
We would like to thank the editor, Dr. Efrat Morin, and the two referees, Dr. Andreas Efstratiadis 
and an anonymous reviewer, for their constructive suggestions on our manuscript. The comments 
greatly improved our manuscript. Please find detailed answers to all the comments of the reviewers. 
We also enclose a word file in which all the changes are highlighted to be easily tracked.  

Response to Dr. Efstratiadis 
 
General comments: 
 

• The paper is well-structured, well-written and easy to follow. I am very happy with the 
experience gained from this exhaustive modelling experiment, which reveals the superiority 
of pooled calibration (i.e. estimation of model parameters on the basis of flow data at 
multiple sites across the basin) over the stepwise strategy, and also reveals the advantages 
of semi-distributed over (non-parsimonious) fully-distributed schematizations, by means of 
improved predictive capacity and reduced parameter uncertainty. These outcomes are in 
agreement with the “holistic” approach proposed by Nalbantis et al. (2011) and other 
researchers of the same philosophy, which recognize that: (a) model complexity should be as 
high as allowed by the available information, and (b) all available information – even a single 
measurement – is valuable and should be accounted for in calibration. Unlikely, this is not the 
dominant philosophy among modellers, thus I believe that this paper will be a significant 
contribution to both hydrological science and practice. By reading this very good paper, I 
detected some issues to be clarified or further discussed, thus my recommendation is for a 
minor revision. In the following list, please find my specific comments as well as some 
technical corrections, to be addressed in your revision. 

 
We are very pleased that you enjoyed reading our manuscript and found it useful. We 
appreciate your encouraging and constructive comments. Below, please find our responses to 
all your specific comments and technical corrections. 
 

Specific comments: 
 
1. p. 10275, lines 15-17: “Importantly, distributed hydrologic models can evaluate hydrological 

response at interior ungaged sites, a benefit not afforded by conceptual, lumped models.” 
Please, remove “conceptual”, which refers to the modelling approach behind the formulation 
of the governing equations and not the spatial discretization of the model domain. Apart from 
lumped models, semi-distributed schemes are also by definition conceptual. Quoting Beven 
(1989), even a fully-distributed physically-based model can be regarded as conceptual, at the 
grid scale. 

 
We removed “conceptual” in that sentence. 
 
 



2. p. 10275, line 27 to p. 10276, line 2: “Parameters can be discretized across the watershed in 
several ways: uniquely for each grid cell (fully distributed), based on hydrologic response units 
(semi-distributed), or in the simplest case, a single parameter set for all model grid cells 
(lumped).” In hydrologic models, hydrologic response units (HRUs) are mainly used for 
distributed and less often for semi-distributed schemes (e.g. Efstratiadis et al., 2008). The 
concept of HRUs was introduced by Flugel (1995) to characterize homogeneous areas with 
similar geomorphologic and hydrodynamic properties. The one-to-one correspondence of 
HRUs and sub-basins could be considered a specific case, which is however not consistent 
with the rationale of HRUs, as far as sub-basins have arbitrary boundaries that do not 
necessarily ensure homogenous characteristics. 

 
The sentence has been rewritten with new references as follows. 
“Parameters can be discretized across the watershed in several ways (Flugel, 1995; Efstratiadis 
et al., 2008; Khakbaz, et al., 2012): uniquely for each grid cell or hydrologic response unit 
(fully distributed), based on sub-basins whose boundaries do not necessarily ensure 
homogenous characteristics (semi-distributed), or in the simplest case, a single parameter set 
for all model grid cells (lumped).” 
 

3. p. 10276, lines 26-30: “Many studies have reported that distributed models calibrated at the 
basin outlet are less accurate at interior locations (Anderson et al., 2001; Cao et al., 2006; 
Wang et al., 2012), but the extent of the error and uncertainty is unknown due to the 
computational expense needed to explore this issue.” To my opinion (and my experience), 
the accuracy of predictions of runoff at interior points mainly depends on the local 
characteristic of the basin. In the case of strongly heterogeneous basins, it is far from 
reasonable to make estimations based on the lumped information obtained at the basin 
outlet. On the other hand, if the key properties of the basin that influence runoff generation 
(e.g., permeability, vegetation, slope) do not vary significantly, such estimations could be 
quite reliable. However, the latter is not the rule. 

 
We agree with this point. The sentence has been rewritten as follows. 
“In the case of significant spatial variability in the basin properties that influence runoff 
generation (e.g., permeability, vegetation, slope, etc.), accurate runoff predictions are unlikely 
at interior locations based only on the lumped information obtained at the basin outlet 
(Anderson et al., 2001; Cao, et al., 2006; Breuer et al., 2009; Lerat et al., 2012; Simith et al., 
2012; Wang, et al., 2012). The extent of this error and uncertainty is not well understood for 
heterogeneous basins due to the computational expense required to explore this issue.” 
 

4. p. 10277, lines 1-2: “. . . for an alternative climate, which is required in climate change impact 
studies”. My impression is that climate change studies over broader areas refer to systematic 
deviations from the average climatic conditions, and not to “alternative climates”. 

 
Instead of using “alternative climate”, we used “possible future climate conditions”. 
Also, we changed the same term in the later part of the manuscript. 
 
 



5. p. 10277, lines 22-24: “Water resources from the basin are shared by Afghanistan and 
Pakistan and serve as a water supply source for more than 20 million people.” How significant 
are water abstractions in this basin? Are they accounted for in the modelling scheme? Are 
there any important regulations that modify the flow regime across the basin? 

 
We completely agree with reviewer’s concern about human interfere. The Kabul River has the 
largest flow of all of Afghanistan’s rivers, but it can irrigate only a limited area because there 
is little land suitable for agriculture in the Afghan part of the basin (Ahmad and Wasiq, 2004) 
– for the most part, the river flows through mountainous or rocky areas. According to World 
Bank, (2010), about 2,927 km2 (4.3% of the total basin area) is agricultural land and the average 
annual flow of the Kabul River is approximately 24,000 million cubic meters (MCM). 
Irrigation is a large water demand since the annual water demand estimate for the agricultural 
use is about 2,000 MCM, or about 8.3% of the total annual flow. In our hydrologic modelling 
process, the water consumed by irrigated croplands is implicitly accounted for by the 
evapotranspiration module. We note that the degree of irrigation impact during the time frame 
used for calibration (1960-1981) is likely much smaller than the current level.  
 
The Naglu dam, which is located in the western part the Kabul River basin (upstream of the 
Daronta streamflow gage), forms the largest and most important storage among dams in the 
basin (World Bank, 2010). The live storage of the Naglu dam is 379 MCM. We expect that 
using monthly data for calibration somewhat reduces the bias from human interference, 
particularly the daily operations of Naglu dam. Nevertheless, the calibration results for the 
gage below this dam (Daronta), and to a lesser extent the basin outlet (Dakah), should be 
approached with caution. Given that a majority of the gages examined in this study are on an 
underdeveloped branch of the Kabul River, issues of human interference on calibration are 
somewhat mitigated. We also note that the poor performance at Daronta is likely due in part to 
the impacts of water abstraction and the operation of Naglu dam. 
 
This information has been provided accordingly in the text. 
“Similar to most other hydrological models (Efstratisdis et al., 2008), HYMOD_DS is not 
designed to model water abstractions for agricultural lands and dam operations within the basin. 
According to World Bank (2010), water demand for agricultural use is about 2,000 MCM 
(million cubic meters), or about 8.3% of the total annual flow. The Naglu dam (Figure 1) 
upstream of the Daronta streamflow gage forms the largest and most important reservoir in the 
basin, with an active storage of 379 MCM. In our hydrologic modelling process, the water 
consumed by irrigated croplands is implicitly accounted for by the evapotranspiration module. 
We note that the degree of irrigation impact during the time frame used for calibration (1960-
1981) is likely much smaller than the current level. We also expect that using monthly data for 
calibration somewhat reduces the bias from human interference, particularly the daily 
operations of Naglu dam. Nevertheless, the calibration results for the gage below this dam 
(Daronta), and to a lesser extent the basin outlet (Dakah), should be approached with caution. 
Given that a majority of the gages examined in this study are on an underdeveloped branch of 
the Kabul River, issues of human interference on calibration are somewhat mitigated.” 
 
 



6. Section 2 (Study area): Here you should add information about the flow stations and the 
available data, and also provide synoptic statistical information about the hydrological 
characteristics of the basin, e.g. mean annual flow at the seven stations of interest, mean 
precipitation over the sub-basins, etc. (you can add these data to Table 1). It would also be 
useful to refer to the physiographic properties of the basin and the dominant runoff 
mechanisms, which are essential to interpret the model results and plausibility of the 
optimized parameter values. It is also essential to explain to which extend is this basin 
heterogeneous, thus justifying the implementation of each parameterization approach and 
better explain the model results. 
 
Table 1 has been updated with basin climate information (mean annual precipitation, mean 
temperature, and flow) and geographic properties (drainage area, glacier area, mean elevation).  
This additional information is also discussed in the section describing the study area. 
 
“The streamflow regime of the Kabul River can be classified as glacial with maximum 
streamflow in June or July and minimum streamflow during the winter season. Approximately 
70% of annual precipitation (475mm) falls during the winter season (November to April). 
While the dominant source of streamflow in winter is baseflow and winter rainfall, glaciers 
and snow cover are the most important long-term forms of water storage and, hence, the main 
source of runoff during the ablation period for the basin (Shakir et al., 2010). In total 2.9% 
(1954km2) of the basin is glacierized based on the Randolph Glacier Inventory version 3.2 
(Pfeffer, et al., 2014). The melt water from glaciers and snow produce the majority (75%) of 
the total streamflow (Hewitt, et al., 1989). Table 1 provides the climates and geophysical 
properties of each sub-watershed delineated by the stations located inside the Kabul Basin 
(Figure 1). Two different climate patterns are distinguishable across the sub-basins. The sub-
basins on the Kunar River tributary (Kama, Asmar, Chitral, Gawardesh, and Chaghasarai) 
receive moderate annual precipitation and are highly affected by snow and glacier covers. All 
of these sub-basins have high ratios of mean annual flow to mean annual precipitation, with 
the ratios for the Kama, Asmar, Chitral, and Chaghasarai sub-basins larger than 1. Conversely, 
the Daronta sub-basin contains only minimal glacial cover, and is relatively dry. Daronta is 
also much less productive, with annual streamflow far below the other sub-basins with an 
average of only 165 mm/year.” 

 

7. p. 10279, lines 4-6: “However, in this particular study daily hydrologic model simulations can 
only be compared against available monthly streamflow records”. It is not clear whether 
monthly streamflows are averaged values of daily (or hourly) observations or instantaneous 
values, gather e.g. from direct flow measurements. Such clarification is very important. 

 
Unfortunately, the only observations that are available for public use are monthly. There is a 
report (Olson and Williams-Sether, 2010) clarifying that each monthly streamflow is the mean 
of the daily values for the month, and monthly values are calculated from daily values for all 
complete months of record. However, the daily values are not made available because there 
are political issues surrounding the trans-boundary use of the river’s waters and potential 
projects planned on the river. 
 



We have added the following details in the manuscript to clarify the immediate question 
regarding the data.   
“Streamflow data were not collected in Afghanistan after September 1980 until recently 
because streamgaging was discontinued soon after the Soviet invasion of Afghanistan in 1979 
(Olson and Williams-Sether, 2010). Though measurements were taken at a daily time step, 
data are only made available for public use at monthly aggregated levels, calculated using the 
mean of the daily values.”  
 

 
8. p. 10279, lines 18-20: “No matter the parameterization scheme, the model structure follows 

the climate input grids, i.e. the hydrological water cycle within each grid cell is modelled 
separately.” In the revised paper, I suggest also employing the simplest of model 
configurations, assuming a lumped structure for both model inputs and parameters (i.e. using 
the averaged precipitation over the basin). This classical lumped approach considering 15 (or 
less) parameters would provide, in theory, the optimal results at the basin outlet with 
minimal computational burden, to be considered as “baseline scenario”. 

 
We understand the reviewer’s suggestion, and initially considered this ourselves. However, we 
wanted the comparisons in this paper to isolate the effects of calibration uncertainty rather than 
address the structural uncertainties surrounding the model grid distribution (or lack thereof). 
Also, since a large focus of our study is on ungaged, interior point streamflow estimation, a 
lumped model structure would not really be appropriate (unless there was some scaling from 
flow estimates at the outlet of the basin to the interior points). With that said, we do agree with 
the reviewer that this issue should at least be addressed. Therefore, we now include a 
preliminary test of the basin outlet model from the lumped HYMOD without the gridded 
structure (13 parameters and basin-averaged climate inputs). The 2 parameters associated with 
the river routing models are dropped due to its lumped structure. We have added a description 
regarding a preliminary performance comparison between this model and its analogue with a 
gridded structure. Since the distributed model outperformed, we used this as a justification to 
set our “baseline” model as having a distributed structure. We decided that a figure is necessary 
for this additional part and a new figure has been provided as another supplementary material 
(Figure S3). We summarize these details in a new paragraph in the manuscript.  
 
New paragraph: 
“We note that a lumped model structure (i.e., no gridded or sub-unit structure) has often been 
considered as a baseline model formulation in the assessment of distributed modelling 
frameworks (e.g., see Simith et al., 2013). However, the focus of our study is on ungaged 
interior site streamflow estimation, making this formation somewhat inappropriate. Further, 
preliminary tests comparing streamflow simulations at the basin outlet (Dakah) between a 
gridded and basin-averaged structure, both with a lumped parameter formation, support the use 
of the distributed grid structure (Figure S3)” 
 
New figure: 
 



 
Figure S3. (a) Basin outlet (Dakah) simulations of HYMOD and MYMOD_DS (with the lumped 
parameterization) from 50 trials of calibration. The Box plots provide the performance evaluation 
on 50 simulations of both models for both calibration and validation periods. (b) Performances of 
the models at the interior points of the watershed are assessed. 
 
 
 
9. p. 10279, lines 21-24: “The parameter complexity will vary depending on the calibration 

experiment being conducted, but for each experiment regardless of the parameterization, 
the optimization is implemented 50 times using the GA algorithm to explore parameter 
uncertainty.” Parameter uncertainty is a combined effect of multiple causes, one of which is 
inefficient calibrations (i.e. calibrations trapped to local optima). Even the use of robust and 
sophisticated evolutionary algorithms cannot remedy this problem, especially when a large 
number of parameters are considered. However, there are also other sources of parameter 
uncertainty, associated with data errors, unknown boundary conditions, etc. In this context, 
I propose avoiding the general term “parameter uncertainty” and focus to “calibration 
uncertainty”, which is very well represented in your work, by implementing 50 independent 
runs for each optimization problem. 
 
Throughout the manuscript, we replaced the term “parameter uncertainty” with “calibration 
uncertainty”. 
 
 

10. Section 3.1 (Multisite calibration): There are some important issues that are mentioned in 
next parts of the document, yet they should be also highlighted in this section. In order to 
better follow the modelling experiment, is essential to explain the sequence of sub-



catchments, which strongly affects the outcomes of stepwise calibration (thus I propose 
moving Fig. S1 from the supplement to the main text). Another missing issue is the lack of 
overlapping data periods among most of stations, which is a bad coincidence, since this 
weakens the multisite calibration approach: in fact, you do not have simultaneous 
information on the basin responses, which would allow account for the heterogeneity of the 
associated hydrological processes. 

 
First, we have changed the paper structure to address some of these issues. Now, the Section 
“Data and Models” is placed ahead of Section “Methods” so that the reader sees some pertinent 
information regarding the basin before being introduced to the details of the modeling 
experiments. In the methods section, we moved Fig. S1 (now Figure 5) to the main text in 
section 4.1 (multisite calibration) to make sure the reader understands the sequence of sub-
basins in the stepwise calibration. Also, at the end of this section, we now include a brief 
discussion of the second point made by the reviewer: 
 
 “It is important to note that the evaluation of these multisite calibration strategies is somewhat 
weakened because of the lack of overlapping data periods among most of the stations (Figure 
2). This drawback prevents the calibration methods from accounting for simultaneous 
information from different tributaries, which, if available, would better enable the calibration 
methods to account for heterogeneity of hydrological processes across the sub-basins.” 
 

 
11. p. 10281, lines 23-27: “.. the lumped version of the HYMOD_DS contains a single, 15-member 

parameter set applied to all model grid cells. The semi-distributed conceptualization of 
HYMOD_DS contains a single parameter set for each sub-basin, totaling 75 parameters. In the 
distributed parameterization ... the number of parameters requiring calibration reaches 
2400.” Here it is worthy reminding that for the transformation of rainfall to hydrograph at 
the basin outlet, only 5 to 6 parameters can be identified on the basis of a single observation 
set (cf. Wagener et al., 2001). Under this premise, the number of parameters for the lumped 
scheme is realistic, taking into account that snow, glacier and flow routing processes are also 
modelled. For the semi-distributed approach, the number of parameters remains realistic, 
since external information is increased by accounting for interior flow data in calibrations. 
However, the distributed approach, with 2400 parameters to be optimized, is far from 
acceptable, and any attempt to interpret the outcomes of calibration is unreasonable. 

 
Thank you for pointing out this issue and the useful references. We expanded our discussion 
section with this issue. 

 
“It is worth noting that for the transformation of rainfall to runoff, up to five or six parameters 
can be identified on the basis of a single hydrograph (Wagner et al., 2001). Under this premise, 
the number of the HYMOD_DS parameters being calibrated in the semi-distributed approach 
remains realistic, but the fully distributed parameterization scheme likely causes poor 
identifiability of the parameters. Thus, pursuing a parsimonious configuration (e.g. 
optimization for a small portion of the parameters) with an effort to increase the amount of 



information (e.g. multivariable/multisite) is critical in the calibration of watershed system 
models (Gupta et al., 1998; Efstratiadis et al., 2008).”   

 
 
12. p. 10284, lines 11-12: “Monthly streamflow observations for seven locations in the Kabul 

River basin (Fig. 1) were gathered between calendar years 1961–1980”. The same equation 
with comment 6: why monthly flow data and how are these data extracted? 

 
Please refer to the answer for the comment 7. 

 
13. p. 10285, line 14-15: “The overall model structure of the HYMOD_DS and its 15 parameters 

are described in Fig. 4 and Table 2 respectively.” The feasible ranges that are employed for 
the model parameters are extremely large thus resulting to huge parameter uncertainty (at 
least, a priori uncertainty). For instance, the maximum soil moisture capacity ranges from 5 
to 1500 mm. I would expect that an experienced hydrologist would propose much more 
narrow bounds, taking into account the physical interpretation of those parameters and the 
local characteristics of the specific study area. I strongly believe that a hydrological model is 
not a mathematical game, and calibration is not a black-box exercise. In contrast, model 
parameters should always have some correspondence to the physical properties of the basin, 
which is yet not reflected in this work. In addition, a substantial reduction of feasible ranges 
would be beneficial for the calibration effort, which is tremendous (1000 parallel processors 
running for 7 days!). 

 
Our main focus is to explore a variety of calibration strategies which becomes a 
computationally exhaustive task but can be implemented with the aid of parallel computing 
power. We noticed that there might be an advantage of having wide feasible parameter ranges; 
we can expect to avoid priori errors that could be caused by inappropriately narrowing down 
the ranges. We decided to embrace the computational cost owing to the wide parameter ranges 
and then try to solve this issue with the high computation power available from the MGHPCC. 
 
Nonetheless, this is a very good point which is worth a further discussion. 
“We also note the important role of experienced hydrologists in designing a parsimonious 
hydrologic calibration (e.g. Boyle et al., 2000). In this study, the feasible ranges of the 
HYMOD_DS parameters were kept wide (as is often done in automatic hydrologic calibrations) 
without consideration of the physical properties of the basin; the judgment of local hydrologic 
experts could help reduce the feasible ranges used during the calibration and thus contribute to 
a reduction of calibration uncertainty.” 
 
 

14. p. 10286, line 15: The Hamon method for PET estimations is not widely known. Please, 
provide one or two sentences with a very synoptic description of this method (rationale, input 
data). Is this method suitable for the climatic regime of the study area? 
 
We provided more information on the Hamon method with an additional equation. Please refer 
to the following for the changes made in the text: 



“The potential evapotranspiration (PET) is derived based on the Hamon method (Hamon, 
1961), in which daily PET in mm is computed as a function of daily mean temperature and 
hours of daylight:  

( )
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where, Ld is the daylight hours per day, T is the daily mean air temperature (oC), and Coeff is 
a bias correction factor. The hours of daylight is calculated as a function of latitude and day of 
year based on the daylight length estimation model (CBM model) suggested by Forsythe et al. 
(1995).” 

Is this method suitable for the climatic regime of the study area? 

As explained, the Hamon is a temperature based method. Despite its simplicity relative to more 
input-detailed models, some studies identified the model as a method that produce satisfactory 
estimates of PET. Here’s some examples. Vorosmarty et al. (1998) compared to 11 different 
PET models for a wide range of climatic conditions across the conterminous US and found 
that the Hamon model is comparable to more input-detailed models, such as the Shuttleworth-
Wallance. In a study of 5 PET models for use with global water balance models Federer et al. 
(1996) found that estimates of PET from the Hamon model agreed with estimates from other 
models across a wide range of climates. From a comparison of six PET models, Lu et al. (2005) 
recommended the Hamon method for regional applications in the southeastern US based on 
the criteria of availability of input data and correlations with actual ET values. 

 
15. p. 10290, lines 16-17: “High accuracy holds even under the Lump_Outlet, which is somewhat 

surprising given the spatial heterogeneity of the basin.” I do not agree that this is a surprising 
conclusion. The lumped configuration of HYMOD_DS has 15 parameters, which are far from 
sufficient to represent hydrographs of any complexity. 

 
We understand the point here. We have changed the wording accordingly to now read: 
 
“High accuracy holds even under the Lump_Outlet, despite the spatial heterogeneity of the 
basin.” 

 
 
16. p. 10290, lines 25-27: “. . .the HYMOD_DS significantly overestimated streamflow at Daronta 

and underestimated flow at three sites in the eastern part of the basin” This is a strong 
evidence of the heterogeneity of the basin. Please, provide some information on the 
properties of the basin (e.g. geology) that would justify these differences. 

 
We have updated Table 1 with the information to support the heterogeneity of the basin and 
also include new information on the basin heterogeneity in the updated Figure 1. 
Please refer to the answer for the comment 6. 

 



 
17. p. 10292, lines 7-9: “On the other hand, temperature clearly shows an upward trend for both 

radiative forcing scenarios. The average changes in annual temperature are +2.2oC and 
+2.8oC for RCP4.5 and RCP8.5, respectively”. Which are the impacts of such difference in PET 
estimations? 

 
Changes in temperature are important in the PET estimation. The Hamon PET calculation is a 
function of temperature and daylight length. Since the daylight hours is a time-invariant 
variable, temperature changes will be the only factor affecting PET changes under the warming 
conditions. For an example, we took the grid cell covering Kabul city to calculate Hamon PET 
values under historical condition, +2.2oC, and +2.8oC. The value of calibrated Coeff (bias 
correction parameter) is 1.007 for this grid and the result is shown in the figure attached below. 
The average annual PET calculations are 804mm, 916mm, and 940mm under historical 
condition, +2.2oC, and +2.8oC, respectively. The percent changes of PET relative to the 
historical PET in the warming conditions of +2.2oC and +2.8oC are approximately +14% and 
+18%, respectively. 
 
We have included a brief addition to the line in question for clarification: 
“On the other hand, temperature clearly shows an upward trend for both radiative forcing 
scenarios. The average changes in annual temperature are +2.2oC and +2.8oC for RCP4.5 and 
RCP8.5, which, using the Hamon method, correspond to an increase in annual PET by 
approximately 100mm and 150mm, respectively.” 
   
 

 
 
18. p. 10292, lines 17-19: “For the historical time period, all calibration schemes match the 

observed climatology at Dakah well, but monthly streamflow is underestimated in most of 
months at Kama and Asmar under the basin outlet calibrations”. If I understood well, you 
used as meteorological inputs the average projections of the 36 climate models during the 
period of observations. In that case, it is not clear whether the underestimation of monthly 
flows is due to inappropriate representation of past precipitation and temperature data by 



climate models or due to inappropriate calibrations at the specific flow stations. For this 
reason, it is essential providing results on model bias (apart from NSE and KGE). 

 
The 50 runs for the historical period have nothing to do with the climate model outputs. The 
observed climate is the only input that is used to derive the monthly streamflow estimates for 
the historical period with the 50 calibrated parameter sets. On the other hand, for the future 
period, 36 runs are related to a single parameter set because of 36 different GCM climate inputs. 
For each of the 50 parameter sets, we average out the uncertainty from the 36 future climate 
time series. In this way, the uncertainty ranges shown in Figure 10 both are composed of 50 
different values, as described in the text “The whisker bars indicate the range across the 50 
calibration trials; for the future scenarios, the whisker bars are derived by averaging over the 
36 different climate projections for each of the 50 trials.” 
  
We have rewritten the part for a better clarification on this as follows. 
“Figure 10 shows the monthly streamflow estimates for the historical period with the whisker 
bars indicating the uncertainty range across the 50 calibration trials. The monthly streamflow 
predictions are also provided for the 2050s under the RCP 4.5 and 8.5 scenarios. For the future 
scenarios, the whisker bars are derived by averaging over the 36 different climate projections 
for each of the 50 trials.”  

   
 
19. p. 10293, lines 26-27: “Another clear point is that the uncertainty resulting from different 

climate change scenarios substantially outweighs that from parameter uncertainty.” This is 
of course a very important conclusion, and would deserve further discussion about the 
misuse of such scenarios as “deterministic” projections. 
 
We discussed more about it in the section Discussion and Conclusion. 
“We evaluated the separate and joint influence of uncertainties in parameter estimation and 
future climate on projections of seasonal streamflow and 100-year daily flood across 
calibration schemes and found that the uncertainty resulting from variations in projected 
climate between the CMIP5 GCMs substantially outweighs the calibration uncertainty. These 
results agree with other studies showing the dominance of GCM uncertainty in future 
hydrologic projections (Chen et al., 2011; Exbrayat et al., 2014). While the GCM-based 
simulations still have widespread use in assessing the impacts of climate change on water 
resources availability, the bounds of uncertainty resulting from an ensemble of GCMs cannot 
be well-defined because of the low credibility with which GCMs are able to produce timeseries 
of future climate (Koutsoyiannis et al., 2008). This issue hinders a straightforward appraisal of 
future water availability under climate change and has motivated other efforts; e.g. 
performance-based selection of GCMs (Perez et al., 2014).”  

 
 
20. p. 10294, lines 10-14: “While no observed data is available against which to compare the 

results, an inter-model comparison is useful to distinguish the differences between the 
parameterization schemes.” Since observed flood data are missing, these comparisons are 
little safe. You may use them in the context of a theoretical calibration exercise, but definitely 
not for decision-making purposes. 



 
Yes, we agree. We changed the sentence as follows. 
“Although the inter-model comparison is intended to be a useful addition that provides a 
distinction between the parameterization schemes in the pooled calibration approach, results 
from this analysis should be viewed in the context of a theoretical calibration exercise, not for 
decision-making purposes, because no observed daily streamflow is available against which to 
compare the estimated 100-year daily flood events.” 

 
 
 

Technical corrections: 
 
1. p. 10278, lines 23, 24: Please, change to read “Sutcliffe”. 
 

Done. 
 
2. p. 10292, line 18: Term “observed climatology” is unclear. Climatology is defined as “the study 

of climate”, while climate is defined as “as weather conditions averaged over a period of time” 
(http://en.wikipedia.org/wiki/Climatology). 

 
We changed it to “average monthly streamflow estimates” 

 
3. p. 10292, line 21: Similarly, term “historical streamflow climatology” is not valid. I suppose 

that you refer to average monthly flow data? 
 

We changes it to “historical average monthly flow estimates” 
Throughout the manuscript we tried to correct the parts where the term “climatology” is used. 

 
4. p. 10304, Table 1: Please, use common symbols for dates, e.g. YYYY/M or M/YYYY (not 

YYYY.M). 
 

Now it is in “YYYY/M” 
 
5. p. 10316, Fig. 10: The coefficient of variation of which quantity is represented in the graphs? 

(similar for Fig. 12). 
 

For Fig. 10, it is for “Coefficient of variation of average season flow predictions” 
For Fig. 12, it is for “Coefficient of variation of 100-year flood estimations” 
We changed the y-axis label to reflect these clarifications in Fig. 10 and 12. 
Also, the captions for those figures are changed for more clear description of the figures. 

 
 
Thank you.  

http://en.wikipedia.org/wiki/Climatology


Response to Anonymous Referee #2 
 
General comments: 
 
• I see one major limitation of the paper that leads me to ask for at least minor, if not major 

revisions: there is not much of a scientific discussion. The authors discuss their results most 
of all “with themselves” by comparing the various results they obtained. The discussion is 
short of any discussion with findings by other authors (e.g. on P10294 L3 the authors cite 
other work for the first time in the results and discussion section. This is on the last page of 
an eight pages long results and discussion section). There is plenty of published work about 
the effect of parameterization and their spatial variation, lumped vs distributed calibration 
approaches, performances of models in simulating interior gauges not considered in 
calibration, see for example results of the DMIP and LUCHEM projects, amongst others. 
Additionally, climate change effects on discharge in Central Asian catchments has been in the 
focus of many, many studies – how do these related to the results obtained here? 

 
Thank you for pointing out this. We also realized that there were not much discussion in the 
section “Results and Discussion”. To try to follow the reviewer’s suggestion, we expanded our 
discussion. First, we decided to focus on our results in the result section and change the paper’s 
structure accordingly. Now we combined the discussion section with the conclusion part. Also, 
we expanded our discussion by introducing additional references in relevance to our work as 
suggested by the reviewer. Please find the revisions made in the section “Discussion and 
Conclusion” and detailed answers to all the specific comments in the following.  
 

 
Specific comments: 
 
• Title: High performance computing is mentioned in the title, but hardly presented in the 

method section, and not at all in the discussion. HPC in this paper is used as a technique to 
be able to run a large number of models, but it is not in the center of research as indicated 
by the title. I suggest to change the title. 

 
We understand your concern. We have changed the title to highlight our focus on a poorly 
gaged basin (which we feel is the more important emphasis of this work anyway). However, 
we do feel that the use of high performance computing is an important component of this work, 
so we tried to emphasize the necessity of exploiting parallel computing power to implement 
this kind of study in the abstract: 
 
“To address the research questions, high performance computing is utilized to manage the 
computational burden that results from high-dimensional optimization problems.” 
 

 



• P10276 L26 There are a number of papers which looked at model performance when 
excluding/including interior gauging stations during model calibration and validation; see e.g. 
the DMIP projects (Reed et al., 2004; Smith et al., 2012), the LUCHEM project (Breuer et al., 
2009) or work by others (Andersen et al., 2001; Lerat et al., 2012). 

 
Thank you. We have added the recommended references. 

 
• P10277 L1 You might want to have a closer look to a recent paper by Exbrayat et al. (2014) 

who investigated the contribution of uncertain model structures versus the impact of 
uncertain climate change projection to the global predictive model uncertainty. Even though 
not directly comparable to what the authors show here, it is worth considering and can be 
used in the discussion, which is lacking other researchers work (see general comment). 
 
Thank you for suggesting this useful reference. We expanded our discussion with the 
suggested reference. 
“These results agree with other studies showing the dominance of GCM uncertainty in future 
hydrologic projections (Chen et al., 2011; Exbrayat et al., 2014). …  
In addition to the uncertainties surrounding model parameters and future climate explored in 
this study, there is also significant uncertainty in streamflow projections stemming from 
structural differences between applied hydrologic models, which can be especially pertinent 
where robust calibration is hampered by the scarcity of data (Exbrayat et al., 2014). Further, 
the residual error variance of hydrologic model simulations would increase the effects of 
hydrologic model uncertainty as compared to that of the climate projections (Steinschneider et 
al., 2014). These issues need to be addressed in future work for exploring a comprehensive 
uncertainty assessment of climate change risk for poorly monitored hydrologic systems.”  
 

• P10277 L18 I do not agree that HPC is so new in hydrological modeling. I rather think that 
many researcher use HPC without highlighting it. Also in the work presented here, HPC is a 
tool that is used, but not a method that is further developed or presented in detail. 

 
We understand and have removed the language suggesting HPC is new in hydrological 
modeling. While we still feel that the use of HPC is uncommon and adds new possibilities for 
research questions, we agree that we are using HPC as a tool – it is not the focus of our study. 

 
• P10278 L3 Is the annual precipitation 475 mm or are the 475 mm the 70% of total 

precipitation? Overall, the study area description is very short. Some more information about 
topography, soils/geology, flow characteristics, specific discharges from the subcatchments, 
and land use/management would be helpful to better understand some of the results.  

 
We dropped the number in the text to avoid any confusion caused by that. The number was 
meant to be for annul precipitation and is now provided in the updated Table 1. 
Figure 1 has been updated with more information (topography, soil types, and vegetation 
cover). We expanded the study area description accordingly. 



 
Figure 1. Kabul River Basin. 

 
 
How about irrigation? Is it an important land management and if so, how did you deal with 
water abstraction. Looking at the often poor model performance in the western part of your 
catchment around Kabul I assume that missing information on water abstraction substantially 
influences your model performance. 
 
We completely agree with reviewer’s concern about human interfere. The Kabul River has the 
largest flow of all of Afghanistan’s rivers, but it can irrigate only a limited area because there 
is little land suitable for agriculture in the Afghan part of the basin (Ahmad and Wasiq, 2004) 
– for the most part, the river flows through mountainous or rocky areas. According to World 
Bank, (2010), about 2,927 km2 (4.3% of the total basin area) is agricultural land and the average 



annual flow of the Kabul River is approximately 24,000 million cubic meters (MCM). 
Irrigation is a large water demand since the annual water demand estimate for the agricultural 
use is about 2,000 MCM, or about 8.3% of the total annual flow. In our hydrologic modelling 
process, the water consumed by irrigated croplands is implicitly accounted for by the 
evapotranspiration module. We note that the degree of irrigation impact during the time frame 
used for calibration (1960-1981) is likely much smaller than the current level.  
 
The Naglu dam, which is located in the western part the Kabul River basin (upstream of the 
Daronta streamflow gage), forms the largest and most important storage among dams in the 
basin (World Bank, 2010). The live storage of the Naglu dam is 379 MCM. We expect that 
using monthly data for calibration somewhat reduces the bias from human interference, 
particularly the daily operations of Naglu dam. Nevertheless, the calibration results for the 
gage below this dam (Daronta), and to a lesser extent the basin outlet (Dakah), should be 
approached with caution. Given that a majority of the gages examined in this study are on an 
underdeveloped branch of the Kabul River, issues of human interference on calibration are 
somewhat mitigated. We also note that the poor performance at Daronta is likely due in part to 
the impacts of water abstraction and the operation of Naglu dam. 
 
This information has been provided accordingly in the text. 
“Similar to most other hydrological models (Efstratisdis et al., 2008), HYMOD_DS is not 
designed to model water abstractions for agricultural lands and dam operations within the basin. 
According to World Bank (2010), water demand for agricultural use is about 2,000 MCM 
(million cubic meters), or about 8.3% of the total annual flow. The Naglu dam (Figure 1) 
upstream of the Daronta streamflow gage forms the largest and most important reservoir in the 
basin, with an active storage of 379 MCM. In our hydrologic modelling process, the water 
consumed by irrigated croplands is implicitly accounted for by the evapotranspiration module. 
We note that the degree of irrigation impact during the time frame used for calibration (1960-
1981) is likely much smaller than the current level. We also expect that using monthly data for 
calibration somewhat reduces the bias from human interference, particularly the daily 
operations of Naglu dam. Nevertheless, the calibration results for the gage below this dam 
(Daronta), and to a lesser extent the basin outlet (Dakah), should be approached with caution. 
Given that a majority of the gages examined in this study are on an underdeveloped branch of 
the Kabul River, issues of human interference on calibration are somewhat mitigated.”   
   

 
• P10278 L21 Should it not be “a genetic algorithm” as there are many kinds of genetic 

algorithms available for model calibration? Or you should state “the genetic algorithm 
introduced by Wang et al. 1991”. 

 
We made this clearer as suggested. 

 
• P10279 L5 I wonder how these monthly streamflow values were calculated if not from daily 

measurements. If there are only monthly data available, I also wonder if the NSE is the best 
choice for goodness of fit criteria. Nevertheless, I like the argumentation given for choosing 
NSE but suggest to also mentioning here the use of KGE as another goodness of fit criterion 



for model evaluation (so far, KGE is introduced in chapter 5 in the discussion and not in the 
methods section). 

 
Unfortunately, the only observations that are available for public use are monthly. There is a 
report (Olson and Williams-Sether, 2010) clarifying that each monthly streamflow is the mean 
of the daily values for the month, and monthly values are calculated from daily values for all 
complete months of record. However, the daily values are not made available because there 
are political issues surrounding the trans-boundary use of the river’s waters and potential 
projects planned on the river.  
 
We have added the following details in the manuscript to clarify the immediate question 
regarding the data:   
“Streamflow data were not collected in Afghanistan after September 1980 until recently 
because stream gaging was discontinued soon after the Soviet invasion of Afghanistan in 1979 
(Olson and Williams-Sether, 2010). Though measurements were taken at a daily time step, 
data are only made available for public use at monthly aggregated levels, calculated using the 
mean of the daily values.”  
 
We acknowledged the limitation of the use of NSE for a model evaluation metric by writing 
this: 
“However, in this particular study daily hydrologic model simulations can only be compared 
against available monthly streamflow records, reducing the number of viable objectives against 
which to calibration. That is, statistics representing peak flows, extreme low flows, and other 
daily flow regime characteristics often used in multi-objective optimization approaches are 
unavailable. We believe that the use of a monthly NSE value as a single objective, while coarse, 
does not inhibit our ability to provide insight into the research questions posed.” 
 
Also, we now introduce the KGE earlier in the Methods section to make clear that we are 
considering more than just the NSE for model diagnostics. 

 
• P10282 L3 Are the numbers correct? The page before you present 15, 75 and 2400 parameter 

values being searched for in the various spatial set ups. Should it then not be 15x100 and 
75x100? And why is 2400 multiplied by 200 and not by 100 as the others? Even though you 
state in the next sentence that the population/generation sizes were supported by 
convergence tests, the generation of numbers given here remains unclear. 

 
We set up different numbers of population and generation in the GA algorithm according to 
the complexity of parameterization scheme. For instance, for the lumped parameterization, the 
number of parameter to be optimized is 15 and we considered 150 parameter sets. Those 150 
parameter sets evolve through 100 generations, and the result of our convergence test showed 
a convergence while going through 100 generations.  For the distributed parameterization 
scheme, there are more number of parameters to be calibrated. We considered 2400 parameter 
sets to calibrated 2400 parameters. Although it can be argued that having 2400 parameter sets 
to optimize 2400 parameters is not enough, we confirmed from the convergence test that this 
calibration setup shows a convergence behavior with 200 generations. Below, we enclosed the 
convergence test results. 



 

 
GA convergence for the semi-distributed parameterization scheme with 750 parameter sets 
(population) and 100 iteration (generation) 
 

 
GA convergence for the distributed parameterization scheme with 2400 parameter sets 
(population) and 200 iteration (generation) 

 
• P10283 L11 step-wise (not step-wide) 
 

Done. 
 



• P10284 L12 the period “1960-1981” better covers all available discharge measurements given 
in Table 1. 

 
Yes, you are right. We changed it. 

 
• P10294 L6 is shown in: : : (not was shown) 
 

We corrected it. 
 

• Section 6 Conclusion P10295 L8 until P10296 L16 This is an extended summary of the results 
presented rather than a conclusion of the work. I think more effort should be put into real 
conclusions – what do we learn from the study, what are suggestions for future research, are 
results transferable to other regions or modelling approaches? 

 
As suggested, we tried to focus on the points that should be addressed in the conclusion part.  

 
• Sections 5.2 and 5.3 The model performances for the upper subcatchments Kama and Asmar 

are generally very good. This is the same for Dakha (Figs 6 and 7). Glaciers have the largest 
extend in these subcatchments and I assume that they therefore contribute large volumes of 
water to total discharge at Dakah. Further, I assume that western catchments contribute only 
minor to total discharge as rainfall input is comparatively low (information on specific 
discharges for the various subcatchments would be helpful for a quick comparison). As you 
optimize your model using NSE, with NSE putting emphasis in matching peak flows, it does 
not come as a surprise to obtain good results for Dakah as long as subcatchments Kama and 
Asmar are calibrated sufficiently well. 

 
We updated Table 1 with more contents including the information on specific discharges for 
the sub-watersheds.  
In our study, we always treated Kama and Asmar as ungagged sub-watersheds, which means 
that we never tried to calibrate those two sites. All the available data at those sites were used 
for the validation purpose only. Dakah (the basin outlet) is the one against which the model 
calibrated. One of the main ideas we try to show in Sections 5.2 and 5.3 is that the calibration 
based on only the basin outlet does not provide a good performance at Kama and Asmar, while 
the pooled calibration does. 

 
• Furthermore, the model performance of the ungauged sites Kama and Asmar are often very 

similar. Looking at the choice of stations that you treated ungauged and the general location 
of available gauging stations, I wonder why you have selected the Kama and Asmar, which 
belong to the same eastern area of the catchment. Why have you not selected the one in the 
west as a second interior test station (i.e. Daronta), or at least two subcatchments which are 
not draining into each other (e.g. Chaghasari and Asmar) and therefore being more 
independent than Kama and Asmar. 
 
The Government of Afghanistan with the support of the international donors (e.g. The World 
Bank) has developed comprehensive plans for the development of new hydro-power projects, 



irrigation schemes and rehabilitation of old schemes on various rivers including the Kabul 
River (IUCN, 2010). Recently, Afghanistan and Pakistan reached an agreement in working on 
a 1,500MW hydropower project on Kunar River as part of the joint management of common 
rivers between the two countries (DAWN, 2013). For this study, Kama and Asmar were chosen 
and treated as ungagged sites in the processes of multisite calibrations because they align with 
the potential dam project. 
 
This information has been provided accordingly in the text. 
“The Government of Afghanistan has developed comprehensive plans for new hydropower 
projects on the Kabul River owing to its advantageous topography for the development of 
water storage and hydropower (IUCN, 2010), and recently reached an agreement with the 
Pakistan government to work on a 1,500MW hydropower project on the Kunar River (one of 
major tributary in the Kabul River basin) as part of the joint management of common rivers 
between the two countries (DAWN, 2013). … 
Kama and Asmar stations are treated as ungaged sites because they align with the potential 
dam project on the Kunar River tributary.” 
 

 
• Section 5.4 Do you assume constant glacier volume to be discharging or are glaciers prone to 

glacier melt, resulting in smaller volume and spatial extend in the future and during your 
climate change simulation period. What are the expectations in glacier extend for the end of 
your simulation period in your catchment? Are calibrated model parameters still valid under 
these new boundary conditions? I expect not, as glacier melt is an important process, 
described by various parameters (Table 2) and needs rigorous calibration. 

 
The hydrologic model (HYMOD_DS) used in this study does account for the changes in 
volume but has no ability to trace explicitly the spatial extend of glaciers. At the beginning of 
the simulation we were informed by the glacier volume (the amount water stored in the glaciers) 
which is provided by RGI3.2 and the area-volume relationship. A simple and possible way to 
trace the glacier extend from this study is to back-calculate the area with volume remaining at 
the end of simulation using the area-volume relationship. The model parameters related to the 
temperature-index glacier model stay the same once those are calibrated. Therefore, water from 
glacier melt with respect to a temperature above the threshold temperature will be same as long 
as glacier keep existing. We agree that it is hard to expect the calibrated parameters to be valid 
under new glacier conditions.  
For our 20-year historical model simulation, we checked that the glacier volume decreases due 
to the ablation of glaciers larger than accumulation in the sub-watersheds that produce annual 
total flow larger than annual total precipitation as shown in the new Table 1. We argue that the 
high ratio of streamflow to precipitation is unrealistic and might be caused by error in 
precipitation data used in this study since precipitation measurement in high mountain areas is 
highly uncertain (Immerzeel et al., 2014). What we checked for the 20-year historical 
simulation and 30-year future simulation is that glaciers still stored enough water at the end of 
the simulations. 
In our discussion for future work, we note the necessity of exploiting remote sensing and satellite 
products with which the evaluation of distributed hydrologic models with respect to model 
internal processes (e.g. snow, evapotranspiration, and glacier) becomes possible. 



     
 
• S2 Please describe the meaning of abbreviations in the legend or figure caption 
 

We put the description in the figure caption. 
 
• S8 Is this a simulation of the 100 yr flood event, at least this is what I understand from the 

text (P10294 L6 and following). 
 

We assumed that the reviewer meant Figure S6, not S8. 
No, this figure is showing the variability of optimum parameters derived from 50 trials of semi-
distributed and distributed pooled calibrations. Here, we tried to explore the variability of 100-
year flood estimates using 50 calibrated parameter sets for each calibration approach. 
Specifically, every time when the model was run with an optimum parameter set, we estimated 
the 100-year flood using the Log-Pearson III distribution for three locations (the basin outlet 
and 2 ungagged sites). With 50 100-year flood estimates for each calibration approach, we then 
examined the influence of the parameter variability on the flood estimates by comparing the 
flood estimates resulting from two calibration approaches.   

 

Thank you. 
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Abstract 24 

This study utilizes high performance computing to tests the performance and uncertainty of 25 

calibration strategies for a spatially distributed hydrologic model in order to improve model 26 

simulation accuracy and understand prediction uncertainty at interior ungaged sites of a sparsely-27 

gaged watershed. The study is conducted using a distributed version of the HYMOD hydrologic 28 

model (HYMOD_DS) applied to the Kabul River basin. Several calibration experiments are 29 

conducted to understand the benefits and costs associated with different calibration choices, 30 

including 1) whether multisite gaged data should be used simultaneously or in a step-wise manner 31 

during model fitting, 2) the effects of increasing parameter complexity, and 3) the potential to 32 

estimate interior watershed flows using only gaged data at the basin outlet. The implications of the 33 

different calibration strategies are considered in the context of hydrologic projections under 34 

climate change. To address the research questions, high performance computing is utilized to 35 

manage the computational burden that results from high-dimensional optimization problems. 36 

Several interesting results emerge from the study. The simultaneous use of multisite data is shown 37 

to improve the calibration over a step-wise approach, and both multisite approaches far exceed a 38 

calibration based on only the basin outlet. The basin outlet calibration can lead to projections of 39 

mid-21st century streamflow that deviate substantially from projections under multisite calibration 40 

strategies, supporting the use of caution when using distributed models in data-scarce regions for 41 

climate change impact assessments. Surprisingly, increased parameter complexity does not 42 

substantially increase the uncertainty in streamflow projections, even though parameter 43 

equifinality does emerge. The results suggest that increased (excessive) parameter complexity does 44 

not always lead to increased predictive uncertainty if structural uncertainties are present. The 45 
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largest uncertainty in future streamflow results from variations in projected climate between 46 

climate models, which substantially outweighs the calibration uncertainty.   47 
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1. Introduction 48 

In an effort to advance hydrologic modelling and forecasting capabilities, the development 49 

and implementation of physically-based, spatially distributed hydrologic models has proliferated 50 

in the hydrologic literature, supported by readily available geographic information system (GIS) 51 

data and rapidly increasing computational power. Distributed hydrologic models can account for 52 

spatially variable physiographic properties and meteorological forcing (Beven, 2012), improving 53 

simulations compared to conceptual, lumped models for basins where spatial rainfall variability 54 

effects are significant (Ajami, et al., 2004;  Koren, et al., 2004; Reed, et al., 2004; Khakbaz, et al., 55 

2012; Smith, et al., 2012) and for nested basins (Bandaragoda, et al., 2004; Brath, et al., 2004; 56 

Koren, et al., 2004; Safari, et al., 2012; Smith, et al., 2012). The benefits of distributed modeling 57 

have been recognized by the U. S. National Oceanic and Atmospheric Administration’s National 58 

Weather Service (NOAA/NWS) and demonstrated in the Distributed Model Intercomparison 59 

Project (DMIP) (Reed, et al., 2004; Smith, et al., 2004; Smith, et al., 2012; Smith, et al., 2013). 60 

Importantly, distributed hydrologic models can evaluate hydrological response at interior ungaged 61 

sites, a benefit not afforded by conceptual, lumped models. The use of distributed hydrologic 62 

modelling for interior point streamflow estimation is particularly relevant for poorly gaged river 63 

basins in developing countries, where reliable predictions at interior sites are often required to 64 

inform water infrastructure investments. As international development agencies begin to integrate 65 

climate change considerations into their decision-making processes (e.g., Yu et al., 2013), these 66 

investments need to be robust under both current climate conditions and alternative possible future 67 

climate regimes. 68 

Despite their roots in physical realism, distributed hydrologic models can suffer from 69 

substantial uncertainty. A major source of uncertainty originates from the proper identification of 70 
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parameter values that vary across the watershed, especially when observed streamflow data is only 71 

available at one or a few points (Exbrayat et al., 2014). Parameters can be discretized across the 72 

watershed in several ways (Flugel, 1995; Efstratiadis et al., 2008; Khakbaz, et al., 2012): uniquely 73 

for each grid cell or hydrologic response unit (fully distributed), based on hydrologic response 74 

unitssub-basins whose boundaries do not necessarily ensure homogenous characteristics (semi-75 

distributed), or in the simplest case, a single parameter set for all model grid cells (lumped). With 76 

limited data, the parameter identification problem, particularly for the fully distributed case, can 77 

be impractical or infeasible (Beven, 2001). The parameterization challenge has spurred substantial 78 

advances in understanding appropriate calibration techniques for distributed hydrologic models. 79 

Many studies have attempted to reduce the dimensionality of the calibration problem to alleviate 80 

the issue of equifinality (Beven & Freer, 2001), which is the phenomenon whereby multiple 81 

parameter sets produce indistinguishable model performance. This work has found favorable 82 

results when the parametric complexity of the distributed model is aligned with the data available 83 

for calibration (Leavesley, et al., 2003; Ajami, et al., 2004; Eckhardt, et al., 2005; Frances, et al., 84 

2007; Zhu & Lettenmaier, 2007; Cole & Moore, 2008; Pokhrel & Gupta, 2010; Khakbaz, et al., 85 

2012). There has also been extensive research exploring the use of multiple objectives and different 86 

operational procedures to understand parameter estimation tradeoffs and identifiability for 87 

distributed model calibration, with great success (Madsen, 2003; Efstratiadis & Koutsoyiannis, 88 

2010; Li, et al., 2010; Kumar, et al., 2013). 89 

Despite these advances, important questions still persist. It still remains difficult to 90 

compare the uncertainty that emerges from different operational calibration procedures for 91 

multisite applications (i.e. whether gages in series should be used sequentially or simultaneously 92 

for calibration) and under different levels of parametric complexity. Due to the computational 93 



6 

 

burden required to calibrate distributed models, this uncertainty is problematic to explore. Further, 94 

in poorly gaged basins, it is challenging to quantify the lost accuracy and increased uncertainty for 95 

interior flow estimation when a distributed model is calibrated only at an outlet gage (which is 96 

often all that is available in developing country river basins). In the case of significant spatial 97 

variability in the basin properties that influence runoff generation (e.g., permeability, vegetation, 98 

slope, etc.), accurate runoff predictions are unlikely at interior locations based only on the lumped 99 

information obtained at the basin outlet Many studies have reported that distributed models 100 

calibrated at the basin outlet are less accurate at interior locations (Anderson et al., 2001; Cao, et 101 

al., 2006; Breuer et al., 2009; Lerat et al., 2012; Simith et al., 2012; Wang, et al., 2012). but tThe 102 

extent of the this error and uncertainty is not well understood for heterogeneous basins unknown 103 

due to the computational expense requiredneeded to explore this issue. Finally, rarely have the 104 

implications of these calibration issues been explicitly examined for an alternative climate possible 105 

future climate conditions, which is required in climate change impact studies. This question has 106 

been explored for lumped, conceptual models (Wilby, 2005; Steinschneider, et al., 2012), but has 107 

been difficult to evaluate for computationally expensive distributed models. 108 

This study addresses the above research challenges by focusing on the following four 109 

questions: 1) How does calibration procedure for using multisite data effect the accuracy and 110 

uncertainty of distributed models used for streamflow predictions at ungaged sites, 2) what effects 111 

do increased parameter complexity have on distributed model calibration and prediction, 3) how 112 

much degradation in model accuracy and uncertainty can be expected for interior flow estimation 113 

based on a calibration procedure using only the basin outlet, and 4) how do different calibration 114 

formulations for a distributed model alter projections of streamflow at ungaged sites under climate 115 

change conditions? These questions are considered in an application of a distributed version of the 116 
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daily HYMOD hydrologic model to the Kabul River basin in Afghanistan and Pakistan. To address 117 

these research questions, high performance computing is utilized to manage the computational 118 

burden that often hinders such explorations, a relatively recent technique employed in hydrological 119 

modeling research (Laloy & Vrugt, 2012; Zhang, et al., 2013). 120 

 121 

2. Study area 122 

The Kabul River basin (67,370km2) is a plateau surrounded by mountains located in the 123 

eastern central part of Afghanistan (Figure 1). It is the most important river basin of Afghanistan, 124 

containing 35 percent of the country’s population. While it encompasses just 12 percent of the area 125 

of Afghanistan, the basin’s average annual streamflow (about 24 billion cubic meters) is about 26 126 

percent of the country’s total streamflow volume (World Bank, 2010). 127 

Water resources from the basin are shared by Afghanistan and Pakistan and serve as a water 128 

supply source for more than 20 million people. The shared use of transboundary water between 129 

these two countries is central in establishing regional water resources development for this area 130 

(Ahmad, 2010). It is crucial to develop tools that can support engineering plans for existing and 131 

potential water infrastructure to take full advantage of the water resources in the basin. The 132 

Government of Afghanistan has developed comprehensive plans for new hydropower projects on 133 

the Kabul River owing to its advantageous topography for the development of water storage and 134 

hydropower (IUCN, 2010), and recently reached an agreement with the Pakistan government to 135 

work on a 1,500MW hydropower project on the Kunar River (one of major tributary in the Kabul 136 

River basin) as part of the joint management of common rivers between the two countries (DAWN, 137 

2013).  138 
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The streamflow regime of the Kabul River can be classified as glacial with maximum 139 

streamflow in June or July and minimum streamflow during the winter season. Approximately 140 

70% of annual precipitation (475mm) falls during the winter season (November to April). While 141 

the dominant source of streamflow in winter is baseflow and winter rainfall, Glaciers glaciers and 142 

snow cover are the most important long-term forms of water storage and, hence, the main source 143 

of runoff during the ablation period for the basin (Shakir et al., 2010). In total 5.72.9% 144 

(3813km21954km2) of the basin is glacierized based on the Randolph Glacier Inventory version 145 

3.2 (Pfeffer, et al., 2014). The melt water from glaciers and snow produce the majority (75%) of 146 

the total streamflow (Hewitt, et al., 1989). Table 1 provides the climates and geophysical properties 147 

of each sub-watershed delineated by the stations located inside the Kabul Basin (Figure 1). Two 148 

different climate patterns are distinguishable across the sub-basins. The sub-basins on the Kunar 149 

River tributary (Kama, Asmar, Chitral, Gawardesh, and Chaghasarai) receive moderate annual 150 

precipitation and are highly affected by snow and glacier covers. All of these sub-basins have high 151 

ratios of mean annual flow to mean annual precipitation, with the ratios for the Kama, Asmar, 152 

Chitral, and Chaghasarai sub-basins larger than 1. Conversely, the Daronta sub-basin contains only 153 

minimal glacial cover, and is relatively dry. Daronta is also much less productive, with annual 154 

streamflow far below the other sub-basins with an average of only 165 mm/year. 155 

Issues of shared water resources between Afghanistan and Pakistan in the Kabul River 156 

basin are becoming complex due to the impacts of climatic variability and change (IUCN, 2010). 157 

In recent years, most of the world’s mountain glaciers have shown negative mass balance and rapid 158 

decrease in glacier area and volume (Dyurgerov & Meier, 2005), while in the Himalayan region 159 

trends depend on location (Bolch et al., 2012). The vulnerability of glacial streamflow regimes to 160 

changes in temperature and precipitation (Stahl, et al., 2008; Immerzeel, et al., 2012; Radic et al., 161 
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2014) highlights the need to assess the impact of climate change on water resources future water 162 

availability in this area (Immerzeel, et al., 2010; Immerzeel, et al., 2013; Molg, et al., 2014; Radic, 163 

et al., 2014).  164 

 165 

3. Data and Models 166 

 167 

3.1. Data 168 

Gridded daily precipitation and temperature products with a spatial resolution of 0.25o were 169 

gathered between calendar years 1961-2007 from the Asian Precipitation Highly Resolved 170 

Observational Data Integration Towards Evaluation (APHRODITE) dataset (Yatagai, et al., 2012). 171 

There has been some concern regarding underestimation of precipitation in APHRODITE for some 172 

regions of Asia (Palazzi, et al., 2013); our preliminarily data analysis (intercomparison of 173 

precipitation products between 5 different databases) confirmed this for the Kabul River basin 174 

(shown in Figure S2S1). Thus, the APHRODITE precipitation was bias-corrected by the 175 

precipitation product from the University of Delaware global terrestrial precipitation (UD) dataset 176 

(Legates & Willmott, 1990). Daily series of bias-corrected APHRODITE precipitation were 177 

coupled with APHRODITE temperature for 160 0.25o grid cells to produce a climate forcing 178 

dataset for the distributed domain of the Kabul River basin model. 179 

This study used the set of global climate change simulations from the World Climate 180 

Research Programme's Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model 181 

ensemble (Talyor, et al., 2012). Monthly climate outputs of GCMs were downscaled to a daily 182 



10 

 

temporal resolution and 0.25o spatial resolution based on the bias-correction spatial disaggregation 183 

(BCSD) statistical downscaling method introduced by Wood et al. (2004). 184 

Monthly streamflow observations for seven locations in the Kabul River basin (Figure 1) 185 

were gathered between calendar years 19611960-1980 1981 from two data sources: the Global 186 

Runoff Data Centre (GRDC) database and the United States Geological Survey (USGS) database 187 

(Table 1). Streamflow data were not collected in Afghanistan after September 1980 until recently 188 

because streamgaging was discontinued soon after the Soviet invasion of Afghanistan in 1979 189 

(Olson and Williams-Sether, 2010). Though measurements were taken at a daily time step, data 190 

are only made available for public use at monthly aggregated levels, calculated using the mean of 191 

the daily values. The available monthly  streamflow observations at each station were used for 192 

calibrating and validating the distributed hydrologic model (Figure 32). Kama and Asmar stations 193 

are treated as ungaged sites because they align with the potential dam project on the Kunar River 194 

tributary. and The two gage stations are left out of the processes of multisite calibrations in order 195 

to evaluate the model’s ability to predict streamflow at interior ungaged sites. Furthermore, half of 196 

the record at the Dakah station, located at the basin outlet, is also used for validation purposes.  197 

The Randolph Glacier Inventory version 3.2 (RGI 3.2) dataset (Pfeffer, et al., 2014) was 198 

used to extract glacial coverage in the Kabul River basin, which totaled 5.7% of the basin area 199 

(Figure S3S2). In the hydrological modeling process, the model needs to be informed by reliable 200 

estimates on volume of water retained in glaciers, especially for future simulations under warming 201 

conditions. We followed the method proposed in Grinsted (2013), which uses multivariate scaling 202 

relationships to estimate glacier and ice cap volume based on elevation range and area. 203 

Specifically, the scaling law including area and elevation range factors was applied to estimate 204 

glacier/ice cap volume when the glacier depth exceeded 10m. Otherwise, glacier/ice cap volume 205 
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was estimated with the area-volume scaling law. The elevation range spanned by each individual 206 

glacier is estimated using the global digital elevation model (DEM) from the shuttle radar 207 

topography mission (SRTMv4) in 250m resolution (Jarvis, et al., 2008). Density of ice (0.9167 208 

g/cm3) is applied to calculate glacier/ice cap volume in meters of water equivalent. 209 

The database for land covers and soil types of the Kabul River basin (Figure 1) are provided 210 

by the Food and Agriculture Organization of the United Nations (Latham, 2014) and United States 211 

Department of Agriculture-Natural Resources Conservation Service Soils  (USDA-NRCS, 2005), 212 

respectively. 213 

 214 

3.2. Distributed Hydrologic Model (HYMOD_DS) 215 

In this study the lumped conceptual hydrological model HYMOD (Boyle, 2001) is coupled 216 

with a river routing model to be suitable for modelling a distributed watershed system. We name 217 

it HYMOD_DS denoting the distributed version of HYMOD. Snow and glacier modules have 218 

been introduced to enhance the modelling process for glacier and snow covered areas within the 219 

Kabul River basin. The HYMOD_DS is composed of hydrological process modules that represent 220 

soil moisture accounting, evapotranspiration, snow processes, glacier processes and flow routing. 221 

The model operates on a daily time step and requires daily precipitation and mean temperature as 222 

input variables. The overall model structure of the HYMOD_DS and its 15 parameters are 223 

described in Figure 4 3 and Table 2 respectively. Further details are provided below. 224 

The HYMOD conceptual watershed model has been extensively used in studies on 225 

streamflow forecasting and model calibration (Wagener, et al., 2004; Vrugt, et al., 2008; Kollat, 226 

et al., 2012; Gharari, et al., 2013; Remesan, et al., 2013). The HYMOD is a soil moisture 227 



12 

 

accounting model based on the probability-distributed storage capacity concept proposed by 228 

Moore (1985). This conceptualization represents a cumulative distribution of varying storage 229 

capacities (C) with the following function: 230 

B
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where the exponent B is a parameter controlling the degree of spatial variability of storage capacity 232 

over the basin and Cmax is the maximum storage capacity. The model assumes that all storages 233 

within the basin are filled up to the same critical level (C*(t)), unless this amount exceeds the 234 

storage capacity of that particular location. With this assumption, the total water storage S(t) 235 

contained in the basin corresponds to  236 
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Consequently, two parameters are introduced for the runoff generation process with two 238 

components:  239 
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where P(t) is precipitation, Runoff1 is surface runoff, and Runoff2 is subsurface runoff. A parameter 242 

(α) is introduced to represent how much of the subsurface runoff is routed over the fast (Qfast) and 243 

slow (Qslow) pathway: 244 
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21fast RunoffRunoffQ            (5) 245 

  2slow 1 RunoffQ            (6) 246 

The potential evapotranspiration (PET) is derived based on the Hamon method (Hamon, 247 

1961), in which daily PET in mm is computed as a function of daily mean temperature and hours 248 

of daylight: 249 
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where, Ld is the daylight hours per day, T is the daily mean air temperature (oC), and Coeff is a 251 

bias correction factor. The hours of daylight is calculated as a function of latitude and day of year 252 

based on the daylight length estimation model (CBM model) suggested by Forsythe et al. (1995).   253 

The HYMOD_DS includes snow and glacier modules with separate runoff processes, i.e., 254 

the runoff from the glacierized area is calculated separately and added to runoff generated from 255 

the soil moisture accounting module coupled with the snow module. The implicit assumption here 256 

is that there is no interchange of water between soil layers and glacial area and runoff from glacial 257 

areas is regarded as surface flow. The runoff from each area is weighted by its area fraction within 258 

the basin to obtain total runoff.  259 

The time rate of change in snow and glacier volume governed by ice accumulation and 260 

ablation (melting and sublimation) is expressed by the Degree Day Factor (DDF) mass balance 261 

model (Moore, 1993; Stahl, et al., 2008). The dominant phase of precipitation (snow vs. rain) is 262 

determined by a temperature threshold (Tth). The snow melt Ms and glacier melt Mg is calculated 263 

as: 264 
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 sss TTDDFM                (78) 265 

 ggg TTDDFM                          (89) 266 

with DDFs (Ts) and DDFg (Tg) applied separately for snow and glacier modules, respectively. To 267 

account for the higher melting rate of glacier than snow owing to the low albedo (Konz & Seibert, 268 

2010; Kinouchi, et al., 2013), we introduced a parameter r > 1 to constrain DDFg to be larger than 269 

DDFs (i.e. DDFg = r×DDFs). For the rain that falls on the glacierized area, the glacier parameter 270 

Kg determines the portion of rain becoming surface runoff as a multiplier for the rainfall. The 271 

remaining rainfall is assumed to be accumulated to the glacier store. 272 

The within-grid routing process for direct runoff is represented by an instantaneous unit 273 

hydrograph (IUH) (Nash, 1957), in which a catchment is depicted as a series of N reservoirs each 274 

having a linear relationship between storage and outflow with the storage coefficient of Kq. 275 

Mathematically, the IUH is expressed by a gamma probability distribution: 276 
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where, Γ is the gamma function. The within-grid groundwater routing process is simplified as a 278 

lumped linear reservoir with the storage recession coefficient of Ks.  279 

The transport of water in the channel system is described using the diffusive wave 280 

approximation of the Saint-Venant equation (Lohmann, et al., 1998): 281 
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where C and D are parameters denoting wave velocity (Velo) and diffusivity (Diff) respectively. 283 
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Similar to most other hydrological models (Efstratisdis et al., 2008), HYMOD_DS is not 284 

designed to model water abstractions for agricultural lands and dam operations within the basin. 285 

According to World Bank (2010), water demand for agricultural use is about 2,000 MCM (million 286 

cubic meters), or about 8.3% of the total annual flow. The Naglu dam (Figure 1) upstream of the 287 

Daronta streamflow gage forms the largest and most important reservoir in the basin, with an active 288 

storage of 379 MCM. In our hydrologic modelling process, the water consumed by irrigated 289 

croplands is implicitly accounted for by the evapotranspiration module. We note that the degree 290 

of irrigation impact during the time frame used for calibration (1960-1981) is likely much smaller 291 

than the current level. We also expect that using monthly data for calibration somewhat reduces 292 

the bias from human interference, particularly the daily operations of Naglu dam. Nevertheless, 293 

the calibration results for the gage below this dam (Daronta), and to a lesser extent the basin outlet 294 

(Dakah), should be approached with caution. Given that a majority of the gages examined in this 295 

study are on an underdeveloped branch of the Kabul River, issues of human interference on 296 

calibration are somewhat mitigated. 297 

 298 

4. Methods 299 

The purpose of this study is to explore the implications of different calibration strategies 300 

and choices for a computationally expensive distributed hydrologic model. A variety of calibration 301 

experiments are conducted, with the results from preceding experiments informing choices made 302 

for subsequent ones. All calibration approaches are tested in terms of their ability to predict flows 303 

at interior site gages that were left out of the calibration process. In all cases, the Genetic Algorithm 304 

(GA) introduced by Wang (1991) is used as an optimization method for model parameter 305 

calibration (Wang, 1991; Zhang, et al., 2008; Kollat, et al., 2012), and the objective function is 306 
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based simply on the Nash Sutcliffe efficiency (NSE) (Nash & Sutcliff, 1970), which is by far the 307 

most utilized performance metric in hydrological model applications (Biondi et al., 2012). A 308 

multisite average of the NSE is used when evaluating performance across multiple sites. We fully 309 

recognize that the use of one objective, such as the NSE, is inferior compared to multi-objective 310 

approaches that can identify Pareto optimal solutions that provide good model performance across 311 

different components of the flow regime (Madsen, 2003; Efstratiadis & Koutsoyiannis, 2010; Li, 312 

et al., 2010; Kumar, et al., 2013). However, in this particular study daily hydrologic model 313 

simulations can only be compared against available monthly streamflow records, reducing the 314 

number of viable objectives against which to calibration. That is, statistics representing peak flows, 315 

extreme low flows, and other daily flow regime characteristics often used in multi-objective 316 

optimization approaches are unavailable. We believe that the use of a monthly NSE value as a 317 

single objective, while coarse, does not inhibit our ability to provide insight into the research 318 

questions posed. In addition to the NSE, the Kling-Gupta efficiency (KGE) (Gupta et al., 2009) is 319 

adopted as an alternative model performance metric, which equally weights model mean bias, 320 

variance bias, and correlation with observations. 321 

In this study, three levels of parameter complexity are considered: lumped, semi-322 

distributed, and fully distributed formulations (Figure 24). The different levels of parameter 323 

complexity are defined according to the spatial distribution of unique hydrologic model 324 

parameters. In the lumped formulation a single parameter set is applied to the entire basin. In the 325 

semi-distributed formulation, a unique parameter set is assigned to each sub-basin, defined based 326 

on the location of available streamflow gaging sites. The fully distributed parameter structure 327 

follows the spatial discretization of climate input grids, allowing a unique parameter set for each 328 

grid cell. No matter the parameterization scheme, the model structure follows the climate input 329 
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grids, i.e. the hydrological water cycle within each grid cell is modelled separately. We note that 330 

a lumped model structure (i.e., no gridded or sub-unit structure) has often been considered as a 331 

baseline model formulation in the assessment of distributed modelling frameworks (e.g., see Smith 332 

et al., 2013). However, the focus of our study is on ungaged interior site streamflow estimation, 333 

making this formation somewhat inappropriate. Further, preliminary tests comparing streamflow 334 

simulations at the basin outlet (Dakah) between a gridded and basin-averaged structure, both with 335 

a lumped parameter formulation, support the use of the distributed grid structure (Figure S3). 336 

The parameter complexity will vary depending on the calibration experiment being 337 

conducted, but for each experiment regardless of the parameterization, the optimization is 338 

implemented 50 times using the GA algorithm to explore parameter calibration uncertainty. The 339 

considerably high computational cost required to perform a large number of calibrations is 340 

managed using the parallel computing power provided by the Massachusetts Green High 341 

Performance Computing Center (MGHPCC), from which several thousands of processors are 342 

available. 343 

In the first modeling experiment, we explore two calibration strategies for using multisite 344 

streamflow data, a stepwise and pooled approach. In the stepwise calibration, parameters are 345 

calibrated for upstream gaged sub-catchments and subsequently fixed during calibration of 346 

downstream points, while for the pooled approach, parameters are calibrated for multiple sub-347 

catchments simultaneously. Both approaches are assessed for the semi-distributed formulation. 348 

The better of the two methods is identified for use in the second experiment, where the effects of 349 

increased parameter complexity are tested in terms of streamflow prediction accuracy and 350 

uncertainty. In the third experiment, we consider the situation where there is only gaged 351 

locationdata at the basin outlet for calibration. Here, the model is calibrated against the outlet gage 352 
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under all levels of parameter complexity and is compared against the best combination of 353 

calibration strategy (step-wise or pooled) and parameter complexity (lumped, semi-distributed, or 354 

fully distributed) identified in the previous experiments. Finally, a subset of the calibration 355 

approaches deemed worthy of further investigation are compared in terms of their projections of 356 

future streamflow under climate change to highlight how model calibration differences can alter 357 

the results of a climate change assessment for water resources applications. These experiments are 358 

described in further detail below. 359 

 360 

4.1. Multisite Calibration: Stepwise and Pooled Approaches 361 

In the first experiment, the semi-distributed parameterization concept is compared under 362 

alternative multisite calibration strategies, the stepwise and pooled calibration approaches. To 363 

conduct the stepwise calibration, a nested class of sub-basins is defined corresponding to multiple 364 

gaging stations. In the first step of the stepwise calibration, the optimization process is carried out 365 

with nested sub-basins at the lowest level (i.e., the most upstream sites). Once parameters of nested 366 

sub-basins are determined, the parameters are fixed, and the calibration procedure proceeds with 367 

nested basins at upper levels until parameters for the entire basin are determined. In this particular 368 

application to the Kabul River basin, 5 gaged sub-basins were selected and the stepwise calibration 369 

procedure for those sub-basins followed this direction: Chitral → Gawardesh → Chaghasarai → 370 

Daronta → Dakah (Figure S15). The stepwise calibration approach involves a number of GA 371 

implementations corresponding to the number of gaging sites. The GA optimization was carried 372 

out a total of 250 times in this application, with 50 optimization runs containing GA 373 

implementations for 5 sub-basin regions. 374 
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The pooled calibration strategy involves calibrating all parameters of the model domain 375 

simultaneously against multiple streamflow gages within the watershed. This approach aims at 376 

looking for suitable parameters that are able to produce satisfactory model results at all gaging 377 

stations in a single implementation of GA optimization. That is, the GA searches the entire 378 

parameter space at once to maximize the average NSE across all sites. This operational feature 379 

reduces the processing time spent on the GA implementation compared to the stepwise calibration 380 

strategy. To identify the better of the two multisite calibration approaches, the comparison focused 381 

on their ability to predict streamflow and calibration uncertainties at two interior site gages (Kama 382 

and Asmar) that were assumed to be ungaged (Figure S15), as well as for validation data at the 383 

basin outlet.   384 

 It is important to note that the evaluation of these multisite calibration strategies is 385 

somewhat weakened because of the lack of overlapping data periods among most of the stations 386 

(Figure 2). This drawback prevents the calibration methods from accounting for simultaneous 387 

information from different tributaries, which, if available, would better enable the calibration 388 

methods to account for heterogeneity of hydrological processes across the sub-basins.  389 

 390 

4.2. Increased Parameter Complexity 391 

In the second experiment, the better of the two approaches (step-wise or pooled) identified 392 

in the first experiment is further tested with respect to the three different levels of parameter 393 

complexity. In addition to the semi-distributed parameter formulation considered in the first 394 

experiment, lumped and fully-distributed parameter formulations are calibrated for the selected 395 

approach to investigate the gain or loss arising from different levels of parameter complexity. Since 396 

the hydrologic model HYMOD employed in this study involves 15 parameters, the lumped version 397 
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of the HYMOD_DS contains a single, 15-member parameter set applied to all model grid cells. 398 

The semi-distributed conceptualization of HYMOD_DS contains a single parameter set for each 399 

sub-basin, totaling 75 parameters. In the distributed parameterization the number of parameters 400 

increases dramatically.  With 160 0.25o grid cells, the number of parameters requiring calibration 401 

reaches 2,400. As the number of parameters increase across the parameterization schemes, 402 

calibration becomes increasingly computationally expensive. The number of model runs used in 403 

the GA optimization algorithm for the lumped, semi-distributed, and distributed parameterization 404 

schemes are 15,000 (150 populations × 100 generations), 75,000 (750 × 100), and 480,000 (2400 405 

× 200), respectively. These population/generation sizes were supported using convergence tests 406 

for each calibration. Again, 50 separate GA optimizations were used to explore calibration 407 

uncertainties for each parameterization scheme. To give a sense of the computational burden of 408 

this experiment, we note that 50 trials of the HYMOD_DS calibration under the distributed 409 

conceptualization required 1,000 processors over 7 days on the MGHPCC system. 410 

 411 

4.3. Basin Outlet Calibration 412 

The third experiment considers the situation where there is only gaged data at the basin 413 

outlet (Dakah) for calibration, a common situation when calibrating hydrologic models in data-414 

scarce river basins. Here, we evaluate the potential of the basin outlet calibration to estimate 415 

interior watershed flows in terms of both accuracy and precision at all gaging stations. All levels 416 

of parameter complexity are considered for this calibration. The main purpose of this experiment 417 

is to compare the veracity of a distributed hydrologic model calibrated only using basin outlet data 418 

with results from multisite calibrations to better understand the degradation in model performance 419 

under data scarcity. Other than the use of an NSE objective only at the basin outlet, all other GA 420 
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settings for each level of parameter complexity are same as the settings used in the second 421 

experiment. 422 

 423 

4.4. Climate Change Projections of Streamflow 424 

The fourth experiment investigates how the choice of calibration approach can alter the 425 

projections of future streamflow under climate change. To explore this question, streamflow 426 

simulations for the 2050s, defined as the 30-year period spanning from 2036 to 2065, are carried 427 

out using climate projections from the World Climate Research Programme's Coupled Model 428 

Intercomparison Project Phase 5 (CMIP5) (Talyor, et al., 2012). A total of 36 different climate 429 

models run under two future conditions of radiative forcing (RCP 4.5 and 8.5) are used. 430 

Streamflow projections are developed for the basin outlet (Dakah) and two interior gages left out 431 

of the calibration (Kama and Asmar). By using 36 different General Circulation Models (GCMs) 432 

and 50 optimization trials for each calibration scheme, this analysis compares the uncertainty in 433 

future streamflow projections originating from uncertainty in different hydrologic model 434 

parameterization schemes and under alternative future climates. 435 

Streamflow projections are considered under all three parameterization schemes (lumped, 436 

semi-distributed, and fully distributed) for both the basin outlet model and the best multi-site 437 

calibration approach (step-wide wise or pooled). Multiple streamflow characteristics are evaluated, 438 

including monthly streamflow climatology, wet (April-September) and dry (October-March) 439 

season flows, and daily peak flow response. The differences and uncertainty in these metrics across 440 

calibration approaches will highlight the importance of calibration strategy for evaluating future 441 

water availability and flood risk.  442 
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 443 

5. Results and Discussion 444 

For the remaining part of the paper, we introduce the following shorthand: Lump, Semi, 445 

and Dist indicate the lumped, semi-distributed, and fully distributed parameterization schemes, 446 

and Outlet, Stepwise, and Pooled correspond to basin outlet, stepwise, and pooled calibrations. 447 

The comparison between different calibration strategies is based on the model performance 448 

evaluated with the NSE, as well as an alternative metric, the Kling-Gupta efficiency (KGE) . 449 

(Gupta et al., 2009), which equally weights model mean bias, variance bias, and correlation with 450 

observations. 451 

 452 

5.1. Pooled Calibration vs. Stepwise Calibration  453 

This section reports the results from the first experiment comparing the stepwise and 454 

pooled calibration approaches for the semi-distributed model parameterization. Figure 5 6 shows 455 

the comparison between the Semi-Stepwise and Semi-Pooled with boxplots representing the 50 456 

trials of calibration. Under the stepwise calibration the results for 4 sub-basins (Chitral, 457 

Gawardesh, Chaghasarai, and Daronta) are optimal because there is no interaction between those 458 

sub-basins. However, the calibrated parameter sets of each sub-basin act as constraints in the last 459 

step of the Semi-Stepwise resulting in the degradation of model skill at the basin outlet (Dakah) 460 

and two left-out gages (Asmar and Kama). This becomes apparent when comparing the Semi-461 

Stepwise to the Semi-Pooled results. The model skill under the Semi-Pooled is similar to that from 462 

the Semi-Stepwise with respect to the 4 upstream sub-basins, but it outperforms at the verification 463 

gages. This is particularly true for the Asmar gage, which exhibits a downward bias and substantial 464 
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variability in performance under the Semi-Stepwise.  The Semi-Pooled results suggest that small 465 

sacrifices of model performance at certain sites can improve and stabilize basin-wide performance. 466 

Expected values of KGE from 50 calibrations are also provided (values in parenthesis in the bottom 467 

of Figure 56) and this performance metric also leads to the same conclusion. Therefore, the Semi-468 

Pooled was selected as the better multisite calibration strategy and is considered for further 469 

analyses in the following sections. 470 

 471 

5.2. Pooled Calibration with Alternative Parameterizations  472 

Here we examine results for the three levels of parameter complexity applied to the pooled 473 

calibration approach. Figure 6 7 shows the comparison of the pooled calibrations. Unsurprisingly, 474 

streamflow predictions from the Lump-Pooled have the lowest accuracy and largest uncertainty at 475 

the calibration sites, particularly for the Chaghasarai and Daronta sites. This demonstrates the well-476 

known difficulty in representing flow characteristics of a spatially variable system with a 477 

homogenous parameter set (Beven, 2012). The pooled calibration substantially improves with 478 

increasing parameter complexity at the calibration sites. Both the Semi-Pooled and Dist-Pooled 479 

produce NSE values above 0.8 for all calibration sites, with the Dist-Pooled showing somewhat 480 

higher performance, undoubtedly from its greater freedom to over-fit to the calibration data. 481 

However, the advantage of the Dist-Pooled with respect to streamflow predictions at validation 482 

sites becomes less clear. Only the Dist-Pooled at Kama shows marginally better predictions, while 483 

the results are ambiguous at Dakah and Asmar. Overall, this likely suggests that the fully 484 

distributed conceptualization leads to over-fitting of the model as compared to the Semi-Dist 485 

conceptualization. We reached the same conclusion when examining the KGE values, which rise 486 
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with greater parameter complexity at calibration sites but no longer follow this pattern strictly at 487 

validation sites.  488 

Interestingly, the Lump-Pooled performs well at the verification sites despite its poor 489 

performance at calibration sites. The Lump-Pooled does not show significant degradation in skill 490 

at Kama compared to the more complex parameterizations, and the flow prediction at Asmar 491 

actually exhibits the best performance of all three model variants. A partial reason for this 492 

unexpected result arises from different overlapping periods in the calibration and validation data 493 

(see Figure 32). The periods used for the calibration for Chitral (1978-1981) and Gawardesh (1975-494 

1978) have no overlapping periods with the one for Asmar (1966-1971), which encompasses those 495 

two sub-basins. Instead, the validation at Asmar is mostly affected by the calibration to Dakah 496 

because of the overlapping 4 years (1968-1971) between those two sites. This explains the reason 497 

why the Lump-Pooled shows high skill at Asmar despite the low skill at its sub-basins. However, 498 

the low model skill at Chaghasarai from the Lump-Pooled propagates to the validation result at 499 

Kama, as these two sites have a relatively long overlapping period (8 years from 1967-1974). 500 

 501 

5.3. Limitations of the Basin Outlet Calibration  502 

In the third experiment the HYMODS_DS was calibrated only to data at the basin outlet 503 

under all levels of parameter complexity, and streamflow records for all 6 sub-basins, as well as 504 

flows at Dakah not used during calibration, are used for model validation. First, we consider the 505 

flows at Dakah. During the calibration period, all three parameterization schemes produce very 506 

accurate streamflow predictions with NSE (KGE) values above 0.95 (0.96) (Figure 78). High 507 

accuracy holds even under the Lump_Outlet, which is somewhat surprising givendespite the 508 

spatial heterogeneity of the basin. While NSE and KGE values at Dakah rise marginally with 509 



25 

 

greater parameter complexity during calibration, this no longer holds during the validation period, 510 

suggesting no benefit with an increase in parameter complexity.  511 

The validation results for the 6 sub-basins demonstrate the danger in relying on outlet data 512 

alone when calibrating a distributed model for flow prediction at interior points. Streamflow 513 

predictions at interior sites exhibit low accuracy and high uncertainty, with the worst performance 514 

at the Daronta site (all NSEs and KGEs are negative). We note that the poor performance at 515 

Daronta is likely due in part to the impacts of water abstraction and the operation of Naglu dam. 516 

Further examination (Figure S4) showed that the HYMOD_DS significantly overestimated 517 

streamflow at Daronta and underestimated flow at three sites in the eastern part of the basin 518 

(Chitral, Gawardesh, and Chaghasarai). Model performance at Kama and Asmar is somewhat 519 

better than the other validation sites, although improvements are not the same across all 520 

parameterizations. The Lump-Outlet predictions at these sites still have low average accuracy 521 

(average NSE < 0.7 and average KGE < 0.6), while the Semi-Outlet exhibits large uncertainty in 522 

performance across the 50 optimization trials. Surprisingly, the over-parameterized Dist-Outlet 523 

shows promising results with high expected accuracy at Kama and Asmar (mean NSE (KGE) of 524 

0.84 (0.71) and 0.90 (0.88), respectively) and comparable performance at many of the other sites. 525 

One exception is Gawardesh, where the Lump-Outlet outperforms the other model variants, 526 

although the reason for this is not immediately clear. Overall, the results indicate that any 527 

calibration based on basin outlet data should be used with substantial caution when predicting 528 

flows at interior basin sites. 529 

After reviewing all of the calibration experiments, it becomes clear that the Semi-Pooled 530 

and Dist-Pooled calibrations provide more robust performance compared to the basin outlet 531 

calibrations due to their improved representation of internal hydrologic processes across the basin. 532 
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To further compare these calibration strategies against one another, we evaluate the variability in 533 

optimal parameters resulting from the 50 trials of the GA algorithm. Figure 8 9 shows the 534 

coefficient of variation (CV) of Cmax (a parameter for the soil moisture account module) over the 535 

basin from all combinations of calibration approaches (the outlet and pooled) and 3 536 

parameterization schemes. A clear pattern of increasing variability (higher uncertainty in Cmax) 537 

emerges as parameter complexity increases for both the outlet and pooled calibration strategies. 538 

That is, the semi- and fully-distributed parameterizations lead to significantly variable parameter 539 

sets that produce similar representations of the observed basin response. Figure 8 9 also suggests 540 

that the equifinality can be alleviated to an extent by pooling data across sites. The pooled 541 

calibration approaches consistently show lower variability in Cmax compared to the outlet 542 

calibration at the same level of parameter complexity. These results are relatively consistent across 543 

the remaining 14 HYMOD_DS parameters. The implications of parameter stability on streamflow 544 

projections under climate change is addressed in the next section.  545 

 546 

5.4. Climate Change Projections of Streamflow with Uncertainty 547 

Here we explore how projections of future water availability and flood risk under climate 548 

change are influenced by the choice of calibration approach. For the Kabul River basin, the CMIP5 549 

GCM projections of monthly total precipitation and mean temperature are shown in Figure S5. 550 

According to the CMIP5 ensemble, precipitation projections show no clear trend; the average 551 

precipitation change in monthly total precipitation fluctuates between -10mm and 10mm. On the 552 

other hand, temperature clearly shows an upward trend for both radiative forcing scenarios. The 553 

average changes in annual temperature are +2.2oC and +2.8oC for RCP4.5 and RCP8.5, which, 554 
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using the Hamon method, correspond to an increase in annual PET by approximately 100mm and 555 

150mm, respectively.  556 

We first examine average monthly streamflow estimates climatology across four 557 

calibration strategies: the Semi-Pooled and Dist-Pooled (most promising calibration strategies), as 558 

well as the Lump-Outlet (as a baseline) and Dist-Outlet (the best outlet calibration strategy). Figure 559 

9 10 shows the monthly streamflow predictions  estimates for the historical period with and the 560 

2050s under the RCP 4.5 and 8.5 scenarios. The the whisker bars indicatinge the uncertainty range 561 

across the 50 calibration trials; . The monthly streamflow predictions are also provided for the 562 

2050s under the RCP 4.5 and 8.5 scenarios. For the future scenarios, the whisker bars are derived 563 

by averaging over the 36 different climate projections for each of the 50 trials. For the historical 564 

time period, all calibration schemes match the observed monthly streamflow climatology at Dakah 565 

well, but monthly streamflow is underestimated in most of months at Kama and Asmar under the 566 

basin outlet calibrations, particularly by the Lump-Outlet. The historical monthly streamflow 567 

estimates streamflow climatology from the outlet calibration strategies also tends to be highly 568 

uncertain for the months of June, July, August, and September, especially compared to the 569 

SemiPool and DistPool.  570 

Under future climate projections for the 2050s, the four calibration strategies show similar 571 

changes in climatology monthly streamflow at Dakah, but the magnitudes of change are somewhat 572 

different. All calibration strategies suggest reduction in streamflow for June, July, and August 573 

under both RCP4.5 and RCP8.5 scenarios. Also, the peak monthly flow, which occurred in June 574 

or July in the historical period, is shifted to May at Dakah. However, the Lump-Outlet predicts 575 

less reduction of flow in June and July and a greater reduction in August and September as 576 

compared to the other three calibrations. Considering that all calibration schemes had similar levels 577 
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of good performance at this site for both calibration and validation periods, it is notable that they 578 

project future streamflow climatology somewhat differently.  579 

Future monthly streamflow predictions climatology at Kama and Asmar vary widely 580 

between the four calibration schemes, mostly an artifact of their historic differences (Figure 910). 581 

Streamflow projections under the outlet calibration strategies tend to show large uncertainties at 582 

these two sites, particularly the Lump-Outlet calibration. For three months, July through 583 

September, the outlet calibration and pooled calibration strategies provide substantially different 584 

insights about future water availability at Kama and Asmar. The outlet calibrations suggest less 585 

water with large uncertainties for those months as compared to the pooled calibrations. At Kama, 586 

the pooled calibrations suggest significant changes in the pattern of peak monthly flow timing 587 

under both RCP scenarios; instead of having a clear peak in July, streamflow from May to August 588 

show similar amounts of water. 589 

To further understand the sources of uncertainty in future water availability, we evaluate 590 

the separate and joint influence of uncertainties in parameter estimation and future climate on 591 

seasonal streamflow projections across all calibration schemes. Figure 10 11 represents the 592 

uncertainty of wet and dry seasonal streamflow at Dakah from three sources: 1) parameter 593 

calibration uncertainty across the 50 trials, with future climate uncertainty averaged out for each 594 

trial, 2) future climate uncertainty across the 36 projections, with parameter calibration uncertainty 595 

averaged out across the 50 trials, and 3) the combined uncertainty across all 1800 (50×36) 596 

simulations. The results suggest somewhat surprisingly that uncertainty reduction can be expected 597 

as parameter complexity increases, and less surprisingly, by applying pooled calibration 598 

approaches. Another clear point is that the uncertainty resulting from different climate change 599 

scenarios substantially outweighs that from parameter calibration uncertainty.     600 
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Up to this point, there has been little difference between the Semi-Pooled and Dist-Pooled 601 

model variants. These two versions were further analyzed with respect to extreme streamflow to 602 

see if distinguishing characteristics emerge. It has been demonstrated that clear gains in predicting 603 

peak flows from distributed models are noticeable (Reed et al., 2004) and spatial variability in 604 

model parameters significantly influence the runoff behavior (Brath and Montanari, 2000; Pokhrel 605 

and Gupta, 2011). The spatial variability of optimal parameters derived from the Semi-Pooled and 606 

Dist-Pooled was is shown in Figure S6, with larger variability across all parameters for the Dist-607 

Pooled than for the Semi-Pooled. To understand the effects of parameter spatial variability and 608 

calibration uncertainty of parameters on extreme event estimation, the 100-year flood100-year 609 

daily flood event was calculated under the Semi-Pooled and Dist-Pooled for each of the 50 historic 610 

simulations and 1800 future simulations across both RCP scenarios. Although the inter-model 611 

comparison is intended to be a useful addition that provides a distinction between the 612 

parameterization schemes in the pooled calibration approach, results from this analysis should be 613 

viewed in the context of a theoretical calibration exercise, not for decision-making purposes, 614 

because no observed daily streamflow is available against which to compare the estimated 100-615 

year daily flood events. While no observed data is available against which to compare the results, 616 

an inter-model comparison is useful to distinguish the differences between the parameterization 617 

schemes. Projections of the 100-year flood100-year daily flood, estimated using a Log-Pearson 618 

type III distribution fit to annual peaks of 30 years, differ somewhat between the Semi-Pooled and 619 

Dist-Pooled (Figure 1112). At 3 validation sites, extreme floods are consistently larger under the 620 

Semi-Pooled than the Dist-Pooled, and the mean difference in the 100-year flood100-year daily 621 

flood estimate between the two calibration approaches grows between the historic runs and the 622 

RCP 4.5 and 8.5 scenarios. This suggests that the flood-generation process is fundamentally 623 
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different between the two parameterizations, with the Semi-Pooled formalization magnifying the 624 

effect of climate change on extremes. Furthermore, there is substantially more uncertainty in the 625 

100-year flood100-year daily flood estimate under the Semi-Pooled. Figure 11 12 shows the 626 

combined uncertainty across both climate projections and calibrations, but this uncertainty is 627 

broken down further in Figure 1213. Similar to Figure 1011, 3 sources of uncertainty are evaluated 628 

for the 100-year flood100-year daily flood, including parameter calibration uncertainty alone, 629 

climate projection uncertainty alone, and their combined effect. For both the Semi-Pooled and 630 

Dist-Pooled, parameter calibration uncertainty has a smaller influence than projection 631 

uncertainties, and for all sites, the Dist-Pooled has a smaller uncertainty range than the Semi-632 

Pooled, even for parameter calibration uncertainty alone. This was a truly surprising result, given 633 

the parametric freedom in the Dist-Pooled model and the fact that no daily data was ever used in 634 

the calibration of either model. It appears that a lack of model parsimony does not necessarily lead 635 

to greater uncertainty in model simulations under different climate conditions, somewhat counter 636 

to what would be expected of over-fit models. One possible reason for this result would be if 637 

increased parametric freedom somehow offset the effects of structural deficiencies in the model. 638 

However, further research is needed to investigate this issue.  639 

 640 

6. Discussion and Conclusion 641 

In this study we examined a variety of calibration experiments to better understand the 642 

benefits and costs associated with different calibration choices for a complex, distributed 643 

hydrologic model in a data-scarce region. The goal of these experiments was to provide insight 644 

regarding the use of multisite data in calibration, the effects of parameter complexity, and the 645 
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challenges of using limited data for distributed model calibration, all in the context of projecting 646 

future streamflow under climate change.  647 

This study tested two multi-site calibration strategies, the stepwise and pooled approaches, 648 

finding that the pooled approach using all data simultaneously provides improved calibration 649 

results. This suggests that small sacrifices of model performance at certain sites can improve and 650 

stabilize basin-wide performance. The pooled calibration substantially improves with increasing 651 

parameter complexity at the calibration sites, but the similar streamflow predictions at the 652 

validation sites between the semi-distributed and distributed pooled calibrations were found, 653 

suggesting over-fitting of the model from the fully distributed conceptualization. It is worth noting 654 

that for the transformation of rainfall to runoff, up to five or six parameters can be identified on 655 

the basis of a single hydrograph (Wagner et al., 2001). Under this premise, the number of the 656 

HYMOD_DS parameters being calibrated in the semi-distributed approach remains realistic, but 657 

the fully distributed parameterization scheme likely causes poor identifiability of the parameters. 658 

Thus, pursuing a parsimonious configuration (e.g. optimization for a small portion of the 659 

parameters) with an effort to increase the amount of information (e.g. multivariable/multisite) is 660 

critical in the calibration of watershed system models (Gupta et al., 1998; Efstratiadis et al., 2008). 661 

We also note the important role of experienced hydrologists in designing a parsimonious 662 

hydrologic calibration (e.g. Boyle et al., 2000). In this study, the feasible ranges of the 663 

HYMOD_DS parameters were kept wide (as is often done in automatic hydrologic calibrations) 664 

without consideration of the physical properties of the basin; the judgment of local hydrologic 665 

experts could help reduce the feasible ranges used during the calibration and thus contribute to a 666 

reduction of calibration uncertainty. 667 
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Calibration only based on data at the basin outlet is all too common in hydrologic model 668 

applications and is sometimes considered comparable to multisite calibrations even for predictions 669 

at interior gauges (Lerat et al., 2012). In contrast, others have reported improvements in interior 670 

flow predictions by using internal flow measurements (Anderson et al., 2001; Wang et al., 2012; 671 

Boscarello et al., 2013). This is in agreement with the finding from this study, demonstrating the 672 

superiority of the pooled calibration approach to the basin outlet calibration in terms of its ability 673 

to represent interior hydrologic response correctly. This study shows the danger in relying on an 674 

outlet calibration for interior flow prediction. 675 

It is difficult to expect hydrologic models to yield reliable streamflow estimates at interior 676 

locations of a watershed when calibration is only based on data at the basin outlet, yet this is all 677 

too common in hydrologic model applications. The pooled calibration approach is superior to the 678 

basin outlet calibration in terms of its ability to represent interior hydrologic response correctly. 679 

This study shows the danger in relying on an outlet calibration for interior flow prediction. 680 

It was shown that caution is needed when using an outlet calibration approach for 681 

streamflow predictions under future climate conditions. This study showed that the basin outlet 682 

calibration can lead to projections of mid-21st century streamflow that deviate substantially from 683 

projections under multisite calibration strategies. From the test of implications of the pooled 684 

calibration in the context of climate change, it was found that applying the pooled calibration with 685 

semi-distributed and distributed parameter formulations showed clear gains in reducing 686 

uncertainties in predictions of monthly and seasonal water availability as compared to the basin 687 

outlet calibrations. Surprisingly, increased parameter complexity in the calibration strategies does 688 

did not increase the uncertainty in streamflow projections, even though parameter equifinality does 689 
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did emerge. The results suggest that increased (excessive) parameter complexity does not always 690 

lead to increased uncertainty if structural uncertainties in the model are present.  691 

The semi-distributed pooled and distributed pooled calibrations are very similar for 692 

monthly streamflow projections, yet differ in their projections of extreme flows in part due to their 693 

differences in the spatial variability of optimal parameters, with the distributed pooled calibration 694 

showing less uncertainty for 100 year flood100-year daily flood events. We evaluated the separate 695 

and joint influence of uncertainties in parameter estimation and future climate on projections of 696 

seasonal streamflow and 100-year flood100-year daily flood across calibration schemes and found 697 

that the uncertainty resulting from variations in projected climate between the CMIP5 GCMs 698 

substantially outweighs the calibration uncertainty. These results agree with other studies showing 699 

the dominance of GCM uncertainty in future hydrologic projections (Chen et al., 2011; Exbrayat 700 

et al., 2014). While the GCM-based simulations still have widespread use in assessing the impacts 701 

of climate change on water resources availability, the bounds of uncertainty resulting from an 702 

ensemble of GCMs cannot be well-defined because of the low credibility with which GCMs are 703 

able to produce timeseries of future climate (Koutsoyiannis et al., 2008). This issue hinders a 704 

straightforward appraisal of future water availability under climate change and has motivated other 705 

efforts; e.g. performance-based selection of GCMs (Perez et al., 2014). 706 

In addition to the uncertainties surrounding model parameters and future climate explored 707 

in this study, there is also significant uncertainty in streamflow projections stemming from 708 

structural differences between applied hydrologic models, which can be especially pertinent where 709 

robust calibration is hampered by the scarcity of data (Exbrayat et al., 2014). Further, the residual 710 

error variance of hydrologic model simulations would increase the effects of hydrologic model 711 

uncertainty as compared to that of the climate projections (Steinschneider et al., 2014). These 712 
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issues need to be addressed in future work for exploring a comprehensive uncertainty assessment 713 

of climate change risk for poorly monitored hydrologic systems. 714 

Successful automatic calibration algorithms for hydrologic models are based primarily on 715 

global optimization algorithms that are computationally expensive and require a large number of 716 

function evaluations (Kuzmin et al., 2008). Although the speed and capacity of computers have 717 

increased multi-fold in the past several decades, the time consumed by running hydrological 718 

models (especially complex, physically based, distributed hydrological models) is still a concern 719 

for hydrology practitioners. A single trial of parameter optimization of HYMOD_DS associated 720 

with 100,000 runs can take 28 days on a single processor (Figure S7). Accordingly, Tthe use of 721 

high performance computing power was essential in this study to better understand the 722 

implications of different calibration choices and their associated uncertainty for streamflow 723 

projections. Enhanced data with high spatial and temporal resolution are increasingly available 724 

from remote sensing and satellite products. In the future, remote sensing and satellite information 725 

can be integrated into calibration approaches to develop more robust estimates of spatially 726 

distributed parameter values, for enabling internal consistency of distributed hydrological 727 

modeling. Significant progress has been made toward this end (Tang et al., 2009; Khan et al., 2011; 728 

Thirel et al., 2013). Future work will consider using advanced computing techniqueshigh 729 

performance computing power (e.g. Laloy and Vrugt, 2012; Zhang et al., 2013) to understand how 730 

such information can enhance the hydrologic simulation at ungaged sites and reduce the parameter 731 

calibration uncertainty of distributed hydrologic models in data-scarce regions. 732 

  733 
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Tables 984 

 985 

Table 1 Streamflow gaging stations in the Kabul River basin. 986 

Name River Station ID 

Drainage 

Area 

(km2) 

Data Period 

Start End 

Dakah Kabul 
USGS 341400071020000/ 

GRDC 2240100 
67,370 1968.2 1980.7 

Pul-i-Kama Kunar 
USGS 342800070330000/ 

GRDC 2240200 
26,005 1967.1 1979.9 

Asmar Kunar USGS 345300071100000 19,960 1960.3 1971.9 

Chitral Kunar GRDC 2340200 11,396 1978.1 1981.12 

Chaghasarai Pech 
USGS 345400071080000/ 

GRDC 2240210 
3855 1960.2 1979.2 

Gawardesh Landaisin USGS 352300071320000 3,130 1975.5 1978.6 

Daronta Kabul 
USGS 342800070220000/ 

GRDC 2240101 
34,375 1959.10 1964.9 

Dual station ID for stations archived in both USGS and GRDC database 987 

Data 

Source 

Station 

Name 
River 

Data Period Physiographic Property Basin Climate 

Start End 

Drainage 

Area 

(km2) 

Glacier 

Area 

(%) 

Mean 

Elev 

(m) 

Mean 

Annual 

Prcp 

(mm) 

Mean 

Annual 

Mean 

Temp 

(oC) 

Mean 

Annual 

Flow 

(mm) 

USGS/ 

GRDC 
Dakah Kabul 1968/2 1980/7 67,370 2.9 2,883 418 7.7 282 

USGS/ 

GRDC 
Pul-i-Kama Kunar 1967/1 1979/9 26,005 7.3 3,446 446 5.6 573 

USGS Asmar Kunar 1960/3 1971/9 19,960 9.4 3,716 483 4.1 651 

GRDC Chitral Kunar 1978/1 1981/12 11,396 14.4 4,126 518 2.1 698 

USGS Gawardesh Landaisin 1975/5 1978/6 3,130 2.1 3,707 555 4.5 521 

USGS/ 

GRDC 
Chaghasarai Pech 1960/2 1979/2 3,855 0.4 3,141 482 7.4 535 
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USGS/ 

GRDC 
Daronta Kabul 1959/10 1964/9 34,375 0.3 2,722 350 8.0 165 
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 989 

Table 2 HYMOD_DS parameters. 990 

Parameter 

Name 
Description 

Feasible Range 

Lower 

Bound 

Upper 

Bound 

Coeff Hamon potential evapotranspiration coefficient 0.1 2 

Cmax Maximum soil moisture capacity [mm] 5 1500 

Β Shape for the storage capacity distribution function 0.01 1.99 

α Direct runoff and base flow split factor 0.01 0.99 

Ks Release coefficient of groundwater reservoir 0.00005 0.001 

DDFs Degree day snow melt factor [mm·oC·day-1] 0.001 10 

Tth Snow melt temperature threshold  [°C] 0 5 

Ts Snow/rain temperature threshold [°C] 0 5 

r Glacier melt rate factor 1 2 

Kg Glacier storage release coefficient 0.01 0.99 

Tg Glacier melt temperature threshold [°C] 0 5 

N Unit hydrograph shape parameter 1 99 

Kq Unit hydrograph scale parameter 0.01 0.99 

Velo Wave velocity in the channel routing [m·s-1] 0.5 5 

Diff Diffusivity in the channel routing [m2·s-1] 200 4000 

 991 
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Figures 993 
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 995 

Figure 1. Kabul River basin. 996 
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 998 

Figure 32. Streamflow data usage for the model calibration and validation. 999 
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 1001 

Figure 43. Distributed version of HYMOD model (HYMOD_DS). 1002 
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 1004 

Figure 24. Model structure based on climate input grids and three different parameterization 1005 

concepts. 1006 
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 1008 

Figure 5. (a) Sub-basins corresponding to five gaging stations are used for the multisite 1009 

calibrations. (b) Two sub-basins (Kama and Asmar) are assumed to be ungaged and used for 1010 

evaluating the calibration approaches.  1011 
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 1012 

Figure 56. Comparison of the stepwise and pooled calibrations under the semi-distributed 1013 

parameterization. Each calibration is conducted 50 times. Values on the bottom represent expected 1014 

values of NSE (in upper row) and KGE (within parenthesis in lower row) from 50 calibrations. 1015 

  1016 



56 

 

 1017 

Figure 67. Comparison of the pooled calibrations for the 3 parameterizations of lumped, semi-1018 

distributed, and distributed. Each calibration is conducted 50 times. Values on the bottom represent 1019 

expected values of NSE (in upper row) and KGE (within parenthesis in lower row) from 50 1020 

calibrations. 1021 
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 1023 

Figure 78. Comparison of the basin outlet calibrations for the 3 parameterizations of lumped, semi-1024 

distributed, and distributed. Each calibration is conducted 50 times. Values on the bottom represent 1025 

expected values of NSE (in upper row) and KGE (within parenthesis in lower row) from 50 1026 

calibrations. 1027 
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 1029 

Figure 89. Coefficient of variation (CV) of 50 optimal values of Cmax (parameter for the soil 1030 

moisture accounting module in the HYMOD_DS) from the basin outlet calibrations (left panel) 1031 

and the pooled calibrations (right panel). 1032 
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 1034 

Figure 910. Historical and 2050s average monthly streamflow climatology predictions at Dakah, 1035 

Kama, and Asmar under 4 calibration strategies: Lump-Outlet, Dist-Outlet, Semi-Pooled, and Dist-1036 

Pooled. The error bars represent the streamflow ranges resulting from 50 trails of the HYMOD_DS 1037 

calibration. For each of the 50 trials, the 2050s streamflow predictions are averaged over 36 GCM 1038 

climate projections.   1039 

  1040 



60 

 

 1041 

 1042 

Figure 1011. Uncertainties in wet and dry season 2050s  average streamflow climatology 1043 

predictions for 2050s of wet and dry seasons  are derived from the basin outlet and pooled 1044 

calibrations for Dakah. Uncertainties are evaluated by coefficient of variation (CV) of average 1045 
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season streamflow predictions. Three uncertainty sources are considered: parameter calibration 1046 

uncertainty across 50 calibration trials (Par), climate uncertainty across GCM projections (Clim), 1047 

and combined uncertainty (Joint). 1048 
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 1050 

Figure 1112. Comparison of GCM average 100-year flood100-year daily flood events derived 1051 

from the semi-distributed and distributed pooled calibrations. The uncertainty range is from 50 1052 

trials of the model calibration.  1053 
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 1056 

Figure 1213. Uncertainties in 100-year daily flood estimates for 2050s Impact of three 1057 

uncertainties on 100-year flood events are assessed using derived from the Semi-Pooled and Dist-1058 

Pooled calibrations. Uncertainties are evaluated by calculating coefficient of variation (CV) of 1059 

2050s 100-year flood estimates under three uncertainty sources: calibration uncertainty across 50 1060 

calibration trials (Par), climate uncertainty across GCM projections (Clim), and combined 1061 

uncertainty (Joint). 1062 
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Supplementary materials 1064 

 1065 

Figure S1. (a) Sub-basins corresponding to five gaging stations are used for the multisite 1066 

calibrations. (b) Two sub-basins (Kama and Asmar) are assumed to be ungaged and used for 1067 

evaluating the calibration approaches. 1068 
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 1070 

Figure S2S1. Comparison of climatology of basin-wise average monthly precipitation and 1071 

temperature for the Kabul River basin. Sources of data sets: APHRODITE (Asian Precipitation 1072 

High-Resolved Observational Data Integration Towards Evaluation), CRU (Climatic Research 1073 

Unit), GPCC (Global Precipitation Climatology Centre), UD (University of Delaware). 1074 
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 1076 

Figure S3S2. Glacial coverage in the Kabul River basin based on the Randolph Glacier Inventory 1077 

version 3.2. Glacier volume scaling relationship proposed by Grinsted (2013) is applied to derive 1078 

glacier volume. Numbers in red represent glacier depths in meter of water for grid cells containing 1079 

glaciers. 1080 
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 1082 

Figure S3. (a) Basin outlet (Dakah) simulations of HYMOD and MYMOD_DS (with the lumped 1083 

parameterization) from 50 trials of calibration. The Box plots provide the performance evaluation 1084 

on 50 simulations of both models for both calibration and validation periods. (b) Performances of 1085 

the models at the interior points of the watershed are assessed. 1086 
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 1088 

 1089 

Figure S4. HYMOD_DS streamflow simulations at sub-basins from 50 trials of the basin outlet 1090 

calibration under the lumped parameterization. 1091 
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 1093 

Figure S5. CMIP5 climate change projections of precipitation and temperature for the Kabul basin. 1094 

The changes in climatology of average monthly total precipitation and mean temperature for the 1095 

future period 2050s (2036-2065) were calculated from the comparison with the historical period 1096 

(1976-2005). 36 GCMs were employed in this analysis. 1097 
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 1099 

Figure S6. Spatial variability of the HYMOD_DS parameters. a) An example with Cmax showing 1100 

parameter ranges resulting from the single trail of Semi-Pooled and Dist-Pooled. b) Average 1101 

spatial variability across 50 trials of calibration for all 15 parameters. Error bar in b) represents the 1102 

range of parameter spatial variability from the 50 trails. 1103 
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 1105 

 1106 

Figure S7. HYMOD_DS run time on parallel computing system. 1107 
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