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Abstract ���

Anthropogenic climate change is projected to enrich the atmosphere with carbon dioxide, ���

change vegetation dynamics and influence the availability of water at the catchment scale. ���

This study combines a non-linear model for estimating changes in leaf area index (LAI) due ���

to climate fluctuations with the Variable Infiltration Capacity (VIC) hydrological model to ���

improve catchment streamflow prediction under a changing climate. The combined model ���

was applied to thirteen gauged catchments with different land cover types (crop, pasture and ���

tree) in the Goulburn-Broken Catchment, Australia for the “Millennium Drought” (1997–���

2009) relative to the period (1983–1995), and for two future periods (2021–2050 and 2071–�	�

2100) for two emission scenarios (RCP4.5 and RCP8.5) were compared with the baseline �
�

historical period of 1981–2010. This region was projected to be warmer and mostly drier in ���

the future as predicted by 38 Coupled Model Inter-comparison Project Phase 5 (CMIP5) runs ���

from 15 Global Climate Models (GCMs) and for two emission scenarios. The results showed ���

that during the Millennium Drought there was about a 29.7%–66.3% reduction in mean ���

annual runoff due to reduced precipitation and increased temperature. When drought induced ���

changes in LAI are included, smaller reductions in mean annual runoff of between 29.3% and ���

61.4% were predicted. The proportional increase in runoff due to modelling LAI was 1.3%–���

10.2% relative to not including LAI. For projected climate change under the RCP4.5 ���

emission scenario ignoring the LAI response to changing climate could lead to a further �	�

reduction in mean annual runoff of between 2.3% and 27.7% in the near-term (2021–2050) �
�

and 2.3% to 23.1% later in the century (2071–2100) relative to modelling the dynamic ���

response of LAI to precipitation and temperature changes. Similar results (near-term 2.5% to ���
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25.9% and end of century 2.6% to 24.2%) were found for climate change under the RCP8.5 ���

emission scenario. Incorporating climate-induced changes in LAI in the VIC model reduced ���

the projected declines in streamflow and confirms the importance of including the effects of ���

changes in LAI in future projections of streamflow. ���

 ���
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1 Introduction �
�

Recently, climate changes have been observed in different parts of Australia (Chiew et al., ���

2011; Cai and Cowan, 2008; Hughes et al., 2012; Lockart et al., 2009; Potter and Chiew, ���

2011). Specifically, south-eastern Australian catchments have experienced changes in ���

streamflow due to fluctuations in climate as observed during the recent “Millennium ���

Drought’’ (1997-2009) which lasted more than a decade (Chiew et al., 2011; Verdon-Kidd ���

and Kiem, 2009). This drought may be representative of future climatic conditions in this ���

region.  ���

The projected water availability for future climates derived from downscaled outputs from ���

global and regional climate models indicate increases of mean annual runoff by 10% to 40% �	�

in some parts of the world (high northern latitudes) and 10% to 30% reduction elsewhere �
�

(southern Europe, Middle East and south-eastern Australia) (Milly et al., 2005). More ���

recently, Roderick and Farquhar (2011) examined climate and catchment characteristics for ���

sensitivity to changes in runoff in Murray-Darling Basin in southeast Australia from a ���

theoretical point of view and estimated that a 10% change in precipitation would lead to a ���

26% change in runoff and a 10% change in potential evaporation would lead to a 16% change ���

in runoff with all other variables being constant. In south-eastern Australia it has been ���

projected that there will be a reduction in mean annual runoff of 10% on average when ���

different climate models are used as input to hydrological models (Cai and Cowan, 2008; ���

Chiew et al., 2009; Roderick and Farquhar, 2011; Teng et al., 2012a; Vaze and Teng, 2011). �	�

These studies assessed the possible impacts of climate change on total runoff based on �
�

rainfall-runoff relationships which only considered first order effects of changes in ���

precipitation and temperature with subsequent impacts on evaporative demand.  ���

There is evidence that such relationships are not stationary over time (Chiew et al., 2014; ���

Peel and Blöschl, 2011; Vaze et al., 2010), which implies that the studies discussed in the ���

previous paragraph may be missing an important factor. One approach to improving ���

modelling under changing conditions is to use variable monthly leaf area index (LAI) in the ���

hydrologic model. Using observed climate variability and streamflow responses, observed ���

monthly LAI has been shown to improve soil moisture prediction (Ford and Quiring, 2013). ���

The improvements are largest under either relatively wet or dry climatic conditions, i.e. in �	�

wet and dry years, rather than average years. In most south-eastern Australia, LAI primarily �
�

responds to the availability of water and changes in vegetation type, such as conversion of ���

forest to cropland or pasture, but also responds, to a lesser extent, to changes in temperature ���



�
�

��
�

and rising atmospheric CO2 concentrations. Most of these LAI responses are expected to be ���

affected by projected climate change. These climate-induced changes in vegetation LAI may ���

impact on evapotranspiration and runoff and hence should be considered when making runoff ���

projections for climate change scenarios.  ���

Dynamic Global Vegetation Models (DGVMs) have been used to assess the vegetation effect ���

of climate change on large-scale hydrological processes and patterns (Murray et al., 2012a, ���

2011). A list of available DGVMs and their processes representations (photosynthesis, �	�

respiration, allocation, and phenology) can be found in Wullschleger et al. (2014), while �
�

Scheiter et al. (2013) provides a review of the possible sources of uncertainty related to 	��

representation of plant functional type (PFT) in DGVMs. Most DGVMs overestimate runoff; 	��

mainly due to model structure problems along with operating at low spatial and temporal 	��

resolution (Murray et al., 2012b). While the relationships between LAI and climate 	��

fluctuation have been modelled (Ellis and Hatton, 2008; O'Grady et al., 2011; Jahan and Gan, 	��

2011; Palmer et al., 2010; Tesemma et al., 2014; White et al., 2010), none of them have been 	��

incorporated in hydrological models for the purpose assessing future climate change impacts 	��

on streamflow. The poor hydrological sub models in DGVMs and the static vegetation in 	��

most hydrological models mean that importance of the indirect vegetation-related (LAI) 		�

effects relative to the direct effects of changes in precipitation and temperature on 	
�

hydrological response at catchment scale have rarely been studied. This limits understanding 
��

of the linkages between climate fluctuations and vegetation dynamics, and their combined 
��

impacts on hydrological processes. 
��

The main objective of this study is to examine the relative effects on mean annual runoff of 
��

changes in direct climate forcing (mainly precipitation and temperature) and direct climate 
��

forcing combined with climate-induced LAI changes under changed climate scenarios. 
��

Comparative analysis of these two cases enables the effect on mean annual runoff of allowing 
��

LAI to respond to a changing climate to be identified. Specifically, our study combined the 
��

LAI–Climate model developed in Tesemma et al. (2014) with the Variable Infiltration 
	�

Capacity (VIC) hydrologic model to assess the impact on catchment runoff of how LAI is 

�

modelled (constant seasonal LAI or LAI varying in response to climate) under changing ����

climatic conditions. As noted above, this combined model showed significant improvements ����

in runoff simulations under historic conditions. Here we investigate two sets of changing ����

climatic conditions: (1) the observed Millennium Drought (1997–2009), which is a persistent ����

(>10 year) large change in climate; and (2) projected climate change for both wet and dry ����
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catchments using 38 Coupled Model Inter-comparison Project Phase 5 (CMIP5) runs from 15 ����

different Global Climate Models (GCMs) for two future periods, 2021–2050 and 2071–2100, ����

for two emission scenarios, RCP4.5 and RCP8.5). The results obtained from this study are ����

expected to demonstrate whether modelling LAI in a way that responds to changing climatic ��	�

conditions is important for modelling runoff during projected climate change in the study ��
�

area.  ����
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2 Research approach  ����

This section provides details about the dataset, the characteristics of the selected catchments ����

and the modelling exercises. The catchment characteristics and dataset used in this study are ����

briefly described in section 2.1. The application of multiple GCMs and emission scenarios ����

output method are explained in section 2.2. The relationship between LAI and climatic ����

variables are presented in section 2.3, and the hydrologic modelling experiment approach ����

used to assess the impact of changes in climate on runoff are described in section 2.4. ����

2.1 Catchment characteristics and dataset ��	�

All the study catchments are located in the Goulburn-Broken Catchment which is a tributary ��
�

of the Murray-Darling Basin, Australia. The Goulburn-Broken Catchment extends between ����

35.8�  to 37.7�  S and between 144.6�  to 146.7�  E (Figure 1a) with a range of altitude from ����

approximately 1790 m on the southern side to 86 m above mean sea level on the northern ����

side of the catchment. The mean annual precipitation of the study catchments ranges from ����

659 (in the north) to 1407 mm year-1 (in the south) calculated for the period (1982–2012). ����

The majority of the precipitation (about 60%) occurs during winter and spring. The reference ����

potential evapotranspiration (PET) calculated using the Food and Agricultural Organization ����

(FAO56) method, ranges from 903 mm year-1 (in the north) to 1046 mm year-1 (in the south). ����

Hence, the dryness index (mean annual reference potential evapotranspiration divided by ��	�

mean annual precipitation) varies from 0.64 to 1.6 (Figure 1b). The dominant land cover type ��
�

in most of the catchments is forest (mainly tall open Eucalyptus forest and Eucalyptus ����

woodlands) with some pasture in all catchments. A small amount of cropland is located in ����

some of the catchments (Figure 1c). ����

Gridded input data used for the hydrological modelling include the daily precipitation, ����

maximum and minimum temperature, vapour pressure and solar exposure data obtained from ����

the Australian Water Availability Project (AWAP) of the Bureau of Meteorology (Jones et ����

al., 2009) and gridded daily wind run data from McVicar et al. (2008) that was generated ����

from point measurements. All data have a spatial resolution of 0.05° × 0.05° (approximately ����

5km × 5km), and the period from 1982 to 2012 was selected for this study. The daily ��	�

streamflow data at the outlet of the selected calibration catchments were obtained from the ��
�

Victorian Water Resources Warehouse (http://data.water.vic.gov.au/monitoring.htm). The ����

missed streamflow data were filled by regressing between neighbouring catchments. The ����

elevation data were collected from the GEODATA 9 Second Digital Elevation Model (DEM-����
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9S) Version 3 (Geoscience Australia, 2008). The elevation data were resampled to a ����

resolution of 0.05° × 0.05° using the spatial average. The land cover input data were derived ����

from the National Dynamic Land Cover Dataset which provides a land cover map for the ����

whole of Australia at a resolution of 0.00235° × 0.00235° (approximately 250m × 250m) and ����

can be accessed at (http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_71071). ����

LAI data were collected from the Global Land Surface Satellite (GLASS) product which is ��	�

available for download from Beijing Normal University (http://www.bnu-datacenter.com). ��
�

The soil parameters in the VIC model running resolution were derived from the five minute ����

resolution Food and Agriculture Organization dataset (FAO, 1995). The root distribution in ����

three soil layers was derived from the global ecosystem root distribution dataset (Schenk and ����

Jackson, 2002). ����

2.2 Applying multiple GCMs and multiple emission sc enarios ����

Outputs from many climate models from the Coupled Model Inter-comparison Project Phase ����

5 (CMIP5) (Taylor et al., 2012) are used as input to the hydrological model. CMIP5 contains ����

model runs for four representative concentration pathways (RCPs), which provide radiative ����

forcing scenarios over the 21st century (Moss et al., 2010; Vuuren et al., 2011). In this study ��	�

two emission scenarios were chosen: a midrange mitigation scenario, referred to as RCP4.5 ��
�

and a high emissions scenario RCP8.5 (Meinshausen et al., 2011). RCP4.5 results in a ����

radiative forcing value of 4.5 Wm-2 at the end of the 21st century relative to the preindustrial ����

value, while RCP8.5 provides a radiative forcing increase throughout the 21st century to a ����

maximum of 8.5 Wm-2 at the end of the century. ����

CMIP5 Global Climate Model (GCM) data were obtained from (http://climexp.knmi.nl ����

accessed 28 February 2014). These data were re-sampled to a common grid resolution of 2.5° ����

since each GCM has a different spatial resolution (some are the same, but most are different). ����

A total of 38 RCP4.5 and RCP8.5 runs from 15 different GCM models have been used in this ����

study to include the possible uncertainty among climate models. For each of the 38 runs, ��	�

daily precipitation, minimum and maximum temperature data were collected for three ��
�

periods, 1981–2010 (historical run), 2021–2050 and 2071–2100 (future runs). An assessment ����

of the ability of the CMIP5 runs to reproduce the observed base line seasonality of ����

precipitation, minimum and maximum temperature is shown in Figure 2. The seasonality in ����

precipitation and temperature were well captured by most CMIP5 runs with biases which ����

require correction. ����
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Low spatial resolution GCM outputs require downscaling for application in catchment ����

hydrology studies. Here the ‘delta-change’ statistical downscaling technique was used to ����

downscale and bias-correct the GCM outputs (Fowler et al., 2007). Delta-change was ����

selected due to its low computational intensiveness and easy applicability to a range of ��	�

GCMs. We acknowledge the limitations of this method include an assumption of stationarity ��
�

in change factors, climate feedbacks are not incorporated and an inability to capture changes �	��

in extreme events and year to year variability. Dynamic downscaling, which solves some of �	��

these problems, was not used as it has high computational demand and is not readily available �	��

for a range of GCM runs and scenarios (Fowler et al., 2007). A simple statistical downscaling �	��

method was appropriate for this study as we were interested in the impact of including �	��

climate induced LAI change on the runoff results. In the study area, the monthly LAI is �	��

strongly related to three month and/or nine month moving average moisture state �	��

(precipitation minus reference potential evapotranspiration) (Tesemma et al., 2014). �	��

Therefore, so long as the precipitation is consistent between the two runs we can assess the �		�

importance of the change in LAI representation between model runs. It has been suggested �	
�

that extreme precipitation might change differently to mean precipitation under climate �
��

change (Harrold et al., 2005) and the delta-change method does not capture this. Nevertheless �
��

delta-change was used as this study concentrates on average runoff which is strongly linked �
��

to overall catchment wetness, rather than floods which are linked to a combination of �
��

catchment wetness and extreme precipitation. Hence consideration of extreme precipitation �
��

events is less important in this study. �
��

Statistical downscaling was applied to each of the GCM outputs and emission scenarios. �
��

Since the study area is covered by four GCM grid cells, the area weighted average �
��

precipitation, minimum and maximum temperatures of the GCM grid cells covering the study �
	�

area were computed. The area weighted average values were then statistically downscaled �

�

using the delta change approach. Delta changes were calculated separately for each of the 12 ����

months. For temperatures the delta changes were calculated using  ����

� � � �� � � 	
�� � �� � � � ������� � �� ���������������������������������������������������������������������������������� � �  

where � T(j) is the delta change in the 30-year mean monthly minimum or maximum ����

temperature as simulated by the climate model for the future period and RCP of interest ����

(2021–2050 or 2071–2100, RCP4.5 or RCP8.5), � ����� � �� , relative to the mean for the ����

baseline period (1981–2010) climate model simulation, �� ������� � �� . j represents the month. ����
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� T(j) is then applied to the daily baseline (1980–2010) observations, Tobs(j,i), for each pixel of ����

the climate gridded data (which is the same as the VIC model grid pixels) to obtain the ����

statistically downscaled minimum or maximum daily temperature, T� ��� ��  for month j and ��	�

day i. ��
�

� � ��� �� � � �� ��� �� ! � � ����������������������������������������������������������������������������������������������� " �  

For precipitation, the delta changes value is computed as a proportional change rather than a ����

shift: ����

� 	 � �� �
#	
�� � �� �

#������� � �� �
������������������������������������������������������������������������������������������������������� $�  

and then applied to the observations using: ����

��#� � �� �� � # ��� � �� �� % � 	 � �� ������������������������������������������������������������������������������������������ &�  

Here � P(j) is the delta change in 30-year mean monthly precipitation as simulated by the ����

climate model #	
�� � ��  for two future periods (2021–2050 and 2071–2100) relative to the ����

baseline simulation�#������� � �� ; P� ��� ��  is the statistically downscaled daily precipitation for ����

the projected future climate change scenario for month j and day i, Pobs(j, i) is observed daily ����

precipitation for the historical period (1981–2010) for month j and day i for each of the ����

precipitation pixel of the gridded climate data. The delta change approach maintains a similar ��	�

(but shifted or scaled) spatial variation of temperature and precipitation as that in the ��
�

historical observed gridded data. The daily pattern of weather variation and the relationships ����

between the various weather variables are also maintained. Because historic weather data ����

provides the basis for the temporal patterns, the well-recognized issue of “GCM drizzle” is ����

eliminated. The delta change method also corrects for differences between the mean elevation ����

of the four GCM grid cells by scaling up or down the historical spatial variation of ����

temperature and precipitation across the catchment.  ����

2.3 Relationship between LAI and climate variables ����

Tesemma et al. (2014) showed that monthly LAI of each vegetation type was closely related ����

to changes in moisture state (precipitation minus reference evapotranspiration) of six-monthly ��	�

moving averages for crop and pasture, and nine-monthly moving averages for trees. ��
�

Differences in LAI response for the same change in moisture state among the three vegetation ����

types were also observed as differences in model parameters of the LAI–Climate relationship. ����

Tesemma et al. (2014) provides details on the derivation of the LAI–Climate relationship for ����
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the Goulburn-Broken Catchment. The three LAI models developed for crop, pasture and tree ����

are given below. ����

'()� � �
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Where LAI is the leaf area index of the cover type (tree/pasture/crop), P is the six month ����

moving average of precipitation for crop and pasture, and the nine month moving average for ����

trees, and PET is the respective reference evapotranspiration. ��	�

The monthly LAI was then simulated for both historical and future climate scenarios using ��
�

the LAI–Climate model (Eq. 5) driven with the appropriate climate inputs. In this study ����

monthly average reference potential evapotranspiration (PET, mm day-1) was estimated using ����

the standard FAO Penman-Monteith daily computations (Allen et al., 1998) and then ����

aggregating to monthly values.�The reference potential evapotranspiration for future climate ����

scenarios was computed using the projected minimum and maximum temperatures,while ����

incoming shortwave radiation and vapour pressure were derived from daily temperature ����

range using the algorithms of Kimball et al. (1997) and Thornton and Running (1999). The ����

wind speed was kept the same as the historical observations. A significant literature exists ����

(see discussion in Supplementary Material of McMahon et al., 2015) around the issue of ��	�

using temperature to drive future changes in reference potential evapotranspiration (PET). ��
�

We acknowledge this assumption and note that it is likely to have limited impact on our ����

runoff results in the mainly water limited catchments modelled here. The historical or future ����

precipitation was used in Eq. 5 according to the scenario being modelled. Potential LAI ����

variations in the baseline years (1981–2010) and the two future periods (2021–2050 and ����

2071–2100), for each of the two future emission scenarios, were simulated using the ����

downscaled outputs from the 38 CMIP5 runs of the 15 GCMs, as input into the LAI–Climate ����

model (Eq.5). The uncertainty ranges in modelled LAI that come from the difference in ����

climate input were determined by using the downscaled 38 CMIP5 runs individually in Eq. 5. ����



�
�

���
�

2.4 Hydrological model and experimental design ��	�

In this study we used the three layers VIC model (version 4.1.2g) to simulate streamflow. The ��
�

VIC macroscale model is a spatially distributed conceptual hydrological model that balances ����

both water and energy budgets over a grid cell. It simulates soil moisture, evapotranspiration, ����

snow pack, runoff, baseflow and other hydrologic properties at daily or sub-daily time steps ����

by solving both the governing water and energy balance equations (Liang et al., 1996). VIC ����

estimates infiltration and runoff using the variable infiltration curve that represents the sub-����

grid spatial variability in soil moisture capacity (Liang et al., 1994; Zhao et al., 1995) and ����

Penman-Monteith for potential evapotranspiration computation. The ability of the model to ����

incorporate spatial representation of climate and inputs of soil, vegetation and other ����

landscape properties make it applicable for climate and land use / land cover change impact ��	�

studies. The VIC model has been widely used for a number of hydrological studies in ��
�

different climatic zones across the globe (Zhao et al., 2012a; Zhao et al., 2012b; Cuo et al., ����

2013).  ����

The seven most sensitive model parameters (b, Ds, Ws, Dsmax, d2, d3 and exp) in the VIC ����

model (Demaria et al., 2007) were calibrated against observed streamflow from thirteen ����

selected sub-catchments with different climate and land cover composition that are ����

representative of the main runoff generating regions of the Goulburn-Broken catchment. The ����

model parameters were calibrated separately for each selected unregulated sub-catchment and ����

applied uniformly within a sub-catchment (Figure 1). The Multi-Objective Complex ����

Evolution (MOCOM-UA) algorithm (Yapo et al., 1998) was used to calibrate the model. This ��	�

algorithm was implemented on each of the selected catchments separately to calibrate the ��
�

model against the observed runoff. The model was first calibrated for the entire period �	��

(1982–2012), then using the calibrated parameters as initial guesses, the model was re-�	��

calibrated for the period 1982–1997 and evaluated for the period 1998–2012. During the �	��

calibration, VIC ran on a daily basis but the objective function was calculated on a monthly �	��

basis. Three criteria (objective functions) were used to evaluate the model’s performance �	��

during calibration: the Nash–Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) between �	��

observed and simulated flow, the logarithm of Nash–Sutcliffe efficiency (logNSE) which �	��

penalizes errors at peak flow, and the percentage bias from the observed mean flow (PBIAS). �	��

VIC model was run at daily time step and input data with a 5km by 5km spatial grid �		�

resolution for 30 years from January 1981 to December 2010 to produce the baseline and �	
�

experiment runs. Two model experiments were run: the first experiment considered the recent �
��
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historical climate (Millennium Drought, 1997–2009) and LAI estimates using the simple �
��

LAI-Climate model against the relatively normal historical climate period (1983–1995). The �
��

second experiment considered the future climate from 38 CMIP5 runs and corresponding LAI �
��

derivatives for two periods (2021–2050 and 2071–2100), and two emission scenarios RCP4.5 �
��

and RCP8.5 with respect to the historical period (1981–2010). Both sets of simulations were �
��

performed over the thirteen calibrated study catchments within the Goulburn-Broken �
��

Catchment (Figure 1b). A flow chart of the modelling method is given in (Figure 3). �
��

To identify the effect on mean annual runoff of allowing LAI to respond to a changing �
	�

climate, compared with LAI not responding, we used the following steps: (1) the calibrated �

�

model was forced with inputs of historical climate data and LAI data modelled from using the ����

historical climate data (1981–2010) to establish baseline streamflow estimates; (2) the model ����

was forced with projected future climate inputs and corresponding modelled LAI to produce ����

projected streamflow for future scenarios; (3) the future climates were input along with the ����

LAI data used in step 1 to produce projected streamflow that ignore project LAI changes . ����

The difference in mean annual runoff between steps 3 and 1 represents the climate effect (CC ����

effect); on mean annual runoff of only Precipitation and Temperature. Whereas the difference ����

in mean annual runoff between steps 2 and 1 represents the net effect (CC + LAI effect); on ����

mean annual runoff of allowing LAI to respond to a changing climate in addition to the direct ��	�

climate forcing (Precipitation and Temperature). The difference in mean annual runoff ��
�

between steps 2 and 3 represents the component of the runoff response related to climate-����

induced changes in LAI. For the millennium drought (1997–2009) the above two changes in ����

mean annual runoff were estimated in a similar fashion taking (1983–1995) time period as ����

relatively normal period. The percentage change of mean annual runoff against the historical ����

mean annual runoff for climate change effect (Qclim) (Eq. 6), climate change and LAI effect ����

(Qnet) (Eq. 7); and the percentage of CC effect offset by LAI effect (Qlai) (Eq. 8) were ����

estimated as follows:  ����

WXYZ[ � � \
.UU�]���^ _`abcd`efg�hij

klbldm�eg`nfbm� o�^ _`abcd`efg�hij
_`abcd`efg�eg`nfbm� ��

^ _`abcd`efg�hij
_`abcd`efg�eg`nfbm p                                                     (6) ����

W�qr � � s
.UU�]���^ klbldm�hij

klbldm�eg`nfbm� o�^ _`abcd`efg�hij
_`abcd`efg�eg`nfbm� ���

^ _`abcd`efg�hij
_`abcd`efg�eg`nfbm t                                                        (7) ��	�

WYuZ� � v
.UU�]���^ eg`n o�^ wmb��

^ wmb
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3 Results  ����

This section provides results from the modelling exercises. First the model calibration and ����

evaluation are discussed in section 3.1. The change in climate variables during: (1) the recent ����

observed prolonged drought; and (2) future climate change projections for the study ����

catchments are presented in section 3.2. The impact on both LAI (section 3.3) and catchment ����

streamflow (section 3.4) of changes in climate input during the Millennium Drought and ����

future climate change projections are also provided. These results provide readers with a ����

comparison of the anticipated future change in climate with the recently observed drought. ����

3.1 Model calibration and evaluation results  ��	�

The calibrated model parameters and model performance during calibration (1982–1997) and ��
�

evaluation (1998–2012) periods for each sub-catchment are listed in Table 1. Most of the ����

calibrated catchments have NSE of more than 70% during both calibration and evaluation ����

periods (Table 1). In most of the selected catchments the simulated runoff for both calibration ����

and evaluation periods met the “satisfactory” criteria according to (Moriasi et al., 2007), with ����

NSE > 50% and the percentage absolute bias is generally less than 25% during calibration ����

and evaluation periods. Although VIC captured the temporal variability of runoff well, there ����

were some systematic biases in the runoff simulated. The model overestimates peak flow in a ����

few cases and underestimates low flow in most of the catchments. The sources of these biases ����

need to be investigated in order to understand the performance of the model. To do this, the ��	�

estimated monthly biases are plotted against the monthly climate inputs: precipitation, ��
�

temperature and LAI (not shown here). The calibrated catchments showed no relationship ����

between AWAP gridded climate data and simulated runoff biases. The biases are likely ����

related to the model structure (Kalma et al., 1995) rather than the model inputs.  ����

3.2 Change in the climate variables from change in climate ����

3.2.1 Millennium drought ����

The Millennium Drought brought a decline in the mean annual precipitation over the selected ����

catchments which ranged from 17.9% to 24.1%, with a mean of 20.9% when compared with ����

the period (1983–1995). It also brought an increase in mean annual temperature which ranged ����

from 0.2�  C to 0.4�  C, with an average of 0.3�  C as compared to the temperature in the period ��	�

(1983–1995). All thirteen study catchments experienced a similar change in both ��
�

precipitation and temperature (Table 2).  ����
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3.2.2 Future climate ����

Averaged over all 38 CMIP5 runs, the mean annual precipitation in 2021–2050 over the ����

selected catchments is projected to decline by 2.9% and 3.7%, relative to the historical period ����

1981–2010, under the RCP4.5 and RCP8.5 scenarios respectively. By the end of the century ����

(2071–2100) mean annual precipitation is projected to decline by 5% and 5.2% under the ����

RCP4.5 and RCP8.5 scenarios respectively (Table 3). The mean annual temperature is also ����

projected to increase in both future periods and emission scenarios (Table 3). ����

Most precipitation projections showed a shift towards drier climates in all seasons except ��	�

summer in both emission scenarios and periods. The variability in projected mean monthly ��
�

precipitation among climate models indicates great uncertainty between GCMs (Figure 4a-d). ����

The mean monthly temperature of all climate models clearly deviated from the baseline ����

period (1981-2010), underlining the consistent change signal between GCMs (Figure 4e-h). ����

The median of the 38 CMIP5 mean monthly precipitation data over the Goulburn-Broken ����

Catchment in the RCP4.5 emission scenario showed declines in most of the months. The ����

decreases were up to 6% in 2021–2050 (Figure 4a) and up to 11% in 2071–2100 (Figure 4c). ����

Similarly, under the RCP8.5 emission scenario the median monthly precipitation, other than ����

in January and February for both periods, showed decreases up to 7% in 2021–2050 (Figure ����

4b) and up to 18% in 2071–2100 (Figure 4d). The simulations for January and February ��	�

showed median increases of up to 4% and 5% respectively in 2071–2100 from the historical ��
�

baseline. Some climate models projected very wet future climates while others projected ����

relatively dry climates. There are relatively high uncertainties in the projected mean monthly ����

precipitation results in summer when compared with the mean monthly precipitation in ����

winter among the climates models. ����

In contrast to precipitation the projected mean monthly temperatures from all CMIP5 runs ����

showed increases, the median of the mean monthly temperatures of all CMIP5 38 runs ����

increased by about 0.8�  C in winter and 1�  C in summer in 2021–2050 (Figure 4e), and by ����

about 1.3�  C in winter and 1.8�  C in summer in 2071–2100 (Figure 4g) under the RCP4.5 ����

scenario. Under the RCP8.5 emission scenario the temperatures increased by 1�  C in winter ��	�

and by 1.4�  C in summer during 2021–2050 (Figure 4f) and by 2�  C and 3�  C in winter and ��
�

summer respectively by the end of the 21st century (Figure 4h). After precipitation the second �	��

variable that drives water availability is potential evapotranspiration. Here PET is expected to �	��

increase among all CMIP5 runs as it is being driven solely by changes in temperature given �	��

that actual vapour pressure and solar radiation was also simulated as a function of �	��
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temperature. In the near future period (2021–2050) the median of all CMIP5 mean monthly �	��

reference evapotranspiration projections increase by 5% to 13% in both emission scenarios, �	��

with the largest change in winter and the smallest in summer. In the future period of 2071–�	��

2100, the mean monthly reference evapotranspiration increased by 7% in summer and 25% in �	��

winter under RCP4.5 emission scenarios, and by 10% in summer and 28% in winter under �		�

the RCP8.5 emission scenarios.  �	
�

3.3 Impact on LAI from change in climate �
��

3.3.1 Millennium drought �
��

The effects of the Millennium Drought (1997–2009) on modelled crop LAI were very severe �
��

with reductions in mean annual LAI between catchments of 38.1% to 48.0%, with a mean of �
��

42.7% (Table 2). The reduction in LAI of pasture was between 16.7% and 21.6% across the �
��

thirteen selected catchments with a spatial average of 19.4% (Table 2). The LAI of trees �
��

responded less than crop and pasture, and reductions were in the range 5.7% to 14.0%, with a �
��

spatial mean of 9.2% (Table 2). A significant reduction in each cover type also brought an �
��

overall decline in areal weighted sum of all land cover types LAI in the selected catchments �
	�

which ranged from 5.8% to 17.9% (Table 2), which is similar to the reduction for trees, �

�

where tree is the dominant land cover type. ����

3.3.2 Future climate ����

The changes in mean monthly LAI of crop, pasture and trees averaged over the whole ����

Goulburn-Broken Catchment under future climates are vary between the CMIP5 runs and ����

global warming scenarios. Averaged over all 38 CMIP5 runs, the near future (2021–2050) ����

results for the study catchment showed that the mean annual LAI of cropland, pasture and ����

trees declined up to 13%, 6.7% and 5.4% under the RCP4.5 scenarios, and by up to 16%, 8% ����

and 6.6% under the RCP8.5 scenario (Table 3). A further reduction in the mean annual LAI ����

of each land cover was simulated by the end of the 21st century for both emission scenarios ��	�

(Table 3). ��
�

The effect of projected climate change on monthly total LAI (area weighted sum of all land ����

cover types LAI) for the study catchments is given in (Figure 5). The median of the 38 ����

CMIP5 runs simulated mean monthly LAI showed declines in all three land cover types. ����

Despite similar percentage changes in mean monthly precipitation and temperature forcing, ����

the mean monthly total LAI across the catchment shows the largest decline in autumn and the ����

smallest decline in spring during both future periods and scenarios. This difference reflects ����
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the seasonality of moisture availability influencing plant growth. Based on the median of the ����

38 CMIP5 runs, the predicted decline in the mean monthly LAI for crop, pasture and trees ����

was 18.1%, 10.3% and 7.9% respectively in the period 2021–2050 (Figure 5a, e, i) and ��	�

27.7%, 16.6% and 12.8% respectively in the period 2071–2100 under RCP4.5 (Figure 5c, g, ��
�

k). Larger reductions were simulated under the RCP8.5 emission scenario with 21.4%, 12.7% ����

and 9.5% in the period 2021–2050 (Figure 5b, f, j) and 36.5%, 22.5% and 17.9% respectively ����

for crop, pasture and tree in the period 2071–2100 (Figure 5d, h, l).  ����

3.4 Impacts on runoff from change in climate ����

3.4.1 Millennium drought ����

The impact of the Millennium Drought on streamflow due to changes in precipitation and ����

temperature alone and changes in precipitation and temperature and modelled LAI were ����

simulated using the VIC model. The simulated reductions in mean annual streamflow during ����

the Millennium Drought (1997–2009) as compared with the relatively normal period (1983–��	�

1995) across the selected catchments due to the change in climate alone ranged from 29.7% ��
�

to 66.3% with a mean of 50% (Table 2). The reductions in LAI resulting from the decline in ����

precipitation and increase in temperature increased mean annual streamflow by between 1.3% ����

and 10.2% relative to the direct climate effect above (Table 2 and Figure 6).  ����

3.4.2 Future climate ����

The average of the 38 CMIP5 runs under the RCP4.5 scenario produced declines in mean ����

annual runoff due to the change in precipitation and temperature alone (Qclim) that ranged ����

from 6.8% to 20.3% in the period 2021–2050, and 11.5% to 30.1% for the period 2071–2100 ����

(Table 3 and�Figure 7). For the higher emission scenario (RCP8.5), the reductions were a ����

little larger-ranging from 8.3% to 23.3% in 2021–2050 and from 14.5% to 35.1% by the end ��	�

the 21st century (Table 3 and� ������ � ). The reductions in runoff due to climate are offset ��
�

through the LAI effect (Qlai) that ranged from 2.3% to 27.7% and from 2.3% to 23.1% in the ����

near and far future periods respectively under the RCP4.5 emission scenario. Similar offsets ����

of 2.5% to 25.9% and 2.6% to 24.2% in the near and far future periods respectively were also ����

found under the RCP8.5 emission scenario (Table 3 and�Figure 7).  ����

The differences between GCMs in terms of the net climate change impacts (CC + LAI) on ����

mean annual runoff and the LAI contribution to that effect are shown in Figure 8 and Figure ����

9 respectively. While large uncertainty exists among the 38 CMIP5 runs, the median between ����

the models showed declines in the net climate change (CC + LAI) projections of mean annual ����
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runoff in all catchments (Figure 8). The median decline in the mean annual runoff due to the ��	�

net climate change impact was 15.3% and 26.7% in 2021–2050 and 2071–2100 respectively, ��
�

under RCP4.5. A larger decline of 21.6% and 31.8% in 2021–2050 and 2071–2100 ����

respectively occurred under RCP8.5 (Figure 8). The simulated LAI effects of the climate ����

change showed smaller variation between GCMs than the net climate change (CC + LAI) ����

effect on mean annual runoff. The LAI effect works to offset the reduction in mean annual ����

runoff resulting from lower precipitation and higher temperature. Figure 9 shows the ����

magnitude of the LAI effect as a percentage of the magnitude of direct climate change effect ����

(noting they work in opposite directions). The median of this across the 38 CMIP5 runs was ����

up to 20%, depending on the month. The simulated LAI effect on mean annual runoff showed ����

smaller variation between GCMs than the net climate change (CC + LAI) effect on mean ��	�

annual runoff.  ��
�

The direct climate change (CC) effect, the LAI effect of climate change and the net climate ����

change (CC+LAI) effect on the mean monthly runoff for the selected catchments are given: ����

Catchments 6 (Figure 10a, d, g, j), Catchment 10 (Figure 10b, e, h , k), and Catchment 11 ����

(Figure 10c, f, i , l). Catchments 6 and 10 are located in a high annual precipitation zone with ����

trees as the dominant vegetation cover; whereas Catchment 11 is covered mostly with pasture ����

and has relatively lower annual precipitation than Catchments 6 and 10. Depending on the ����

month, for the 38 CMIP5 runs in 2021–2050 the median reduction in mean monthly runoff ����

(Qnet) were up to 10%, 24%, and 34% for catchment 6, 10, and 11, respectively for both the ����

RCP4.5 and RCP8.5 scenarios (Figure 10). Further reductions projected by the end of the 21st ��	�

century were up to 17%, 37% and 52% for catchments 6, 10, and 11, respectively, under both ��
�

scenarios (Figure 10). Catchment 6 showed the lowest seasonality in the climate change ����

effects for both emission scenarios and the LAI-related effects of climate change also showed ����

the smallest seasonal variation. Catchment 11 runoff was the most impacted by projected ����

climate changes and had the greatest benefit from LAI effects of climate change under both ����

emission scenarios and future periods. The seasonal pattern of the LAI effect of climate ����

change is similar under both RCP scenarios. The magnitude of this effect is relatively higher ����

for drier projected future climates. �  ����
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4 Discussion and Conclusion ����

This study investigated the importance of incorporating the relationship between changing ��	�

climate, in terms of precipitation and temperature, and vegetation LAI into a hydrological ��
�

model to estimate changes in mean monthly and mean annual runoff under changing climatic �	��

conditions in the Goulburn-Broken Catchment, south-eastern Australia. A combination of �	��

VIC hydrological simulations with a simple model that relates climatic fluctuations with LAI �	��

for three different vegetation types revealed that 21st century climate change impacts on LAI �	��

significantly influence the projected runoff in the study catchments. LAIs of forest, pasture �	��

and crop were predicted to decline in the 21st century due to reductions in precipitation and �	��

increases in temperature. �	��

Reduced LAI in response to a drier and warmer climate would reduce transpiration from �	��

vegetation and evaporative losses from canopy interception, which leaves the soil relatively �		�

wetter than if LAI response to climate was not included. This is important for runoff �	
�

generation process as it promotes saturation excess runoff and subsurface flow, which are the �
��

dominant cause of runoff generation in the study region (Western et al., 1999). Previous �
��

studies in the region (Chiew et al., 2009; Chiew et al., 2011; Teng et al., 2012a; Teng et al., �
��

2012b) concluded that runoff would decrease due to increases in evaporative demand and �
��

decreases in precipitation as a result of ongoing warming in the 21st century. However, the �
��

relationship between LAI and climate fluctuations was not taken into account in their �
��

modelling experiments. Therefore, in these studies the LAI effect is ignored and there is �
��

consequent overestimation of the runoff decline in the range of 2.3% to 27.7% (Figure 6 and �
��

Figure 7). �
	�

Projections of climate-induced vegetation dynamics and their hydrological impacts are �

�

influenced by various uncertainties that arise from using downscaled GCM outputs as inputs ����

to the hydrologic model. These include large uncertainties in projections for precipitation ����

from the various CMIP5 simulations (Teng et al., 2012b). In addition, the method used to ����

downscale the GCM outputs really only captures changes the mean; however, any change in ����

variability, which could have an effect on the projected future runoff, is ignored. The ����

ensemble of 38 CMIP5 simulations from 15 GCMs was used to determine the range of ����

uncertainty between GCMs. The results showed that the range of future climate projections ����

from the various GCMs is wide, one climate model could project a very wet future climate ����

while another a relatively dry climate. This suggests future analyses in other catchments ��	�

should apply downscaled climate change scenarios from several CMIP5 runs from a range of ��
�
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GCM models to the study area to get a sense of the possible range of climate change impact ����

on both LAI and streamflow.  ����

The results of this study illustrate that reduction of future precipitation and increase in mean ����

temperature lead to reduction of runoff in a general sense. However, if the hydrologic model ����

incorporated dynamic LAI information, as a function of changing climate, it would reduce ����

the impact on runoff that comes from the climate alone. Reduction of LAI due to reduction of ����

precipitation and increase in temperature decreases the evapotranspiration from vegetation ����

and leaves the soil relatively wetter than if climate-induced changes in LAI were not ����

represented in the modeling. The higher catchment moisture contents slightly increased ��	�

runoff and partially offset the reduction in runoff due to changes in climate. ��
�

In interpreting the results presented here it is important to examine the assumptions that were ����

made and the extent to which the results are dependent on those assumptions. Runoff ����

processes can also triggered by other precipitation characteristics (intensity, duration, inter-����

storm duration) which have not been considered in this study. If inter-storm durations are ����

expected to increase, this will alter the hydrologic fluxes even if the mean precipitation is ����

maintained. However, the Climate–LAI model used in the study area (Tesemma et al., 2014) ����

is related mainly to precipitation and potential evapotranspiration during the previous 6 to 9 ����

months. This limits the impact of changes in extreme precipitation characteristics in terms of ����

modelling the Climate–LAI relationship. In order to satisfy the aim of this paper, which is to ��	�

assess the impact of allowing LAI to respond to a changing climate, so long as the ��
�

precipitation series is consistent between the runs with and without LAI responding to ����

climate, we can assess the importance of the change in LAI on runoff simulation. Hence, in ����

this study consideration of changing extreme precipitation events is less important; although ����

it would be important for studies with the objective of predicting future floods or reservoir ����

management. ����

Another assumption of this study was that the impact on runoff of rising atmospheric CO2 ����

concentrations, via changes in LAI and stomatal conductance, is small relative to the ����

moisture availability effects. Therefore, here we assumed LAI responded only to precipitation ����

and PET changes, not changes in CO2. Changes in atmospheric CO2 concentrations could ��	�

affect vegetation through increasing LAI and narrowing stomata (Ainsworth and Rogers, ��
�

2007; Ewert, 2004; Warren et al., 2011). However, increased LAI may be limited by the ����

availability of nutrients, particularly nitrogen (Fernández-Martínez et al., 2014; Körner, ����

2006). Most of the results on this effect are derived from point experiments which could not ����
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be extrapolated to the catchment scale where there is a complex interaction between soil, ����

vegetation and climate. Increasing atmospheric CO2 could also have two other effects on ����

vegetation dynamics. First, biomass allocation may shift towards more above-ground plant ����

structure (Obrist and Arnone, 2003), which implies more canopy leaf than active rooting area. ����

This change could influence the water balance in either direction by increasing ����

evapotranspiration due to interception losses or by decreasing evapotranspiration through ��	�

limiting plant water uptake. Second, rising atmospheric CO2 may favor C3 species over C4 ��
�

species, which could lead to more woody plants compared to some grass species (Yu et al., ����

2014). This could influence the water balance by increasing evapotranspiration and ����

decreasing runoff. In addition at the canopy scale, the evapotranspiration effect of increased ����

LAI can be masked by shading among leaves, soil cover and raised canopy humidity ����

(Hikosaka et al., 2005; Bunce, 2004). A study that considered both effects suggested that the ����

fertilization effect of rising CO2 is larger than the stomatal pore reduction effect, and the net ����

effect is decreases in runoff (Piao et al., 2007). These two effects of increasing atmospheric ����

CO2 concentrations on vegetation work in opposite directions from a water balance ����

perspective and may offset each other if they are close in magnitude (Gerten et al., 2008). In ��	�

south-east Australia, it is known that vegetation growth is highly controlled by precipitation ��
�

(water supply), and is less controlled by temperature and radiation (Nemani et al., 2003). ����

Hence, most vegetation dynamics can be explained by variation in climate, which formed the ����

basis of the LAI–Climate model developed in Tesemma et al. (2014). We acknowledge ����

changing CO2 levels could influence vegetation growth and water use efficiency and hence ����

runoff, but we expect the impact on runoff to be smaller (Huntington, 2008; Uddling et al., ����

2008) than that due to changes in moisture state. Hence, exclusion of the fertilization and ����

stomata suppression effects of rising atmospheric CO2 on vegetation may not change the ����

results significantly. However, the impact on runoff of CO2 fertilization at the catchment ����

scale remains an important area of on-going research. ��	�

A further assumption was that any effect of climate change on the spatial distribution of plant ��
�

functional type (PFT) was ignored. That is the same spatial distribution of vegetation was ����

used but with changed LAI. We acknowledge that changing climate (i.e increase in ����

temperature) may shift the spatial distribution of PFTs, which has been reported in ����

Mediterranean climate region (eg Lenihan et al., 2003; Crimmins et al., 2011). However, in ����

our study area PFTs are largely determined by historical land use change (human activities) ����

such as forest clearing for agriculture, rather than natural responses of vegetation to changed ����
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climatic conditions. Therefore, future changes in the spatial distribution of agricultural crops ����

and pastures are difficult to project as they are not solely due to climatic changes. In the ����

forested areas, it is likely that issues that change water use such as changes in fire regime ��	�

(Heath et al., 2014) and forest age (Cornish and Vertessy, 2001) would dominate over ��
�

differences between species. Eucalyptus species already occupy high-altitude areas of the �	��

study catchment, which leaves little room for PFT changes due to up-slope migration in a �	��

warming climate. Most over-story trees in our study area are Eucalypts and while some �	��

movement of boundaries between dominant species may be expected, water use �	��

characteristics are likely to be relatively similar and there is insufficient information to �	��

represent species specific details of either migration or water use. Including these effects in �	��

the model may improve the results, but there is insufficient understanding at the granularity �	��

required to do so at present.  �	��

In summary, in this paper we use the VIC hydrological model to assess the impact on mean �		�

annual streamflow of ignoring climate induced changes in LAI for two changing climatic �	
�

situations: (1) the recently observed “Millennium Drought”; and (2) for downscaled projected �
��

future climate change scenarios from 38 CMIP5 runs in the Goulburn-Broken catchment, �
��

Australia. In the Millennium Drought (1997–2009) not modelling the response of LAI to �
��

changing climatic variables led to further reduction in mean annual runoff, relative to the pre-�
��

drought period (1983–1995), of between 1.3% and 10.2% relative to modelling the dynamic �
��

response of LAI to decreased precipitation and increased temperature (Table 2 and�Figure 6). �
��

For projected climate change under the RCP4.5 emission scenario ignoring the LAI response �
��

to changing climate could lead to a further reduction in mean annual runoff of between 2.3% �
��

and 27.7%, relative to the baseline period (1981–2010), in the near-term (2021–2050) and �
	�

2.3% to 23.1% later in the century (2071–2100) relative to modelling the dynamic response �

�

of LAI to precipitation and temperature changes. Similar results (near-term 2.5% to 25.9% ����

and end of century 2.6% to 24.2%) were found for climate change under the RCP8.5 ����

emission scenario (Table 3 and�Figure 7). Due to the strong relationship between climatic ����

variation and LAI, the Climate–LAI interaction should be included in hydrological models ����

for improved climate change impact assessments and modelling under changing climatic ����

conditions, particularly in arid and semi-arid regions where vegetation is strongly influenced ����

by climate.  ����
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RCP8.5 respectively relative to the 1981–2010 base period. CC effect indicates precipitation 		��

and temperature effect with unchanged LAI; CC + LAI effect indicates precipitation, 		��

temperature and LAI effect. The lower boundary of the box indicates the 25th percentile, a 		��

line within the box marks the median, and the upper boundary of the box indicates the 75th 		��

percentile and the whiskers are delimited by the maximum and minimum. 		��
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Table 1 Calibrated model parameters and model performance during calibration (1982–1997) 		��

and evaluation (1998–2012) periods. 			�

ID River and station name Model parameters Calibration (1982-1997) Evaluation (1998-2012) 

  b Ds Ws d2 d3 Dsmax exp 
Nash 
(%) 

logNash 
(%) 

Bias 
(%) 

Nash 
(%) 

logNash 
(%) 

Bias 
(%) 

1 Moonee Creek @ Lima 0.149 0.598 0.170 1.99 0.47 0.13 2.98 82.7 80.2 2.2 86.1 78.1 8.0 
2 Delatite River @ Tonga Bridge 0.062 0.014 0.755 0.81 1.88 0.30 2.95 82.7 91.9 6.4 84.2 89.4 -5.4 
3 Howqua River @ Glan Esk 0.244 0.291 0.006 1.65 0.28 11.60 1.15 90.4 89.4 -2.5 89.3 90.3 -0.8 
4 Goulburn River @ Dohertys 0.206 0.891 0.035 1.43 0.45 22.01 1.42 95.9 91.0 2.2 92.4 90.8 -2.4 
5 Big river @ Jamieson 0.183 0.610 0.736 1.70 0.81 0.01 2.19 89.7 86.5 8.9 81.5 85.7 11.9 
6 Rubicon River @ Rubicon 0.216 0.059 0.200 0.52 1.77 19.29 1.28 93.8 94.9 -2.4 87.4 92.0 3.4 
7 Acheron River @ Taggerty 0.168 0.030 0.293 1.97 1.84 0.16 2.59 82.6 85.8 9.5 82.4 84.4 -2.4 

8 
Murrindindi River @ above 
colwells 0.130 0.801 0.297 1.97 1.89 1.11 2.67 68.9 62.8 14.6 79.7 84.7 3.9 

9 Yea river @ Devlins Bridge 0.072 0.428 0.646 1.93 1.27 0.05 2.99 79.8 78.3 26.4 68.0 69.3 34.1 
10 King Parrot Creek @ Flowerdale 0.071 0.041 0.665 0.71 1.95 0.73 2.87 61.5 66.1 45.8 73.0 62.6 41.1 
11 Sugarloaf Creek @ Ash Bridge 0.001 0.592 0.804 1.31 1.18 0.00 1.39 78.6 73.4 -3.5 59.0 40.0 127.5 
12 Hughes Creek @ Tarcombe road 0.043 0.215 0.514 1.04 1.88 0.07 3.20 82.5 89.3 9.2 62.7 58.9 39.2 
13 Home Creek @ Yarck 0.0004 0.415 0.524 0.66 1.91 0.01 2.97 81.7 87.1 -12.7 75.6 64.7 30.7 

 		
�

 	
��

Table 2. Vegetation type distributions for each catchment and changes in mean annual 	
��

precipitation, temperature, LAI and streamflow during the Millennium Drought (1997–2009) 	
��

relative to (1983–1995). 	
��

Catchments ID 

Variables* 1 2 3 4 5 6 7 8 9 10 11 12 13 

Crop cover (%) 0.6 1.0         1.5 1.2 1.2 

Pasture cover (%) 14.4 32.7 3.3 6.4 0.92 5.5 9.94 2.57 25.9 7.62 63.5 56.3 48.8 

Tree cover (%) 85.0 66.3 96.7 93.6 99.1 94.5 90.1 97.4 74.1 92.4 35 42.6 50.1 

P (%) -23.2 -23.6 -21.1 -18.0 -17.9 -21.0 -20.1 -20.1 -19.4 -21.7 -19.5 -22.6 -24.1 

T (0C) 0.2 0.3 0.3 0.4 0.4 0.3 0.3 0.2 0.3 0.2 0.3 0.3 0.3 

LAI crop (%) -44.2 -48.0         -38.1 -41.8 -41.4 

LAI pasture (%) -20.5 -21.6 -19.5 -16.9 -16.7 -18.7 -19.0 -19.1 -19.5 -19.7 -19.6 -20.2 -20.8 

LAI tree (%) -11.4 -10.3 -8.2 -6.6 -5.7 -5.9 -7.0 -6.3 -9.1 -9.2 -14.0 -12.5 -13.9 

LAI total (%) -12.9 -14.4 -8.6 -7.3 -5.8 -6.6 -8.2 -6.6 -11.8 -10.0 -17.9 -17.2 -17.6 

Qclim (%) -49.3 -61.5 -43.7 -39.1 -42.9 -29.7 -44.0 -41.2 -55.2 -57.1 -66.3 -61.8 -57.9 

Qnet (%) -48.0 -59.7 -42.8 -38.3 -42.3 -29.3 -43.2 -40.6 -53.3 -55.2 -61.4 -56.1 -53.2 

Qlai (%) 2.6 3.0 2.1 2.1 1.5 1.3 1.9 1.4 3.6 3.4 8.0 10.2 8.9 

* P (%) is the change in mean annual precipitation in percentage, T (0C) is the change in mean annual temperature in Degree Celsius, Qclim 	
��
indicates the climate effect on runoff, Qnet is the net effect of climate and LAI on runoff and Qlai is proportion of the climate effect (Qclim) 	
��
that is offset by the LAI effect.  	
��
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Table 3. Impacts on mean annual precipitation, temperature, LAI and streamflow of projected 	
	�

climate change averaged over 38 CMIP5 runs relative to (1981–2010). 	

�

 Catchments ID 

Periods Variables* 1 2 3 4 5 6 7 8 9 10 11 12 13 

 

 

 

 

2021-2050 

RCP4.5 

P (%) -2.9 -2.9 -2.9 -2.9 -2.9 -2.9 -2.9 -2.9 -2.9 -2.9 -2.9 -2.9 -2.9 

T (0C) 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 

LAI crop (%) -12.9 -13.0         -12.9 -13.0 -12.8 

LAI pasture (%) -5.9 -5.6 -5.4 -5.6 -5.3 -4.8 -5.4 -5.4 -6.1 -6.1 -6.7 -6.3 -6.3 

LAI tree (%) -3.9 -2.9 -2.5 -2.4 -2.0 -1.7 -2.1 -1.9 -3.0 -3.0 -5.4 -4.6 -4.8 

LAI total (%) -4.2 -3.9 -2.6 -2.6 -2.0 -1.8 -2.5 -1.9 -3.8 -3.2 -6.3 -5.6 -5.7 

Qclim (%) -12.3 -17.6 -11.4 -11.5 -13.5 -6.8 -12.4 -12.6 -17.4 -18.4 -20.3 -18.9 -14.2 

Qnet (%) -11.4 -16.3 -10.9 -11.1 -13.2 -6.6 -11.9 -12.2 -15.8 -17.0 -16.3 -14.8 -11.7 

Qlai (%) 7.9 8.0 4.6 3.6 2.3 3.0 4.2 3.3 10.1 8.2 24.5 27.7 21.4 

 

 

 

 

2021-2050 

RCP8.5 

P (%) -3.7 -3.7 -3.7 -3.7 -3.7 -3.7 -3.7 -3.7 -3.7 -3.7 -3.7 -3.7 -3.7 

T (0C) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 

LAI crop (%) -15.7 -15.7         -15.7 -15.7 -15.5 

LAI pasture (%) -7.2 -6.9 -6.7 -6.8 -6.5 -5.9 -6.6 -6.6 -7.4 -7.5 -8.1 -7.7 -7.7 

LAI tree (%) -4.8 -3.7 -3.1 -3.0 -2.5 -2.1 -2.7 -2.3 -3.7 -3.7 -6.6 -5.6 -5.9 

LAI total (%) -5.2 -4.8 -3.3 -3.2 -2.5 -2.3 -3.1 -2.4 -4.7 -4.0 -7.7 -6.9 -6.9 

Qclim (%) -14.6 -20.7 -13.7 -13.8 -16.3 -8.3 -14.8 -15.0 -20.1 -21.3 -23.3 -21.4 -16.1 

Qnet (%) -13.6 -19.2 -13.2 -13.3 -15.8 -8.1 -14.3 -14.5 -18.3 -19.7 -19.0 -17.0 -13.4 

Qlai (%) 7.4 7.8 3.8 3.8 3.2 2.5 3.5 3.4 9.8 8.1 22.6 25.9 20.1 

 

 

 

 

 

2071-2100 

RCP4.5 

P (%) -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 

T (0C) 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 

LAI crop (%) -21.1 -21.3         -20.8 -21.0 -20.7 

LAI pasture (%) -9.8 -9.5 -9.2 -9.4 -9.0 -8.2 -9.2 -9.2 -10.2 -10.3 -11.0 -10.4 -10.5 

LAI tree (%) -6.6 -5.1 -4.4 -4.2 -3.5 -3.0 -3.9 -3.4 -5.3 -5.3 -9.2 -7.8 -8.2 

LAI total (%) -7.2 -6.7 -4.6 -4.5 -3.6 -3.3 -4.4 -3.5 -6.6 -5.7 -10.5 -9.4 -9.5 

Qclim (%) -19.7 -27.5 -18.6 -18.8 -22.1 -11.5 -20.3 -20.7 -26.9 -28.1 -30.1 -27.7 -21.7 

Qnet (%) -18.3 -25.7 -17.9 -18.1 -21.6 -11.2 -19.6 -20.1 -24.7 -26.2 -25.2 -22.5 -18.6 

Qlai (%) 7.7 7.0 3.9 3.9 2.3 2.7 3.6 3.0 8.9 7.3 19.4 23.1 16.7 

 

 

 

 

2071-2100 

RCP8.5 

P (%) -5.2 -5.2 -5.2 -5.2 -5.2 -5.2 -5.2 -5.2 -5.2 -5.2 -5.2 -5.2 -5.2 

T (0C) 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 

LAI crop (%) -28.3 -28.3         -28.5 -28.5 -28.1 

LAI pasture (%) -13.6 -13 -12.5 -12.9 -12.2 -11.1 -12.5 -12.5 -14 -14.1 -15.4 -14.6 -14.7 

LAI tree (%) -9.5 -7.4 -6.3 -6.0 -5.1 -4.3 -5.5 -4.8 -7.6 -7.6 -13.2 -11.2 -11.8 

LAI total (%) -10.2 -9.4 -6.5 -6.5 -5.2 -4.7 -6.2 -5.0 -9.2 -8.1 -14.9 -13.3 -13.4 

Qclim (%) -24.0 -33.5 -23.9 -24.2 -27.4 -14.5 -25.0 -25.6 -32.0 -33.0 -35.1 -32.8 -25.3 

Qnet (%) -22.3 -31.3 -23.0 -23.3 -26.7 -14.1 -24.0 -24.8 -29.4 -30.8 -29.2 -26.4 -21.7 

Qlai (%) 7.6 7.0 3.9 3.9 2.6 2.8 4.2 3.2 8.8 7.1 20.2 24.2 16.6 

* P (%) is the change in mean annual precipitation in percentage, T (0C) is the change in mean annual temperature in Degree Celsius, Qclim 
���
indicates the climate effect on runoff, Qnet is the net effect of climate and LAI on runoff and Qlai is proportion of the climate effect (Qclim) 
���
that is offset by the LAI effect. �  
���
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Figure 1. Location map of the study area (a), dryness index (mean annual reference 
���

evapotranspiration divided by mean annual precipitation) (b) and land cover type (c). 
���
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Figure 2. Long-term mean monthly climate observations plotted with the 38 CMIP5 runs 
���

during the baseline period (1980–2010) for Goulburn-Broken Catchment (a) long-term mean 
���

monthly precipitation (b) long-term mean monthly maximum temperature and (c) long-term 
���

mean monthly minimum temperature. 
���
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Figure 3. Flowchart showing the modelling experiments and calculation of effects: CC effect 
���

indicates the climate change effect of precipitation and temperature with unchanged LAI, CC 
���

+ LAI effect indicates the climate change effect of precipitation, temperature and leaf area 
�	�

index. 
�
�
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���
Figure 4. Box plots of percentage changes in the mean monthly precipitation (a, b, c, d) and 
���

changes in mean monthly temperatures (e, f, g, h) in the Goulburn-Broken Catchment for the 
���

future periods 2021–2050 and 2071–2100 for the 38 CMIP5 runs of climate projections. 
���

Changes are relative to the historical (1981–2010) mean monthly precipitation and 
���

temperatures. The lower boundary of the box indicates the 25th percentile, a line within the 
���

box marks the median, and the upper boundary of the box indicates the 75th percentile and the 
���

whiskers are delimited by the maximum and minimum.  
�	�
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Figure 5. Box plots of changes in mean monthly LAI derived from the 38 CMIP5 runs for 
���

climate projections during 2021–2050 and 2071–2100 under RCP4.5 and RCP8.5 scenarios 
���

for crop (a, b, c, d); pasture (e, f, g, h) and tree (i, j, k, l) in the Goulburn-Broken Catchment. 
���

Changes are relative to LAI calculated using climate time series for the 1981–2010 baseline. 
���

The lower boundary of the box indicates the 25th percentile, a line within the box marks the 
���

median, and the upper boundary of the box indicates the 75th percentile and the whiskers are 
���

delimited by the maximum and minimum. 
���
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Figure 6. Impacts on catchment mean annual streamflow of the Millennium drought (1997–
�
�

2009) relative to the period 1983–1995. CC effect indicates precipitation and temperature 
���

effect with unchanged LAI; CC + LAI effect indicates precipitation, temperature and LAI 
���

effect. The proportional LAI effect indicates the LAI effect as a percentage of the CC effect. 
���

�  
���

Catchment ID
1 2 3 4 5 6 7 8 9 10 11 12 13

C
ha

ng
es

 in
 s

tr
ea

m
flo

w
 (

%
)

-70

-60

-50

-40

-30

-20

-10

0

CC effect 
CC + LAI effect

P
ro

po
rt

io
ns

 (
%

)

0

2

4

6

8

10

12

Proportion of LAI effect
from CC effect



�
�

���
�

 
���

�
���

Figure 7. Impact on catchment mean annual streamflow average over the 38CMIP5 runs of 
���

projected climate change for the future periods 2021–2050 and 2071–2100 under RCP4.5 (a, 
���

b) and RCP8.5 (c, d), relative to the 1981–2010 base period. CC effect indicates precipitation 
�	�

and temperature effect with unchanged LAI; CC + LAI effect indicates precipitation, 
�
�

temperature and LAI effect. The proportional LAI effect indicates the LAI effect as a 
���

percentage of the CC effect. 
���
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Figure 8. Box plots of the net climate change (CC + LAI) effect on mean annual runoff 
���

during (2021–2050, 2071–2100) under RCP4.5 (a, b) and RCP8.5 (c, d) emission scenarios 
���

from each of the 38 CMIP5 runs. Changes are relative to the historical (1981–2010) period. 
���

The lower boundary of the box indicates the 25th percentile, a line within the box marks the 
�	�

median, and the upper boundary of the box indicates the 75th percentile and the whiskers are 
�
�

delimited by the maximum and minimum. 
���
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Figure 9. Box plots of contribution of LAI to the climate change effect on mean annual runoff 
���

for future (2021–2050, 2071–2100) climate forcing under RCP4.5 (a, b) and RCP8.5 (c, d) 
���

emission scenarios from each of the 38 CMIP5 runs as compared to the historical (1981–
���

2010) period. The LAI effect is normalized by the effect of precipitation and temperature 
���

with unchanged LAI (i.e. CC effect) and expressed as a percentage. The lower boundary of 
���

the box indicates the 25th percentile, a line within the box marks the median, and the upper 
�	�

boundary of the box indicates the 75th percentile and the whiskers are delimited by the 
�
�

maximum and minimum. 
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Figure 10. Box plots of impacts on mean monthly streamflow from 38 CMIP5 runs of 
���

catchment 6 (a, d, g and j), catchment 10 (b, e, h and k), and catchment 11 (c, f, i and l) of 
���

projected climate change for future periods (2021–2050) and (2071–2100) under RCP4.5 and 
���

RCP8.5 respectively relative to the 1981–2010 base period. CC effect indicates precipitation 
���

and temperature effect with unchanged LAI; CC + LAI effect indicates precipitation, 
���

temperature and LAI effect. The lower boundary of the box indicates the 25th percentile, a 
�	�

line within the box marks the median, and the upper boundary of the box indicates the 75th 
�
�

percentile and the whiskers are delimited by the maximum and minimum. 
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