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Abstract

Measuring the impact of climate change on flood frequency is a complex and controversial
task. Identifying hydrological changes is difficult given the factors, other than climate
variability, which lead to significant variations in runoff series. The catchment filtering role is
often overlooked and thus may hinder the correct identification of climate variability
signatures on hydrological processes. Does climate variability necessarily imply hydrological
variability? This research aims to analytically derive the flood frequency distribution based on
realistic hypotheses about the rainfall process and the rainfall-runoff transformation. The
annual maximum peak flow probability distribution is analytically derived to quantify the
filtering effect of the rainfall-runoff process on climate change. A sensitivity analysis is
performed according to typical semi-arid Mediterranean climatic and hydrological conditions,
assuming a simple but common scheme for the rainfall-runoff transformation in small-size
ungauged catchments, i.e. the CN-SCS model. Variability in annual maximum peak flows and
its statistical significance are analysed when changes in the climatic input are introduced.
Results show that depending on changes in the annual number of rainfall events, the
catchment filtering role is particularly significant, especially when the event rainfall volume
distribution is not strongly skewed. Results largely depend on the return period: for large
return periods, peak flow variability is significantly affected by the climatic input, while for

lower return periods, infiltration processes smooth out the impact of climate change.
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1 Introduction

Many of the concerns about climate change are related to its effects on the hydrological cycle
(Kundzewicz et al., 2007, 2008; Koutsoyiannis et al., 2009; Bloeschl and Montanari, 2010),
and more specifically, its impact on freshwater availability and flood frequency (Milly et al.,
2002; Kay et al., 2006; Allamano et al., 2009). However, results from recent studies about
climate change impacts on flood frequency have not been conclusive (Kay et al., 2006).
Indeed, detecting changes in flood frequency is not easy, because there are factors other than
climate variability that may lead to significant changes, for instance, spatial variability of
watershed properties or changes in the channel network geometry and land-use change (Milly
et al., 2002). In particular, river bed geometry alterations, even if localized, can significantly
affect flood magnitude. Therefore, to better identify climate impacts, one should focus on

catchments that are close to pristine conditions (Di Baldassarre et al., 2010).

This research addresses an issue that is often overlooked and which may hinder the proper
identification of climate variability effects on hydrological processes, namely, the filtering
role played by catchment. In fact, runoff can be interpreted as a smoothed convolution of past
and current rainfall, where smoothing is operated over the catchment contributing area and
along the concentration time. Depending on the catchment’s physical characteristics and
meteorological conditions, smoothing may average out changes in rainfall distribution in
space and time and hence cancel out climate variability. This is a key reason why climate
variability effects might not be clearly visible in the hydrology response. In other words,
climate variability does not necessarily imply hydrological variability. This issue has been
also investigated for an urban hydrology context. For example, Andrés-Doménech et al.,
(2012) analysed storm tank resilience to changes in rainfall statistics, proving that the effect
of climate variability on storm tank efficiency is likely to be smoothed out by the filtering

effect caused the urban catchment.

In the present study, modelling efforts are basically centred on the role of climatic variability
and its effects on catchment hydrological response, with rainfall statistical properties and their
future trends representing the major factors controlling flood frequency distribution. It should
be noted that other factors, such as land use change, might have a more significant impact
than climate change itself under certain hydrological conditions. The present research focuses
on climatic impacts alone: interactions at the catchment scale between landscape

characteristics (soils, vegetation and geology, for instance) and climatic properties (Troch et
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al., 2013), or possible climate-vegetation-soil feedbacks are not considered as they may

hinder the assessment of climatic effects.

The modelling framework and simulations performed in this study focus on rainfall patterns
variability, using a suitable modelling framework to investigate the extent to which such
rainfall variations can actually be buffered by a given standard hydrological catchment, with
typical response parameters of a small catchment in a semi-arid Mediterranean region. Thus,
heterogeneity in catchment physical properties, which has provided contrasting and
sometimes contradictory results (Sangati et al., 2009), is not considered in the presented
approach. Runoff statistics sensitivity to spatial heterogeneity is in principle less significant as
the catchment area is smaller and therefore more homogeneous. In our case, we assume that
the concentration time is short, therefore implying that the catchment area is small. Thus, the

lumped modelling assumption can be considered reasonable for the purpose of the study.

To assess climatic impacts, the frequency of occurrence of peak flows is estimated by means
of a derived distribution approach, which is particularly useful to obtain probability
distributions of peak flows in ungauged or poorly observed basins. In such cases design
floods are calculated from a hydrological model, which is driven by historical or synthetic
rainfall data (Haberlandt and Radtke, 2014). The derived flood frequency analysis was also
used by Gaume (2006) to investigate asymptotic behaviour of flood peak distributions from
rainfall statistical properties, highlighting the strong dependence of peak flow distribution on
rainfall statistical properties, and considering a limited and reasonable hypothesis on the

rainfall-runoff transformation.

Accordingly, a stochastic process is used here to model rainfall and a simple deterministic
lumped model is proposed to simulate the rainfall-runoff transformation. Such an analytical
approach, which has a long history of application in hydrology (see, for instance, Eagleson
(1972) and Papa and Adams (1997)), presents several advantages. The most relevant is the
opportunity to analytically assess the cause-effect relationships that take place in the rainfall-

runoff transformation.

However, the analytical approach requires the use of models that lend themselves to analytical
developments, which are obtained by using simplified representations. Therefore our analysis,
being based on the use of an analytical model, cannot account for the overall complexity of
catchment processes. Consequently, a simplified representation of hydrological processes is

considered herein, without including detailed effects.
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Under such assumptions, the aim of this research is to quantify the actual extent to which the
rainfall-runoff process actually filters the impact of rainfall variability on runoff annual
maximum peak flow series. The flood frequency distribution is analytically derived for a
hypothetical catchment based on plausible assumptions about the rainfall process and the
rainfall-runoff transformation. Once derived the peak flow probability distribution, one may
quantify the smoothing brought on by the rainfall-runoff process. A hypothetical case study is
developed according to climatic and hydrological conditions typical of the Valencia region
(Spain), described in section 2.2. As also described later, the rainfall-runoff model proposed
assumes a simple but common scheme for small, fast-responding, ungauged catchments,

subjected to erratic hydrological regimes (Ferrer Polo, 1993; Soulis and Valiantzas, 2012).

2 Analytical model

We set up an analytical model to describe the river flow regime for a hypothetical catchment,
based on analytical descriptions of rainfall and rainfall-runoff transformation. Under suitable
assumptions which are described below, this model allows us to derive the annual maximum

flood frequency distribution, depending on climate and catchment behaviour.

The analysis presented herein is an event-based approach, where each rainfall-runoff event is
treated as an independent event. In the Valencia region, as in other many semi-arid locations
around the Mediterranean, ephemeral rivers are closely related to small and fast-responding
catchments. Such regimes, also named as “erratic regimes” according to the classification
provided by Botter et al. (2013), occur when rainfall inter-arrival times are somewhat longer
than the typical duration of the resulting flow pulses, as the case presented in this study. As
pointed out by Andrés-Doménech et al. (2010), antecedent dry periods for the considered
climate can be assumed to be exponentially distributed with a 22-hour low bound and an 8-
day expected mean value. With such a sporadic rainfall regime, antecedent moisture
conditions are mainly related to the event itself and rainfall intensities during the initial stages
of the storm, so that the assumption of independence for subsequent events is plausible.
Moreover, for this type of hydrological events, direct runoff is the dominant component of the

hydrograph.

To carry out this analysis, we assume that the rainfall forcing in the present climate can be
modelled by a stationary model. Thus, non-stationarity can be accounted for by changing the
parameters of the rainfall model at a given time when climate variability is supposed to occur.

4



[V, B SO S B S ]

10
11

12

13
14
15
16
17
18
19

20

21

22

23
24
25
26
27
28

Such a change in the rainfall model parameters implies a corresponding deterministic change
of rainfall statistics and therefore non-stationarity (Koutsoyiannis and Montanari, 2014;
Montanari and Koutsoyiannis, 2014). Non stationarity in the river flow is assumed to occur
for the presence of the above non-stationarity in rainfall and thus is quantified through the

proposed approach.

2.1 Rainfall description

A rainfall analytical model is used to describe the occurrence of the rainfall process over time.
We adopt a stochastic rectangular pulses model that simulates rainfall dynamics by assuming
that rainfall events occur as independent rectangular pulses over time. Events are assumed to
occur according to a Poisson process (Madsen and Rosbjerg, 1997; Madsen et al., 1997) and

thus the probability of experiencing n rainfall event in the time span [0, t] is given by
n
p)= ) ¢ 1)

where £ is the mean number of rainfall events per unit time. Event rainfall depth (v) is
assumed to be independent and the result of a generalized Pareto distribution (Andrés-
Doménech et al., 2010). This model provided a good fit for the rainfall series of Valencia
(Spain), recorded with 5-minute resolution by the Jucar river basin hydrological service
(SAIH) during the period 1990-2006. Andrés-Doménech et al. (2010) also found the model to
be accurate for other locations in Spain. Other authors have also reported good results in other

Mediterranean locations (Tzavelas et al., 2010).

The distribution function of the generalized Pareto distribution is given by

Y IS
FV(V):l—[l—Kj V>0, (2)
a

where K <0 and a > 0 are the shape and scale parameters, respectively.

For the region that is considered in the study, convective storms usually occur during
Autumn, particularly in September and October, while frontal events mostly occur during
Winter and Spring. Thus, maximum rainfall peaks occur systematically during Autumn. The
rainfall model that we use can potentially reproduce both frontal and convective events (see,
for instance, Andrés-Doménech et al., 2010). Consequently, seasonality is not specifically

accounted for. We assume that climatic variability may occur through an intensification of

5
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rainfall events, and we investigate the conditions under which it may imply or not an
amplification of annual maximum floods, that is, to what extent the rainfall-runoff

transformation may filter out or amplify the effects of climate variability.

2.2 Rainfall-runoff description

To conceptualize rainfall-runoff transformation, the SCS-CN event-based model was adopted.
This model has been widely used in Spain (Ferrer Polo, 1993) and other Mediterranean
countries (Soulis and Valiantzas, 2012). In this model, runoff volume, r(v), is related to event

rainfall volume v by the following relationship:

r(v)=0 ifv<l,
r(v)=——2-_ v-1.)’ if v>1, ° (3)
v—1,+S

where 1,=KS is the initial rainfall abstraction, S is the catchment storage capacity and K is the
initial abstraction coefficient. By assuming the dimensionless SCS unit hydrograph (SCS,
1971), each rainfall event produces a single-peak triangular hydrograph. The specific peak

river flow can be expressed as
rwv
QP(V):/IPQa (4)

where r(v) is the runoff event volume computed by (3), tc is the concentration time of the

catchment and Ap is a dimensionless peak factor.

The original SCS model recommends a standard value Ap=9/8, implying that 3/8 of the total
runoff volume occurs before the peak, being the time to peak equal to 2tc/3 from the
beginning of net rainfall. For the particular case of semiarid regions in Spain, a value Ap=5/3

is recommended (Ferrer Polo, 1993) to take into account the faster hydrological response.

2.3 Deriving the peak flow probability distribution

The rainfall and rainfall-runoff analytical descriptions allow for the analytical derivation of
the probability distribution function (PDF) of all events peak flow. Assuming that no runoff

occurs if v<ly,

For (0)=Fy (1) =1-(1-x 1, /a)'", §)
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where Qp indicates the stochastic process whose outcome is the event peak flow gp(t). On the
other hand, when initial abstraction I, is exceeded then Qp > 0, and the related cumulative

probability distribution is

q v K
For @p) =7 To, (@ Jdap =Fo, (0)+ [, (v)dv=1-(1-xv/a)" (©)
Combining these expressions with equations (3) and (4) provides equation (7).

(-1, /a)" 0p =0

I/x
F = 7
2 (p) 1_{1_K[|a+thp£1+ 1+4/1PSH} 00 (7

As previously explained, it should be noted that these rainfall and rainfall-runoff models

assume statistical independence of peak river flow over time. Therefore, the distribution
function of maximum annual floods Qpr, can be expressed as (see, for instance, Viglione and

Bl6schl, 2009):

FQPm(qu) = e_ﬁ(l_FQ(qP)) (8)

where B is the annual number of rainfall events. In terms of return period, the T-year

maximum peak flow can be expressed as:
11 1
armr = Foi [ (1-7) + 1 )

This analysis is equivalent to an Annual Maximum Series analysis of flood flows, as the flood

events are assumed to be independent (Andrés-Doménech et al., 2010).

2.4 Confidence intervals of peak flow PDF

Asymptotic properties of the maximum likelihood estimators (MLE) of the generalized Pareto
distribution (2) such as consistency, normality and efficiency were obtained by Smith (1984).
The MLE (x ,a) are asymptotically normal (De Zea Bermudez and Kotz, 2010) with a
variance-covariance matrix given by

{o,f 6%}:1[(1-'()2 ol -x) } (10)

o o, n a(l—/() 2a2(l—K)

Ka

where n is the sampling size. Consequently, the correlation coefficient is
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1
= T— 11
p o (1)

Monte Carlo simulations are performed to generate 1000 pairs (x ,ot) normally distributed
according to (10) and also to the MLE of (2). Thus, 1000 discrete probability functions are
obtained according to (7) and (8). For a specific value gpmi, 1000 normally distributed values
Fqpmi are calculated so that for each qpmi, percentiles Fopmi(§) and Fopmi(1-&) corresponding to
§ and 1-§ probabilities are derived. These values are then transformed with equation (9) into
their corresponding return periods, T: and T.¢, which represent the confidence interval limits

for a & significance level.
3 Qualitative sensitivity analysis for peak flows to climate change

Based on the previously established assumptions, the analysis shows that the following
parameters affect the magnitude of the annual maximum peak river flow Qpm T:

(a) Expected number of rainfall events per year, B[yrs™];

(b) shape and scale parameters, x [-] and o [mm], respectively, of the generalized Pareto
distribution for event rainfall depth;

(c) storage capacity of the catchment, S [mm];

(d) initial abstraction of the catchment, |, [mm];

(e) concentration time of the catchment tc [h];

(f) SCS peak factor Ap [-];

(g) return period, T [yrs].

Parameters (a) and (b) are directly related to climate input; parameters (c) and (d) are related
to the runoff production process in the catchment; parameters (e) and (f) affect the temporal

catchment response; finally, parameter (g) is conditioned by the scope of the analysis.

The dependence of gpm 1 on these eight parameters is dictated by equations (7), (8) and (9). In
particular, equation (9) dictates the dependence of Qpmt on the return period and £ An
increase in the annual number of rainfall events implies an increase in the mean annual
rainfall if all other climatic behaviours remain unchanged. Consequently, an increase in
[ does not affect the distribution of flood peaks as long as the events remain distant enough in
time and therefore independent, but only affects the number of flood peaks sampled per unit
of time. This implies a relevant effect on the flood return period. According to equation (9), a

20% increase in S implies a decrease in the flood return period ranging from 0% (for low T

8
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values) to 16.7% (for high T values). This result is counterintuitive, but one should note that a
relevant change in the return period does not necessarily imply a significant change in the
flood quantile. As a matter of fact, changes in Qpm1 can be negligible after a change in f,
especially if the Pareto distribution for event rainfall depth is not strongly skewed. The
hypothetical case study presented herein will prove this first conclusion, as shown later.
Therefore, it can be concluded that the filtering role of the catchment with regard to changes
in A is particularly significant when the distribution of event rainfall volume is not strongly

skewed.

The sensitivity to the other climatic and catchment parameters is to be analysed through
equation (7). Specifically, an increase in the flood quantile is induced by an increase in
parameters « and tc. The latter is raised to a power less than 1 and therefore is less effective
than a. Conversely, an increase in Kk, S, 15 and Ap leads to a decrease in the flood quantile
value. These considerations are somewhat intuitive, but it is interesting to quantitatively
analyse the sensitivity of the flood quantile to production parameters (c) and (d) to quantify
the actual filtering role of the catchment on climate variability. The case study is developed

with data from Valencia (Spain) presented as a quantitative sensitivity analysis.

4 Quantitative sensitivity analysis for peak flows to climate variability: a

hypothetical case study

Rainfall model parameters are estimated by maximum likelihood for the 1990-2006 data
series in Valencia. Resulting values are (=27.29 yrs', o= 8.46 mm and x= -0.411.
Consequently, the average event depth per event is z4=14.36 mm and the coefficient of
variation is CVy=2.37. Further details regarding the rainfall model can be found in Andrés-
Doménech et al. (2010). This climate scenario constitutes the reference situation (scenario 0)

to perform the sensitivity analysis.

Parameters defining the catchment are adopted in a dimensionless form. This analysis focuses
on how the production parameters influence the peak flow statistics. Thus, the storage
capacity is considered through the ratio S/z, with an initial abstraction coefficient k=0.2 (as

in the original version of the SCS-CN model and also mentioned by Ferrer Polo (1993)).

Peak flows are expressed per unit area (mm/h), so no particular catchment area is assumed.
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4.1 Sensitivity to B and to the skewness of the rainfall depth distribution

The first quantitative analysis performed corresponds to flood quantile sensitivity to B and to
the skewness of the Pareto distribution governing event rainfall depth. Catchment parameters
are set to S/ts=3.5 and tc=1 h, corresponding to typical values for small catchments in the
Valencia region. Concentration time has been set to a representative value, based on a wide
hydrological experience in many small catchments of rapid response in the eastern
Mediterranean and south east coast of Spain (Olivares Guillem, 2004; Camarasa Belmonte,
1990). It can be considered a realistic and representative value for a typical ephemeral river in
fast responding small catchments in semi-arid Mediterranean regions.

Relative changes in 10-year and 100-year flood quantiles compared to scenario 0 are
evaluated for different situations, combining variations in £ and CVy. It should be noted that
changes in £ mean that g4 should be scaled accordingly. Lowering CVy brings the Pareto
event rainfall depth distribution close to the exponential distribution (Koutsoyiannis, 2005),
while increasing CVy progressively increases skewness. Given CVy variations, the
parameter of the Pareto distribution, as well as its skewness, vary (Singh and Guo, 1995).
Pareto parameters (x ,a) for the modified scenarios can be analytically derived from their
relationships with CVy (Andrés-Doménech et al., 2012).

Figure 1 summarises the results obtained and shows that changes in £ do not lead to
significant flood quantile variations, unless the distribution of rainfall event depth is highly
skewed (higher CVy values). As stated in the previous section, the less skewed the rainfall
regime is, the less significant the filtering role of the catchment. Conversely, changes in CVy

are not filtered at all.

4.2 Sensitivity to the runoff production process

Catchment production is highly influenced by the balance between rainfall depth and the
catchment storage capacity. Thus, sensitivity to the production process should be analysed by

introducing variability in rainfall event depth for different S/ situations.

Arbitrary variations in V(t) statistics from the reference situation (scenario 0) are considered as
plausible climate variability scenarios for rainfall event depth. Instead of evaluating the
effects of changes on the distribution parameters, changes in the rainfall statistic xy of rainfall
event depth are considered. The analysis is now performed by changing s in the range +30%

of its reference value (scenarios 1.a, +30% and 1.b, -30%). This is in accordance with the

10
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maximum expected variability in annual amounts of rainfall for the predicted climate change
scenarios in Spain (Brunet et al., 2009). In this scenario CVy remains unchanged. It follows
that both the x parameter of the Pareto distribution and its skewness also remain unchanged
(Singh and Guo, 1995). The modified & values for the modified scenarios can be derived from
a dependence on g (Andrés-Doménech et al., 2012). As stated before, physical parameters
defining the catchment are adopted in a dimensionless form. To analyse the filtering role of
the catchment depending on production parameters, three realistic storage capacity scenarios

are considered, namely, S/za=3.5, 5 and 10.

For each S/ya scenario, Figure 2 depicts flood quantile variations for scenarios 1.a (+30% z4/)
and 1.b (-30% ). Unchanged climatic conditions (scenario 0) yield a flow quantile decrease
as S/uy increases. Hence, considering scenario 1.a and 1.b leads to quantile increments
associated to S/ increments. In fact, flood quantile reductions caused by higher S/ values

(scenario 0) are more relevant than the variation resulting from g4/ changes (scenarios 1.a and

1.b).

Another point to be noted is the magnitude of relative variations depending on the return
period T. For higher return periods, relative changes in flood quantiles tend to be very close to
those imposed by the climatic input (mean rainfall event depth zu). This result reinforces the
thesis supported by Gaume (2006) who demonstrated that, for large return periods, the rainfall
PDF behaviour is decisive on the catchment response and determines the asymptotic
behaviour of the flood peak distribution. On the other hand, for low return periods, catchment
infiltration parameters strongly influence the derived peak flows for each scenario considered.
This result is in accordance with typical Mediterranean catchment behaviour (Gioia et al.,

2008; Preti et al., 2011).

4.3 Peak flow confidence intervals

Confidence interval limits for a £=0.05 significance level are obtained for annual maximum
peak flow quantiles corresponding to climatic scenario 0. In order to quantify the statistical
significance of peak flow variations after considering various scenarios, eight different
climatic scenarios are selected from amongst those previously analysed. These account for
climatic variations induced by changes in z4, £ and CVy (Table 1). Annual maximum peak

flow quantiles are evaluated for each scenario and variations with regard to scenario 0 are

11
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calculated. Figure 3 summarises the results obtained for each scenario and for the confidence
interval limits for scenario 0. As observed, all results corresponding to £ and/or CVy
variations (scenarios 2.a to 4.b) lie within the 90% confidence interval for scenario O.
Therefore, results show that there is no concluding evidence from the statistical point of view
concerning the significance of peak flow variability induced by these parameters.
Nevertheless, when considering peak flow variations due to changes in g4/ (scenarios 1.a and
1.b), our results confirm the conclusions already drawn in section 3. For low return periods,
changes are significant because they are strongly influenced by the runoff production process

in the catchment. For larger T, the significance of peak flow variations drastically decreases.
5 Conclusions

The research presented herein highlights the filtering role brought on by catchment processes
through a simple rainfall-runoff transfer function. The peak flow distribution is analytically
derived from a rainfall model using the CN-SCS hydrological conceptualisation. Variability
of annual maximum peak flows is quantitative analysed when changes in climatic input are

introduced.

Such a modelling approach involves certain limitations, and yet it benefits from the analytical
simplicity and practical applicability. Consequently, numerical results obtained after
simulations cannot be transferred to hydrological regimes that differ from the type of
Mediterranean catchments specified here. Nevertheless, the proposed methodology represents
a useful modelling framework for further studies, and may constitute a first step forward
towards a more complex analysis after relaxing some of the initial assumptions. Although
certain dominant drivers of the hydrological response, like variability of watershed properties
or land use changes, have not been explicitly considered in this study, the proposed modelling
framework has the potential to incorporate those drivers to a certain extent, and thus, allow

for the effect of such variability to be assessed and compared in future studies.
The results obtained from the sensitivity analysis can be summarised as follows:

a) The filtering role of the catchment with regard to changes in the annual number of rainfall
events is particularly significant when the rainfall event volume distribution is not

strongly skewed.

b) Sensitivity to the runoff production parameters in the catchment is highly influenced by

the balance between rainfall depth and catchment storage capacity. For higher return

12
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periods, relative changes in annual maximum flood quantiles tend to be asymptotically
similar to those imposed by the climatic input. For low return periods, the infiltration
process strongly influences the derived peak flow distribution, which is in accordance

with typical Mediterranean catchment hydrological behaviour.

c¢) In the range of low return periods (1 to 10 years), the only parameter of the rainfall model
which actually affects significantly peak flows is the mean rainfall event depth. The other
parameters involved in the rainfall modelling approach play a negligible role in this case,

mainly due to the threshold based conceptualization used in the CN-SCS model.

Although these conclusions were derived under simplified assumptions, results correspond to
a rigorous sensitivity analysis performed for realistic hydrological conditions of typical
ephemeral, fast-responding rivers, and thus provide indications of general validity for small
Mediterranean catchments responding under these simple rainfall-runoff models. Further
research should focus on the limitations of such a simple model for high and very high return
periods and on the dependence of peak flow variability on time-dependent parameters of the
rainfall-runoff transformation. On the other hand, the research could be extended by including
in the rainfall-runoff deterministic model additional climatic perturbations and land use

changes, as well as by exploring possible parameter interaction effects.
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1  Table 1. Climate scenarios considered for significance analysis.

2
g;ie::g:ii?) uv Hypothesis CVy Hypothesis B Hypothesis [ rrhlr\;] CVy [n?m] K B
0 Reference scenario Reference scenario Reference scenario 14.36 2.37 8.46 0.411 27.29
la 30% Increase in py Reference scenario Reference scenario 18.67 2.37 11.00 0.411 27.29
1b 30% Decrease in py Reference scenario Reference scenario 10.05 2.37 5.92 0.411 27.29
2a Reference scenario  30% Increase in CVy Reference scenario 14.36 3.08 7.94 0.447 27.29
2b Reference scenario  30% Decrease in CVy Reference scenario 14.36 1.66 9.79 0.318 27.29
3a Reference scenario  30% Increase in CVy 30% Increase in 3 14.36 3.08 7.94 0.447 35.48
3b Reference scenario  30% Decrease in CVy 30% Increase in f3 14.36 1.66 9.79 0.318 35.48
4a Reference scenario Reference scenario 30%Increase in f 14.36 2.37 8.46 0.411 35.48
4b Reference scenario Reference scenario 30% Decrease in 14.36 2.37 8.46 0.411 19.11
3
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2 Figure 1. Annual maximum flood quantile variations for changes in § and CVy. Catchment

3 parameters are set to S/¢a=3.5 and tc=1 h. Cases T=10 years (top) and T=100 years (bottom).
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30% g4v) and for S/ga=3.5, 5 and 10.
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Figure 3. Annual maximum flood quantile variations for scenarios defined in Table 1 and
£=0.05 confidence interval for scenario 0 peak flow distribution (shaded area). Catchment

parameters are set to S/¢a=3.5 and tc=1 h.
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