Figure 7). 450 

Projections of climate-induced vegetation dynamics and their hydrological impacts are 451 

influenced by various uncertainties that arise from using downscaled GCM outputs as inputs 452 

to the hydrologic model. These include large uncertainties in projections for precipitation 453 

from the various CMIP5 simulations (Teng et al., 2012b). In addition, the method used to 454 

downscale the GCM outputs really only captures changes the mean; however, any change in 455 

variability, which could have an effect on the projected future runoff, is ignored. The 456 

ensemble of 38 CMIP5 simulations from 15 GCMs was used to determine the range of 457 

uncertainty between GCMs. The results showed that the range of future climate projections 458 

from the various GCMs is wide, one climate model could project a very wet future climate 459 

while another a relatively dry climate. This suggests future analyses in other catchments 460 

should apply downscaled climate change scenarios from several CMIP5 runs from a range of 461 
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GCM models to the study area to get a sense of the possible range of climate change impact 462 

on both LAI and streamflow.  463 

The results of this study illustrate that reduction of future precipitation and increase in mean 464 

temperature lead to reduction of runoff in a general sense. However, if the hydrologic model 465 

incorporated dynamic LAI information, as a function of changing climate, it would reduce 466 

the impact on runoff that comes from the climate alone. Reduction of LAI due to reduction of 467 

precipitation and increase in temperature decreases the evapotranspiration from vegetation 468 

and leaves the soil relatively wetter than if climate-induced changes in LAI was not 469 

represented in the modeling. The higher catchment moisture contents slightly increased 470 

runoff and partially offset the reduction in runoff due to changes in climate. 471 

In interpreting the results presented here it is important to examine the assumptions that were 472 

made and the extent to which the results are dependent on those assumptions. Runoff 473 

processes can also triggered by other precipitation characteristics (intensity, duration, inter-474 

storm duration) which have not been considered in this study. If inter-storm durations are 475 

expected to increase, this will alter the hydrologic fluxes even if the mean precipitation is 476 

maintained. However, the climate-LAI model used in the study area (Tesemma et al., 2014a) 477 

is related mainly to precipitation and potential evapotranspiration during the previous 6 to 9 478 

months. This limits the impact of changes in extreme precipitation characteristics in terms of 479 

modelling the climate-LAI relationship. In order to satisfy the aim of this paper, which is to 480 

assess the impact of allowing LAI to respond to a changing climate, so long as the 481 

precipitation series is consistent between the runs with and without LAI responding to 482 

climate, we can assess the importance of the change in LAI on runoff simulation. Hence, in 483 

this study consideration of changing extreme precipitation events is less important; although 484 

it would be important for studies with the objective of predicting future floods or reservoir 485 

management. 486 

Another assumption was that the effects of rising atmospheric CO2 concentrations on LAI 487 

and stomatal conductance are small compared with the moisture availability effects (i.e. we 488 

assume LAI responds to precipitation and PET changes, not CO2). In addition to the effects 489 

of changes in precipitation and temperature, changes in atmospheric CO2 concentrations 490 

could affect vegetation through increasing LAI and narrowing stomata (Ainsworth and 491 

Rogers, 2007; Ewert, 2004; Warren et al., 2011). However, increased LAI may be limited by 492 

the availability of nutrients, particularly nitrogen (Fernández-Martínez et al., 2014; Körner, 493 

2006). Most of the results on this effect are derived from point experiments which could not 494 
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be extrapolated to the catchment scale where there is a complex interaction between soil, 495 

vegetation and climate. Rising atmospheric CO2 could also have two other effects on 496 

vegetation dynamics. First, biomass allocation may shift towards more above-ground plant 497 

structure (Obrist and Arnone, 2003), which implies more canopy leaf than active rooting area. 498 

This change could influence the water balance in either direction by increasing 499 

evapotranspiration due to interception losses or by decreasing evapotranspiration through 500 

limiting plant water uptake. Second, rising atmospheric CO2 may favor C3 species over C4 501 

species, which could lead to more woody plants compared to some grass species (Yu et al., 502 

2014). This could influence the water balance by increasing evapotranspiration and 503 

decreasing runoff. In addition at the canopy scale, the evapotranspiration effect of increased 504 

LAI can be masked by shading among leaves, soil cover and raised canopy humidity 505 

(Hikosaka et al., 2005; Bunce, 2004). A study that considered both effects suggested that the 506 

fertilization effect of rising CO2 is larger than the stomatal pore reduction effect, and the net 507 

effect is decreases in runoff (Piao et al., 2007). These two effects of increasing atmospheric 508 

CO2 concentrations on vegetation work in opposite directions from a water balance 509 

perspective and may offset each other if they are close in magnitude (Gerten et al., 2008). In 510 

south-east Australia, it is known that vegetation growth is highly controlled by precipitation 511 

(water supply), and is less controlled by temperature and radiation (Nemani et al., 2003). 512 

Hence, most vegetation dynamics can be explained by variation in climate, which formed the 513 

basis of the LAI - Climate model developed in Tesemma et al. (2014a). We acknowledge 514 

changing CO2 levels could influence vegetation growth, but to a smaller extent than climate 515 

does. Hence, exclusion of the fertilization and stomata suppression effects of rising 516 

atmospheric CO2 on vegetation may not change the results significantly.  517 

The other assumption was that any effect of climate change on plant functional type (PFT) 518 

was kept ignored. That is the same spatial distribution of vegetation was used but with 519 

changed LAI. In the agricultural parts of our study area PFTs are strongly influenced by 520 

historical land use change (human activities) such as forest clearing for agriculture. Changes 521 

in agricultural crops and pastures are difficult to project into the future. In the forested areas, 522 

it is likely that issues that change water use such as changes in fire regime (Heath et al., 2014) 523 

and forest age (Cornish and Vertessy, 2001) would dominate over differences between 524 

species. Eucalyptus species already occupy high-altitude areas of the study catchment, which 525 

leaves little room for PFT changes due to up-slope migration in a warming climate. 526 

Most over-story trees in our study area are Eucalypts and while some movement of 527 
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boundaries between dominant species may be expected, water use characteristics are likely to 528 

be relatively similar and there is insufficient information to represent species specific details 529 

of either migration or water use. Including these effects in the model may improve the results, 530 

but there is insufficient understanding at the granularity required to do so at present.  531 

In summary, in this paper we use the VIC hydrological model to assess the impact on mean 532 

annual streamflow of ignoring climate induced changes in LAI for two changing climatic 533 

situations: (1) the recently observed “Millennium Drought”; and (2) for downscaled projected 534 

future climate change scenarios from 38 CMIP5 runs in the Goulburn-Broken catchment, 535 

Australia. In the Millennium Drought (1997–2009) not modelling the response of LAI to 536 

changing climatic variables led to further reduction in mean annual runoff, relative to the pre-537 

drought period (1983–1995), of between 1.3% and 10.2% relative to modelling the dynamic 538 

response of LAI to decreased precipitation and increased temperature (Table 1 and Figure 6). 539 

For projected climate change under the RCP4.5 emission scenario ignoring the LAI response 540 

to changing climate could lead to a further reduction in mean annual runoff of between 2.3% 541 

and 27.7%, relative to the baseline period (1981–2010), in the near-term (2021–2050) and 542 

2.3% to 23.1% later in the century (2071–2100) relative to modelling the dynamic response 543 

of LAI to precipitation and temperature changes. Similar results (near-term 2.5% to 25.9% 544 

and end of century 2.6% to 24.2%) were found for climate change under the RCP8.5 545 

emission scenario (Table 2 and Figure 7). Due to the strong relationship between climatic 546 

variation and LAI, the climate–LAI interaction should be included in hydrological models for 547 

improved climate change impact assessments and modelling under changing climatic 548 

conditions, particularly in arid and semi-arid regions where vegetation is strongly influenced 549 

by climate.  550 
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Table 1. Vegetation type distributions for each catchment and changes in mean annual 792 

precipitation, temperature, LAI and streamflow during the Millennium Drought (1997–2009) 793 

relative to (1983–1995). 794 

Catchments ID 

Variables* 1 2 3 4 5 6 7 8 9 10 11 12 13 

Crop cover (%) 0.6 1.0         1.5 1.2 1.2 

Pasture cover (%) 14.4 32.7 3.3 6.4 0.92 5.5 9.94 2.57 25.9 7.62 63.5 56.3 48.8 

Tree cover (%) 85.0 66.3 96.7 93.6 99.1 94.5 90.1 97.4 74.1 92.4 35 42.6 50.1 

P (%) -23.2 -23.6 -21.1 -18.0 -17.9 -21.0 -20.1 -20.1 -19.4 -21.7 -19.5 -22.6 -24.1 

T (0C) 0.2 0.3 0.3 0.4 0.4 0.3 0.3 0.2 0.3 0.2 0.3 0.3 0.3 

LAI crop (%) -44.2 -48.0         -38.1 -41.8 -41.4 

LAI pasture (%) -20.5 -21.6 -19.5 -16.9 -16.7 -18.7 -19.0 -19.1 -19.5 -19.7 -19.6 -20.2 -20.8 

LAI tree (%) -11.4 -10.3 -8.2 -6.6 -5.7 -5.9 -7.0 -6.3 -9.1 -9.2 -14.0 -12.5 -13.9 

LAI total (%) -12.9 -14.4 -8.6 -7.3 -5.8 -6.6 -8.2 -6.6 -11.8 -10.0 -17.9 -17.2 -17.6 

Qclim (%) -49.3 -61.5 -43.7 -39.1 -42.9 -29.7 -44.0 -41.2 -55.2 -57.1 -66.3 -61.8 -57.9 

Qnet (%) -48.0 -59.7 -42.8 -38.3 -42.3 -29.3 -43.2 -40.6 -53.3 -55.2 -61.4 -56.1 -53.2 

Qlai (%) 2.6 3.0 2.1 2.1 1.5 1.3 1.9 1.4 3.6 3.4 8.0 10.2 8.9 

� � �֠� �� 	
� �

��� �� ��
� 
���
� �������	
	��� �� ������	795 

��� T (0C) is the change in mean annual temperature in Degree Celsius, Qclim indicates the climate effect on runoff, Qnet is the 796 

net effect of climate and LAI on runoff and Qlai is proportion of the climate effect (Qclim) that is offset by the LAI effect.  797 
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Table 2. Impacts on mean annual precipitation, temperature, LAI and streamflow of projected 799 

climate change averaged over 38 CMIP5 runs relative to (1981–2010). 800 

 Catchments ID 

Periods Variables* 1 2 3 4 5 6 7 8 9 10 11 12 13 

 

 

 

 

2021-2050 

RCP4.5 

P (%) -2.9 -2.9 -2.9 -2.9 -2.9 -2.9 -2.9 -2.9 -2.9 -2.9 -2.9 -2.9 -2.9 

T (0C) 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 

LAI crop (%) -12.9 -13.0         -12.9 -13.0 -12.8 

LAI pasture (%) -5.9 -5.6 -5.4 -5.6 -5.3 -4.8 -5.4 -5.4 -6.1 -6.1 -6.7 -6.3 -6.3 

LAI tree (%) -3.9 -2.9 -2.5 -2.4 -2.0 -1.7 -2.1 -1.9 -3.0 -3.0 -5.4 -4.6 -4.8 

LAI total (%) -4.2 -3.9 -2.6 -2.6 -2.0 -1.8 -2.5 -1.9 -3.8 -3.2 -6.3 -5.6 -5.7 

Qclim (%) -12.3 -17.6 -11.4 -11.5 -13.5 -6.8 -12.4 -12.6 -17.4 -18.4 -20.3 -18.9 -14.2 

Qnet (%) -11.4 -16.3 -10.9 -11.1 -13.2 -6.6 -11.9 -12.2 -15.8 -17.0 -16.3 -14.8 -11.7 

Qlai (%) 7.9 8.0 4.6 3.6 2.3 3.0 4.2 3.3 10.1 8.2 24.5 27.7 21.4 

 

 

 

 

2021-2050 

RCP8.5 

P (%) -3.7 -3.7 -3.7 -3.7 -3.7 -3.7 -3.7 -3.7 -3.7 -3.7 -3.7 -3.7 -3.7 

T (0C) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 

LAI crop (%) -15.7 -15.7         -15.7 -15.7 -15.5 

LAI pasture (%) -7.2 -6.9 -6.7 -6.8 -6.5 -5.9 -6.6 -6.6 -7.4 -7.5 -8.1 -7.7 -7.7 

LAI tree (%) -4.8 -3.7 -3.1 -3.0 -2.5 -2.1 -2.7 -2.3 -3.7 -3.7 -6.6 -5.6 -5.9 

LAI total (%) -5.2 -4.8 -3.3 -3.2 -2.5 -2.3 -3.1 -2.4 -4.7 -4.0 -7.7 -6.9 -6.9 

Qclim (%) -14.6 -20.7 -13.7 -13.8 -16.3 -8.3 -14.8 -15.0 -20.1 -21.3 -23.3 -21.4 -16.1 

Qnet (%) -13.6 -19.2 -13.2 -13.3 -15.8 -8.1 -14.3 -14.5 -18.3 -19.7 -19.0 -17.0 -13.4 

Qlai (%) 7.4 7.8 3.8 3.8 3.2 2.5 3.5 3.4 9.8 8.1 22.6 25.9 20.1 

 

 

 

 

 

2071-2100 

RCP4.5 

P (%) -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 

T (0C) 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 

LAI crop (%) -21.1 -21.3         -20.8 -21.0 -20.7 

LAI pasture (%) -9.8 -9.5 -9.2 -9.4 -9.0 -8.2 -9.2 -9.2 -10.2 -10.3 -11.0 -10.4 -10.5 

LAI tree (%) -6.6 -5.1 -4.4 -4.2 -3.5 -3.0 -3.9 -3.4 -5.3 -5.3 -9.2 -7.8 -8.2 

LAI total (%) -7.2 -6.7 -4.6 -4.5 -3.6 -3.3 -4.4 -3.5 -6.6 -5.7 -10.5 -9.4 -9.5 

Qclim (%) -19.7 -27.5 -18.6 -18.8 -22.1 -11.5 -20.3 -20.7 -26.9 -28.1 -30.1 -27.7 -21.7 

Qnet (%) -18.3 -25.7 -17.9 -18.1 -21.6 -11.2 -19.6 -20.1 -24.7 -26.2 -25.2 -22.5 -18.6 

Qlai (%) 7.7 7.0 3.9 3.9 2.3 2.7 3.6 3.0 8.9 7.3 19.4 23.1 16.7 

 

 

 

 

2071-2100 

RCP8.5 

P (%) -5.2 -5.2 -5.2 -5.2 -5.2 -5.2 -5.2 -5.2 -5.2 -5.2 -5.2 -5.2 -5.2 

T (0C) 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 

LAI crop (%) -28.3 -28.3         -28.5 -28.5 -28.1 

LAI pasture (%) -13.6 -13 -12.5 -12.9 -12.2 -11.1 -12.5 -12.5 -14 -14.1 -15.4 -14.6 -14.7 

LAI tree (%) -9.5 -7.4 -6.3 -6.0 -5.1 -4.3 -5.5 -4.8 -7.6 -7.6 -13.2 -11.2 -11.8 

LAI total (%) -10.2 -9.4 -6.5 -6.5 -5.2 -4.7 -6.2 -5.0 -9.2 -8.1 -14.9 -13.3 -13.4 

Qclim (%) -24.0 -33.5 -23.9 -24.2 -27.4 -14.5 -25.0 -25.6 -32.0 -33.0 -35.1 -32.8 -25.3 

Qnet (%) -22.3 -31.3 -23.0 -23.3 -26.7 -14.1 -24.0 -24.8 -29.4 -30.8 -29.2 -26.4 -21.7 

Qlai (%) 7.6 7.0 3.9 3.9 2.6 2.8 4.2 3.2 8.8 7.1 20.2 24.2 16.6 

� � �֠� �� 	
� �

��� �� ��
� 
���
� �������	
	��� �� ������	801 

��� T (0C) is the change in mean annual temperature in Degree Celsius, Qclim indicates the climate effect on runoff, Qnet is the 802 

net effect of climate and LAI on runoff and Qlai is proportion of the climate effect (Qclim) that is offset by the LAI effect.  803 
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 804 

 805 

 806 

Figure 1. Location map of the study area (a), dryness index (mean annual reference 807 

evapotranspiration divided by mean annual precipitation) (b) and land cover type (c). 808 

  809 
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810 
Figure 2. Long-term mean monthly climate observations plotted with the 38 CMIP5 runs 811 

during the baseline period (1980–2010) for Goulburn-Broken Catchment (a) long-term mean 812 

monthly precipitation (b) long-term mean monthly maximum temperature and (c) long-term 813 

mean monthly minimum temperature. 814 
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 816 

Figure 3. Flowchart showing the modelling experiments and calculation of effects: CC effect 817 

indicates the climate change effect of precipitation and temperature with unchanged LAI, CC 818 

+ LAI effect indicates the climate change effect of precipitation, temperature and leaf area 819 

index. 820 
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822 
Figure 4. Box plots of percentage changes in the mean monthly precipitation (a, b, c, d) and 823 

changes in mean monthly temperatures (e, f, g, h) in the Goulburn-Broken Catchment for the 824 

future periods 2021–2050 and 2071–2100 for the 38 CMIP5 runs of climate projections. 825 

Changes are relative to the historical (1981–2010) mean monthly precipitation and 826 

temperatures. The lower boundary of the box indicates the 25
th

 percentile, a line within the 827 

box marks the median, and the upper boundary of the box indicates the 75
th

 percentile and the 828 

whiskers are delimited by the maximum and minimum.  829 
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830 
Figure 5. Box plots of changes in mean monthly LAI derived from the 38 CMIP5 runs for 831 

climate projections during 2021–2050 and 2071–2100 under RCP4.5 and RCP8.5 scenarios 832 

for crop (a, b, c, d); pasture (e, f, g, h) and tree (i, j, k, l) in the Goulburn-Broken Catchment. 833 

Changes are relative to LAI calculated using climate time series for the 1981–2010 baseline. 834 

The lower boundary of the box indicates the 25
th

 percentile, a line within the box marks the 835 

median, and the upper boundary of the box indicates the 75
th

 percentile and the whiskers are 836 

delimited by the maximum and minimum. 837 
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 839 

Figure 6. Impacts on catchment mean annual streamflow of the Millennium drought (1997–840 

2009) relative to the period 1983–1995. CC effect indicates precipitation and temperature 841 

effect with unchanged LAI; CC + LAI effect indicates precipitation, temperature and LAI 842 

effect. The proportional LAI effect indicates the LAI effect as a percentage of the CC effect. 843 
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 845 

 846 

Figure 7. Impact on catchment mean annual streamflow average over the 38CMIP5 runs of 847 

projected climate change for the future periods 2021–2050 and 2071–2100 under RCP4.5 (a, 848 

b) and RCP8.5 (c, d), relative to the 1981–2010 base period. CC effect indicates precipitation 849 

and temperature effect with unchanged LAI; CC + LAI effect indicates precipitation, 850 

temperature and LAI effect. The proportional LAI effect indicates the LAI effect as a 851 

percentage of the CC effect. 852 
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 854 

855 
Figure 8. Box plots of the net climate change (CC + LAI) effect on mean annual runoff 856 

during (2021–2050, 2071–2100) under RCP4.5 (a, b) and RCP8.5 (c, d) emission scenarios 857 

from each of the 38 CMIP5 runs. Changes are relative to the historical (1981–2010) period. 858 

The lower boundary of the box indicates the 25
th

 percentile, a line within the box marks the 859 

median, and the upper boundary of the box indicates the 75
th

 percentile and the whiskers are 860 

delimited by the maximum and minimum. 861 
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863 
Figure 9. Box plots of contribution of LAI to the climate change effect on mean annual runoff 864 

for future (2021–2050, 2071–2100) climate forcing under RCP4.5 (a, b) and RCP8.5 (c, d) 865 

emission scenarios from each of the 38 CMIP5 runs as compared to the historical (1981–866 

2010) period. The LAI effect is normalized by the effect of precipitation and temperature 867 

with unchanged LAI (i.e. CC effect) and expressed as a percentage. The lower boundary of 868 

the box indicates the 25
th

 percentile, a line within the box marks the median, and the upper 869 

boundary of the box indicates the 75
th

 percentile and the whiskers are delimited by the 870 

maximum and minimum. 871 
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873 
Figure 10. Box plots of impacts on mean monthly streamflow from 38 CMIP5 runs of 874 

catchment 6 (a, d, g and j), catchment 10 (b, e, h and k), and catchment 11 (c, f, i and l) of 875 

projected climate change for future periods (2021–2050) and (2071–2100) under RCP4.5 and 876 

RCP8.5 respectively relative to the 1981–2010 base period. CC effect indicates precipitation 877 

and temperature effect with unchanged LAI; CC + LAI effect indicates precipitation, 878 

temperature and LAI effect. The lower boundary of the box indicates the 25
th

 percentile, a 879 

line within the box marks the median, and the upper boundary of the box indicates the 75
th

 880 

percentile and the whiskers are delimited by the maximum and minimum. 881 


