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Abstract 10 

Anthropogenic climate change is projected to enrich the atmosphere with carbon dioxide, 11 

change vegetation dynamics and influence the availability of water at the catchment scale. 12 

This study combines a non-linear model for estimating changes in leaf area index (LAI) due 13 

to climate fluctuations with the Variable Infiltration Capacity (VIC) hydrological model to 14 

improve catchment streamflow prediction under a changing climate. The combined model 15 

was applied to thirteen gauged catchments with different land cover types (crop, pasture and 16 

tree) in the Goulburn-Broken Catchment, Australia for the “Millennium Drought” (1997–17 

2009) relative to the period (1983–1995), and for two future periods (2021–2050 and 2071–18 

2100) for two emission scenarios (RCP4.5 and RCP8.5) were compared with the baseline 19 

historical period of 1981–2010. This region was projected to be warmer and mostly drier in 20 

the future as predicted by 38 Coupled Model Inter-comparison Project Phase 5 (CMIP5) runs 21 

from 15 Global Climate Models (GCMs) and for two emission scenarios. The results showed 22 

that during the Millennium Drought there was about a 29.7%–66.3% reduction in mean 23 

annual runoff due to reduced precipitation and increased temperature. When drought induced 24 

changes in LAI are included, smaller reductions in mean annual runoff of between 29.3% and 25 

61.4% were predicted. The proportional increase in runoff due to modelling LAI was 1.3%–26 

10.2% relative to not including LAI. For projected climate change under the RCP4.5 27 

emission scenario ignoring the LAI response to changing climate could lead to a further 28 

reduction in mean annual runoff of between 2.3% and 27.7% in the near-term (2021–2050) 29 

and 2.3% to 23.1% later in the century (2071–2100) relative to modelling the dynamic 30 

response of LAI to precipitation and temperature changes. Similar results (near-term 2.5% to 31 



 

 

2 

 

25.9% and end of century 2.6% to 24.2%) were found for climate change under the RCP8.5 32 

emission scenario. Incorporating climate-induced changes in LAI in the VIC model reduced 33 

the projected declines in streamflow and confirms the importance of including the effects of 34 

changes in LAI in future projections of streamflow. 35 
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1 Introduction 39 

Recently, climate changes have been observed in different parts of Australia (Chiew et al., 40 

2011; Cai and Cowan, 2008; Hughes et al., 2012; Lockart et al., 2009; Potter and Chiew, 41 

2011). Specifically, south-eastern Australian catchments have experienced changes in 42 

streamflow due to fluctuations in climate as observed during the recent “Millennium 43 

Drought’’ (1997-2009) which lasted more than a decade (Chiew et al., 2011; Verdon-Kidd 44 

and Kiem, 2009). This drought may be representative of future climatic conditions in this 45 

region.  46 

The projected water availability for future climates derived from downscaled outputs from 47 

global and regional climate models indicate increases of mean annual runoff by 10% to 40% 48 

in some parts of the world (high northern latitudes) and 10% to 30% reduction elsewhere 49 

(southern Europe, Middle East and south-eastern Australia) (Milly et al., 2005). More 50 

recently, Roderick and Farquhar (2011) examined climate and catchment characteristics for 51 

sensitivity to changes in runoff in Murray-Darling Basin in southeast Australia from a 52 

theoretical point of view and estimated that a 10% change in precipitation would lead to a 53 

26% change in runoff and a 10% change in potential evaporation would lead to a 16% change 54 

in runoff with all other variables being constant. In south-eastern Australia it has been 55 

projected that there will be a reduction in mean annual runoff of 10% on average when 56 

different climate models are used as input to hydrological models (Cai and Cowan, 2008; 57 

Chiew et al., 2009; Roderick and Farquhar, 2011; Teng et al., 2012a; Vaze and Teng, 2011). 58 

These studies assessed the possible impacts of climate change on total runoff based on 59 

rainfall-runoff relationships which only considered first order effects of changes in 60 

precipitation and temperature with subsequent impacts on evaporative demand.  61 

There is evidence that such relationships are not stationary over time (Chiew et al., 2014; 62 

Peel and Blöschl, 2011; Vaze et al., 2010), which implies that the studies discussed in the 63 

previous paragraph may be missing an important factor. One approach to improving 64 

modelling under changing conditions is to use variable monthly leaf area index (LAI) in the 65 

hydrologic model. Using observed climate variability and streamflow responses, observed 66 

monthly LAI has been shown to improve soil moisture prediction (Ford and Quiring, 2013). 67 

The improvements are largest under either relatively wet or dry climatic conditions, i.e. in 68 

wet and dry years, rather than average years. In most south-eastern Australia, LAI primarily 69 

responds to the availability of water and changes in vegetation type, such as conversion of 70 

forest to cropland or pasture, but also responds, to a lesser extent, to changes in temperature 71 
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and rising atmospheric CO2 concentrations. Most of these LAI responses are expected to be 72 

affected by projected climate change. These climate-induced changes in vegetation LAI may 73 

impact on evapotranspiration and runoff and hence should be considered when making runoff 74 

projections for climate change scenarios.  75 

Dynamic Global Vegetation Models (DGVMs) have been used to assess the vegetation effect 76 

of climate change on large-scale hydrological processes and patterns (Murray et al., 2012a, 77 

2011). A list of available DGVMs and their processes representations (photosynthesis, 78 

respiration, allocation, and phenology) can be found in Wullschleger et al. (2014), while 79 

Scheiter et al. (2013) provides a review of the possible sources of uncertainty related to 80 

representation of plant functional type (PFT) in DGVMs. Most DGVMs overestimate runoff; 81 

mainly due to model structure problems along with operating at low spatial and temporal 82 

resolution (Murray et al., 2012b). While the relationships between LAI and climate 83 

fluctuation have been modelled (Ellis and Hatton, 2008; O'Grady et al., 2011; Jahan and Gan, 84 

2011; Palmer et al., 2010; Tesemma et al., 2014; White et al., 2010), none of them have been 85 

incorporated in hydrological models for the purpose assessing future climate change impacts 86 

on streamflow. The poor hydrological sub models in DGVMs and the static vegetation in 87 

most hydrological models mean that importance of the indirect vegetation-related (LAI) 88 

effects relative to the direct effects of changes in precipitation and temperature on 89 

hydrological response at catchment scale have rarely been studied. This limits understanding 90 

of the linkages between climate fluctuations and vegetation dynamics, and their combined 91 

impacts on hydrological processes. 92 

The main objective of this study is to examine the relative effects on mean annual runoff of 93 

changes in direct climate forcing (mainly precipitation and temperature) and direct climate 94 

forcing combined with climate-induced LAI changes under changed climate scenarios. 95 

Comparative analysis of these two cases enables the effect on mean annual runoff of allowing 96 

LAI to respond to a changing climate to be identified. Specifically, our study combined the 97 

LAI–Climate model developed in Tesemma et al. (2014) with the Variable Infiltration 98 

Capacity (VIC) hydrologic model to assess the impact on catchment runoff of how LAI is 99 

modelled (constant seasonal LAI or LAI varying in response to climate) under changing 100 

climatic conditions. As noted above, this combined model showed significant improvements 101 

in runoff simulations under historic conditions. Here we investigate two sets of changing 102 

climatic conditions: (1) the observed Millennium Drought (1997–2009), which is a persistent 103 

(>10 year) large change in climate; and (2) projected climate change for both wet and dry 104 
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catchments using 38 Coupled Model Inter-comparison Project Phase 5 (CMIP5) runs from 15 105 

different Global Climate Models (GCMs) for two future periods, 2021–2050 and 2071–2100, 106 

for two emission scenarios, RCP4.5 and RCP8.5). The results obtained from this study are 107 

expected to demonstrate whether modelling LAI in a way that responds to changing climatic 108 

conditions is important for modelling runoff during projected climate change in the study 109 

area.  110 
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2 Research approach  111 

This section provides details about the dataset, the characteristics of the selected catchments 112 

and the modelling exercises. The catchment characteristics and dataset used in this study are 113 

briefly described in section 2.1. The application of multiple GCMs and emission scenarios 114 

output method are explained in section 2.2. The relationship between LAI and climatic 115 

variables are presented in section 2.3, and the hydrologic modelling experiment approach 116 

used to assess the impact of changes in climate on runoff are described in section 2.4. 117 

2.1 Catchment characteristics and dataset 118 

All the study catchments are located in the Goulburn-Broken Catchment which is a tributary 119 

of the Murray-Darling Basin, Australia. The Goulburn-Broken Catchment extends between 120 

35.8° to 37.7° S and between 144.6° to 146.7° E (Figure 1a) with a range of altitude from 121 

approximately 1790 m on the southern side to 86 m above mean sea level on the northern 122 

side of the catchment. The mean annual precipitation of the study catchments ranges from 123 

659 (in the north) to 1407 mm year
-1

 (in the south) calculated for the period (1982–2012). 124 

The majority of the precipitation (about 60%) occurs during winter and spring. The reference 125 

potential evapotranspiration (PET) calculated using the Food and Agricultural Organization 126 

(FAO56) method, ranges from 903 mm year
-1

 (in the north) to 1046 mm year
-1

 (in the south). 127 

Hence, the dryness index (mean annual reference potential evapotranspiration divided by 128 

mean annual precipitation) varies from 0.64 to 1.6 (Figure 1b). The dominant land cover type 129 

in most of the catchments is forest (mainly tall open Eucalyptus forest and Eucalyptus 130 

woodlands) with some pasture in all catchments. A small amount of cropland is located in 131 

some of the catchments (Figure 1c). 132 

Gridded input data used for the hydrological modelling include the daily precipitation, 133 

maximum and minimum temperature, vapour pressure and solar exposure data obtained from 134 

the Australian Water Availability Project (AWAP) of the Bureau of Meteorology (Jones et 135 

al., 2009) and gridded daily wind run data from McVicar et al. (2008) that was generated 136 

from point measurements. All data have a spatial resolution of 0.05° × 0.05° (approximately 137 

5km × 5km), and the period from 1982 to 2012 was selected for this study. The daily 138 

streamflow data at the outlet of the selected calibration catchments were obtained from the 139 

Victorian Water Resources Warehouse (http://data.water.vic.gov.au/monitoring.htm). The 140 

missed streamflow data were filled by regressing between neighbouring catchments. The 141 

elevation data were collected from the GEODATA 9 Second Digital Elevation Model (DEM-142 
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9S) Version 3 (Geoscience Australia, 2008). The elevation data were resampled to a 143 

resolution of 0.05° × 0.05° using the spatial average. The land cover input data were derived 144 

from the National Dynamic Land Cover Dataset which provides a land cover map for the 145 

whole of Australia at a resolution of 0.00235° × 0.00235° (approximately 250m × 250m) and 146 

can be accessed at (http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_71071). 147 

LAI data were collected from the Global Land Surface Satellite (GLASS) product which is 148 

available for download from Beijing Normal University (http://www.bnu-datacenter.com). 149 

The soil parameters in the VIC model running resolution were derived from the five minute 150 

resolution Food and Agriculture Organization dataset (FAO, 1995). The root distribution in 151 

three soil layers was derived from the global ecosystem root distribution dataset (Schenk and 152 

Jackson, 2002). 153 

2.2 Applying multiple GCMs and multiple emission scenarios 154 

Outputs from many climate models from the Coupled Model Inter-comparison Project Phase 155 

5 (CMIP5) (Taylor et al., 2012) are used as input to the hydrological model. CMIP5 contains 156 

model runs for four representative concentration pathways (RCPs), which provide radiative 157 

forcing scenarios over the 21
st
 century (Moss et al., 2010; Vuuren et al., 2011). In this study 158 

two emission scenarios were chosen: a midrange mitigation scenario, referred to as RCP4.5 159 

and a high emissions scenario RCP8.5 (Meinshausen et al., 2011). RCP4.5 results in a 160 

radiative forcing value of 4.5 Wm
-2

 at the end of the 21
st 

century relative to the preindustrial 161 

value, while RCP8.5 provides a radiative forcing increase throughout the 21
st
 century to a 162 

maximum of 8.5 Wm
-2

 at the end of the century. 163 

CMIP5 Global Climate Model (GCM) data were obtained from (http://climexp.knmi.nl 164 

accessed 28 February 2014). These data were re-sampled to a common grid resolution of 2.5° 165 

since each GCM has a different spatial resolution (some are the same, but most are different). 166 

A total of 38 RCP4.5 and RCP8.5 runs from 15 different GCM models have been used in this 167 

study to include the possible uncertainty among climate models. For each of the 38 runs, 168 

daily precipitation, minimum and maximum temperature data were collected for three 169 

periods, 1981–2010 (historical run), 2021–2050 and 2071–2100 (future runs). An assessment 170 

of the ability of the CMIP5 runs to reproduce the observed base line seasonality of 171 

precipitation, minimum and maximum temperature is shown in Figure 2. The seasonality in 172 

precipitation and temperature were well captured by most CMIP5 runs with biases which 173 

require correction. 174 
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Low spatial resolution GCM outputs require downscaling for application in catchment 175 

hydrology studies. Here the ‘delta-change’ statistical downscaling technique was used to 176 

downscale and bias-correct the GCM outputs (Fowler et al., 2007). Delta-change was 177 

selected due to its low computational intensiveness and easy applicability to a range of 178 

GCMs. We acknowledge the limitations of this method include an assumption of stationarity 179 

in change factors, climate feedbacks are not incorporated and an inability to capture changes 180 

in extreme events and year to year variability. Dynamic downscaling, which solves some of 181 

these problems, was not used as it has high computational demand and is not readily available 182 

for a range of GCM runs and scenarios (Fowler et al., 2007). A simple statistical downscaling 183 

method was appropriate for this study as we were interested in the impact of including 184 

climate induced LAI change on the runoff results. In the study area, the monthly LAI is 185 

strongly related to three month and/or nine month moving average moisture state 186 

(precipitation minus reference potential evapotranspiration) (Tesemma et al., 2014). 187 

Therefore, so long as the precipitation is consistent between the two runs we can assess the 188 

importance of the change in LAI representation between model runs. It has been suggested 189 

that extreme precipitation might change differently to mean precipitation under climate 190 

change (Harrold et al., 2005) and the delta-change method does not capture this. Nevertheless 191 

delta-change was used as this study concentrates on average runoff which is strongly linked 192 

to overall catchment wetness, rather than floods which are linked to a combination of 193 

catchment wetness and extreme precipitation. Hence consideration of extreme precipitation 194 

events is less important in this study. 195 

Statistical downscaling was applied to each of the GCM outputs and emission scenarios. 196 

Since the study area is covered by four GCM grid cells, the area weighted average 197 

precipitation, minimum and maximum temperatures of the GCM grid cells covering the study 198 

area were computed. The area weighted average values were then statistically downscaled 199 

using the delta change approach. Delta changes were calculated separately for each of the 12 200 

months. For temperatures the delta changes were calculated using  201 

∆��j� = T	
���j� −  T��������j�                                                                                 �1� 

where ΔT(j) is the delta change in the 30-year mean monthly minimum or maximum 202 

temperature as simulated by the climate model for the future period and RCP of interest 203 

(2021–2050 or 2071–2100, RCP4.5 or RCP8.5), T������j�, relative to the mean for the 204 

baseline period (1981–2010) climate model simulation,  T��������j�. j represents the month. 205 
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ΔT(j) is then applied to the daily baseline (1980–2010) observations, Tobs(j,i), for each pixel of 206 

the climate gridded data (which is the same as the VIC model grid pixels) to obtain the 207 

statistically downscaled minimum or maximum daily temperature, TΔ�j, i� for month j and 208 

day i. 209 

T∆�j, i� = ��� �j, i� + ∆��j�                                                                                           �2� 

For precipitation, the delta changes value is computed as a proportional change rather than a 210 

shift: 211 

∆	�j� = P	
���j� 
P��������j�                                                                                                       �3� 

and then applied to the observations using: 212 

  P∆�j, i� = P����j, i� × ∆	�j�                                                                                         �4� 

Here ΔP(j) is the delta change in 30-year mean monthly precipitation as simulated by the 213 

climate model P	
���j� for two future periods (2021–2050 and 2071–2100) relative to the 214 

baseline simulation P��������j�; PΔ�j, i� is the statistically downscaled daily precipitation for 215 

the projected future climate change scenario for month j and day i, Pobs(j, i) is observed daily 216 

precipitation for the historical period (1981–2010) for month j and day i for each of the 217 

precipitation pixel of the gridded climate data. The delta change approach maintains a similar 218 

(but shifted or scaled) spatial variation of temperature and precipitation as that in the 219 

historical observed gridded data. The daily pattern of weather variation and the relationships 220 

between the various weather variables are also maintained. Because historic weather data 221 

provides the basis for the temporal patterns, the well-recognized issue of “GCM drizzle” is 222 

eliminated. The delta change method also corrects for differences between the mean elevation 223 

of the four GCM grid cells by scaling up or down the historical spatial variation of 224 

temperature and precipitation across the catchment.  225 

2.3 Relationship between LAI and climate variables 226 

Tesemma et al. (2014) showed that monthly LAI of each vegetation type was closely related 227 

to changes in moisture state (precipitation minus reference evapotranspiration) of six-monthly 228 

moving averages for crop and pasture, and nine-monthly moving averages for trees. 229 

Differences in LAI response for the same change in moisture state among the three vegetation 230 

types were also observed as differences in model parameters of the LAI–Climate relationship. 231 

Tesemma et al. (2014) provides details on the derivation of the LAI–Climate relationship for 232 



 

 

10 

 

the Goulburn-Broken Catchment. The three LAI models developed for crop, pasture and tree 233 

are given below. 234 

LAI =  
*+
+,
++
- ./0.23/0

.4�5	678�979:;�7 <=>.?===?@.=ABC DE   ,                            if Crop
..0.K2LM

.4�5	678�979:;�7 ?N.A<=CA@.O?OC DE   ,                           if Pasture
..2.KUL.

.4�5	678�979:;�V =C.<O?>NA.>?O< DE    ,                             if Tree
                                           (5) 235 

Where LAI is the leaf area index of the cover type (tree/pasture/crop), P is the six month 236 

moving average of precipitation for crop and pasture, and the nine month moving average for 237 

trees, and PET is the respective reference evapotranspiration. 238 

The monthly LAI was then simulated for both historical and future climate scenarios using 239 

the LAI–Climate model (Eq. 5) driven with the appropriate climate inputs. In this study 240 

monthly average reference potential evapotranspiration (PET, mm day
-1

) was estimated using 241 

the standard FAO Penman-Monteith daily computations (Allen et al., 1998) and then 242 

aggregating to monthly values. The reference potential evapotranspiration for future climate 243 

scenarios was computed using the projected minimum and maximum temperatures,while 244 

incoming shortwave radiation and vapour pressure were derived from daily temperature 245 

range using the algorithms of Kimball et al. (1997) and Thornton and Running (1999). The 246 

wind speed was kept the same as the historical observations. A significant literature exists 247 

(see discussion in Supplementary Material of McMahon et al., 2015) around the issue of 248 

using temperature to drive future changes in reference potential evapotranspiration (PET). 249 

We acknowledge this assumption and note that it is likely to have limited impact on our 250 

runoff results in the mainly water limited catchments modelled here. The historical or future 251 

precipitation was used in Eq. 5 according to the scenario being modelled. Potential LAI 252 

variations in the baseline years (1981–2010) and the two future periods (2021–2050 and 253 

2071–2100), for each of the two future emission scenarios, were simulated using the 254 

downscaled outputs from the 38 CMIP5 runs of the 15 GCMs, as input into the LAI–Climate 255 

model (Eq.5). The uncertainty ranges in modelled LAI that come from the difference in 256 

climate input were determined by using the downscaled 38 CMIP5 runs individually in Eq. 5. 257 
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2.4 Hydrological model and experimental design 258 

In this study we used the three layers VIC model (version 4.1.2g) to simulate streamflow. The 259 

VIC macroscale model is a spatially distributed conceptual hydrological model that balances 260 

both water and energy budgets over a grid cell. It simulates soil moisture, evapotranspiration, 261 

snow pack, runoff, baseflow and other hydrologic properties at daily or sub-daily time steps 262 

by solving both the governing water and energy balance equations (Liang et al., 1996). VIC 263 

estimates infiltration and runoff using the variable infiltration curve that represents the sub-264 

grid spatial variability in soil moisture capacity (Liang et al., 1994; Zhao et al., 1995) and 265 

Penman-Monteith for potential evapotranspiration computation. The ability of the model to 266 

incorporate spatial representation of climate and inputs of soil, vegetation and other 267 

landscape properties make it applicable for climate and land use / land cover change impact 268 

studies. The VIC model has been widely used for a number of hydrological studies in 269 

different climatic zones across the globe (Zhao et al., 2012a; Zhao et al., 2012b; Cuo et al., 270 

2013).  271 

The seven most sensitive model parameters (b, Ds, Ws, Dsmax, d2, d3 and exp) in the VIC 272 

model (Demaria et al., 2007) were calibrated against observed streamflow from thirteen 273 

selected sub-catchments with different climate and land cover composition that are 274 

representative of the main runoff generating regions of the Goulburn-Broken catchment. The 275 

model parameters were calibrated separately for each selected unregulated sub-catchment and 276 

applied uniformly within a sub-catchment (Figure 1). The Multi-Objective Complex 277 

Evolution (MOCOM-UA) algorithm (Yapo et al., 1998) was used to calibrate the model. This 278 

algorithm was implemented on each of the selected catchments separately to calibrate the 279 

model against the observed runoff. The model was first calibrated for the entire period 280 

(1982–2012), then using the calibrated parameters as initial guesses, the model was re-281 

calibrated for the period 1982–1997 and evaluated for the period 1998–2012. During the 282 

calibration, VIC ran on a daily basis but the objective function was calculated on a monthly 283 

basis. Three criteria (objective functions) were used to evaluate the model’s performance 284 

during calibration: the Nash–Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) between 285 

observed and simulated flow, the logarithm of Nash–Sutcliffe efficiency (logNSE) which 286 

penalizes errors at peak flow, and the percentage bias from the observed mean flow (PBIAS). 287 

VIC model was run at daily time step and input data with a 5km by 5km spatial grid 288 

resolution for 30 years from January 1981 to December 2010 to produce the baseline and 289 

experiment runs. Two model experiments were run: the first experiment considered the recent 290 
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historical climate (Millennium Drought, 1997–2009) and LAI estimates using the simple 291 

LAI-Climate model against the relatively normal historical climate period (1983–1995). The 292 

second experiment considered the future climate from 38 CMIP5 runs and corresponding LAI 293 

derivatives for two periods (2021–2050 and 2071–2100), and two emission scenarios RCP4.5 294 

and RCP8.5 with respect to the historical period (1981–2010). Both sets of simulations were 295 

performed over the thirteen calibrated study catchments within the Goulburn-Broken 296 

Catchment (Figure 1b). A flow chart of the modelling method is given in (Figure 3). 297 

To identify the effect on mean annual runoff of allowing LAI to respond to a changing 298 

climate, compared with LAI not responding, we used the following steps: (1) the calibrated 299 

model was forced with inputs of historical climate data and LAI data modelled from using the 300 

historical climate data (1981–2010) to establish baseline streamflow estimates; (2) the model 301 

was forced with projected future climate inputs and corresponding modelled LAI to produce 302 

projected streamflow for future scenarios; (3) the future climates were input along with the 303 

LAI data used in step 1 to produce projected streamflow that ignore project LAI changes . 304 

The difference in mean annual runoff between steps 3 and 1 represents the climate effect (CC 305 

effect); on mean annual runoff of only Precipitation and Temperature. Whereas the difference 306 

in mean annual runoff between steps 2 and 1 represents the net effect (CC + LAI effect); on 307 

mean annual runoff of allowing LAI to respond to a changing climate in addition to the direct 308 

climate forcing (Precipitation and Temperature). The difference in mean annual runoff 309 

between steps 2 and 3 represents the component of the runoff response related to climate-310 

induced changes in LAI. For the millennium drought (1997–2009) the above two changes in 311 

mean annual runoff were estimated in a similar fashion taking (1983–1995) time period as 312 

relatively normal period. The percentage change of mean annual runoff against the historical 313 

mean annual runoff for climate change effect (Qclim) (Eq. 6), climate change and LAI effect 314 

(Qnet) (Eq. 7); and the percentage of CC effect offset by LAI effect (Qlai) (Eq. 8) were 315 

estimated as follows:  316 

WXYZ[ =  \.UU ∗ � ^_`abcd`efg hijklbldm eg`nfbm o ^_`abcd`efg hij_`abcd`efg eg`nfbm  �
^_`abcd`efg hij_`abcd`efg eg`nfbm p                                                     (6) 317 

W�qr =  s.UU ∗ � ^klbldm hijklbldm eg`nfbm o ^_`abcd`efg hij_`abcd`efg eg`nfbm   �
^_`abcd`efg hij_`abcd`efg eg`nfbm t                                                       (7) 318 

WYuZ =  v.UU ∗ � ^eg`no ^wmb �^wmb x                                                                                         (8) 319 
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3 Results  320 

This section provides results from the modelling exercises. First the model calibration and 321 

evaluation are discussed in section 3.1. The change in climate variables during: (1) the recent 322 

observed prolonged drought; and (2) future climate change projections for the study 323 

catchments are presented in section 3.2. The impact on both LAI (section 3.3) and catchment 324 

streamflow (section 3.4) of changes in climate input during the Millennium Drought and 325 

future climate change projections are also provided. These results provide readers with a 326 

comparison of the anticipated future change in climate with the recently observed drought. 327 

3.1 Model calibration and evaluation results 328 

The calibrated model parameters and model performance during calibration (1982–1997) and 329 

evaluation (1998–2012) periods for each sub-catchment are listed in Table 1. Most of the 330 

calibrated catchments have NSE of more than 70% during both calibration and evaluation 331 

periods (Table 1). In most of the selected catchments the simulated runoff for both calibration 332 

and evaluation periods met the “satisfactory” criteria according to (Moriasi et al., 2007), with 333 

NSE > 50% and the percentage absolute bias is generally less than 25% during calibration 334 

and evaluation periods. Although VIC captured the temporal variability of runoff well, there 335 

were some systematic biases in the runoff simulated. The model overestimates peak flow in a 336 

few cases and underestimates low flow in most of the catchments. The sources of these biases 337 

need to be investigated in order to understand the performance of the model. To do this, the 338 

estimated monthly biases are plotted against the monthly climate inputs: precipitation, 339 

temperature and LAI (not shown here). The calibrated catchments showed no relationship 340 

between AWAP gridded climate data and simulated runoff biases. The biases are likely 341 

related to the model structure (Kalma et al., 1995) rather than the model inputs.  342 

3.2 Change in the climate variables from change in climate 343 

3.2.1 Millennium drought 344 

The Millennium Drought brought a decline in the mean annual precipitation over the selected 345 

catchments which ranged from 17.9% to 24.1%, with a mean of 20.9% when compared with 346 

the period (1983–1995). It also brought an increase in mean annual temperature which ranged 347 

from 0.2° C to 0.4° C, with an average of 0.3° C as compared to the temperature in the period 348 

(1983–1995). All thirteen study catchments experienced a similar change in both 349 

precipitation and temperature (Table 2).  350 
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3.2.2 Future climate 351 

Averaged over all 38 CMIP5 runs, the mean annual precipitation in 2021–2050 over the 352 

selected catchments is projected to decline by 2.9% and 3.7%, relative to the historical period 353 

1981–2010, under the RCP4.5 and RCP8.5 scenarios respectively. By the end of the century 354 

(2071–2100) mean annual precipitation is projected to decline by 5% and 5.2% under the 355 

RCP4.5 and RCP8.5 scenarios respectively (Table 3). The mean annual temperature is also 356 

projected to increase in both future periods and emission scenarios (Table 3). 357 

Most precipitation projections showed a shift towards drier climates in all seasons except 358 

summer in both emission scenarios and periods. The variability in projected mean monthly 359 

precipitation among climate models indicates great uncertainty between GCMs (Figure 4a-d). 360 

The mean monthly temperature of all climate models clearly deviated from the baseline 361 

period (1981-2010), underlining the consistent change signal between GCMs (Figure 4e-h). 362 

The median of the 38 CMIP5 mean monthly precipitation data over the Goulburn-Broken 363 

Catchment in the RCP4.5 emission scenario showed declines in most of the months. The 364 

decreases were up to 6% in 2021–2050 (Figure 4a) and up to 11% in 2071–2100 (Figure 4c). 365 

Similarly, under the RCP8.5 emission scenario the median monthly precipitation, other than 366 

in January and February for both periods, showed decreases up to 7% in 2021–2050 (Figure 367 

4b) and up to 18% in 2071–2100 (Figure 4d). The simulations for January and February 368 

showed median increases of up to 4% and 5% respectively in 2071–2100 from the historical 369 

baseline. Some climate models projected very wet future climates while others projected 370 

relatively dry climates. There are relatively high uncertainties in the projected mean monthly 371 

precipitation results in summer when compared with the mean monthly precipitation in 372 

winter among the climates models. 373 

In contrast to precipitation the projected mean monthly temperatures from all CMIP5 runs 374 

showed increases, the median of the mean monthly temperatures of all CMIP5 38 runs 375 

increased by about 0.8° C in winter and 1° C in summer in 2021–2050 (Figure 4e), and by 376 

about 1.3° C in winter and 1.8° C in summer in 2071–2100 (Figure 4g) under the RCP4.5 377 

scenario. Under the RCP8.5 emission scenario the temperatures increased by 1° C in winter 378 

and by 1.4° C in summer during 2021–2050 (Figure 4f) and by 2° C and 3° C in winter and 379 

summer respectively by the end of the 21
st
 century (Figure 4h). After precipitation the second 380 

variable that drives water availability is potential evapotranspiration. Here PET is expected to 381 

increase among all CMIP5 runs as it is being driven solely by changes in temperature given 382 

that actual vapour pressure and solar radiation was also simulated as a function of 383 
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temperature. In the near future period (2021–2050) the median of all CMIP5 mean monthly 384 

reference evapotranspiration projections increase by 5% to 13% in both emission scenarios, 385 

with the largest change in winter and the smallest in summer. In the future period of 2071–386 

2100, the mean monthly reference evapotranspiration increased by 7% in summer and 25% in 387 

winter under RCP4.5 emission scenarios, and by 10% in summer and 28% in winter under 388 

the RCP8.5 emission scenarios.  389 

3.3 Impact on LAI from change in climate 390 

3.3.1 Millennium drought 391 

The effects of the Millennium Drought (1997–2009) on modelled crop LAI were very severe 392 

with reductions in mean annual LAI between catchments of 38.1% to 48.0%, with a mean of 393 

42.7% (Table 2). The reduction in LAI of pasture was between 16.7% and 21.6% across the 394 

thirteen selected catchments with a spatial average of 19.4% (Table 2). The LAI of trees 395 

responded less than crop and pasture, and reductions were in the range 5.7% to 14.0%, with a 396 

spatial mean of 9.2% (Table 2). A significant reduction in each cover type also brought an 397 

overall decline in areal weighted sum of all land cover types LAI in the selected catchments 398 

which ranged from 5.8% to 17.9% (Table 2), which is similar to the reduction for trees, 399 

where tree is the dominant land cover type. 400 

3.3.2 Future climate 401 

The changes in mean monthly LAI of crop, pasture and trees averaged over the whole 402 

Goulburn-Broken Catchment under future climates are vary between the CMIP5 runs and 403 

global warming scenarios. Averaged over all 38 CMIP5 runs, the near future (2021–2050) 404 

results for the study catchment showed that the mean annual LAI of cropland, pasture and 405 

trees declined up to 13%, 6.7% and 5.4% under the RCP4.5 scenarios, and by up to 16%, 8% 406 

and 6.6% under the RCP8.5 scenario (Table 3). A further reduction in the mean annual LAI 407 

of each land cover was simulated by the end of the 21
st
 century for both emission scenarios 408 

(Table 3). 409 

The effect of projected climate change on monthly total LAI (area weighted sum of all land 410 

cover types LAI) for the study catchments is given in (Figure 5). The median of the 38 411 

CMIP5 runs simulated mean monthly LAI showed declines in all three land cover types. 412 

Despite similar percentage changes in mean monthly precipitation and temperature forcing, 413 

the mean monthly total LAI across the catchment shows the largest decline in autumn and the 414 

smallest decline in spring during both future periods and scenarios. This difference reflects 415 
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the seasonality of moisture availability influencing plant growth. Based on the median of the 416 

38 CMIP5 runs, the predicted decline in the mean monthly LAI for crop, pasture and trees 417 

was 18.1%, 10.3% and 7.9% respectively in the period 2021–2050 (Figure 5a, e, i) and 418 

27.7%, 16.6% and 12.8% respectively in the period 2071–2100 under RCP4.5 (Figure 5c, g, 419 

k). Larger reductions were simulated under the RCP8.5 emission scenario with 21.4%, 12.7% 420 

and 9.5% in the period 2021–2050 (Figure 5b, f, j) and 36.5%, 22.5% and 17.9% respectively 421 

for crop, pasture and tree in the period 2071–2100 (Figure 5d, h, l).  422 

3.4 Impacts on runoff from change in climate 423 

3.4.1 Millennium drought 424 

The impact of the Millennium Drought on streamflow due to changes in precipitation and 425 

temperature alone and changes in precipitation and temperature and modelled LAI were 426 

simulated using the VIC model. The simulated reductions in mean annual streamflow during 427 

the Millennium Drought (1997–2009) as compared with the relatively normal period (1983–428 

1995) across the selected catchments due to the change in climate alone ranged from 29.7% 429 

to 66.3% with a mean of 50% (Table 2). The reductions in LAI resulting from the decline in 430 

precipitation and increase in temperature increased mean annual streamflow by between 1.3% 431 

and 10.2% relative to the direct climate effect above (Table 2 and Figure 6).  432 

3.4.2 Future climate 433 

The average of the 38 CMIP5 runs under the RCP4.5 scenario produced declines in mean 434 

annual runoff due to the change in precipitation and temperature alone (Qclim) that ranged 435 

from 6.8% to 20.3% in the period 2021–2050, and 11.5% to 30.1% for the period 2071–2100 436 

(Table 3 and Figure 7). For the higher emission scenario (RCP8.5), the reductions were a 437 

little larger-ranging from 8.3% to 23.3% in 2021–2050 and from 14.5% to 35.1% by the end 438 

the 21
st
 century (Table 3 and Figure 6). The reductions in runoff due to climate are offset 439 

through the LAI effect (Qlai) that ranged from 2.3% to 27.7% and from 2.3% to 23.1% in the 440 

near and far future periods respectively under the RCP4.5 emission scenario. Similar offsets 441 

of 2.5% to 25.9% and 2.6% to 24.2% in the near and far future periods respectively were also 442 

found under the RCP8.5 emission scenario (Table 3 and Figure 7).  443 

The differences between GCMs in terms of the net climate change impacts (CC + LAI) on 444 

mean annual runoff and the LAI contribution to that effect are shown in Figure 8 and Figure 445 

9 respectively. While large uncertainty exists among the 38 CMIP5 runs, the median between 446 

the models showed declines in the net climate change (CC + LAI) projections of mean annual 447 
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runoff in all catchments (Figure 8). The median decline in the mean annual runoff due to the 448 

net climate change impact was 15.3% and 26.7% in 2021–2050 and 2071–2100 respectively, 449 

under RCP4.5. A larger decline of 21.6% and 31.8% in 2021–2050 and 2071–2100 450 

respectively occurred under RCP8.5 (Figure 8). The simulated LAI effects of the climate 451 

change showed smaller variation between GCMs than the net climate change (CC + LAI) 452 

effect on mean annual runoff. The LAI effect works to offset the reduction in mean annual 453 

runoff resulting from lower precipitation and higher temperature. Figure 9 shows the 454 

magnitude of the LAI effect as a percentage of the magnitude of direct climate change effect 455 

(noting they work in opposite directions). The median of this across the 38 CMIP5 runs was 456 

up to 20%, depending on the month. The simulated LAI effect on mean annual runoff showed 457 

smaller variation between GCMs than the net climate change (CC + LAI) effect on mean 458 

annual runoff.  459 

The direct climate change (CC) effect, the LAI effect of climate change and the net climate 460 

change (CC+LAI) effect on the mean monthly runoff for the selected catchments are given: 461 

Catchments 6 (Figure 10a, d, g, j), Catchment 10 (Figure 10b, e, h , k), and Catchment 11 462 

(Figure 10c, f, i , l). Catchments 6 and 10 are located in a high annual precipitation zone with 463 

trees as the dominant vegetation cover; whereas Catchment 11 is covered mostly with pasture 464 

and has relatively lower annual precipitation than Catchments 6 and 10. Depending on the 465 

month, for the 38 CMIP5 runs in 2021–2050 the median reduction in mean monthly runoff 466 

(Qnet) were up to 10%, 24%, and 34% for catchment 6, 10, and 11, respectively for both the 467 

RCP4.5 and RCP8.5 scenarios (Figure 10). Further reductions projected by the end of the 21
st
 468 

century were up to 17%, 37% and 52% for catchments 6, 10, and 11, respectively, under both 469 

scenarios (Figure 10). Catchment 6 showed the lowest seasonality in the climate change 470 

effects for both emission scenarios and the LAI-related effects of climate change also showed 471 

the smallest seasonal variation. Catchment 11 runoff was the most impacted by projected 472 

climate changes and had the greatest benefit from LAI effects of climate change under both 473 

emission scenarios and future periods. The seasonal pattern of the LAI effect of climate 474 

change is similar under both RCP scenarios. The magnitude of this effect is relatively higher 475 

for drier projected future climates.   476 
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4 Discussion and Conclusion 477 

This study investigated the importance of incorporating the relationship between changing 478 

climate, in terms of precipitation and temperature, and vegetation LAI into a hydrological 479 

model to estimate changes in mean monthly and mean annual runoff under changing climatic 480 

conditions in the Goulburn-Broken Catchment, south-eastern Australia. A combination of 481 

VIC hydrological simulations with a simple model that relates climatic fluctuations with LAI 482 

for three different vegetation types revealed that 21
st
 century climate change impacts on LAI 483 

significantly influence the projected runoff in the study catchments. LAIs of forest, pasture 484 

and crop were predicted to decline in the 21
st
 century due to reductions in precipitation and 485 

increases in temperature. 486 

Reduced LAI in response to a drier and warmer climate would reduce transpiration from 487 

vegetation and evaporative losses from canopy interception, which leaves the soil relatively 488 

wetter than if LAI response to climate was not included. This is important for runoff 489 

generation process as it promotes saturation excess runoff and subsurface flow, which are the 490 

dominant cause of runoff generation in the study region (Western et al., 1999). Previous 491 

studies in the region (Chiew et al., 2009; Chiew et al., 2011; Teng et al., 2012a; Teng et al., 492 

2012b) concluded that runoff would decrease due to increases in evaporative demand and 493 

decreases in precipitation as a result of ongoing warming in the 21
st
 century. However, the 494 

relationship between LAI and climate fluctuations was not taken into account in their 495 

modelling experiments. Therefore, in these studies the LAI effect is ignored and there is 496 

consequent overestimation of the runoff decline in the range of 2.3% to 27.7% (Figure 6 and 497 

Figure 7). 498 

Projections of climate-induced vegetation dynamics and their hydrological impacts are 499 

influenced by various uncertainties that arise from using downscaled GCM outputs as inputs 500 

to the hydrologic model. These include large uncertainties in projections for precipitation 501 

from the various CMIP5 simulations (Teng et al., 2012b). In addition, the method used to 502 

downscale the GCM outputs really only captures changes the mean; however, any change in 503 

variability, which could have an effect on the projected future runoff, is ignored. The 504 

ensemble of 38 CMIP5 simulations from 15 GCMs was used to determine the range of 505 

uncertainty between GCMs. The results showed that the range of future climate projections 506 

from the various GCMs is wide, one climate model could project a very wet future climate 507 

while another a relatively dry climate. This suggests future analyses in other catchments 508 

should apply downscaled climate change scenarios from several CMIP5 runs from a range of 509 
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GCM models to the study area to get a sense of the possible range of climate change impact 510 

on both LAI and streamflow.  511 

The results of this study illustrate that reduction of future precipitation and increase in mean 512 

temperature lead to reduction of runoff in a general sense. However, if the hydrologic model 513 

incorporated dynamic LAI information, as a function of changing climate, it would reduce 514 

the impact on runoff that comes from the climate alone. Reduction of LAI due to reduction of 515 

precipitation and increase in temperature decreases the evapotranspiration from vegetation 516 

and leaves the soil relatively wetter than if climate-induced changes in LAI were not 517 

represented in the modeling. The higher catchment moisture contents slightly increased 518 

runoff and partially offset the reduction in runoff due to changes in climate. 519 

In interpreting the results presented here it is important to examine the assumptions that were 520 

made and the extent to which the results are dependent on those assumptions. Runoff 521 

processes can also triggered by other precipitation characteristics (intensity, duration, inter-522 

storm duration) which have not been considered in this study. If inter-storm durations are 523 

expected to increase, this will alter the hydrologic fluxes even if the mean precipitation is 524 

maintained. However, the Climate–LAI model used in the study area (Tesemma et al., 2014) 525 

is related mainly to precipitation and potential evapotranspiration during the previous 6 to 9 526 

months. This limits the impact of changes in extreme precipitation characteristics in terms of 527 

modelling the Climate–LAI relationship. In order to satisfy the aim of this paper, which is to 528 

assess the impact of allowing LAI to respond to a changing climate, so long as the 529 

precipitation series is consistent between the runs with and without LAI responding to 530 

climate, we can assess the importance of the change in LAI on runoff simulation. Hence, in 531 

this study consideration of changing extreme precipitation events is less important; although 532 

it would be important for studies with the objective of predicting future floods or reservoir 533 

management. 534 

Another assumption of this study was that the impact on runoff of rising atmospheric CO2 535 

concentrations, via changes in LAI and stomatal conductance, is small relative to the 536 

moisture availability effects. Therefore, here we assumed LAI responded only to precipitation 537 

and PET changes, not changes in CO2. Changes in atmospheric CO2 concentrations could 538 

affect vegetation through increasing LAI and narrowing stomata (Ainsworth and Rogers, 539 

2007; Ewert, 2004; Warren et al., 2011). However, increased LAI may be limited by the 540 

availability of nutrients, particularly nitrogen (Fernández-Martínez et al., 2014; Körner, 541 

2006). Most of the results on this effect are derived from point experiments which could not 542 
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be extrapolated to the catchment scale where there is a complex interaction between soil, 543 

vegetation and climate. Increasing atmospheric CO2 could also have two other effects on 544 

vegetation dynamics. First, biomass allocation may shift towards more above-ground plant 545 

structure (Obrist and Arnone, 2003), which implies more canopy leaf than active rooting area. 546 

This change could influence the water balance in either direction by increasing 547 

evapotranspiration due to interception losses or by decreasing evapotranspiration through 548 

limiting plant water uptake. Second, rising atmospheric CO2 may favor C3 species over C4 549 

species, which could lead to more woody plants compared to some grass species (Yu et al., 550 

2014). This could influence the water balance by increasing evapotranspiration and 551 

decreasing runoff. In addition at the canopy scale, the evapotranspiration effect of increased 552 

LAI can be masked by shading among leaves, soil cover and raised canopy humidity 553 

(Hikosaka et al., 2005; Bunce, 2004). A study that considered both effects suggested that the 554 

fertilization effect of rising CO2 is larger than the stomatal pore reduction effect, and the net 555 

effect is decreases in runoff (Piao et al., 2007). These two effects of increasing atmospheric 556 

CO2 concentrations on vegetation work in opposite directions from a water balance 557 

perspective and may offset each other if they are close in magnitude (Gerten et al., 2008). In 558 

south-east Australia, it is known that vegetation growth is highly controlled by precipitation 559 

(water supply), and is less controlled by temperature and radiation (Nemani et al., 2003). 560 

Hence, most vegetation dynamics can be explained by variation in climate, which formed the 561 

basis of the LAI–Climate model developed in Tesemma et al. (2014). We acknowledge 562 

changing CO2 levels could influence vegetation growth and water use efficiency and hence 563 

runoff, but we expect the impact on runoff to be smaller (Huntington, 2008; Uddling et al., 564 

2008) than that due to changes in moisture state. Hence, exclusion of the fertilization and 565 

stomata suppression effects of rising atmospheric CO2 on vegetation may not change the 566 

results significantly. However, the impact on runoff of CO2 fertilization at the catchment 567 

scale remains an important area of on-going research. 568 

A further assumption was that any effect of climate change on the spatial distribution of plant 569 

functional type (PFT) was ignored. That is the same spatial distribution of vegetation was 570 

used but with changed LAI. We acknowledge that changing climate (i.e increase in 571 

temperature) may shift the spatial distribution of PFTs, which has been reported in 572 

Mediterranean climate region (eg Lenihan et al., 2003; Crimmins et al., 2011). However, in 573 

our study area PFTs are largely determined by historical land use change (human activities) 574 

such as forest clearing for agriculture, rather than natural responses of vegetation to changed 575 
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climatic conditions. Therefore, future changes in the spatial distribution of agricultural crops 576 

and pastures are difficult to project as they are not solely due to climatic changes. In the 577 

forested areas, it is likely that issues that change water use such as changes in fire regime 578 

(Heath et al., 2014) and forest age (Cornish and Vertessy, 2001) would dominate over 579 

differences between species. Eucalyptus species already occupy high-altitude areas of the 580 

study catchment, which leaves little room for PFT changes due to up-slope migration in a 581 

warming climate. Most over-story trees in our study area are Eucalypts and while some 582 

movement of boundaries between dominant species may be expected, water use 583 

characteristics are likely to be relatively similar and there is insufficient information to 584 

represent species specific details of either migration or water use. Including these effects in 585 

the model may improve the results, but there is insufficient understanding at the granularity 586 

required to do so at present.  587 

In summary, in this paper we use the VIC hydrological model to assess the impact on mean 588 

annual streamflow of ignoring climate induced changes in LAI for two changing climatic 589 

situations: (1) the recently observed “Millennium Drought”; and (2) for downscaled projected 590 

future climate change scenarios from 38 CMIP5 runs in the Goulburn-Broken catchment, 591 

Australia. In the Millennium Drought (1997–2009) not modelling the response of LAI to 592 

changing climatic variables led to further reduction in mean annual runoff, relative to the pre-593 

drought period (1983–1995), of between 1.3% and 10.2% relative to modelling the dynamic 594 

response of LAI to decreased precipitation and increased temperature (Table 2 and Figure 6). 595 

For projected climate change under the RCP4.5 emission scenario ignoring the LAI response 596 

to changing climate could lead to a further reduction in mean annual runoff of between 2.3% 597 

and 27.7%, relative to the baseline period (1981–2010), in the near-term (2021–2050) and 598 

2.3% to 23.1% later in the century (2071–2100) relative to modelling the dynamic response 599 

of LAI to precipitation and temperature changes. Similar results (near-term 2.5% to 25.9% 600 

and end of century 2.6% to 24.2%) were found for climate change under the RCP8.5 601 

emission scenario (Table 3 and Figure 7). Due to the strong relationship between climatic 602 

variation and LAI, the Climate–LAI interaction should be included in hydrological models 603 

for improved climate change impact assessments and modelling under changing climatic 604 

conditions, particularly in arid and semi-arid regions where vegetation is strongly influenced 605 

by climate.  606 
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Table 1 Calibrated model parameters and model performance during calibration (1982–1997) 887 

and evaluation (1998–2012) periods. 888 

ID River and station name Model parameters Calibration (1982-1997) Evaluation (1998-2012) 

  b Ds Ws d2 d3 Dsmax exp 

Nash 

(%) 

logNash 

(%) 

Bias 

(%) 

Nash 

(%) 

logNash 

(%) 

Bias 

(%) 

1 Moonee Creek @ Lima 0.149 0.598 0.170 1.99 0.47 0.13 2.98 82.7 80.2 2.2 86.1 78.1 8.0 

2 Delatite River @ Tonga Bridge 0.062 0.014 0.755 0.81 1.88 0.30 2.95 82.7 91.9 6.4 84.2 89.4 -5.4 

3 Howqua River @ Glan Esk 0.244 0.291 0.006 1.65 0.28 11.60 1.15 90.4 89.4 -2.5 89.3 90.3 -0.8 

4 Goulburn River @ Dohertys 0.206 0.891 0.035 1.43 0.45 22.01 1.42 95.9 91.0 2.2 92.4 90.8 -2.4 

5 Big river @ Jamieson 0.183 0.610 0.736 1.70 0.81 0.01 2.19 89.7 86.5 8.9 81.5 85.7 11.9 

6 Rubicon River @ Rubicon 0.216 0.059 0.200 0.52 1.77 19.29 1.28 93.8 94.9 -2.4 87.4 92.0 3.4 

7 Acheron River @ Taggerty 0.168 0.030 0.293 1.97 1.84 0.16 2.59 82.6 85.8 9.5 82.4 84.4 -2.4 

8 

Murrindindi River @ above 

colwells 0.130 0.801 0.297 1.97 1.89 1.11 2.67 68.9 62.8 14.6 79.7 84.7 3.9 

9 Yea river @ Devlins Bridge 0.072 0.428 0.646 1.93 1.27 0.05 2.99 79.8 78.3 26.4 68.0 69.3 34.1 

10 King Parrot Creek @ Flowerdale 0.071 0.041 0.665 0.71 1.95 0.73 2.87 61.5 66.1 45.8 73.0 62.6 41.1 

11 Sugarloaf Creek @ Ash Bridge 0.001 0.592 0.804 1.31 1.18 0.00 1.39 78.6 73.4 -3.5 59.0 40.0 127.5 

12 Hughes Creek @ Tarcombe road 0.043 0.215 0.514 1.04 1.88 0.07 3.20 82.5 89.3 9.2 62.7 58.9 39.2 

13 Home Creek @ Yarck 0.0004 0.415 0.524 0.66 1.91 0.01 2.97 81.7 87.1 -12.7 75.6 64.7 30.7 

 889 

 890 

Table 2. Vegetation type distributions for each catchment and changes in mean annual 891 

precipitation, temperature, LAI and streamflow during the Millennium Drought (1997–2009) 892 

relative to (1983–1995). 893 

Catchments ID 

Variables* 1 2 3 4 5 6 7 8 9 10 11 12 13 

Crop cover (%) 0.6 1.0         1.5 1.2 1.2 

Pasture cover (%) 14.4 32.7 3.3 6.4 0.92 5.5 9.94 2.57 25.9 7.62 63.5 56.3 48.8 

Tree cover (%) 85.0 66.3 96.7 93.6 99.1 94.5 90.1 97.4 74.1 92.4 35 42.6 50.1 

P (%) -23.2 -23.6 -21.1 -18.0 -17.9 -21.0 -20.1 -20.1 -19.4 -21.7 -19.5 -22.6 -24.1 

T (0C) 0.2 0.3 0.3 0.4 0.4 0.3 0.3 0.2 0.3 0.2 0.3 0.3 0.3 

LAI crop (%) -44.2 -48.0         -38.1 -41.8 -41.4 

LAI pasture (%) -20.5 -21.6 -19.5 -16.9 -16.7 -18.7 -19.0 -19.1 -19.5 -19.7 -19.6 -20.2 -20.8 

LAI tree (%) -11.4 -10.3 -8.2 -6.6 -5.7 -5.9 -7.0 -6.3 -9.1 -9.2 -14.0 -12.5 -13.9 

LAI total (%) -12.9 -14.4 -8.6 -7.3 -5.8 -6.6 -8.2 -6.6 -11.8 -10.0 -17.9 -17.2 -17.6 

Qclim (%) -49.3 -61.5 -43.7 -39.1 -42.9 -29.7 -44.0 -41.2 -55.2 -57.1 -66.3 -61.8 -57.9 

Qnet (%) -48.0 -59.7 -42.8 -38.3 -42.3 -29.3 -43.2 -40.6 -53.3 -55.2 -61.4 -56.1 -53.2 

Qlai (%) 2.6 3.0 2.1 2.1 1.5 1.3 1.9 1.4 3.6 3.4 8.0 10.2 8.9 

* P (%) is the change in mean annual precipitation in percentage, T (0C) is the change in mean annual temperature in Degree Celsius, Qclim 894 

indicates the climate effect on runoff, Qnet is the net effect of climate and LAI on runoff and Qlai is proportion of the climate effect (Qclim) 895 
that is offset by the LAI effect.  896 
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Table 3. Impacts on mean annual precipitation, temperature, LAI and streamflow of projected 898 

climate change averaged over 38 CMIP5 runs relative to (1981–2010). 899 

 Catchments ID 

Periods Variables* 1 2 3 4 5 6 7 8 9 10 11 12 13 

 

 

 

 

2021-2050 

RCP4.5 

P (%) -2.9 -2.9 -2.9 -2.9 -2.9 -2.9 -2.9 -2.9 -2.9 -2.9 -2.9 -2.9 -2.9 

T (0C) 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 

LAI crop (%) -12.9 -13.0         -12.9 -13.0 -12.8 

LAI pasture (%) -5.9 -5.6 -5.4 -5.6 -5.3 -4.8 -5.4 -5.4 -6.1 -6.1 -6.7 -6.3 -6.3 

LAI tree (%) -3.9 -2.9 -2.5 -2.4 -2.0 -1.7 -2.1 -1.9 -3.0 -3.0 -5.4 -4.6 -4.8 

LAI total (%) -4.2 -3.9 -2.6 -2.6 -2.0 -1.8 -2.5 -1.9 -3.8 -3.2 -6.3 -5.6 -5.7 

Qclim (%) -12.3 -17.6 -11.4 -11.5 -13.5 -6.8 -12.4 -12.6 -17.4 -18.4 -20.3 -18.9 -14.2 

Qnet (%) -11.4 -16.3 -10.9 -11.1 -13.2 -6.6 -11.9 -12.2 -15.8 -17.0 -16.3 -14.8 -11.7 

Qlai (%) 7.9 8.0 4.6 3.6 2.3 3.0 4.2 3.3 10.1 8.2 24.5 27.7 21.4 

 

 

 

 

2021-2050 

RCP8.5 

P (%) -3.7 -3.7 -3.7 -3.7 -3.7 -3.7 -3.7 -3.7 -3.7 -3.7 -3.7 -3.7 -3.7 

T (0C) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 

LAI crop (%) -15.7 -15.7         -15.7 -15.7 -15.5 

LAI pasture (%) -7.2 -6.9 -6.7 -6.8 -6.5 -5.9 -6.6 -6.6 -7.4 -7.5 -8.1 -7.7 -7.7 

LAI tree (%) -4.8 -3.7 -3.1 -3.0 -2.5 -2.1 -2.7 -2.3 -3.7 -3.7 -6.6 -5.6 -5.9 

LAI total (%) -5.2 -4.8 -3.3 -3.2 -2.5 -2.3 -3.1 -2.4 -4.7 -4.0 -7.7 -6.9 -6.9 

Qclim (%) -14.6 -20.7 -13.7 -13.8 -16.3 -8.3 -14.8 -15.0 -20.1 -21.3 -23.3 -21.4 -16.1 

Qnet (%) -13.6 -19.2 -13.2 -13.3 -15.8 -8.1 -14.3 -14.5 -18.3 -19.7 -19.0 -17.0 -13.4 

Qlai (%) 7.4 7.8 3.8 3.8 3.2 2.5 3.5 3.4 9.8 8.1 22.6 25.9 20.1 

 

 

 

 

 

2071-2100 

RCP4.5 

P (%) -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 

T (0C) 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 

LAI crop (%) -21.1 -21.3         -20.8 -21.0 -20.7 

LAI pasture (%) -9.8 -9.5 -9.2 -9.4 -9.0 -8.2 -9.2 -9.2 -10.2 -10.3 -11.0 -10.4 -10.5 

LAI tree (%) -6.6 -5.1 -4.4 -4.2 -3.5 -3.0 -3.9 -3.4 -5.3 -5.3 -9.2 -7.8 -8.2 

LAI total (%) -7.2 -6.7 -4.6 -4.5 -3.6 -3.3 -4.4 -3.5 -6.6 -5.7 -10.5 -9.4 -9.5 

Qclim (%) -19.7 -27.5 -18.6 -18.8 -22.1 -11.5 -20.3 -20.7 -26.9 -28.1 -30.1 -27.7 -21.7 

Qnet (%) -18.3 -25.7 -17.9 -18.1 -21.6 -11.2 -19.6 -20.1 -24.7 -26.2 -25.2 -22.5 -18.6 

Qlai (%) 7.7 7.0 3.9 3.9 2.3 2.7 3.6 3.0 8.9 7.3 19.4 23.1 16.7 

 

 

 

 

2071-2100 

RCP8.5 

P (%) -5.2 -5.2 -5.2 -5.2 -5.2 -5.2 -5.2 -5.2 -5.2 -5.2 -5.2 -5.2 -5.2 

T (0C) 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 

LAI crop (%) -28.3 -28.3         -28.5 -28.5 -28.1 

LAI pasture (%) -13.6 -13 -12.5 -12.9 -12.2 -11.1 -12.5 -12.5 -14 -14.1 -15.4 -14.6 -14.7 

LAI tree (%) -9.5 -7.4 -6.3 -6.0 -5.1 -4.3 -5.5 -4.8 -7.6 -7.6 -13.2 -11.2 -11.8 

LAI total (%) -10.2 -9.4 -6.5 -6.5 -5.2 -4.7 -6.2 -5.0 -9.2 -8.1 -14.9 -13.3 -13.4 

Qclim (%) -24.0 -33.5 -23.9 -24.2 -27.4 -14.5 -25.0 -25.6 -32.0 -33.0 -35.1 -32.8 -25.3 

Qnet (%) -22.3 -31.3 -23.0 -23.3 -26.7 -14.1 -24.0 -24.8 -29.4 -30.8 -29.2 -26.4 -21.7 

Qlai (%) 7.6 7.0 3.9 3.9 2.6 2.8 4.2 3.2 8.8 7.1 20.2 24.2 16.6 

* P (%) is the change in mean annual precipitation in percentage, T (0C) is the change in mean annual temperature in Degree Celsius, Qclim 900 

indicates the climate effect on runoff, Qnet is the net effect of climate and LAI on runoff and Qlai is proportion of the climate effect (Qclim) 901 
that is offset by the LAI effect.   902 
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 903 

 904 

 905 

Figure 1. Location map of the study area (a), dryness index (mean annual reference 906 

evapotranspiration divided by mean annual precipitation) (b) and land cover type (c). 907 

  908 
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909 
Figure 2. Long-term mean monthly climate observations plotted with the 38 CMIP5 runs 910 

during the baseline period (1980–2010) for Goulburn-Broken Catchment (a) long-term mean 911 

monthly precipitation (b) long-term mean monthly maximum temperature and (c) long-term 912 

mean monthly minimum temperature. 913 
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 915 

Figure 3. Flowchart showing the modelling experiments and calculation of effects: CC effect 916 

indicates the climate change effect of precipitation and temperature with unchanged LAI, CC 917 

+ LAI effect indicates the climate change effect of precipitation, temperature and leaf area 918 

index. 919 

  920 
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921 
Figure 4. Box plots of percentage changes in the mean monthly precipitation (a, b, c, d) and 922 

changes in mean monthly temperatures (e, f, g, h) in the Goulburn-Broken Catchment for the 923 

future periods 2021–2050 and 2071–2100 for the 38 CMIP5 runs of climate projections. 924 

Changes are relative to the historical (1981–2010) mean monthly precipitation and 925 

temperatures. The lower boundary of the box indicates the 25
th

 percentile, a line within the 926 

box marks the median, and the upper boundary of the box indicates the 75
th

 percentile and the 927 

whiskers are delimited by the maximum and minimum.  928 
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929 
Figure 5. Box plots of changes in mean monthly LAI derived from the 38 CMIP5 runs for 930 

climate projections during 2021–2050 and 2071–2100 under RCP4.5 and RCP8.5 scenarios 931 

for crop (a, b, c, d); pasture (e, f, g, h) and tree (i, j, k, l) in the Goulburn-Broken Catchment. 932 

Changes are relative to LAI calculated using climate time series for the 1981–2010 baseline. 933 

The lower boundary of the box indicates the 25
th

 percentile, a line within the box marks the 934 

median, and the upper boundary of the box indicates the 75
th

 percentile and the whiskers are 935 

delimited by the maximum and minimum. 936 
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 938 

Figure 6. Impacts on catchment mean annual streamflow of the Millennium drought (1997–939 

2009) relative to the period 1983–1995. CC effect indicates precipitation and temperature 940 

effect with unchanged LAI; CC + LAI effect indicates precipitation, temperature and LAI 941 

effect. The proportional LAI effect indicates the LAI effect as a percentage of the CC effect. 942 
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 944 

 945 

Figure 7. Impact on catchment mean annual streamflow average over the 38CMIP5 runs of 946 

projected climate change for the future periods 2021–2050 and 2071–2100 under RCP4.5 (a, 947 

b) and RCP8.5 (c, d), relative to the 1981–2010 base period. CC effect indicates precipitation 948 

and temperature effect with unchanged LAI; CC + LAI effect indicates precipitation, 949 

temperature and LAI effect. The proportional LAI effect indicates the LAI effect as a 950 

percentage of the CC effect. 951 
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 953 

954 
Figure 8. Box plots of the net climate change (CC + LAI) effect on mean annual runoff 955 

during (2021–2050, 2071–2100) under RCP4.5 (a, b) and RCP8.5 (c, d) emission scenarios 956 

from each of the 38 CMIP5 runs. Changes are relative to the historical (1981–2010) period. 957 

The lower boundary of the box indicates the 25
th

 percentile, a line within the box marks the 958 

median, and the upper boundary of the box indicates the 75
th

 percentile and the whiskers are 959 

delimited by the maximum and minimum. 960 
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962 
Figure 9. Box plots of contribution of LAI to the climate change effect on mean annual runoff 963 

for future (2021–2050, 2071–2100) climate forcing under RCP4.5 (a, b) and RCP8.5 (c, d) 964 

emission scenarios from each of the 38 CMIP5 runs as compared to the historical (1981–965 

2010) period. The LAI effect is normalized by the effect of precipitation and temperature 966 

with unchanged LAI (i.e. CC effect) and expressed as a percentage. The lower boundary of 967 

the box indicates the 25
th

 percentile, a line within the box marks the median, and the upper 968 

boundary of the box indicates the 75
th

 percentile and the whiskers are delimited by the 969 

maximum and minimum. 970 
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972 
Figure 10. Box plots of impacts on mean monthly streamflow from 38 CMIP5 runs of 973 

catchment 6 (a, d, g and j), catchment 10 (b, e, h and k), and catchment 11 (c, f, i and l) of 974 

projected climate change for future periods (2021–2050) and (2071–2100) under RCP4.5 and 975 

RCP8.5 respectively relative to the 1981–2010 base period. CC effect indicates precipitation 976 

and temperature effect with unchanged LAI; CC + LAI effect indicates precipitation, 977 

temperature and LAI effect. The lower boundary of the box indicates the 25
th

 percentile, a 978 

line within the box marks the median, and the upper boundary of the box indicates the 75
th

 979 

percentile and the whiskers are delimited by the maximum and minimum. 980 
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