
HESSD
11, 10179–10233, 2014

Estimation of
predictive hydrologic

uncertainty using
quantile regression

N. Dogulu et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Hydrol. Earth Syst. Sci. Discuss., 11, 10179–10233, 2014
www.hydrol-earth-syst-sci-discuss.net/11/10179/2014/
doi:10.5194/hessd-11-10179-2014
© Author(s) 2014. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Hydrology and Earth System
Sciences (HESS). Please refer to the corresponding final paper in HESS if available.

Estimation of predictive hydrologic
uncertainty using quantile regression and
UNEEC methods and their comparison on
contrasting catchments

N. Dogulu1,*, P. López López1,2,**,***, D. P. Solomatine1,3, A. H. Weerts2,4, and
D. L. Shrestha5

1UNESCO-IHE Institute for Water Education, Delft, the Netherlands
2Deltares, Delft, the Netherlands
3Water Resources Section, Delft University of Technology, Delft, the Netherlands
4Wageningen University and Research Centre, Hydrology and Quantitative Water
Management Group, Wageningen, the Netherlands
5CSIRO Land and Water, Highett, Victoria, Australia
*now at: Middle East Technical University, Ankara, Turkey
**now at: Utrecht University, Utrecht, the Netherlands
***now at: Deltares, Delft, the Netherlands

10179

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/10179/2014/hessd-11-10179-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/10179/2014/hessd-11-10179-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 10179–10233, 2014

Estimation of
predictive hydrologic

uncertainty using
quantile regression

N. Dogulu et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Received: 14 July 2014 – Accepted: 3 August 2014 – Published: 10 September 2014

Correspondence to: N. Dogulu (ndogulu@metu.edu.tr)

Published by Copernicus Publications on behalf of the European Geosciences Union.

10180

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/10179/2014/hessd-11-10179-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/10179/2014/hessd-11-10179-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 10179–10233, 2014

Estimation of
predictive hydrologic

uncertainty using
quantile regression

N. Dogulu et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Abstract

In operational hydrology, estimation of predictive uncertainty of hydrological models
used for flood modelling is essential for risk based decision making for flood warn-
ing and emergency management. In the literature, there exists a variety of methods
analyzing and predicting uncertainty. However, case studies comparing performance5

of these methods, most particularly predictive uncertainty methods, are limited. This
paper focuses on two predictive uncertainty methods that differ in their methodolog-
ical complexity: quantile regression (QR) and UNcertainty Estimation based on local
Errors and Clustering (UNEEC), aiming at identifying possible advantages and disad-
vantages of these methods (both estimating residual uncertainty) based on their com-10

parative performance. We test these two methods on several catchments (from UK)
that vary in its hydrological characteristics and models. Special attention is given to the
errors for high flow/water level conditions. Furthermore, normality of model residuals
is discussed in view of clustering approach employed within the framework of UNEEC
method. It is found that basin lag time and forecast lead time have great impact on15

quantification of uncertainty (in the form of two quantiles) and achievement of normal-
ity in model residuals’ distribution. In general, uncertainty analysis results from different
case studies indicate that both methods give similar results. However, it is also shown
that UNEEC method provides better performance than QR for small catchments with
changing hydrological dynamics, i.e. rapid response catchments. We recommend that20

more case studies of catchments from regions of distinct hydrologic behaviour, with
diverse climatic conditions, and having various hydrological features be tested.

1 Introduction

Importance of accounting for uncertainty in hydrological models used in flood early
warning systems is widely recognised (e.g. Krzysztofowicz, 2001; Pappenberger and25

Beven, 2006). Such an uncertainty in the model prediction stems mainly from the
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four important sources: perceptual model uncertainty, data uncertainty, parameter es-
timation uncertainty, and model structural uncertainty (e.g. Solomatine and Wagener,
2011). Estimation of predictive uncertainty (Coccia and Todini, 2011) of hydrological
models used for flood modeling enable hydrologists and managers to achieve better
risk based decision making and thus has the potential to increase the reliability and5

credibility of flood warning. Therefore, the necessity of estimating predictive uncer-
tainty of rainfall–runoff models is broadly acknowledged in operational hydrology, and
the management of uncertainty in hydrologic predictions has emerged as a major fo-
cus of interest in both research and operational modelling (Wagener and Gupta, 2005;
Liu and Gupta, 2007; Montanari, 2007; Todini, 2008). In this respect comparing dif-10

ferent methods, which are often developed and tested in isolation, receives attention
of researchers, e.g. as suggested within the HEPEX framework (see van Andel et al.,
2013).

While the discussions on the necessity of evaluating the contribution of various
sources of errors to the overall model uncertainty are going for a long time (see, e.g.15

Gupta et al., 2005; Brown and Heuvelink, 2005; Liu and Gupta, 2007), there have been
also attempts to estimate the residual uncertainty. By residual uncertainty, we under-
stand the remaining model uncertainty assuming that other sources were accounted
for (for example by calibrating the parameters), or not considered (all other sources like
inaccurate rating curve, inputs, etc.) (Solomatine and Shrestha, 2009). We recognize20

that there are many sources of uncertainty leading to uncertainty in the model output
(their influence is typically explored by running Monte Carlo experiments). However in
this paper we consider the uncertainty of model outputs, assuming that parameters,
inputs and the data used for model calibration are known (so we don’t consider their
uncertainty explicitly). Within this context, a (residual) model error is seen as a mani-25

festation of the (residual) model uncertainty.
To analyze and capture residual uncertainty, statistical methods are often used.

The prediction bounds are estimated by either purely statistical methods, e.g. meta-
Gaussian approach (Montanari and Brath, 2004; Todini, 2008; Regianni and Weerts,
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2008; Regianni et al., 2009), quantile regression (QR; Solomatine and Shrestha; 2009;
Weerts et al., 2011), regression analysis on absolute errors (DUMBRAE; Pianosi and
Raso, 2012); or machine learning techniques (UNEEC; see, e.g. Shrestha and Soloma-
tine, 2006; Solomatine and Shrestha; 2009), and wavelet analysis (Bogner and Pap-
penberger, 2011). In this paper we consider two methods that differ in their method-5

ological complexity: quantile regression (QR) and UNcertainty Estimation based on
local Errors and Clustering (UNEEC).

Quantile regression (Koenker and Basset, 1978; Koenker and Hallock, 2001;
Koenker, 2005) is a statistical regression technique that models the relationship be-
tween one or more predictors (inputs) and the predictand (response variable). In QR,10

a regression model is developed for selected quantiles of the conditional distribution
of the response variable (discharge or water level in the present research study). This
methodology allows for examining the entire distribution of the variable of interest rather
than a single measure of the central tendency of its distribution (Koenker, 2005). QR
models have been used in a broad range of applications, such as economics and finan-15

cial market analysis (Kudryavtsev, 2009; Taylor, 2007), agriculture (Barnwal and Kotani,
2013), meteorology (Bremnes, 2004; Friederichs and Hense, 2007; Cannon, 2011),
wind forecasting (Nielsen et al., 2006; Møller et al., 2008), the prediction of ozone con-
centrations (Baur et al., 2004; Munir et al., 2012), etc. In hydrological modelling the
QR method has been applied as an uncertainty post-processing technique in previous20

research studies with different configurations. The configurations differ mainly in two
aspects: treatment of quantiles crossing problem and the quantiles derivation in nor-
mal space using the Normal Quantile Transformation (NQT). Solomatine and Shrestha
(2009) make use of the classical QR approach, without considering quantiles crossing
and NQT. Weerts et al. (2011), Verkade and Werner (2011), and Roscoe et al. (2012)25

apply QR to various deterministic hydrologic forecasts. QR configuration investigated
in these studies uses the water level or discharge forecasts as predictors to estimate
the distribution quantiles of the model error. It includes a transformation into normal
space using the NQT and the quantile crossing problem is addressed imposing a fixed
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distribution of the predictand in the crossing domain. Singh et al. (2013) make use of
a similar configuration differentiating two cases based on the similarities in information
content between calibration and validation data periods. However, López López et al.
(2014) apply QR to predict the quantiles of the environmental variables itself (water
level) rather than the quantiles of the model error, and the four different configurations5

of QR are compared and extensively verified.
UNEEC was introduced in 2006 (Shrestha and Solomatine, 2006; Shrestha et al.,

2006). The method builds a regression model to estimate the quantiles of the error
distribution; however it is not an autoregressive model (as in QR). UNEEC employs
more complicated machine learning approaches and is based on the recognition that10

residual uncertainty depends on a number of variables characterising the state of the
modelled system. Another notable characteristic of UNEEC is the local modelling of
errors (through clustering) so that particularities of different hydrometeorological con-
ditions, i.e. heterogeneities inherent in rainfall–runoff process, are represented through
different error pdfs. Shrestha and Solomatine (2006) tested the UNEEC method on15

Sieve catchment in Italy based on the estimates of lower and upper prediction limits
corresponding to 90 % confidence level. The method was also applied to a different
catchment (Brue, in UK; HBV model) and its performance was compared with GLUE
(Beven and Binley, 1992) and meta-Gaussian approach (Montanari and Brath, 2004).
It was reported that the uncertainty estimates obtained by UNEEC were in fact more20

acceptable and interpretable than those obtained by the other methods. UNEEC was
further extended to estimate several quantiles (thus approximating full pdf of the er-
ror distribution) and applied to Bagmati catchment in Nepal (Solomatine and Shrestha,
2009), and it was compared to several other methods including QR. It was found that
UNEEC method generated consistent and interpretable results which are more accu-25

rate and reliable than QR. Pianosi et al. (2010) extended UNEEC so as to include para-
metric uncertainty (UNEEC-P), however local features of uncertainty were not consid-
ered. Nasseri et al. (2014) compared UNEEC with methods which are mainly based on
the fuzzy extension principle: IMFEP (Incremental Modified Fuzzy Extension Principle)
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and MFEP (Modified Fuzzy Extension Principle). It was seen that the methods pro-
vided similar performance on the two monthly water balance models for the two basins
in Iran and France.

Solomatine and Shrestha (2009) presented their initial experiments to compare QR
and UNEEC on one case study, and Weerts et al. (2011) discussed the experience5

with QR on another one. In this paper we go further and test the newer variants of
these methods on several contrasting catchments that cover a wide range of climatic
conditions and hydrological characteristics. The motivation here is to identify possible
advantages and disadvantages of using QR and UNEEC methods based on their com-
parative performance, especially during flooding conditions (i.e. for the data cluster as-10

sociated with high flow/water level conditions). The knowledge gaps regarding the use
of the methods with different parameterizations are addressed. For example, we now
incorporate in UNEEC the autoregressive component by considering past error values
(in addition to discharge and effective rainfall) in one case study, and model outputs for
the state variables soil moisture deficit (SMD) and groundwater level (GW) are used as15

predictors (in addition to water level) in another case study. In QR, the linear regression
model was established to predict the quantiles of observed water levels conditioned on
simulated/forecasted water levels. Furthermore, we present results of statistical analy-
sis of error time series to better understand (hydrological) models’ quality in relation to
its effect on uncertainty analysis results, and to discuss the assumption of normality in20

the model residuals, particularly in view of the clustering approach employed within the
framework of UNEEC method. We apply methods to estimate predictive uncertainty in
Brue catchment (southwest UK) and Upper Severn catchments – Yeaton, Llanyblod-
wel, and Llanerfyl (Midlands, UK).

The remainder of the paper is structured as follows. The next section describes the25

residual uncertainty analysis methods (QR and UNEEC) and the validation measures
used. Section 3 describes the studied catchments and the conducted experiments. The
results for error and uncertainty analyses are presented and discussed in Sect. 4. In
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Sect. 5 the main conclusions from the study and recommendations for future work are
presented.

2 Methodology

2.1 Uncertainty analysis methods

As in Solomatine and Shrestha (2009) and Weerts et al. (2011), we consider a deter-5

ministic (hydrological) model M of a catchment predicting a system output variable ŷ
given the input data matrix x, and the vector of model parameters θ . There are vari-
ous sources of error associated with the model output (e.g. discharge), so the system
response (i.e. actual discharge) can be expressed as:

yt+LT = ŷ +e =M(x,θ )+e (1)10

where e is the total residual error (in the remainder of the text, the terms “model error”
and “model residual” is used interchangeably to refer to e). The model M can be used in
two modes depending on the relation between the lead time (LT: the duration between
time of forecast and time for which the forecast is made) of interest and the model time15

step (∆t):{
simulation mode, LT = 1 ·∆t
forecasting mode, LT > 1 ·∆t

(2)

Given the model structure M, and the parameter set Q, the uncertainty analysis meth-
ods used in this study, namely QR and UNEEC, estimate the residual uncertainty of a20

calibrated hydrological model whose parameters and inputs are assumed to be known
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exactly. In this setup the different sources of uncertainty are not distinguished explic-
itly. In both methods, the uncertainty model U predicts the quantile value qτ and is
calibrated for different quantiles (τ), and for various lead times (LT) separately:

qτ
t+LT = U(I,λ) (3)

5

where I is the input data matrix, and λ is the vector of model parameters. In a simplest
case when number of quantiles is 2, they form the confidence level (e.g. 90 %) and
the corresponding confidence interval, CI. The quantiles computed in this study are
τ = 0.05, 0.25, 0.75, and 0.95 allowing for forming the 50 and 90 % confidence intervals.

2.1.1 Quantile regression10

As mentioned, several QR configurations have been previously investigated for estimat-
ing the residual uncertainty. Last research by López López et al. (2014) compares and
verifies four alternative configurations of QR for several catchments at the Upper Sev-
ern River. The comparative analysis includes different experiments on the derivation
of regression quantiles in original and in normal space using NQT, a piecewise linear15

configuration considering independent predictand domains and avoiding the quantiles
crossing problem with a relatively recent technique (Bondell et al., 2010). Results show
similar performance with all configurations in terms of reliability, sharpness and reso-
lution. Due to this, the variant called “QR1: non-crossing Quantile Regresssion” was
applied in the present study. QR1 estimates the quantiles of the distribution of water20

level or discharge in the original domain, without any initial transformation and avoids
the quantiles crossing problem with the methodology proposed by Bondell et al. (2010).
A brief description of the QR configuration used in the present work is given below (for
details the reader is referred e.g. to López López et al., 2014).

For every quantile τ, we assume a linear relationship between the forecasted (or25

predicted) value, ŝ, and the real observed value, s,

s = aτ ŝ+bτ (4)
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where aτ and bτ are the parameters of linear regression. By minimising the sum of
residuals, one can find the parameters aτ and bτ:

min
J∑

j=1

ρτ(sj − (aτ ŝj +bτ)) (5)

where sj and ŝj are the j th paired samples from a total of J samples and ρτ is the5

quantile regression function for the quantile τ:

ρτ(εj ) =

{
(τ−1) ·εj , εj ≤ 0

τ ·εj , εj ≥ 0
(6)

Equation (6) is applied for the error (εj ), which is defined as the difference between the
observation (sj ) and the linear QR estimate (aτ ŝj +bτ) for the selected quantile τ.10

Figure 1 illustrates the estimation of a selection of quantiles, including 0.95, 0.75,
0.25 and 0.05 quantiles. To obtain the QR function for a specific quantile, e.g. τ = 0.05,
Eqs. (5) and (6) are applied as follows:

ρ0.05(εj ) =

{
−0.95 ·εj , εj ≤ 0

0.05 ·εj , εj ≥ 0
(7)

15

In case of an ideal model, the 95 % of observed-forecasted pairs would be located
above τ = 0.05 quantile linear regression line, and 5 % would remain below it. Consid-
ering the two observed-forecasted pairs of the total of J samples, j = 1 and j = 2, their
corresponding errors, ε1 and ε2, are:

ε1 = s1 − (a0.05ŝ1 +b0.05) < 020

ε2 = s2 − (a0.05ŝ2 +b0.05) > 0 (8)
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Introducing both values in Eq. (5), QR allows for solving the minimization problem
calculating the regression parameters a0.05 and b0.05 for this particular quantile τ =
0.05:

min(−0.95 ·ε1 +0.05 ·ε2 + . . .+ρ0.05(εJ )) (9)
5

The procedure explained here can be extended for any quantile, τ.

2.1.2 UNEEC

In UNEEC, a machine learning model, e.g. an artificial neural network, model is built to
predict uncertainty associated to model outputs for the future inputs to the hydrological
model. The steps involved in UNEEC are summarized below:10

– Identify the set predictor variables (e.g. the lagged rainfall data, soil moisture,
flow, etc.) that describe the flow process based on their effect on the model error.
These predictors can be selected using Average Mutual Information (AMI) and
correlation analysis. Using AMI brings the advantage of detection of nonlinear
relationships (Battiti, 1994).15

– Employ the fuzzy c-means method to derive the fuzzy clusters in the data where
predictors are the same or different predictors used in machine learning model,
and the model error is the output attribute (Fig. 2). The use of fuzzy c-means
allows for reflection of the smooth nature of variability in hydrological variables
and provides a gradual transition between local error models identified by clusters20

formed. The optimal number of clusters can be determined using the existing
methods, e.g. Xie and Benie (1991), Halkidi et al. (2001), Nasseri and Zahraie
(2011).

– For each cluster c, calculate the quantiles, qτ
c , of the empirical distribution of the

model error.25
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– For each data vector, calculate the “global” estimate of the quantile qτ using the
calculated quantiles qτ

c . This is done by weighting the cluster quantile by the corre-
sponding degree of membership of the given data vector to this cluster. Calculated
qτ values for each quantile τ are used as outputs for the uncertainty model U .

– Train a machine learning model (U) (e.g. ANN) using the set of predictors as5

inputs, and the data prepared at the previous step as the output. U will be able to
predict the quantile value qτ for the new input vectors.

2.2 Validation methods

In this study we use several statistical measures of uncertainty to evaluate and to some
extent to compare performances of QR and UNEEC. These are, namely, mean predic-10

tion interval (MPI; Shrestha and Solomatine, 2006), prediction interval coverage prob-
ability (PICP; Shrestha and Solomatine, 2006), average relative interval length (ARIL;
Jin et al., 2010), and normalized uncertainty efficiency (NUE; Nasseri and Zahraie,
2011). MPI and PICP have been widely used in the literature.

MPI computes the average width of uncertainty band (or prediction interval), i.e. the15

distance between upper and lower prediction limits (PLupper
t and PLlower

t , respectively):

MPI =
1
n

∑n

t=1

(
PLupper

t −PLlower
t

)
(10)

MPI = 0 means there is no uncertainty at all. MPI is rather simple indicator giving an
idea about the distribution sharpness.20

PICP, on the other hand, is a more informative uncertainty indicator measuring the
probability that the observed values (yt) lie within the estimated prediction limits com-
puted for a significance level of 1−α (e.g. 90 %):

PICP =
1
n

∑n

t=1
C where C =

{
1, PLlower

t ≤ yt ≤ PLupper
t

0, otherwise
(11)

25
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Ideally, PICP value should be equal or close to specified confidence level.
ARIL is similar to MPI and considers average width of uncertainty bounds in relation

to the observed value:

ARIL =
1
n

∑n

t=1

(
PLupper

t −PLlower
t

)
yt

(12)
5

Having the observed value in denominator accounts for the fact that uncertainty (and
MPI) is usually higher for higher values of flow and thus has a “normalization” effect. A
problem with ARIL is that if the flow is zero or close to zero, ARIL will be infinity or very
high.

There is no single objective measure of the quality of an uncertainty prediction10

method (since the “actual” uncertainty of the model is not known). Closer PICP is to the
confidence level higher the trust in a particular uncertainty prediction method should
be. In principle, a reliable method should lead to reasonably low values of MPI (and
ARIL).

A possibility to combine PICP and ARIL is to use the NUE indicator:15

NUE =
PICP

w ×ARIL
(13)

(in this study, the value of scale factor w is taken as 1) Nasseri and Zahraie (2011)
recommend that methods with the higher NUE should be preferred over those with the
lower NUE, however we do not think this is a universally applicable recommendation:20

if for two methods PICP is equal and close to the confidence interval (90 %) and ARIL
for one method is higher (which is not good), then NUE for this method will be actually
lower.

We would like to stress again that none of the presented measures allow for accu-
rate comparison between different methods of uncertainty prediction (since the actual25

model uncertainty is never known), and should be therefore seen only as indirect in-
dicators of methods’ performance. These average measures should be used together
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with the uncertainty bound plots which visual analysis reveals more information on the
capacity of different uncertainty prediction methods during particular periods.

3 Application

3.1 Case studies

3.1.1 Brue catchment5

Located in the southwest of England, the Brue River catchment has a history of se-
vere flooding. Draining an area of 135 km2 to its river gauging station at Lovington
(Fig. 3a), the catchment is predominantly rural and of modest relief and gives rise to
a responsive flow regime due to its soil properties. The major land use is pasture on
clay soil. The mean annual rainfall in the catchment is 867 mm and mean river flow10

is 1.92 m3 s−1 (basin average, 1961–1990) (Table 1). This catchment has been exten-
sively used for research on weather radar, quantitative precipitation forecasting and
rainfall–runoff modelling, as it has been facilitated with a dense rain gauge network
(see, e.g. Moore et al., 2000; Bell and Moore, 2000).

The flow in Brue River was simulated by HBV-96 model (Lindström et al., 1997),15

which is an update version of the HBV rainfall–runoff model (Bergström, 1976). This
lumped conceptual hydrological model consists of subroutines for snow accumulation
and melt (excluded for Brue), soil moisture accounting procedure, routines for runoff
generation, and a simple routing procedure (Fig. 3b). The input data used are hourly
observations of precipitation (basin average), air temperature, and potential evapotran-20

spiration (estimated by modified Penmann method) computed from the 15 min data.
Model time step is one hour (∆t = 1 h). The model is calibrated automatically us-
ing adaptive cluster covering algorithm (ACCO) (Solomatine et al., 1999). The data
sets used for calibrating and validating the HBV-96 model are based on Shrestha and
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Solomatine (2008). It should be mentioned that the discharge data on calibration has
many peaks which are higher in magnitude compared to those in the validation data.

The uncertainty analyses conducted for Brue catchment are based on one-step-
ahead flow estimates, i.e. LT = 1 h (simulation mode). Effective rainfall (rainfall minus
evapotranspiration) values were used instead of using rainfall data directly.5

3.1.2 Upper Severn catchments

Flowing from Cambrian Mountains (610 m) in Wales, the River Severn is the longest
river in Britain (about 354 km). It forms the border between England and Wales and
flows into the Bristol Channel. The river drains an area of approximately 10 500 km2

above the monitoring station at Upton on Severn. Mean annual precipitation ranges10

from approximately 2500 mm in the west to less than 700 mm in the south (EA, 2009).
The Upper Severn includes rock formations classified as non-aquifers as well as loamy
soils characterised by their high water retention capacity (for more detailed description
of the Upper Severn, see Hill and Neal, 1997). Flooding is a major problem at the
downstream due to excessive rainfall at the upstream (the Welsh hills), early 201415

floods being the most recent significant floods that occurred.
In this work, the three sub-catchments of Upper Severn River are analyzed: Yeaton,

Llanyblodwel, and Llanerfyl (Fig. 4). The area, elevation, mean flow, mean annual rain-
fall and basin lag time (time of concentration) information of the catchments are pre-
sented in Table 1. Yeaton catchment is located at a lower elevation and over a flat area20

compared to Llanerfyl and Llanyblodwel. This catchment has also the longest basin
lag time. The smallest catchment in terms of drainage area is Llanerfyl, which also
has the shortest basin lag time (approx. 3–5 h) leading to flash floods, so that the pre-
dictive uncertainty information on flood forecast for this catchment has especially high
importance.25

In Midlands Flood Forecasting System (MFSS; a Delft-FEWS forecast production
system as described in Werner et al., 2013), the Upper Severn catchment is repre-
sented by a combination of numerical models for: rainfall–runoff modelling (MCRM;
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Bailey and Dobson, 1981), hydrological routing (DODO; Wallingford, 1994), hydrody-
namic routing (ISIS; Wallingford, 1997), and error correction (ARMA). The input data
used within MFSS includes (a) Real Time Spatial data (observed water level and rain-
gauge data as well as air temperature and catchment average rainfall); (b) Radar Ac-
tuals, (c) Radar Forecasts, and (d) Numerical Weather Prediction data (all provided by5

the UK Meteorological Office). The data available was split into two parts for calibra-
tion (7 March 2007 08:00–7 March 2010 08:00) and validation (7 March 2010 20:00–7
March 2013 08:00), preserving similar statistical properties in both data sets.

The forecasting system issues two forecasts per day (08:00 and 20:00 UTC) with
a time horizon of two days. First, the estimates of internal states are obtained run-10

ning the models (which are forced with observed precipitation, evapotranspiration and
temperature) in historical mode over the previous period. The state variables for the
(hydrological) model are soil moisture deficit (SMD, the amount of water required to
bring the current soil moisture content to field capacity in the root zone), groundwater
level (GW), snow water equivalent (SWE), and snow density (SD). Using a standalone15

version of MFSS, the system (forced by the forecasted precipitation) is then run forward
with a time step of 1 h.

It is important to note that this case study, unlike Brue catchment, includes errors in
the meteorological forecast and the back transformation of discharge to water level –via
rating curve – in a lumped manner. Therefore, the effects of rating curve uncertainty (Di20

Baldassarre and Montanari, 2009; Sikorska et al., 2013; Coxon et al., 2014; Mukolwe
et al., 2014) and precipitation forecast uncertainty (Kobold and Sušelj, 2005; Shrestha
et al., 2013) are accommodated as well.

The uncertainty analysis is aimed at estimating predictive uncertainty for the forecast
time series (∆t = 12 h) corresponding to the lead time of interest. In this study, we25

consider the lead times LT = 1, 3, 6, 12, and 24 h only.
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3.2 Experimental setup

The experiments conducted in this study focus mainly on four aspects: (a) assess-
ment of hydrological model quality in support of understanding its effect on uncertainty
analysis results, (b) investigation of normality of model residuals, particularly in view
of clustering approach employed within the framework of UNEEC method, (c) proper5

setup of the QR and UNEEC algorithms, and (d) evaluation of uncertainty analysis
results from the both methods based on their comparative performance.

The aspects related to (a) and (b) are presented for Brue catchment in Sect. 4.1.1
and for Upper Severn catchments in Sect. 4.1.2. In order to assess hydrological model
quality, we analyze error time series statistically. Normality of model residuals is inves-10

tigated through probability plots of a normal distribution and a t location-scale distribu-
tion, which pdf is given by Eqs. (14) and (15), respectively.

f (x) =
(

1/σ
√

2π
)
e−(x−µ)2/2σ2

(14)

f (x) =
Γ
(
ν+ 1

2

)
σ
√

2πΓ
(
ν+ 1

2

)
ν+

(
x− µ

σ

)2

ν

−(ν+ 1
2 )

(15)

15

where µ: location parameter (mean), σ: scale parameter (std. deviation), ν: shape
parameter (i.e., the number of degrees of freedom), and Γ: gamma function. The t
location-scale distribution is like the normal distribution by definition; however, it has
heavier tails making it more prone to outliers. Within this study outliers refer to very
high model residuals occurring during extreme precipitation and flow events. In case20

of normality of data its analysis becomes much simpler, however often this is not the
case.

Residual uncertainty varies in time and with the changing hydrometeorological situ-
ation, and in this paper we investigate residuals distribution for different hydrometeoro-
logical conditions represented by clusters found within the UNEEC method.25
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Sections 4.2.1 and 4.2.2 describe the aspects related to (c) and (d) for Brue catch-
ment and Upper Severn catchments, respectively. The model setups for QR and UN-
EEC are identified based on their methodological description and catchment specific
conditions such as data availability. Selection of best model setup for UNEEC includes
AMI and correlation analysis, and determination of number of clusters.5

In the Brue catchment case study, for QR, a linear regression model estimating quan-
tile τ of observed discharge conditioned on simulated discharge are obtained. UNEEC
method builds more complex data-driven models estimating quantiles of error using
more variables and considers local features of error through clustering. The method-
ological details on application of UNEEC method on Brue catchment is explained be-10

low.
Shrestha and Solomatine (2008) tested UNEEC method on Brue catchment to as-

sess predictive uncertainty of the one-step-ahead flow estimates. The probable pre-
dictors of model error identified using AMI and correlation analysis were only lagged
discharge (Qt−1,Qt−2,Qt−3) and effective rainfall (REt−8, REt−9, REt−10) values. In15

this study, however, we try a different parameterization of the method. In addition to the
mentioned variables, we consider the most recent two past error values (et−1,et−2) as
predictors to incorporate the autoregressive features. It was seen that this configura-
tion resulted in decreased MPI values (< 5 %) during both training and test periods. In
accordance with the previous study the number of clusters used is 5. For the quantiles20

of interest, different M5 model tree (Quinlan, 1992) models are built. A model tree is
a hierarchical (i.e. tree like) modular model which can be considered analogous to a
piecewise linear function. At non-terminal nodes there are rules that progressively split
data into subsets, and finally there are linear regression equations at the leaves of the
tree built on the data subset that reached this particular leaf. Model trees can be easily25

used for tasks with very high dimensionality as it learns efficiently.
In the case studies from Upper Severn catchment, for QR, a linear regression model

estimating quantile τ of observed water level conditioned on forecasted water levels is
obtained. For UNEEC, different M5 model tree models are built. In the UNEEC method,

10196

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/10179/2014/hessd-11-10179-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/10179/2014/hessd-11-10179-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 10179–10233, 2014

Estimation of
predictive hydrologic

uncertainty using
quantile regression

N. Dogulu et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

the first step is to identify the exact structure of the model error predictor using AMI and
correlation analysis. In these case studies a variety of predictors are considered for
the model, e.g. observed and modelled water level, forecasted precipitation, and state
variables (GW , SMD, SW E, SD). Although the benefits of using the observed (and/or
modelled) soil moisture and groundwater level information for modelling rainfall–runoff5

processes and predicting runoff is well known in the literature (Aubert et al., 2003; Lee
and Seo, 2011; Tayfur et al., 2014), we cannot cite any studies exploring the possible
advantages of using such information for improving predictive capabilities of uncer-
tainty analysis methods. Therefore, the dependence of model residuals on variables
expressing internal state of the catchments is also analyzed.10

Among the state variables, the most significant correlation with the model error was
of GW and SMD. While GW was found to be positively correlated with model residu-
als (i.e. as GW increases, error increases too), SMD and model error had a negative
correlation. High groundwater levels are associated with more precipitation. High soil
moisture deficit, on the other hand, indicates that there has been no excessive precip-15

itation and the soil is not filled up with infiltrated water. High soil moisture deficit might
also occur due to increasing evaporation rates causing soil to dry up. However, con-
sidering climate of Upper Severn region, low soil moisture is more likely attributed to
higher rainfall rates. Eventually, it was decided that the most recent precipitation (P t−1),
observed water level (Hobs,t−1), error (et−1), and state variables GW and SMD shall be20

considered as predictors. It should be noted that subscript t−1 stands for t−12 h in
reality as the data sets analyzed has a time step of 12 h (see Sect. 3.1.2). For the sake
simplicity, we prefer to use the subscript notation t−1.

A number of experiments with UNEEC have been conducted in order to be able
to select the best model setup among the variables GW , SMD, Hobs,t−1,P t−1,et−1.25

From both calibration and validation results it was seen that there was only negligible
changes (and mostly no change) in terms of MPI and PICP when P t−1 and et−1 were
included. This is indeed a pertinent finding ensuring that no forecast error in precipi-
tation is considered as an additional uncertainty source within the uncertainty model
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U . Noting also that correlation between precipitation and model residuals was very
much less than that of between observed water level and model residuals, P t−1 is not
considered as an input vector for the model U . Unlike in Brue catchment, we did not
include past model residuals (et) as an input data vector as its possible effects might
be highly misleading especially for longer lead times. Consequently, only the variables5

GW , SMD, Hobs,t−1 are selected as final predictors. The significance of GW variable is
substantial in that inclusion of this variable provides more explainable results in terms
of MPI and PICP. As such, the use of GW variable (together with SMD) can be con-
sidered as a proxy for using rainfall information, thus is highly necessary.

The fuzzy c-means method was used with 6 clusters where fuzzy exponential co-10

efficient was set to 2. M5 model tree was used as the machine learning model. Main
reasons for using this technique are its accuracy, transparency (analytical expressions
for models are obtained explicitly) and speed in training. The decision on optimal num-
ber of clusters was based on computation of Partition Index (SC), Separation Index (S)
and Xie and Beni Index (XB) (Bensaid et al., 1996; Xie and Beni, 1991), and observing15

sensitivity of PICP and MPI.
Within the variables considered in clustering, GW is the most influential one. Fig. 5

shows fuzzy clustering of GW , SMD, and Hobs,t−1 data for Llanyblodwel catchment
(lead time = 6 h). Also on the same figure is the plot of model residuals against GW

where one can observe heteroscedasticity of model residuals with respect to GW .20

As can be easily seen, while cluster 2 is associated to very high groundwater levels,
cluster 4 can be attributed to low groundwater level conditions, which might occur due
to low water levels in the river and/or high soil moisture deficit. Looking at groundwater
level time series in Fig. 5, one can notice that the change in GW is approximately
60 m in the first three months period of calibration data (from 0 to time step 200). Such25

amount of change is too big for a process which is known to be considerably slower, e.g.
as compared to river flow process. This can be explained by the fact that conceptual
models are inaccurate and cannot be expected to reproduce all the complex physics
of nature (groundwater being one of the most complex parts). There is also probably
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a “compensatory” effect of the model, when one part of the model (groundwater) does
something non-physical to try to end up (mathematically) with the reasonable values of
output (flow).

Uncertainty analysis results from both methods are evaluated and compared em-
ploying the validation measures explained in Sect. 2.2.5

4 Results and discussion

This part focuses on the statistical error analysis (Sect. 4.1) and compares uncertainty
analysis results obtained from QR and UNEEC (Sect. 4.2).

4.1 Statistical error analysis

4.1.1 Brue catchment10

Observed discharge plotted against simulated discharge during calibration period can
be seen in Fig. 6a, whereas Fig. 6b shows how model residuals change with the ob-
served discharge. As expected, model error increases with increasing discharge val-
ues. Although the model residuals are lower at flows higher than 35 m3 s−1 compared
to at flows less than 35 m3 s−1 in Fig. 6a, it can be seen from Fig. 6b that the HBV-9615

model is less accurate in simulating high flows compared to low flows.
Figure 7a presents probability plots of model residuals comparing the two selected

distributions (normal distribution and t location-scale distribution). The estimated pa-
rameters for the best fit to data are µ = 0.0363 and σ = 0.7619 m3 s−1 for normal distri-
bution – same with the empirical parameters. On the other hand, the best fit parameters20

for t location-scale distribution are different: µ = 0.0607 m3 s−1, σ = 0.2351 m3 s−1 and
ν = 1.5833. From Fig. 7a, one can conclude that the model residuals’ distribution is far
from being close to normal even though the parameters of the fitted normal distribution
are the same with those obtained from the empirical distribution. It is obvious that t
location-scale distribution provides better fit as it is able to enclose the data at the tails25
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much better compared to fitted normal distribution. Yet, outliers are still not represented
fully.

Normality of model residuals’ distribution is further investigated for different hydrome-
teorological conditions as identified by clustering in the space of the predictor variables.
Analysis of probability plot for each cluster formed indicates that there is no significant5

departure from normality (with regard to the fitted normal distribution) unlike in the over-
all model residuals. The most striking result among all clusters is achieved in the one
representing very high flow and high rainfall (0.95 % of total data) (Fig. 7b). It should
be noted that it is mostly these extreme events making overall residuals distribution
non-Gaussian. Classifying data so that different hydrometeorological conditions, most10

importantly extreme events, are separated helps to achieve homogeneity, and thus
normality in model residuals’ distribution. Therefore clustering can be suggested as an
alternative to transformation of model residuals before applying any statistical methods
on them.

4.1.2 Upper Severn catchments: Yeaton, Llanyblodwel, and Llanerfyl15

Understanding the quality of (water level) forecasts is important in order to efficiently
discuss uncertainty analysis results provided by any method. In Upper Severn catch-
ments, this is done based on standard deviation of model error. The results are com-
paratively presented for different lead times in Fig. 8 where the effect of lead time on
forecast quality can be clearly seen. As lead time increases, the standard deviation of20

error increases as well. Also, it should be noticed that there is a direct increasing effect
of shorter basin lag time on standard deviation. For example, catchment with shortest
basin lag time, that is Llanerfyl, has always larger standard deviation for all lead times.
On the contrary, the smallest standard deviation always occurs in the catchment having
the longest basin lag time, which is Yeaton. This is mainly due to the fact that the basin25

lag time represents memory of a catchment. Hence, flood forecasting capability of a
hydrological model is affected negatively when the basin lag time is short.
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The observed water levels are plotted against forecasted water levels in Llanyblodwel
catchment for lead time = 6 h in Fig. 9a. Figure 9b shows model error plotted against
observed water level on the logarithmic scale. Although it is not very clear from Fig. 9a,
it is evident from Fig. 9b that the model error increases with higher water levels, as
expected.5

Normality of model residuals for Llanyblodwel catchment for all lead times was inves-
tigated (see Fig. 10a). Visual inspection of probability plots, superimposed on which the
line joining the 25th and 75th percentiles of the fitted normal distributions, reveals that
errors are not normally distributed, i.e. the data does not fall on the straight line as it is
especially the case for the tails. It should be realized that the departure from normality10

increases with longer lead times.
Furthermore, a normality check for model residuals’ distribution is made individually

for the data clusters corresponding to particular hydrometerological conditions. The
variables used for clustering are groundwater level (GW ), soil moisture deficit (SMD),
and observed water level (Hobs,t−1). It is seen that the level of achieving normality in15

model residuals’ distribution for each cluster is substantially poorer if compared to the
Brue catchment. This can be explained by the fact that the error time series data being
analyzed has a time step of 12 h which is long enough to hinder effects of varying
water levels on error. Another reason can be related to the nature of model residuals,
e.g. forecasted precipitation is used to predict water levels. This brings a great amount20

of uncertainty and a higher difference between the actual and the predicted water levels
(i.e. higher model residuals). It is also worth mentioning that the distribution closest to
normal is found in the data cluster representing high groundwater levels, high water
levels, and low soil moisture deficit (4.6 % of the total data set) (Fig. 10b).
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4.2 Uncertainty prediction by the two methods

4.2.1 Brue catchment

Validation measures PICP, MPI, and ARIL are provided in Table 2. In terms of PICP,
even though QR provides PICP values slightly closer to 90 % and 50 % during training,
UNEEC was found to be more reliable in validation especially for the 90 % confidence5

level. While the narrowest prediction interval on average is given by UNEEC during
training for both 90 % and 50 % confidence level, comparable MPI values are obtained
during validation. QR stands outs with its smaller ARIL values particularly for the 90 %
confidence level. However, if one considers PICP and MPI, as well as ARIL, on aggre-
gate UNEEC yields better results over QR.10

Looking at Fig. 11a, visual analysis of 90 % prediction intervals for the highest flow
period in validation reveals that neither UNEEC nor QR is perfectly able to enclose
peak observations of high flows. Overall, uncertainty analysis results from UNEEC and
QR are comparable. Yet, in comparison to UNEEC, QR produces unnecessarily wider
uncertainty bounds for medium peaks in validation (see Fig. 11b). The reason for this15

can be related to the fact that these medium peaks last longer. UNEEC is able to
memorize catchment behaviour far better as it considers encapsulated information of
catchment characteristics in its multiple predictors.

PICP, MPI, ARIL and NUE values for each cluster are computed for QR and UNEEC.
The results are listed in Table 3. From this table, it is possible to verify the contradic-20

tory relationship between PICP and MPI when the two methods are compared: PICP is
closer to 90 % more when MPI is higher. Unlike for the whole data set (that is highly het-
erogeneous due to extremes in rainfall–runoff process), such relationship is observed
when the homogeneous data sets (e.g. clusters) are analyzed. It is likely that consider-
ing all the data having varying uncertainty width over the available period compensates25

peculiarities of each cluster regarding their own PICP and MPI. (Note that ARIL also
has a similar situation.) Based on this explanation, comparison of the methods QR and
UNEEC for the cluster of high flow (and high rainfall) cannot be made properly when
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one considers PICP, MPI, and ARIL only. Therefore, NUE values (w = 1) correspond-
ing to each cluster are also computed. Based on NUE values, it can be concluded
that in general UNEEC shows a better performance since it yields a higher NUE value
(except for the first cluster).

4.2.2 Upper Severn catchments: Yeaton, Llanyblodwel, and Llanerfyl5

MPI and ARIL values for the 90 % confidence level on validation data set are presented
in Fig. 12. The effect of lead time on both measures of uncertainty is such that when
the lead time increases, quality of the forecast decreases, hence the values of both
measures increases. In view of the model quality for predicted water levels, the rela-
tively low MPI values in Yeaton catchment are not surprising for both methods. Having10

the longest basin lag time, accuracy of forecast in Yeaton catchment is much higher.
On the other hand, the catchment with the shortest basin lag time, that is Llanerfyl,
always has the largest MPI. The following points need mentioning if the two methods
are compared:

– In terms of MPI: (i) QR gives slightly narrower bands for Yeaton catchment espe-15

cially at longer lead times; (ii) the methods perform equally well for Llanyblodwel
catchment at all lead times; (iii) UNEEC provides relatively lower MPI values than
QR for Llanerfyl.

– Based on ARIL: (i) while QR outperforms UNEEC in Yeaton especially for longer
lead times, the methods provide nearly the same values for Llanyblodwel and20

Llanerfyl. It should be noticed that, for Llanerfyl, ARIL values from UNEEC method
are always the smallest.

MPI values plotted against PICP values for the validation period are shown in Fig. 13.
Overall, when one considers both MPI and PICP:

– Yeaton: QR does slightly better than UNEEC. Low PICP values obtained by UN-25

EEC at shorter lead times are due to higher predictive accuracy of the forecasting
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model (i.e., model residuals less than 1 mm). It should be noted that in this study
QR method, unlike UNEEC, predicts the quantiles of the uncertain water level
rather than of the residual error. Such an approach eliminates the possibility of
having extremely low PICP values resulting from the cases where the model is
able to predict the variable of interest quite well.5

– Llanyblodwel: Both methods are equally capable of providing reasonably well un-
certainty estimates (as measured by both MPI and PICP).

– Llanerfyl: UNEEC method is outperforming QR method in terms of both MPI and
PICP.

For further comparison of estimated prediction limits through uncertainty plots, three10

cases are selected based on the relationship between basin lag time and lead time.
These cases are (1) Yeaton, lead time = 3 h (lead time < basin lag time), (2) Llany-
blodwel, lead time = 6 h (lead time ≈ basin lag time), and (3) Llanerfyl, lead time = 12 h
(lead time > basin lag time). The fundamental idea here is to understand how well the
residual uncertainty is assessed with regard to forecast lead time and its relation to15

basin lag time. The catchment with the longest basin lag time (Yeaton) is considered
for Case 1, where the effect of a very short lead time is to be investigated. Here on
this decision, there is the deliberate intention to combine the condition of having more
accurate model outputs (i.e. extremely small residuals) as well. Case 3, on the other
hand, is important to understand lead time-basin lag time relationship for the worst sit-20

uation: relatively poor quality of forecasting model and the longest lead time. This is
the most critical case in that the performance of predictive uncertainty method’s per-
formance has a bigger role in operational decision making process. Apart from these
two extreme cases, Case 2 represents a balanced situation where the lead time of in-
terest and basin lag time are approximately equal. Llanyblodwel catchment is chosen25

for this case as its model has a moderate predictive accuracy. Figure 14 compares
the computed prediction limits by QR and UNEEC for these cases during the latest 11
months period of validation (April 2012–February 2013). It was during late 2012 that
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Upper Severn catchment suffered from serious flooding and this period corresponds to
the right half of the plots. The most salient observations from Fig. 14 are as follows:

– In Llanerfyl, one can notice a strange behaviour of the model causing sharp
changes in forecasted water levels (unstable model outputs), and thus in predic-
tion limits. Considering that Llanerfyl catchment has a basin lag time of ∼ 3–5 h,5

hydrological conditions in the catchment, e.g. water levels, can change signifi-
cantly in 12 h (∆t, time step of the data set). Therefore, it is not surprising that the
sharpest changes occur in this catchment’s hydrograph as compared to Yeaton
and Llanyblodwel. One can observe even more significant changes in the sec-
ond half period of the hydrograph. It is necessary to mention that these oscillating10

changes appear as a consequence of the forecasting model’s extremely poor per-
formance.

– For medium water levels in Yeaton and Llanybldowel, UNEEC gives wider predic-
tion intervals as compared to QR, particularly on falling limb part of the hydro-
graphs. A possible explanation for this can be encapsulation of groundwater level15

information in UNEEC. Groundwater levels remains at higher levels for longer
periods than water levels in the river (i.e. due to slow and long response time of
groundwater levels to changing hydrometeorological conditions) and thus UNEEC
has the potential to provide uncertainty band of larger widths.

– For peak water levels in Yeaton and Llanyblodwel catchments, it is mostly QR that20

produces higher upper prediction limit than UNEEC. Yet, this doesn’t contribute
to overall performance of the method significantly. On the contrary, it is seen in
some cases that such high upper prediction limits makes the uncertainty band
unnecessarily too wide.

– Continuous peaks prevail in Llanerfyl catchment (as its basin lag time is way25

shorter than the forecast lead time of interest). Such continuous peaks occur
during certain periods in Llanyblodwel catchment too. In most of these cases,
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UNEEC gives narrower uncertainty band, and wider prediction interval computed
by QR is redundant. That is to say, it doesn’t contribute QR method’s performance
(as measured by PICP) at all in terms of its ability to enclose more observations
within the band. For peak water levels, however, QR is slightly more informative
than UNEEC.5

– Noticeably, upper prediction limits obtained by QR in Llanerfyl catchment for the
long-lasting falling limb part of the hydrograph (indicated by arrows in Fig. 14c) are
too high, e.g. even greater than those provided by UNEEC. QR is a method build-
ing simple linear regression models considering only observed water levels on
forecasted water levels. Having rather simple mathematical formulation, it might10

be that sensitivity of the computed upper prediction limit to magnitude of water
level increases, and shows an amplifying effect on uncertainty band width.

Table 4 shows the values of validation measures (MPI, PICP, and ARIL) for each
cluster for Llanyblodwel catchment (lead time = 6 h). In UNEEC, the highest MPI value
was obtained for cluster 2 (highest groundwater levels) with a relatively bad PICP value15

compared to other clusters. The low PICP in cluster 2 can be explained by limited
number of data (only 4.6 %) available for highest groundwater levels occurring rarely.
Similar to UNEEC, the highest MPI was also obtained for this cluster with QR method.
Providing a wider uncertainty band than UNEEC on average, QR is not very much
capable of estimating reasonable prediction limits for very high groundwater levels.20

This is also supported by its greater (12 %) ARIL value compared to UNEEC.
PICP and MPI values for the cluster 4 should be mentioned as well. This cluster

represents very low water levels, very low groundwater levels, and very high soil mois-
ture deficit, and constitutes 16.6 % of the whole data. As distinct from cluster 2, bad
(but slightly better) PICP value (obtained by UNEEC) in cluster 4 can be attributed to25

its lower MPI. In comparison to UNEEC, QR provides PICP values which are close to
target value (i.e. 90 %) despite its lower MPI. Thus, one can say that UNEEC certainly
fails in providing reliable uncertainty estimates for the extreme condition associated to
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very low water and groundwater levels. This can be due to the effect of using state
variables as predictors. All in all, state variables are model outputs and they cannot
reflect real catchment conditions truly especially when the (hydrological) model is not
very accurate. That is particularly true for the extreme events considering that models
mostly fail in simulating such events.5

5 Conclusions and recommendations

This study should be seen as accompanying the study by López López et al. (2014)
(and earlier work on UNEEC and QR) and presents a comparative evaluation of un-
certainty analysis and prediction results from QR and UNEEC methods on the four
catchments that vary in its hydrological characteristics and models: Brue catchment10

(simulation mode) and Upper Severn catchments – Yeaton, Llanyblodwel, and Llan-
erfyl (forecasting mode). The latter set of case studies is important from a practical
perspective in that the effect of lead time on uncertainty analysis results and its relation
with basin lag time is demonstrated. For both QR and UNEEC different model configu-
rations than their previous applications are considered. The following conclusions can15

be drawn from the results of this study:

– In terms of easiness of setup (data preparation and calibration), preference should
be given to QR simply because it is a simpler linear method with one input variable
(in this study), whereas UNEEC has more steps and requires more data analysis.
However, this has to be done only once (i.e. during calibration), and in operation20

both methods can be easily used and have equally low running times (a fraction
of a second) since they are based on algebraic calculations.

– In almost all case studies both methods adequately represent residual uncertainty
and provide similar results consistent with understanding of the hydrological pic-
ture of the catchment and the accuracy of the (hydrological) models used. We can25

recommend both methods for the use in flood forecasting.
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– It is impossible to have a strict validation of predictive uncertainty methods on real
life data since there is no basis for comparison, i.e. the values of residual error
quantiles are unknown. In this study, several measures (PICP, MPI, ARIL, and
NUE) that jointly provide a certain indication of the methods’ quality have been
used. The methods have been also compared based on the empirical judgement5

about the residual uncertainty under different hydrometeorological conditions and
different states of a catchment in terms of the hydrological response.

– In one case study, Llanerfyl, we found that UNEEC was giving more adequate
estimates than QR. This catchment has a shorter basin lag time and the model
outputs for this catchment were characterized by a relatively high error, so our10

conclusion was that probably in such a rapid response catchment the UNEEC’s
more sophisticated non-linear models were able to capture relationships between
quantiles, and hydrometeorological and state variables better than the QR’s lin-
ear model. Introducing more predictors in the QR methodology (thus “pushing”
towards UNEEC) could possibly increase the performance of QR for Llanerfyl.15

– A useful finding is that inclusion of a variable representing groundwater level (GW)
as a predictor in UNEEC improves its performance for the Upper Severn catch-
ments. This can be explained by the fact that this variable has a high level of
information content about the state of a catchment. However, it should be noted
that in other catchments using such information can be misleading due to slow20

(and long) response time of groundwater levels to changing hydrometeorological
conditions. Yet, overall, it can be advised to make use of variables which can be
representative of hydrological response behaviour of a catchment for improving
the predictive capacity of the data-driven methods.

We recommend comparing the two presented methods (QR and UNEEC) with more25

predictive uncertainty methods which use different methodologies, such as HUP
(Krzysztofowicz, 1999) or DUMBRAE (Pianosi and Raso, 2012). It is also necessary to
test capabilities of different predictive uncertainty methods on catchments from regions

10208

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/10179/2014/hessd-11-10179-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/10179/2014/hessd-11-10179-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 10179–10233, 2014

Estimation of
predictive hydrologic

uncertainty using
quantile regression

N. Dogulu et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

of distinct hydrologic behaviour, with diverse climatic conditions, and having various
hydrological features. In this study, we found that the basin lag time is a notable char-
acteristic of a catchment having great influence on uncertainty analysis results (as
measured by MPI and PICP). When the lag time is longer, the catchment memorizes
more information regarding its hydrological response characteristics.5

On the other hand, exploring the performance of different methods on similar catch-
ments (Sawicz et al., 2011; Toth, 2013; Patil and Stieglitz, 2011; Sivakumar et al., 2014)
and finding bases for generalized guidelines on the selection of most appropriate pre-
dictive uncertainty method in operational flood forecasting practices is also important
and could be considered in the further studies as well.10

When different predictive uncertainty methods are evaluated based on their com-
parative performance, it is more important to have validation measures incorporating
certain aspects of rainfall–runoff process, i.e. varying flow conditions. For example, the
accuracy of the hydrological model, thus the amount of residual uncertainty, decreases
during high flow values. This necessitates exploring validation measures linking predic-15

tion interval to the (hydrological) model quality (see, e.g. Dogulu et al., 2014: weighted
mean prediction interval).

We also see other possibilities for further improvements in both methods. For exam-
ple, the different configurations of QR and alternative clustering techniques for UNEEC
can be explored further.20
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Table 1. Summary of the main basin characteristics for the catchments selected.

Catchment name Drainage area (km2) Elevation (m) Mean flow (m3 s−1) Mean annual rainfall (mm) Basin lag time (h)

Brue 135 ≈ 20 1.92a 867a 8–9
Yeaton 180.8 61.18 1.60b 767b 15–20
Llanyblodwel 229 77.28 6.58b 1267b 7–10
Llanerfyl ≈ 100 151 > 10c > 1300c 3–5

a Basin average for the period 1961–1990.
b Computed for the periods 1963–2005 and 1973–2005 for Yeaton and Llanyblodwel, respectively and taken from UK Hydrometric Register (Marsh and Hannaford,
2008).
c Rough estimates based on the data available for 2006–2013.
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Table 2. Uncertainty analysis results for 90 % and 50 % confidence levels (Brue catchment).

Confidence PICP (%) MPI (m3 s−1) ARIL (–)

level UNEEC QR UNEEC QR UNEEC QR

90 % 91.19 90.00 1.58 1.69 1.86 1.47
TR

50 % 51.28 50.01 0.54 0.58 0.55 0.46

90 % 88.29 82.33 1.37 1.39 2.35 1.83
VD

50 % 30.29 32.75 0.45 0.47 0.67 0.57

TR: Training, VD: Validation.
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Table 3. PICP, MPI, ARIL and NUE values for each cluster (training, 90 % confidence level,
Brue): UNEEC vs. QR.

Cluster No Number UNEEC QR

of PICP MPI ARIL NUE PICP MPI ARIL NUE
data (%) (m3 s−1) (–) (–) (%) (m3 s−1) (–) (–)

1a 5447 92.12 1.14 2.67 34.5 88.16 0.88 1.96 45.0
(62.3%)

2 787 82.08 2.98 0.50 164.2 84.50 3.51 0.57 148.2
(9.0 %)

3 2167 94.46 1.44 0.53 178.2 96.72 1.94 0.71 136.2
(24.7%)

4b 83 74.70 7.55 0.33 226.4 90.36 12.00 0.49 184.4
(0.95 %)

5 266 77.44 5.96 0.48 161.3 89.47 7.58 0.58 154.3
(3.05 %)
a Low flows, low rainfall.
b High flows, high rainfall.
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Table 4. PICP, MPI, and ARIL values for each cluster (training, 90 % confidence level, Llany-
blodwel, lead time = 6 h): UNEEC vs. QR.

Cluster No Number UNEEC QR

of PICP MPI ARIL PICP MPI ARIL
data (%) (m3 s−1) (–) (%) (m3 s−1) (–)

1 413 (19.1%) 88.62 0.1492 0.271 93.95 0.1506 0.250
2a 100 (4.6%) 85.00 0.2964 0.288 95.00 0.3538 0.326
3 336 (15.5 %) 90.18 0.1798 0.249 94.94 0.2283 0.287
4b 359 (16.6%) 93.04 0.0518 0.182 89.14 0.0305 0.100
5 535 (24.8%) 89.53 0.1128 0.308 85.79 0.0742 0.179
6 416 (19.2%) 90.38 0.0920 0.212 92.31 0.1021 0.208

a High groundwater levels.
b Low groundwater levels.
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FIGURES AND TABLES 2 

 3 

 4 

Figure 1. Quantile regression example scheme considering different quantiles. 5 
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Figure 1. Quantile regression example scheme considering different quantiles.
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 1 

 2 

 3 
Figure 2. An example to fuzzy clustering of input data (the predictors are past rainfall at lag t-2 and past flow at 4 
lag t-1) during training of the uncertainty model, U (adapted from Solomatine, 2013).  5 
 6 
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Figure 2. An example to fuzzy clustering of input data (the predictors are past rainfall at lag t−2
and past flow at lag t−1) during training of the uncertainty model, U (adapted from Solomatine,
2013).
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 1 

 2 

Figure 3. (a) The Brue catchment showing dense rain gauges network and its river gauging station, Lovington, 3 
where the discharge is measured, and (b) Schematic representation of HBV-96 model (Lindström et al., 1997) 4 
with routine for snow (upper), soil (middle), and response (bottom) (Shrestha and Solomatine, 2008). 5 
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Figure 3. (a) The Brue catchment showing dense rain gauges network and its river gauging
station, Lovington, where the discharge is measured, and (b) schematic representation of HBV-
96 model (Lindström et al., 1997) with routine for snow (upper), soil (middle), and response
(bottom) (Shrestha and Solomatine, 2008).
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Figure 4. The Upper Severn catchments: Yeaton, Llanyblodwel and Llanerfyl (adapted from
López López et al., 2014).
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 2 

Figure 5. Fuzzy clustering of: GW (left, top) and its relation with the model residuals (right), SMD (left, middle) 3 
and Hobs, t-, (left, bottom) for calibration period (7 March 2007 08:00 – 7 March 2010 08:00) - Llanyblodwel, 4 
lead time = 6 hrs. 5 

Figure 5. Fuzzy clustering of: GW (left, top) and its relation with the model residuals (right),
SMD (left, middle) and Hobs,t−12, (left, bottom) for calibration period (7 March 2007 08:00–7
March 2010 08:00) – Llanyblodwel, lead time = 6 h.
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Figure 6.  Observed discharge, simulated discharge and model residuals during calibration (Brue catchment). 3 
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Figure 6. Observed discharge, simulated discharge, and model residuals during calibration
(Brue catchment).
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 3 

Figure 7. Probability plots for model residuals (during training) for Brue catchment:  (a) comparison of the two 4 
fitted distributions:  normal vs. t location-scale distribution, (b) the cluster representing high flow and high 5 
rainfall. 6 
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Figure 7. Probability plots for model residuals (during training) for Brue catchment: (a) com-
parison of the two fitted distributions: normal vs. t location-scale distribution, (b) the cluster
representing high flow and high rainfall.
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Figure 8. Standard deviation of model error (during calibration, Llanyblodwel). 3 
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Figure 8. Standard deviation of model error (during calibration, Llanyblodwel).
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Figure 9.  Observed water level, forecasted water level and model residuals during calibration (Llanyblodwel, 3 
lead time = 6 hrs). 4 
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Figure 9. Observed water level, forecasted water level, and model residuals during calibration
(Llanyblodwel, lead time = 6 h).
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 3 

Figure 10. Probability plots for model residuals (during training) for Llanyblodwel catchment:  (a) comparison 4 
of fitted normal distributions for all the lead times, (b) the cluster representing high groundwater level, high 5 
water level, and low soil moisture deficit (lead time = 6 hrs). 6 
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Figure 10. Probability plots for model residuals (during training) for Llanyblodwel catchment:
(a) comparison of fitted normal distributions for all the lead times, (b) the cluster representing
high groundwater level, high water level, and low soil moisture deficit (lead time = 6 h).
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Figure 11. Comparison of prediction limits for 90% confidence level during validation: (a) for the highest peak 3 
event (16 December 1995 04:00 – 28 December 1995 16:00), and (b) for a medium peak event (6 January 1996 4 
00:00 – 18 January 1996 12:00). 5 
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Figure 11. Comparison of prediction limits for 90 % confidence level during validation: (a) for
the highest peak event (16 December 1995 04:00–28 December 1995 16:00), and (b) for a
medium peak event (6 January 1996 00:00–18 January 1996 12:00).
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Figure 12. MPI (left) and ARIL (right) values obtained during validation period (7 March 2010 20:00 – 7 March 3 
2013 08:00) for 90% confidence level. 4 
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Figure 12. MPI (left) and ARIL (right) values obtained during validation period (7 March 2010
20:00–7 March 2013 08:00) for 90 % confidence level.
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Figure 13. Comparison of UNEEC and QR based on both MPI and PICP during validation period (7 March 3 
2010 20:00 – 7 March 2013 08:00) for 90% confidence level (The size of the marker represents the lead time, i.e. 4 
bigger the marker, longer the lead time). 5 

Figure 13. Comparison of UNEEC and QR based on both MPI and PICP during validation
period (7 March 2010 20:00–7 March 2013 08:00) for 90 % confidence level (the size of the
marker represents the lead time, i.e. bigger the marker, longer the lead time).

10232

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/10179/2014/hessd-11-10179-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/10179/2014/hessd-11-10179-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 10179–10233, 2014

Estimation of
predictive hydrologic

uncertainty using
quantile regression

N. Dogulu et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

 48 

 1 

 2 

Figure 14. Comparison of prediction limits for 90% confidence level during validation (1 April 2012 – 7 March 3 
2013): (a) Yeaton, lead time = 3 hrs, (b) Llanyblodwel, lead time = 6 hrs, (c) Llanerfyl, lead time = 12 hrs. 4 Figure 14. Comparison of prediction limits for 90 % confidence level during validation (1 April

2012–7 March 2013): (a) Yeaton, lead time = 3 h, (b) Llanyblodwel, lead time = 6 h, (c) Llan-
erfyl, lead time = 12 h.
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